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For myself, I am interested in science and in philosophy only because I want to
learn something about the riddle of the world in which we live, and the riddle
of man’s knowledge of that world. And I believe that only a revival of interest
in these riddles can save the sciences and philosophy from narrow specialization
and from an obscurantist faith in the expert’s special skill, and in his personal
knowledge and authority; a faith that so well fits our ‘post-rationalist’ and ‘post-
critical” age, proudly dedicated to the destruction of the tradition of rational
philosophy, and of rational thought itself.
—XKarl Popper. The logic of scientific discovery. 1959.
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1 Introduction

GNU Astronomy Utilities (Gnuastro) is an official GNU package consisting of separate
programs and libraries for the manipulation and analysis of astronomical data. All the pro-
grams share the same basic command-line user interface for the comfort of both the users
and developers. Gnuastro is written to comply fully with the GNU coding standards so it
integrates finely with the GNU/Linux operating system. This also enables astronomers to
expect a fully familiar experience in the source code, building, installing and command-line
user interaction that they have seen in all the other GNU software that they use. The official
and always up to date version of this book (or manual) is freely available under Appendix B
[GNU Free Doc. License|, page 993, in various formats (PDF, HTML, plain text, info, and
as its Texinfo source) at http://www.gnu.org/software/gnuastro/manual/.

For users who are new to the GNU /Linux environment, unless otherwise specified most of
the topics in Chapter 3 [Installation], page 212, and Chapter 4 [Common program behavior],
page 249, are common to all GNU software, for example, installation, managing command-
line options or getting help (also see Section 1.8 [New to GNU /Linux?], page 12). So if you
are new to this empowering environment, we encourage you to go through these chapters
carefully. They can be a starting point from which you can continue to learn more from
each program’s own manual and fully benefit from and enjoy this wonderful environment.
Gnuastro also comes with a large set of libraries, so you can write your own programs using
Gnuastro’s building blocks, see Section 12.1 [Review of library fundamentals], page 752, for
an introduction.

In Gnuastro, no change to any program or library will be committed to its history, before
it has been fully documented here first. As discussed in Section 1.3 [Gnuastro manifesto:
Science and its tools|, page 6, this is a founding principle of the Gnuastro.

1.1 Quick start

The latest official release tarball is always available as gnuastro-latest.tar.lz (http://
ftp.gnu.org/gnu/gnuastro/gnuastro-latest.tar.1z). The Lzip (http://www.
nongnu.org/lzip/lzip.html) format is used for better compression (smaller output size,
thus faster download), and robust archival features and standards. For historical reasons
(those users that do not yet have Lzip), the Gzip’d tarball' is available at the same URL
(just change the .1z suffix above to .gz; however, the Lzip’d file is recommended). See
Section 3.2.1 [Release tarball], page 227, for more details on the tarball release.

Let’s assume the downloaded tarball is in the TOPGNUASTRO directory. You can follow the
commands below to download and un-compress the Gnuastro source. You need to have the
1zip program for the decompression (see Section 3.1.4 [Dependencies from package man-
agers|, page 222) If your Tar implementation does not recognize Lzip (the third command
fails), run the fourth command. Note that lines starting with ## do not need to be typed
(they are only a description of the following command):

## Go into the download directory.
$ cd TOPGNUASTRO

! The Gzip library and program are commonly available on most systems. However, Gnuastro recommends
Lzip as described above and the beta-releases are also only distributed in tar.1lz.


http://www.gnu.org/software/gnuastro/manual/
http://ftp.gnu.org/gnu/gnuastro/gnuastro-latest.tar.lz
http://ftp.gnu.org/gnu/gnuastro/gnuastro-latest.tar.lz
http://www.nongnu.org/lzip/lzip.html
http://www.nongnu.org/lzip/lzip.html
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## If you do not already have the tarball, you can download it:
$ wget http://ftp.gnu.org/gnu/gnuastro/gnuastro-latest.tar.lz

## If this fails, run the next command.
$ tar -xf gnuastro-latest.tar.lz

## Only when the previous command fails.
$ 1zip -cd gnuastro-latest.tar.lz | tar -xf -

Gnuastro has three mandatory dependencies and some optional dependencies for extra
functionality, see Section 3.1 [Dependencies], page 212, for the full list. In Section 3.1.4
[Dependencies from package managers|, page 222, we have prepared the command to eas-
ily install Gnuastro’s dependencies using the package manager of some operating systems.
When the mandatory dependencies are ready, you can configure, compile, check and install
Gnuastro on your system with the following commands. See Section 3.3.5 [Known issues],
page 246, if you confront any complications and if you plan to install without root per-
missions (such that you will not need sudo in the last command below) see Section 3.3.1.2
[Installation directory], page 235.

$ cd gnuastro-X.X # Replace X.X with version number.
$ ./configure

$ make -3j8 # Replace 8 with no. CPU threads.
$ make check -j8 # Replace 8 with no. CPU threads.

$ sudo make install

For each program there is an ‘Invoke ProgramName’ sub-section in this book which ex-
plains how the programs should be run on the command-line (for example, see Section 5.3.5
[Invoking Table|, page 362).

In Chapter 2 [Tutorials|, page 21, we have prepared some complete tutorials with com-
mon Gnuastro usage scenarios in astronomical research. They even contain links to down-
load the necessary data, and thoroughly describe every step of the process (the science,
statistics and optimal usage of the command-line). We therefore recommend to read (an
run the commands in) the tutorials before starting to use Gnuastro.

1.2 Gnuastro programs list

One of the most common ways to operate Gnuastro is through its command-line programs.
For some tutorials on several real-world usage scenarios, see Chapter 2 [Tutorials], page 21.
The list here is just provided as a general summary for those who are new to Gnuastro.

GNU Astronomy Utilities 0.23.84-726fd, contains the following programs. They are
sorted in alphabetical order and a short description is provided for each program. The
description starts with the executable names in thisfont followed by a pointer to the
respective section in parenthesis. Throughout this book, they are ordered based on their
context, please see the top-level contents for contextual ordering (based on what they do).

Arithmetic
(astarithmetic, see Section 6.2 [Arithmetic], page 403) For arithmetic opera-
tions on multiple (theoretically unlimited) number of datasets (images). It has
a large and growing set of arithmetic, mathematical, and even statistical opera-
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tors (for example, +, -, *, /, sqrt, log, min, average, median, see Section 6.2.4
[Arithmetic operators], page 412).

BuildProgram
(astbuildprog, see Section 12.2 [BuildProgram], page 760) Compile, link and
run custom C programs that depend on the Gnuastro library (see Section 12.3
[Gnuastro library], page 764). This program will automatically link with the
libraries that Gnuastro depends on, so there is no need to explicitly mention
them every time you are compiling a Gnuastro library dependent program.

ConvertType
(astconvertt, see Section 5.2 [ConvertType], page 316) Convert astronomical
data files (FITS or IMH) to and from several other standard image and data
formats, for example, TXT, JPEG, EPS or PDF. Optionally, it is also possible
to add vector graphics markers over the output image (for example, circles from
catalogs containing RA or Dec).

Convolve (astconvolve, see Section 6.3 [Convolve|, page 479) Convolve (blur or smooth)
data with a given kernel in spatial and frequency domain on multiple threads.
Convolve can also do deconvolution to find the appropriate kernel to PSF-match
two images.

CosmicCalculator
(astcosmiccal, see Section 9.1 [CosmicCalculator], page 677) Do cosmological
calculations, for example, the luminosity distance, distance modulus, comoving
volume and many more.

Crop (astcrop, see Section 6.1 [Crop], page 389) Crop region(s) from one or many
image(s) and stitch several images if necessary. Input coordinates can be in
pixel coordinates or world coordinates.

Fits (astfits, see Section 5.1 [Fits], page 297) View and manipulate FITS file
extensions and header keywords.
MakeCatalog

(astmkcatalog, see Section 7.4 [MakeCatalog], page 582) Make catalog of la-
beled image (output of NoiseChisel). The catalogs are highly customizable and
adding new calculations/columns is very straightforward, see Akhlaghi 2019
(https://arxiv.org/abs/1611.06387).

MakeProfiles
(astmkprof, see Section 8.1 [MakeProfiles], page 652) Make mock 2D profiles
in an image. The central regions of radial profiles are made with a configurable
2D Monte Carlo integration. It can also build the profiles on an over-sampled

image.
Match (astmatch, see Section 7.5 [Match|, page 637) Given two input catalogs, find
the rows that match with each other within a given aperture (may be an ellipse).
NoiseChisel

(astnoisechisel, see Section 7.2 [NoiseChisel], page 552) Detect signal in
noise. It uses a technique to detect very faint and diffuse, irregularly shaped


https://arxiv.org/abs/1611.06387
https://arxiv.org/abs/1611.06387
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signal in noise (galaxies in the sky), using thresholds that are below the Sky
value, see Akhlaghi and Ichikawa 2015 (http://arxiv.org/abs/1505.01664)
and Akhlaghi 2019 (https://arxiv.org/abs/1909.11230).

Query (astquery, see Section 5.4 [Query|, page 378) High-level interface to query
pre-defined remote, or external databases, and directly download the required
sub-tables on the command-line.

Segment  (astsegment, see Section 7.3 [Segment], page 571) Segment detected regions
based on the structure of signal and the input dataset’s noise properties.

Statistics (aststatistics, see Section 7.1 [Statistics|, page 517) Statistical calculations
on the input dataset (column in a table, image or data cube). This includes
man operations such as generating histogram, sigma clipping, and least squares
fitting.

Table (asttable, Section 5.3 [Table|, page 344) Convert FITS binary and ASCII
tables into other such tables, print them on the command-line, save them in a
plain text file, do arithmetic on the columns or get the FITS table information.
For a full list of operations, see Section 5.3.4 [Operation precedence in Table],
page 357.

Warp (astwarp, see Section 6.4 [Warp], page 501) Warp image to new pixel grid. By
default it will align the pixel and WCS coordinates, removing any non-linear
WCS distortions. Any linear warp (projective transformation or Homography)
can also be applied to the input images by explicitly calling the respective
operation.

The programs listed above are designed to be highly modular and generic. Hence, they
are naturally for lower-level operations. In Gnuastro, higher-level operations (combining
multiple programs, or running a program in a special way), are done with installed Bash
scripts (all prefixed with astscript-). They can be run just like a program and behave
very similarly (with minor differences, see Chapter 10 [Installed scripts]|, page 690).

astscript-ds9-region
(See Section 10.3 [SAO DS9 region files from table], page 702) Given a table
(either as a file or from standard input), create an SAO DS9 region file from
the requested positional columns (WCS or image coordinates).

astscript-fits-view
(see Section 10.4 [Viewing FITS file contents with DS9 or TOPCAT], page 705)
Given any number of FITS files, this script will either open SAO DS9 (for images
or cubes) or TOPCAT (for tables) to view them in a graphic user interface
(GUI).

astscript-pointing-simulate
(See Section 10.6 [Pointing pattern simulation], page 715) Given a table of
pointings on the sky, create and a reference image that contains your camera’s
distortions and properties, generate a coadded exposure map. This is very use-
ful in testing the coverage of dither patterns when designing your observing
strategy and it is highly customizable. See Akhlaghi 2023 (https://arxiv.
org/abs/2310.15006), or the dedicated tutorial in Section 2.8 [Pointing pat-
tern design], page 177.


http://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1909.11230
https://arxiv.org/abs/2310.15006
https://arxiv.org/abs/2310.15006
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astscript-radial-profile
(See Section 10.2 [Generate radial profile], page 694) Calculate the 1D radial
profile or 2D polar plot of an object within an image. The object can be at any
location in the image, using various measures (median, sigma-clipped mean,
etc.), and the radial distance can also be measured on any general ellipse. See
Infante-Sainz et al. 2024 (https://arxiv.org/abs/2401.05303) and/or Es-
kandarlou and Akhlaghi 2024 (https://arxiv.org/abs/2406.14619).

astscript-color-faint-gray
(see Section 10.7 [Color images with gray faint regions], page 720) Given three
images for the Red-Green-Blue (RGB) channels, this script will use the bright
pixels for color and will show the faint/diffuse regions in grayscale. This greatly
helps in visualizing the full dynamic range of astronomical data. See Infante-
Sainz et al. 2024 (https://arxiv.org/abs/2401.03814) or a dedicated tuto-
rial in Section 2.6 [Color images with full dynamic range], page 152.

astscript-sort-by-night
(See Section 10.1 [Sort FITS files by night|, page 691) Given a list of FITS files,
and a HDU and keyword name (for a date), this script separates the files in the
same night (possibly over two calendar days).

astscript-zeropoint
(see Section 10.5 [Zero point estimation], page 709) Estimate the zero point
(to calibrate pixel values) of an input image using a reference image or a ref-
erence catalog. This is necessary to produce measurements with physical units
from new images. See Eskandarlou et al. 2023 (https://arxiv.org/abs/
2312.04263), or a dedicated tutorial in Section 2.7 [Zero point of an image|,
page 166.

astscript-psf-*
The following scripts are used to estimate the extended PSF estimation and
subtraction as described in the tutorial Section 2.3 [Building the extended PSF],
page 102:

astscript-psf-select-stars
(see Section 10.8.2 [Invoking astscript-psf-select-stars|, page 727)
Find all the stars within an image that are suitable for constructing
an extended PSF. If the image has WCS, this script can automat-
ically query Gaia to find the good stars.

astscript-psf-stamp
(see Section 10.8.3 [Invoking astscript-psf-stamp], page 730) build a
crop (stamp) of a certain width around a star at a certain coordinate
in a larger image. This script will do sub-pixel re-positioning to
make sure the star is centered and can optionally mask all other
background sources).

astscript-psf-scale-factor
(see Section 10.8.5 [Invoking astscript-psf-scale-factor], page 736)
Given a PSF model, and the central coordinates of a star in an


https://arxiv.org/abs/2401.05303
https://arxiv.org/abs/2406.14619
https://arxiv.org/abs/2401.03814
https://arxiv.org/abs/2312.04263
https://arxiv.org/abs/2312.04263
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image, find the scale factor that has to be multiplied by the PSF
to scale it to that star.

astscript-psf-unite
(see Section 10.8.4 [Invoking astscript-psf-unite|, page 734) Unite
the various components of a PSF into one. Because of saturation
and non-linearity, to get a good estimate of the extended PSF, it
is necessary to construct various parts from different magnitude
ranges.

astscript-psf-subtract
(see Section 10.8.6 [Invoking astscript-psf-subtract], page 739)
Given the model of a PSF and the central coordinates of a star in
the image, do sub-pixel re-positioning of the PSF, scale it to the
star and subtract it from the image.

1.3 Gnuastro manifesto: Science and its tools

History of science indicates that there are always inevitably unseen faults, hidden assump-
tions, simplifications and approximations in all our theoretical models, data acquisition and
analysis techniques. It is precisely these that will ultimately allow future generations to
advance the existing experimental and theoretical knowledge through their new solutions
and corrections.

In the past, scientists would gather data and process them individually to achieve an
analysis thus having a much more intricate knowledge of the data and analysis. The theo-
retical models also required little (if any) simulations to compare with the data. Today both
methods are becoming increasingly more dependent on pre-written software. Scientists are
dissociating themselves from the intricacies of reducing raw observational data in experi-
mentation or from bringing the theoretical models to life in simulations. These ‘intricacies’
are precisely those unseen faults, hidden assumptions, simplifications and approximations
that define scientific progress.

Unfortunately, most persons who have recourse to a computer for statistical
analysis of data are not much interested either in computer programming or in
statistical method, being primarily concerned with their own proper business.
Hence the common use of library programs and various statistical packages. ...
It’s time that was changed.

—F.J. Anscombe. The American Statistician, Vol. 27, No. 1. 1973

Anscombe’s  quartet  (http://en.wikipedia.org/wiki/Anscombe%27s_quartet)
demonstrates how four data sets with widely different shapes (when plotted) give nearly
identical output from standard regression techniques. Anscombe uses this (now famous)
quartet, which was introduced in the paper quoted above, to argue that “Good statistical
analysis is not a purely routine matter, and generally calls for more than one pass through
the computer”. Echoing Anscombe’s concern after 44 years, some of the highly recognized
statisticians of our time (Leek, McShane, Gelman, Colquhoun, Nuijten and Goodman),
wrote in Nature that:

We need to appreciate that data analysis is not purely computational and al-
gorithmic — it is a human behavior....Researchers who hunt hard enough will
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turn up a result that fits statistical criteria — but their discovery will probably
be a false positive.
—Five ways to fix statistics, Nature, 551, Nov 2017.

Users of statistical (scientific) methods (software) are therefore not passive (objective)
agents in their results. It is necessary to actually understand the method, not just use it
as a black box. The subjective experience gained by frequently using a method/software is
not sufficient to claim an understanding of how the tool/method works and how relevant it
is to the data and analysis. This kind of subjective experience is prone to serious misunder-
standings about the data, what the software/statistical-method really does (especially as it
gets more complicated), and thus the scientific interpretation of the result. This attitude
is further encouraged through non-free software?, poorly written (or non-existent) scientific
software manuals, and non-reproducible papers®. This approach to scientific software and
methods only helps in producing dogmas and an “obscurantist faith in the expert’s special

skill, and in his personal knowledge and authority”*.

Program or be programmed. Choose the former, and you gain access to the
control panel of civilization. Choose the latter, and it could be the last real
choice you get to make.

—Douglas Rushkoff. Program or be programmed, O/R Books (2010).

It is obviously impractical for any one human being to gain the intricate knowledge
explained above for every step of an analysis. On the other hand, scientific data can
be large and numerous, for example, images produced by telescopes in astronomy. This
requires efficient algorithms. To make things worse, natural scientists have generally not
been trained in the advanced software techniques, paradigms and architecture that are
taught in computer science or engineering courses and thus used in most software. The
GNU Astronomy Utilities are an effort to tackle this issue.

Gnuastro is not just a software, this book is as important to the idea behind Gnuastro as
the source code (software). This book has tried to learn from the success of the “Numerical
Recipes” book in educating those who are not software engineers and computer scientists
but still heavy users of computational algorithms, like astronomers. There are two major
differences.

The first difference is that Gnuastro’s code and the background information are segre-
gated: the code is moved within the actual Gnuastro software source code and the under-
lying explanations are given here in this book. In the source code, every non-trivial step is
heavily commented and correlated with this book, it follows the same logic of this book, and
all the programs follow a similar internal data, function and file structure, see Section 13.4
[Program source], page 965. Complementing the code, this book focuses on thoroughly
explaining the concepts behind those codes (history, mathematics, science, software and
usage advice when necessary) along with detailed instructions on how to run the programs.

2 https://www.gnu.org/philosophy/free-sw.html

3 Where the authors omit many of the analysis/processing “details” from the paper by arguing that they
would make the paper too long/unreadable. However, software engineers have been dealing with such
issues for a long time. There are thus software management solutions that allow us to supplement papers
with all the details necessary to exactly reproduce the result. For example, see Akhlaghi et al. 2021
(https://arxiv.org/abs/2006.03018).

4 Karl Popper. The logic of scientific discovery. 1959. Larger quote is given at the start of the PDF (for
print) version of this book.
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At the expense of frustrating “professionals” or “experts”, this book and the comments in
the code also intentionally avoid jargon and abbreviations. The source code and this book
are thus intimately linked, and when considered as a single entity can be thought of as a
real (an actual software accompanying the algorithms) “Numerical Recipes” for astronomy.

The second major, and arguably more important, difference is that “Numerical Recipes”
does not allow you to distribute any code that you have learned from it. In other words, it
does not allow you to release your software’s source code if you have used their codes, you can
only publicly release binaries (a black box) to the community. Therefore, while it empowers
the privileged individual who has access to it, it exacerbates social ignorance. Exactly at
the opposite end of the spectrum, Gnuastro’s source code is released under the GNU general
public license (GPL) and this book is released under the GNU free documentation license.
You are therefore free to distribute any software you create using parts of Gnuastro’s source
code or text, or figures from this book, see Section 1.4 [Your rights], page 10.

With these principles in mind, Gnuastro’s developers aim to impose the minimum re-
quirements on you (in computer science, engineering and even the mathematics behind the
tools) to understand and modify any step of Gnuastro if you feel the need to do so, see
Section 13.1 [Why C programming language?], page 958, and Section 13.2 [Program design
philosophy], page 960.

Without prior familiarity and experience with optics, it is hard to imagine how, Galileo
could have come up with the idea of modifying the Dutch military telescope optics to use in
astronomy. Astronomical objects could not be seen with the Dutch military design of the
telescope. In other words, it is unlikely that Galileo could have asked a random optician
to make modifications (not understood by Galileo) to the Dutch design, to do something
no astronomer of the time took seriously. In the paradigm of the day, what could be the
purpose of enlarging geometric spheres (planets) or points (stars)? In that paradigm only
the position and movement of the heavenly bodies was important, and that had already
been accurately studied (recently by Tycho Brahe).

In the beginning of his “The Sidereal Messenger” (published in 1610) he cautions the
readers on this issue and before describing his results/observations, Galileo instructs us on
how to build a suitable instrument. Without a detailed description of how he made his tools
and done his observations, no reasonable person would believe his results. Before he actually
saw the moons of Jupiter, the mountains on the Moon or the crescent of Venus, Galileo was
“evasive”® to Kepler. Science is defined by its tools/methods, not its raw results®.

The same is true today: science cannot progress with a black box, or poorly released
code. The source code of a research is the new (abstractified) communication language
in science, understandable by humans and computers. Source code (in any programming
language) is a language/notation designed to express all the details that would be too
tedious/long/frustrating to report in spoken languages like English, similar to mathematic
notation.

5 Galileo G. (Translated by Maurice A. Finocchiaro). The essential Galileo.Hackett publishing company,
first edition, 2008.

For example, take the following two results on the age of the universe: roughly 14 billion years (suggested
by the current consensus of the standard model of cosmology) and less than 10,000 years (suggested from
some interpretations of the Bible). Both these numbers are results. What distinguishes these two results,
is the tools/methods that were used to derive them. Therefore, as the term “Scientific method” also
signifies, a scientific statement it defined by its method, not its result.

6
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An article about computational science [almost all sciences today] ... is not
the scholarship itself, it is merely advertising of the scholarship. The Actual
Scholarship is the complete software development environment and the complete
set of instructions which generated the figures.

—Buckheit & Donoho, Lecture Notes in Statistics, Vol 103, 1996

Today, the quality of the source code that goes into a scientific result (and the distri-
bution of that code) is as critical to scientific vitality and integrity, as the quality of its
written language/English used in publishing/distributing its paper. A scientific paper will
not even be reviewed by any respectable journal if its written in a poor language/English.
A similar level of quality assessment is thus increasingly becoming necessary regarding the
codes/methods used to derive the results of a scientific paper. For more on this, please see
Akhlaghi et al. 2021 (https://arxiv.org/abs/2006.03018)).

Bjarne Stroustrup (creator of the C++ language) says: “Without understanding software,
you are reduced to believing in magic”. Ken Thomson (the designer of the Unix operating
system) says “I abhor a system designed for the ‘user’ if that word is a coded pejorative
meaning ‘stupid and unsophisticated’.” Certainly no scientist (user of a scientific software)
would want to be considered a believer in magic, or stupid and unsophisticated.

This can happen when scientists get too distant from the raw data and methods, and are
mainly discussing results. In other words, when they feel they have tamed Nature into their
own high-level (abstract) models (creations), and are mainly concerned with scaling up, or
industrializing those results. Roughly five years before special relativity, and about two
decades before quantum mechanics fundamentally changed Physics, Lord Kelvin is quoted
as saying:

There is nothing new to be discovered in physics now. All that remains is more
and more precise measurement.
—William Thomson (Lord Kelvin), 1900

A few years earlier Albert. A. Michelson made the following statement:

The more important fundamental laws and facts of physical science have all been
discovered, and these are now so firmly established that the possibility of their
ever being supplanted in consequence of new discoveries is exceedingly remote....
Our future discoveries must be looked for in the sixth place of decimals.

—Albert. A. Michelson, dedication of Ryerson Physics Lab, U. Chicago 1894

If scientists are considered to be more than mere puzzle solvers” (simply adding to the
decimals of existing values or observing a feature in 10, 100, or 100000 more galaxies or
stars, as Kelvin and Michelson clearly believed), they cannot just passively sit back and
uncritically repeat the previous (observational or theoretical) methods/tools on new data.
Today there is a wealth of raw telescope images ready (mostly for free) at the finger tips
of anyone who is interested with a fast enough internet connection to download them. The
only thing lacking is new ways to analyze this data and dig out the treasure that is lying
hidden in them to existing methods and techniques.

New data that we insist on analyzing in terms of old ideas (that is, old models
which are not questioned) cannot lead us out of the old ideas. However many
data we record and analyze, we may just keep repeating the same old errors,

" Thomas S. Kuhn. The Structure of Scientific Revolutions, University of Chicago Press, 1962.
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missing the same crucially important things that the experiment was competent
to find.
—Jaynes, Probability theory, the logic of science. Cambridge U. Press (2003).

1.4 Your rights

The paragraphs below, in this section, belong to the GNU Texinfo® manual and are not
written by us! The name “Texinfo” is just changed to “GNU Astronomy Utilities” or
“Gnuastro” because they are released under the same licenses and it is beautifully written
to inform you of your rights.

GNU Astronomy Utilities is “free software”; this means that everyone is free to use it
and free to redistribute it on certain conditions. Gnuastro is not in the public domain; it is
copyrighted and there are restrictions on its distribution, but these restrictions are designed
to permit everything that a good cooperating citizen would want to do. What is not allowed
is to try to prevent others from further sharing any version of Gnuastro that they might
get from you.

Specifically, we want to make sure that you have the right to give away copies of the
programs that relate to Gnuastro, that you receive the source code or else can get it if you
want it, that you can change these programs or use pieces of them in new free programs,
and that you know you can do these things.

To make sure that everyone has such rights, we have to forbid you to deprive anyone
else of these rights. For example, if you distribute copies of the Gnuastro related programs,
you must give the recipients all the rights that you have. You must make sure that they,
too, receive or can get the source code. And you must tell them their rights.

Also, for our own protection, we must make certain that everyone finds out that there
is no warranty for the programs that relate to Gnuastro. If these programs are modified
by someone else and passed on, we want their recipients to know that what they have is
not what we distributed, so that any problems introduced by others will not reflect on our
reputation.

The full text of the licenses for the Gnuastro book and software can be respectively found
in Appendix C [GNU Gen. Pub. License v3], page 1001° and Appendix B [GNU Free Doc.
License|, page 9931°.

1.5 Logo of Gnuastro

Gnuastro’s logo is an abstract image of a barred spiral galaxy (https://en.wikipedia.
org/wiki/Barred_spiral_galaxy). The galaxy is vertically cut in half: on the left side,
the beauty of a contiguous galaxy image is visible. But on the right, the image gets pixe-
lated, and we only see the parts that are within the pixels. The pixels that are more near
to the center of the galaxy (which is brighter) are also larger. But as we follow the spiral
arms (and get more distant from the center), the pixels get smaller (signifying less signal).

This sharp distinction between the contiguous and pixelated view of the galaxy signifies
the main struggle in science: in the “real” world, objects are not pixelated or discrete and

8 Texinfo is the GNU documentation system. It is used to create this book in all the various formats.
9 Also available in http://wuw.gnu.org/copyleft/gpl.html
10 Also available in http://wuw.gnu.org/copyleft/fdl.html


https://en.wikipedia.org/wiki/Barred_spiral_galaxy
https://en.wikipedia.org/wiki/Barred_spiral_galaxy
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/fdl.html
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have no noise. However, when we observe nature, we are confined and constrained by the
resolution of our data collection (CCD imager in this case).

On the other hand, we read English text from the left and progress towards the right.
This defines the positioning of the “real” and observed halves of the galaxy: the no-noised
and contiguous half (on the left) passes through our observing tools and becomes pixelated
and noisy half (on the right). It is the job of scientific software like Gnuastro to help
interpret the underlying mechanisms of the “real” universe from the pixelated and noisy
data.

Gnuastro’s logo was designed by Marjan Akbari. The concept behind it was created
after several design iterations with Mohammad Akhlaghi.

1.6 Naming convention

Gnuastro is a package of independent programs and a collection of libraries, here we are
mainly concerned with the programs. Each program has an official name which consists
of one or two words, describing what they do. The latter are printed with no space, for
example, NoiseChisel or Crop. On the command-line, you can run them with their exe-
cutable names which start with an ast and might be an abbreviation of the official name,
for example, astnoisechisel or astcrop, see Section 3.3.1.3 [Executable names], page 240.

We will use “ProgramName” for a generic official program name and astprogname for
a generic executable name. In this book, the programs are classified based on what they
do and thoroughly explained. An alphabetical list of the programs that are installed on
your system with this installation are given in Section 1.2 [Gnuastro programs list], page 2.
That list also contains the executable names and version numbers along with a one line
description.

1.7 Version numbering

Gnuastro can have two formats of version numbers, for official and unofficial releases. Official
Gnuastro releases are announced on the info-gnuastro mailing list, they have a version
control tag in Gnuastro’s development history, and their version numbers are formatted
like “A.B”. A is a major version number, marking a significant planned achievement (for
example, see Section 1.7.1 [GNU Astronomy Utilities 1.0], page 12), while B is a minor
version number, see below for more on the distinction. Note that the numbers are not
decimals, so version 2.34 is much more recent than version 2.5, which is not equal to 2.50.

Gnuastro also allows a unique version number for unofficial releases. Unofficial releases
can mark any point in Gnuastro’s development history. This is done to allow astronomers
to easily use any point in the version controlled history for their data-analysis and research
publication. See Section 3.2.2 [Version controlled source], page 228, for a complete introduc-
tion. This section is not just for developers and is intended to straightforward and easy to
read, so please have a look if you are interested in the cutting-edge. This unofficial version
number is a meaningful and easy to read string of characters, unique to that particular
point of history. With this feature, users can easily stay up to date with the most recent
bug fixes and additions that are committed between official releases.

The unofficial version number is formatted like: A.B.C-D. A and B are the most recent
official version number. C is the number of commits that have been made after version A.B.
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D is the first 4 or 5 characters of the commit hash number!!. Therefore, the unofficial version
number ‘3.92.8-29c¢8’, corresponds to the 8th commit after the official version 3.92 and
its commit hash begins with 29¢8. The unofficial version number is sort-able (unlike the
raw hash) and as shown above is descriptive of the state of the unofficial release. Of course
an official release is preferred for publication (since its tarballs are easily available and it
has gone through more tests, making it more stable), so if an official release is announced
prior to your publication’s final review, please consider updating to the official release.

The major version number is set by a major goal which is defined by the developers
and user community beforehand, for example, see Section 1.7.1 [GNU Astronomy Utilities
1.0], page 12. The incremental work done in minor releases are commonly small steps in
achieving the major goal. Therefore, there is no limit on the number of minor releases and
the difference between the (hypothetical) versions 2.927 and 3.0 can be a small (negligible
to the user) improvement that finalizes the defined goals.

1.7.1 GNU Astronomy Utilities 1.0

Like all software, version 1.0 is a unique milestone: a point where the developers feel it is
complete to a minimal level. In Gnuastro, the goal to achieve for version 1.0 is to have all the
necessary tools for optical imaging data reduction: starting from raw images of individual
exposures to the final deep image ready for high-level science.

While various software did already exist and were commonly used when Gnuastro was
first released in 2016. The existing software are mostly written without following any
robust, or even common, coding and usage standards or up-to-date and well-maintained
documentation. This makes it very hard to reduce astronomical data without learning
those software’s peculiarities through trial and error.

1.8 New to GNU/Linux?

Some astronomers initially install and use a GNU/Linux operating system because their
necessary tools can only be installed in this environment. However, the transition is not
necessarily easy. To encourage you in investing the patience and time to make this transition,
and actually enjoy it, we will first start with a basic introduction to GNU /Linux operating
systems. Afterwards, in Section 1.8.1 [Command-line interface], page 13, we will discuss
the wonderful benefits of the command-line interface, how it beautifully complements the
graphic user interface, and why it is worth the (apparently steep) learning curve. Finally
a complete chapter (Chapter 2 [Tutorials], page 21) is devoted to real world scenarios of
using Gnuastro (on the command-line). Therefore if you do not yet feel comfortable with
the command-line we strongly recommend going through that chapter after finishing this
section.

You might have already noticed that we are not using the name “Linux”, but
“GNU/Linux”. Please take the time to have a look at the following essays and FAQs for a
complete understanding of this very important distinction.

e https://gnu.org/philosophy
e https://www.gnu.org/gnu/the-gnu-project.html

1 Each point in Gnuastro’s history is uniquely identified with a 40 character long hash which is created
from its contents and previous history for example: 5b17501d8f29ba3cd610673261e6e2229c846d35. So
the string D in the version for this commit could be 5b17, or 5b175.
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e https://www.gnu.org/gnu/gnu-users-never-heard-of-gnu.html
e https://www.gnu.org/gnu/linux-and-gnu.html
e https://www.gnu.org/gnu/why-gnu-linux.html
e https://www.gnu.org/gnu/gnu-linux-faq.html

e Recorded talk: https://peertube.stream/w/ddeSSm33R1eFWKJVgpcthN (first 20 min
is about the history of Unix-like operating systems).

In short, the Linux kernel'? is built using the GNU C library (glibc) and GNU compiler
collection (gcc). The Linux kernel software alone is just a means for other software to access
the hardware resources, it is useless alone! A normal astronomer (or scientist) will never
interact with the kernel directly! For example, the command-line environment that you
interact with is usually GNU Bash. It is GNU Bash that then talks to kernel.

To better clarify, let’s use this analogy inspired from one of the links above!®: saying
that you are “running Linux” is like saying you are “driving your engine”. The car’s engine
is the main source of power in the car, no one doubts that. But you do not “drive” the
engine, you drive the “car”. The engine alone is useless for transportation without the
radiator, battery, transmission, wheels, chassis, seats, wind-shield, etc.

To have an operating system, you need lower-level tools (to build the kernel), and higher-
level (to use it) software packages. For the Linux kernel, both the lower-level and higher-level
tools are GNU. In other words, “the whole system is basically GNU with Linux loaded”.

You can replace the Linux kernel and still have the GNU shell and higher-level utili-
ties. For example, using the “Windows Subsystem for Linux”, you can use almost all GNU
tools without the original Linux kernel, but using the host Windows operating system, as
in https://ubuntu.com/wsl. Alternatively, you can build a fully functional GNU-based
working environment on a macOS or BSD-based operating system (using the host’s kernel
and C compiler), for example, through projects like Maneage, see Akhlaghi et al. 2021
(https://arxiv.org/abs/2006.03018), in particular Appendix C with all the GNU soft-
ware tools that is exactly reproducible on a macOS also.

Therefore to acknowledge GNU’s instrumental role in the creation and usage of the
Linux kernel and the operating systems that use it, we should call these operating systems
“GNU/Linux”.

1.8.1 Command-line interface

One aspect of Gnuastro that might be a little troubling to new GNU/Linux users is that
(at least for the time being) it only has a command-line user interface (CLI). This might be
contrary to the mostly graphical user interface (GUI) experience with proprietary operating
systems. Since the various actions available are not always on the screen, the command-
line interface can be complicated, intimidating, and frustrating for a first-time user. This
is understandable and also experienced by anyone who started using the computer (from
childhood) in a graphical user interface (this includes most of Gnuastro’s authors). Here
we hope to convince you of the unique benefits of this interface which can greatly enhance
your productivity while complementing your GUI experience.

12 In Unix-like operating systems, the kernel connects software and hardware worlds.
13 https://www.gnu.org/gnu/gnu-users-never-heard-of-gnu.html
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Through GNOME 3!, most GNU /Linux based operating systems now have an advanced
and useful GUI. Since the GUI was created long after the command-line, some wrongly
consider the command-line to be obsolete. Both interfaces are useful for different tasks. For
example, you cannot view an image, video, PDF document or web page on the command-
line. On the other hand you cannot reproduce your results easily in the GUI. Therefore
they should not be regarded as rivals but as complementary user interfaces, here we will
outline how the CLI can be useful in scientific programs.

You can think of the GUI as a veneer over the CLI to facilitate a small subset of all
the possible CLI operations. Each click you do on the GUI, can be thought of as internally
running a different CLI command. So asymptotically (if a good designer can design a GUI
which is able to show you all the possibilities to click on) the GUI is only as powerful as
the command-line. In practice, such graphical designers are very hard to find for every
program, so the GUI operations are always a subset of the internal CLI commands. For
programs that are only made for the GUI, this results in not including lots of potentially
useful operations. It also results in ‘interface design’ to be a crucially important part of any
GUI program. Scientists do not usually have enough resources to hire a graphical designer,
also the complexity of the GUI code is far more than CLI code, which is harmful for a
scientific software, see Section 1.3 [Gnuastro manifesto: Science and its tools|, page 6.

For programs that have a GUI, one action on the GUI (moving and clicking a mouse, or
tapping a touchscreen) might be more efficient and easier than its CLI counterpart (typing
the program name and your desired configuration). However, if you have to repeat that same
action more than once, the GUI will soon become frustrating and prone to errors. Unless
the designers of a particular program decided to design such a system for a particular GUI
action, there is no general way to run any possible series of actions automatically on the
GUL

On the command-line, you can run any series of actions which can come from various
CLI capable programs you have decided yourself in any possible permutation with one com-
mand!®. This allows for much more creativity and exact reproducibility that is not possible
to a GUI user. For technical and scientific operations, where the same operation (using var-
ious programs) has to be done on a large set of data files, this is crucially important. It also
allows exact reproducibility which is a foundation principle for scientific results. The most
common CLI (which is also known as a shell) in GNU/Linux is GNU Bash, we strongly
encourage you to put aside several hours and go through this beautifully explained web
page: https://flossmanuals.net/command-line/. You do not need to read or even fully
understand the whole thing, only a general knowledge of the first few chapters are enough
to get you going.

Since the operations in the GUI are limited and they are visible, reading a manual is
not that important in the GUI (most programs do not even have any!). However, to give
you the creative power explained above, with a CLI program, it is best if you first read the
manual of any program you are using. You do not need to memorize any details, only an
understanding of the generalities is needed. Once you start working, there are more easier
ways to remember a particular option or operation detail, see Section 4.3 [Getting help],
page 273.

14 http://www.gnome.org/
15 By writing a shell script and running it, for example, see the tutorials in Chapter 2 [Tutorials], page 21.
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To experience the command-line in its full glory and not in the GUI terminal emulator,
press the following keys together: CTRL+ALT+F4'® to access the virtual console. To return
back to your GUI, press the same keys above replacing F4 with F7 (or F1, or F2, depending
on your GNU /Linux distribution). In the virtual console, the GUI, with all its distracting
colors and information, is gone. Enabling you to focus entirely on your actual work.

For operations that use a lot of your system’s resources (processing a large number of
large astronomical images for example), the virtual console is the place to run them. This
is because the GUI is not competing with your research work for your system’s RAM and
CPU. Since the virtual consoles are completely independent, you can even log out of your
GUI environment to give even more of your hardware resources to the programs you are
running and thus reduce the operating time.

Since it uses far less system resources, the CLI is also convenient for remote access to
your computer. Using secure shell (SSH) you can log in securely to your system (similar to
the virtual console) from anywhere even if the connection speeds are low. There are apps
for smart phones and tablets which allow you to do this.

1.9 Report a bug

According to Wikipedia “a software bug is an error, flaw, failure, or fault in a computer
program or system that causes it to produce an incorrect or unexpected result, or to behave
in unintended ways”. So when you see that a program is crashing, not reading your input
correctly, giving the wrong results, or not writing your output correctly, you have found
a bug. In such cases, it is best if you report the bug to the developers. The programs
will also inform you if known impossible situations occur (which are caused by something
unexpected) and will ask the users to report the bug issue.

Prior to actually filing a bug report, it is best to search previous reports. The issue
might have already been found and even solved. The best place to check if your bug
has already been discussed is the bugs tracker on Section 13.10 [Gnuastro project webpage],
page 979, at https://savannah.gnu.org/bugs/7group=gnuastro. In the top search fields
(under “Display Criteria”) set the “Open/Closed” drop-down menu to “Any” and choose
the respective program or general category of the bug in “Category” and click the “Apply”
button. The results colored green have already been solved and the status of those colored
in red is shown in the table.

Recently corrected bugs are probably not yet publicly released because they are scheduled
for the next Gnuastro stable release. If the bug is solved but not yet released and it is
an urgent issue for you, you can get the version controlled source and compile that, see
Section 3.2.2 [Version controlled source], page 228.

To solve the issue as readily as possible, please follow the following to guidelines in your
bug report. The How to Report Bugs Effectively (http://www.chiark.greenend.org.uk/
~sgtatham/bugs.html) and How To Ask Questions The Smart Way (http://catb.org/
~esr/faqs/smart-questions.html) essays also provide some good generic advice for all
software (do not contact their authors for Gnuastro’s problems). Mastering the art of giv-
ing good bug reports (like asking good questions) can greatly enhance your experience with

16 Tnstead of F4, you can use any of the keys from F1 to F6 for different virtual consoles depending on your
GNU/Linux distribution, try them all out. You can also run a separate GUI from within this console if
you want to.


https://savannah.gnu.org/bugs/?group=gnuastro
http://www.chiark.greenend.org.uk/~sgtatham/bugs.html
http://www.chiark.greenend.org.uk/~sgtatham/bugs.html
http://catb.org/~esr/faqs/smart-questions.html
http://catb.org/~esr/faqs/smart-questions.html

Chapter 1: Introduction 16

any free and open source software. So investing the time to read through these essays will
greatly reduce your frustration after you see something does not work the way you feel it
is supposed to for a large range of software, not just Gnuastro.

Be descriptive

Please provide as many details as possible and be very descriptive. Explain
what you expected and what the output was: it might be that your expectation
was wrong. Also please clearly state which sections of the Gnuastro book (this
book), or other references you have studied to understand the problem. This
can be useful in correcting the book (adding links to likely places where users
will check). But more importantly, it will be encouraging for the developers,
since you are showing how serious you are about the problem and that you
have actually put some thought into it. “To be able to ask a question clearly
is two-thirds of the way to getting it answered.” — John Ruskin (1819-1900).

Individual and independent bug reports
If you have found multiple bugs, please send them as separate (and independent)
bugs (as much as possible). This will significantly help us in managing and
resolving them sooner.

Reproducible bug reports

If we cannot exactly reproduce your bug, then it is very hard to resolve it. So
please send us a Minimal working example!” along with the description. For
example, in running a program, please send us the full command-line text and
the output with the -P option, see Section 4.1.2.3 [Operating mode options],
page 259. If it is caused only for a certain input, also send us that input file.
In case the input FITS is large, please use Crop to only crop the problematic
section and make it as small as possible so it can easily be uploaded and down-
loaded and not waste the archive’s storage, see Section 6.1 [Crop], page 389.

There are generally two ways to inform us of bugs:

e Send a mail to bug-gnuastro@gnu.org. Any mail you send to this address will be
distributed through the bug-gnuastro mailing list'®. This is the simplest way to send
us bug reports. The developers will then register the bug into the project web page
(next choice) for you.

e Use the Gnuastro project web page at https://savannah.gnu.org/projects/
gnuastro/: There are two ways to get to the submission page as listed below. Fill
in the form as described below and submit it (see Section 13.10 [Gnuastro project
webpage|, page 979, for more on the project web page).

e Using the top horizontal menu items, immediately under the top page title. Hov-
ering your mouse on “Support” will open a drop-down list. Select “Submit new”.
Also if you have an account in Savannah, you can choose “Bugs” in the menu items
and then select “Submit new”.

e In the main body of the page, under the “Communication tools” section, click on
“Submit new item”.

17 http://en.wikipedia.org/wiki/Minimal_Working_ Example
18 nhttps://lists. gnu.org/mailman/listinfo/bug-gnuastro
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Once the items have been registered in the mailing list or web page, the developers will
add it to either the “Bug Tracker” or “Task Manager” trackers of the Gnuastro project
web page. These two trackers can only be edited by the Gnuastro project developers, but
they can be browsed by anyone, so you can follow the progress on your bug. You are most
welcome to join us in developing Gnuastro and fixing the bug you have found maybe a
good starting point. Gnuastro is designed to be easy for anyone to develop (see Section 1.3
[Gnuastro manifesto: Science and its tools], page 6) and there is a full chapter devoted to
developing it: Chapter 13 [Developing], page 958.

( )
Savannah’s Markup: When posting to Savannah, it helps to have the code displayed in

mono-space font and a different background, you may also want to make a list of items or
make some words bold. For features like these, you should use Savannah’s “Markup” guide
at https://savannah.gnu.org/markup-test.php. You can access this page by clicking
on the “Full Markup” link that is just beside the “Preview” button, near the box that you
write your comments. As you see there, for example when you want to high-light code,
you should put it within a “+verbatim+” and “-verbatim-" environment like below:

+verbatim+
astarithmetic image.fits image_arith.fits -hl isblank nan where
-verbatim-

Unfortunately, Savannah doesn’t have a way to edit submitted comments. Therefore be
sure to press the “Preview” button and check your report’s final format before the final

submission.
_ J

1.10 Suggest new feature

We would always be happy to hear of suggested new features. For every program, there are
already lists of features that we are planning to add. You can see the current list of plans
from the Gnuastro project web page at https://savannah.gnu.org/projects/gnuastro/
and following “Tasks” — “Browse” on the horizontal menu at the top of the page immedi-
ately under the title, see Section 13.10 [Gnuastro project webpage], page 979. If you want
to request a feature to an existing program, click on the “Display Criteria” above the list
and under “Category”, choose that particular program. Under “Category” you can also see
the existing suggestions for new programs or other cases like installation, documentation or
libraries. Also, be sure to set the “Open/Closed” value to “Any”.

If the feature you want to suggest is not already listed in the task manager, then follow
the steps that are fully described in Section 1.9 [Report a bug], page 15. Please have in mind
that the developers are all busy with their own astronomical research, and implementing
existing “task”s to add or resolve bugs. Gnuastro is a volunteer effort and none of the
developers are paid for their hard work. So, although we will try our best, please do
not expect for your suggested feature to be immediately included (for the next release of
Gnuastro).

The best person to apply the exciting new feature you have in mind is you, since you
have the motivation and need. In fact, Gnuastro is designed for making it as easy as possible
for you to hack into it (add new features, change existing ones and so on), see Section 1.3
[Gnuastro manifesto: Science and its tools|, page 6. Please have a look at the chapter
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devoted to developing (Chapter 13 [Developing], page 958) and start applying your desired
feature. Once you have added it, you can use it for your own work and if you feel you
want others to benefit from your work, you can request for it to become part of Gnuastro.
You can then join the developers and start maintaining your own part of Gnuastro. If you
choose to take this path of action please contact us beforehand (Section 1.9 [Report a bug],
page 15) so we can avoid possible duplicate activities and get interested people in contact.

( N
Gnuastro is a collection of low level programs: As described in Section 13.2 [Program

design philosophy|, page 960, a founding principle of Gnuastro is that each library or
program should be basic and low-level. High level jobs should be done by running the
separate programs or using separate functions in succession through a shell script or calling
the libraries by higher level functions, see the examples in Chapter 2 [Tutorials|, page 21.
So when making the suggestions please consider how your desired job can best be broken

into separate steps and modularized.
N J

1.11 Announcements

Gnuastro has a dedicated mailing list for making announcements (info-gnuastro). Anyone
can subscribe to this mailing list. Anytime there is a new stable or test release, an email
will be circulated there. The email contains a summary of the overall changes along with
a detailed list (from the NEWS file). This mailing list is thus the best way to stay up to
date with new releases, easily learn about the updated /new features, or dependencies (see
Section 3.1 [Dependencies|, page 212).

To subscribe to this list, please visit https://lists.gnu.org/mailman/listinfo/
info-gnuastro. Traffic (number of mails per unit time) in this list is designed to be low:
only a handful of mails per year. Previous announcements are available on its archive
(http://lists.gnu.org/archive/html/info-gnuastro/).

1.12 Conventions

In this book we have the following conventions:

e All commands that are to be run on the shell (command-line) prompt as the user start
with a $. In case they must be run as a superuser or system administrator, they will
start with a single #. If the command is in a separate line and next line is also in
the code type face, but does not have any of the $ or # signs, then it is the output
of the command after it is run. As a user, you do not need to type those lines. A line
that starts with ## is just a comment for explaining the command to a human reader
and must not be typed.

e If the command becomes larger than the page width a \ is inserted in the code. If you
are typing the code by hand on the command-line, you do not need to use multiple
lines or add the extra space characters, so you can omit them. If you want to copy and
paste these examples (highly discouraged!) then the \ should stay.

The \ character is a shell escape character which is used commonly to make characters
which have special meaning for the shell, lose that special meaning (the shell will not
treat them especially if there is a \ behind them). When \ is the last visible character
in a line (the next character is a new-line character) the new-line character loses its
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meaning. Therefore, the shell sees it as a simple white-space character not the end of
a command! This enables you to use multiple lines to write your commands.

This is not a convention, but a bi-product of the PDF building process of the manual: In
the PDF version of this manual, a single quote (or apostrophe) character in the commands
or codes is shown like this: '. Single quotes are sometimes necessary in combination with
commands like awk or sed, or when using Column arithmetic in Gnuastro’s own Table
(see Section 5.3.3 [Column arithmetic], page 350). Therefore when typing (recommended)
or copy-pasting (not recommended) the commands that have a ', please correct it to the
single-quote (or apostrophe) character, otherwise the command will fail.
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2 Tutorials

To help new users have a smooth and easy start with Gnuastro, in this chapter several
thoroughly elaborated tutorials, or cookbooks, are provided. These tutorials demonstrate
the capabilities of different Gnuastro programs and libraries, along with tips and guidelines
for the best practices of using them in various realistic situations.

We strongly recommend going through these tutorials to get a good feeling of how
the programs are related (built in a modular design to be used together in a pipeline),
very similar to the core Unix-based programs that they were modeled on. Therefore these
tutorials will help in optimally using Gnuastro’s programs (and generally, the Unix-like
command-line environment) effectively for your research.

The first three tutorials (Section 2.1 [General program usage tutorial], page 22, and Sec-
tion 2.2 [Detecting large extended targets|, page 80, and Section 2.3 [Building the extended
PSF], page 102) use real input datasets from some of the deep Hubble Space Telescope
(HST) images, the Sloan Digital Sky Survey (SDSS) and the Javalambre Photometric Lo-
cal Universe Survey (J-PLUS) respectively. Their aim is to demonstrate some real-world
problems that many astronomers often face and how they can be solved with Gnuastro’s
programs. The fourth tutorial (Section 2.4 [Sufi simulates a detection]|, page 123) focuses
on simulating astronomical images, which is another critical aspect of any analysis!

The ultimate aim of Section 2.1 [General program usage tutorial], page 22, is to detect
galaxies in a deep HST image, measure their positions, magnitude and select those with
the strongest colors. In the process, it takes many detours to introduce you to the useful
capabilities of many of the programs. So please be patient in reading it. If you do not have
much time and can only try one of the tutorials, we recommend this one.

Section 2.2 [Detecting large extended targets], page 80, deals with a major problem in
astronomy: effectively detecting the faint outer wings of bright (and large) nearby galaxies
to extremely low surface brightness levels (roughly one quarter of the local noise level in the
example discussed). Besides the interesting scientific questions in these low-surface bright-
ness features, failure to properly detect them will bias the measurements of the background
objects and the survey’s noise estimates. This is an important issue, especially in wide
surveys. Because bright /large galaxies and stars®, cover a significant fraction of the survey
area.

Section 2.3 [Building the extended PSF], page 102, tackles an important problem in
astronomy: how the extract the PSF of an image, to the largest possible extent, without
assuming any functional form. In Gnuastro we have multiple installed scripts for this job.
Their usage and logic behind best tuning them for the particular step, is fully described
in this tutorial, on a real dataset. The tutorial concludes with subtracting that extended
PSF from the science image; thus giving you a cleaner image (with no scattered light of the
brighter stars) for your higher-level analysis.

Section 2.4 [Sufi simulates a detection], page 123, has a fictional? setting! Showing how
Abd al-rahman Sufi (903 — 986 A.D., the first recorded description of “nebulous” objects

1 Stars also have similarly large and extended wings due to the point spread function, see Section 8.1.1.2
[Point spread function], page 654.

2 The two historically motivated tutorials (Section 2.4 [Sufi simulates a detection], page 123, is not intended
to be a historical reference (the historical facts of this fictional tutorial used Wikipedia as a reference).)
This form of presenting a tutorial was influenced by the PGF/TikZ and Beamer manuals. They are both
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in the heavens is attributed to him) could have used some of Gnuastro’s programs for a
realistic simulation of his observations and see if his detection of nebulous objects was trust-
able. Because all conditions are under control in a simulated /mock environment/dataset,
mock datasets can be a valuable tool to inspect the limitations of your data analysis and
processing. But they need to be as realistic as possible, so this tutorial is dedicated to this
important step of an analysis (simulations).

There are other tutorials also, on things that are commonly necessary in astronomical
research: In Section 2.5 [Detecting lines and extracting spectra in 3D data], page 134, we
use MUSE cubes (an IFU dataset) to show how you can subtract the continuum, detect
emission-line features, extract spectra and build synthetic narrow-band images. In Sec-
tion 2.6.1 [Color channels in same pixel grid], page 152, we demonstrate how you can warp
multiple images into a single pixel grid (often necessary with multi-wavelength data), and
build a single color image. In Section 2.9 [Moiré pattern in coadding and its correction],
page 191, we show how you can avoid the unwanted Moiré pattern which happens when
warping separate exposures to build a coadded deeper image. In Section 2.7 [Zero point of
an image|, page 166, we review the process of estimating the zero point of an image using
a reference image or catalog. Finally, in Section 2.8 [Pointing pattern design|, page 177,
we show the process by which you can simulate a dither pattern to find the best observing
strategy for your next exciting scientific project.

In these tutorials, we have intentionally avoided too many cross references to make it
more easy to read. For more information about a particular program, you can visit the
section with the same name as the program in this book. Each program section in the
subsequent chapters starts by explaining the general concepts behind what it does, for ex-
ample, see Section 6.3 [Convolve|, page 479. If you only want practical information on
running a program, for example, its options/configuration, input(s) and output(s), please
consult the subsection titled “Invoking ProgramName”, for example, see Section 7.2.2 [In-
voking NoiseChisel], page 555. For an explanation of the conventions we use in the example
codes through the book, please see Section 1.12 [Conventions|, page 18.

2.1 General program usage tutorial

Measuring colors of astronomical objects in broad-band or narrow-band images is one of
the most basic and common steps in astronomical analysis. Here, we will use Gnuastro’s
programs to get a physical scale (area at certain redshifts) of the field we are studying,
detect objects in a Hubble Space Telescope (HST) image, measure their colors and identify
the ones with the strongest colors, do a visual inspection of these objects and inspect spatial
position in the image. After this tutorial, you can also try the Section 2.2 [Detecting large
extended targets], page 80, tutorial which goes into a little more detail on detecting very
low surface brightness signal.

During the tutorial, we will take many detours to explain, and practically demonstrate,
the many capabilities of Gnuastro’s programs. In the end you will see that the things you
learned during this tutorial are much more generic than this particular problem and can be

packages in TEX and IATEX, the first is a high-level vector graphic programming environment, while
with the second you can make presentation slides. On a similar topic, there are also some nice words
of wisdom for Unix-like systems called Rootless Root (http://catb.org/esr/writings/unix-koans).
These also have a similar style but they use a mythical figure named Master Foo. If you already have
some experience in Unix-like systems, you will definitely find these Unix Koans entertaining/educative.
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used in solving a wide variety of problems involving the analysis of data (images or tables).
So please do not rush, and go through the steps patiently to optimally master Gnuastro.

In this tutorial, we will use the HSTeXtreme Deep Field (https://archive.stsci.edu/
prepds/xdf) dataset. Like almost all astronomical surveys, this dataset is free for download
and usable by the public. You will need the following tools in this tutorial: Gnuastro, SAO
DS9%, GNU Wget?, and AWK (most common implementation is GNU AWK?).

This tutorial was first prepared for the “Exploring the Ultra-Low Surface Brightness
Universe” workshop (November 2017) at the ISSI in Bern, Switzerland. It was further ex-
tended in the “4th Indo-French Astronomy School” (July 2018) organized by LIO, CRAL
CNRS UMRA5574, UCBL, and IUCAA in Lyon, France. We are very grateful to the orga-
nizers of these workshops and the attendees for the very fruitful discussions and suggestions
that made this tutorial possible.

Write the example commands manually: Try to type the example commands on your
terminal manually and use the history feature of your command-line (by pressing the
“up” button to retrieve previous commands). Do not simply copy and paste the commands
shown here. This will help simulate future situations when you are processing your own
datasets.

2.1.1 Calling Gnuastro’s programs

A handy feature of Gnuastro is that all program names start with ast. This will allow your
command-line processor to easily list and auto-complete Gnuastro’s programs for you. Try
typing the following command (press TAB key when you see <TAB>) to see the list:

$ ast<TAB><TAB>

Any program that starts with ast (including all Gnuastro programs) will be shown. By
choosing the subsequent characters of your desired program and pressing <TAB><TAB> again,
the list will narrow down and the program name will auto-complete once your input charac-
ters are unambiguous. In short, you often do not need to type the full name of the program
you want to run.

2.1.2 Accessing documentation

Gnuastro contains a large number of programs and it is natural to forget the details of each
program’s options or inputs and outputs. Therefore, before starting the analysis steps of
this tutorial, let’s review how you can access this book to refresh your memory any time
you want, without having to take your hands off the keyboard.

When you install Gnuastro, this book is also installed on your system along with all
the programs and libraries, so you do not need an internet connection to access/read it.
Also, by accessing this book as described below, you can be sure that it corresponds to your
installed version of Gnuastro.

3 See Section A.1 [SAO DS9], page 989, available at http://ds9.si.edu/site/Home.html
4 https://www.gnu.org/software/wget
5 https://www.gnu.org/software/gavk
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GNU Info® is the program in charge of displaying the manual on the command-line
(for more, see Section 4.3.4 [Info], page 275). To see this whole book on your command-
line, please run the following command and press subsequent keys. Info has its own mini-
environment, therefore we will show the keys that must be pressed in the mini-environment
after a —=> sign. You can also ignore anything after the # sign in the middle of the line, they
are only for your information.

$ info gnuastro # Open the top of the manual.

-> <SPACE> # A1l the book chapters.

-> <SPACE> # Continue down: show sections.

—-> <SPACE> ... # Keep pressing space to go down.

->q # Quit Info, return to the command-line.

The thing that greatly simplifies navigation in Info is the links (regions with an under-
line). You can immediately go to the next link in the page with the <TAB> key and press
<ENTER> on it to go into that part of the manual. Try the commands above again, but this
time also use <TAB> to go to the links and press <ENTER> on them to go to the respective
section of the book. Then follow a few more links and go deeper into the book. To return to
the previous page, press 1 (small L). If you are searching for a specific phrase in the whole
book (for example, an option name), press s and type your search phrase and end it with
an <ENTER>. Finally, you can return to the command line and quit Info by pressing the q
key.

You do not need to start from the top of the manual every time. For example, to get to
Section 7.2.2 [Invoking NoiseChisel], page 555, run the following command. In general, all
programs have such an “Invoking ProgramName” section in this book. These sections are
specifically for the description of inputs, outputs and configuration options of each program.
You can access them directly for each program by giving its executable name to Info.

$ info astnoisechisel

The other sections do not have such shortcuts. To directly access them from the
command-line, you need to tell Info to look into Gnuastro’s manual, then look for the
specific section (an unambiguous title is necessary). For example, if you only want to re-
view /remember NoiseChisel’s Section 7.2.2.2 [Detection options|, page 560), just run the
following command. Note how case is irrelevant for Info when calling a title in this manner.

$ info gnuastro "Detection options"

In general, Info is a powerful and convenient way to access this whole book with detailed
information about the programs you are running. If you are not already familiar with it,
please run the following command and just read along and do what it says to learn it. Do
not stop until you feel sufficiently fluent in it. Please invest the half an hour’s time necessary
to start using Info comfortably. It will greatly improve your productivity and you will start
reaping the rewards of this investment very soon.

$ info info

As a good scientist you need to feel comfortable to play with the features/options and
avoid (be critical to) using default values as much as possible. On the other hand, our
human memory is limited, so it is important to be able to easily access any part of this
book fast and remember the option names, what they do and their acceptable values.

6 GNU Info is already available on almost all Unix-like operating systems.
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If you just want the option names and a short description, calling the program with the
--help option might also be a good solution like the first example below. If you know a
few characters of the option name, you can feed the printed output to grep like the second
or third example commands.

$ astnoisechisel --help
$ astnoisechisel --help | grep quant
$ astnoisechisel --help | grep check

2.1.3 Setup and data download

The first step in the analysis of the tutorial is to download the necessary input datasets.
First, to keep things clean, let’s create a gnuastro-tutorial directory and continue all
future steps in it:

$ mkdir gnuastro-tutorial
$ cd gnuastro-tutorial

We will be using the near infra-red Wide Field Camera (http://www.stsci.edu/hst/
wfc3) dataset. If you already have them in another directory (for example, XDFDIR, with
the same FITS file names), you can set the download directory to be a symbolic link to
XDFDIR with a command like this:

$ 1n -s XDFDIR download

Otherwise, when the following images are not already present on your system, you can make
a download directory and download them there

$ mkdir download

$ cd download

$ xdfurl=http://archive.stsci.edu/pub/hlsp/xdf

$ wget $xdfurl/hlsp_xdf_hst_wfc3ir-60mas_hudf_£f105w_vl_sci.fits
$ wget $xdfurl/hlsp_xdf_hst_wfc3ir-60mas_hudf_f125w_vl_sci.fits
$ wget $xdfurl/hlsp_xdf_hst_wfc3ir-60mas_hudf_f160w_vl_sci.fits
$ cd ..

In this tutorial, we will just use these three filters. Later, you may need to download more
filters. To do that, you can use the shell’s for loop to download them all in series (one after
the other”) with one command like the one below for the WFC3 filters. Put this command
instead of the three wget commands above. Recall that all the extra spaces, backslashes
(\), and new lines can be ignored if you are typing on the lines on the terminal.

$ for f in f105w f125w f140w f160w; do \
wget $xdfurl/hlsp_xdf_hst_wfc3ir-60mas_hudf_"$f"_vl_sci.fits; \
done

2.1.4 Dataset inspection and cropping

First, let’s visually inspect the datasets we downloaded in Section 2.1.3 [Setup and data
download], page 25. Let’s take F160W image as an example. One of the most common
programs for viewing FITS images is SAO DS9, which is usually called through the ds9

7 Note that you only have one port to the internet, so downloading in parallel will actually be slower than
downloading in series.
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command-line program, like the command below. If you do not already have DS9 on your
computer and the command below fails, please see Section A.1 [SAO DS9], page 989.

$ ds9 download/hlsp_xdf_hst_wfc3ir-60mas_hudf_f160w_vl_sci.fits

By default, DS9 open a relatively small window (for modern browsers) and its default
scale and color bar make it very hard to see any structure in the image: everything will
look black. Also, by default, it zooms into the center of the image and you need to scroll to
zoom-out and see the whole thing. To avoid these problems, Gnuastro has the astscript-
fits-view script:

$ astscript-fits-view \
download/hlsp_xdf_hst_wfc3ir-60mas_hudf_f160w_vi_sci.fits

After running this command, you will see that the DS9 window fully covers the height
of your monitor, it is showing the whole image, using a more clear color-map, and many
more useful things. In fact, you see the DS9 command that is used in your terminal®. On
GNU/Linux operating systems (like Ubuntu, and Fedora), you can also set your graphics
user interface to use this script for opening FITS files when you click on them. For more, see
the instructions in the checklist at the start of Section 10.4.1 [Invoking astscript-fits-view],
page 706.

As you hover your mouse over the image, notice how the “Value” and positional fields
on the top of the ds9 window get updated. The first thing you might notice is that when
you hover the mouse over the regions with no data, they have a value of zero. The next
thing might be that the dataset has a shallower and deeper component (see Section 7.4.5
[Metameasurements on full input], page 615). Recall that this is a combined/reduced image
of many exposures, and the parts that have more exposures are deeper. In particular, the
exposure time of the deep inner region is more than 4 times the exposure time of the outer
(more shallower) parts.

To simplify the analysis in this tutorial, we will only be working on the deep field, so let’s
crop it out of the full dataset. Fortunately the XDF survey web page (above) contains the
vertices of the deep flat WFC3-IR field?. With Gnuastro’s Crop program, you can use those
vertices to cutout this deep region from the larger image (to learn more about the Crop
program see Section 6.1 [Crop|, page 389). But before that, to keep things organized, let’s
make a directory called flat-ir and keep the flat (single-depth) regions in that directory
(with a ‘xdf-’ prefix for a shorter and easier filename).

$ mkdir flat-ir
$ astcrop --mode=wcs -h0 --output=flat-ir/xdf-f105w.fits \
--polygon="53.187414,-27.779152 : 53.159507,-27.759633 : \
53.134517,-27.787144 : 53.161906,-27.807208" \
download/hlsp_xdf_hst_wfc3ir-60mas_hudf_f105w_v1_sci.fits

$ astcrop --mode=wcs -h0 --output=flat-ir/xdf-f125w.fits \
--polygon="53.187414,-27.779152 : 53.159507,-27.759633 : \
53.134517,-27.787144 : 53.161906,-27.807208" \

8 When comparing DS9’s command-line options to Gnuastro’s, you will notice how SAO DS9 does not
follow the GNU style of options where “long” and “short” options are preceded by -- and - respectively
(for example, --width and -w, see Section 4.1.1.2 [Options], page 251).

9 https://archive.stsci.edu/prepds/xdf/#dataproducts
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download/hlsp_xdf_hst_wfc3ir-60mas_hudf_£f125w_vi_sci.fits

$ astcrop --mode=wcs -h0 --output=flat-ir/xdf-f160w.fits \
—--polygon="53.187414,-27.779152 : 53.159507,-27.759633 : \
53.134517,-27.787144 : 53.161906,-27.807208" \
download/hlsp_xdf_hst_wfc3ir-60mas_hudf_f160w_vl_sci.fits

Run the command below to have a look at the cropped images:
$ astscript-fits-view flat-ir/*.fits

You only see the deep region now, does not the noise look much cleaner? An important
result of this crop is that regions with no data now have a NaN (Not-a-Number, or a blank
value) value. Any self-respecting statistical program will ignore NaN values, so they will
not affect your outputs. For example, notice how changing the DS9 color bar will not affect
the NaN pixels (their colors will not change).

However, do you remember that in the downloaded files, such regions had a value of
zero? That is a big problem! Because zero is a number, and is thus meaningful, especially
when you later want to NoiseChisel to detect!'® all the signal from the deep universe in this
image. Generally, when you want to ignore some pixels in a dataset, and avoid higher-level
ambiguities or complications, it is always best to give them blank values (not zero, or some
other absurdly large or small number). Gnuastro has the Arithmetic program for such cases,
and we will introduce it later in this tutorial.

In the example above, the polygon vertices are in degrees, but you can also replace
them with sexagesimal! coordinates (for example, using 03h32m44.9794 or 03:32:44.9794
instead of 563.187414, the first RA, and -27d46m44.9472 or -27:46:44.9472 instead of
-27.779152, the first Dec). To further simplify things, you can even define your polygon
visually as a DS9 “region”, save it as a “region file” and give that file to crop. But we need
to continue, so if you are interested to learn more, see Section 6.1 [Crop], page 389.

Before closing this section, let’s just take a look at the three cropping commands we ran
above. The only thing varying in the three commands the filter name! Note how everything
else is the same! In such cases, you should generally avoid repeating a command manually,
it is prone to many bugs, and as you see, it is very hard to read (did not you suddenly write
a7 as an 87).

To simplify the command, and allow you to work on more filters, we can use the shell’s
for loop as shown below. Notice how the place where the filter names (£105w, £125w and
£160w) are used above, have been replaced with $£ (the shell variable that for will update
in every loop) below.

$ rm flat-ir/*.fits
$ for f in f105w f125w f£160w; do \
astcrop --mode=wcs -h0 --output=flat-ir/xdf-$f.fits \
—--polygon="53.187414,-27.779152 : 53.159507,-27.759633 : \

10 Ag you will see below, unlike most other detection algorithms, NoiseChisel detects the objects from their
faintest parts, it does not start with their high signal-to-noise ratio peaks. Since the Sky is already
subtracted in many images and noise fluctuates around zero, zero is commonly higher than the initial
threshold applied. Therefore keeping zero-valued pixels in this image will cause them to identified as
part of the detections!

1 https://en.wikipedia. org/wiki/Sexagesimal
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53.134517,-27.787144 : 53.161906,-27.807208" \
download/hlsp_xdf_hst_wfc3ir-60mas_hudf_"$f"_vi_sci.fits; \
done

2.1.5 Angular coverage on the sky

The cropped images in Section 2.1.4 [Dataset inspection and cropping], page 25, are the
deepest images we currently have of the sky. The first thing that comes to mind may be
this: “How large is this field on the sky?”.

More accurate method: the steps mentioned in this section are primarily designed to help
you get familiar with the FITS WCS standard and some shells scripting. The accuracy of
this method will decrease as your image becomes large (on the scale of degrees). For an
accurate method, see Section 2.8.2 [Area of non-blank pixels on sky], page 181.

You can get a fast and crude answer with Gnuastro’s Fits program, using this command:
$ astfits flat-ir/xdf-f160w.fits --skycoverage

It will print the sky coverage in two formats (all numbers are in units of degrees for this
image): 1) the image’s central RA and Dec and full width around that center, 2) the range
of RA and Dec covered by this image. You can use these values in various online query
systems. You can also use this option to automatically calculate the area covered by this
image. With the ——-quiet option, the printed output of --skycoverage will not contain
human-readable text, making it easier for automatic (computer) processing:

$ astfits flat-ir/xdf-f160w.fits --skycoverage --quiet

The second row is the coverage range along RA and Dec (compare with the outputs
before using -—quiet). We can thus simply subtract the second from the first column and
multiply it with the difference of the fourth and third columns to calculate the image area.
We will also multiply each by 60 to have the area in arc-minutes squared.

$ astfits flat-ir/xdf-f160w.fits --skycoverage --quiet \
| awk 'NR==2{print ($2-$1)=*60*($4-$3)*603}"

The returned value is 9.06711 arcmin?. However, this method ignores the fact that many
of the image pixels are blank! In other words, the image does cover this area, but there is
no data in more than half of the pixels. So let’s calculate the area coverage over-which we
actually have data.

The FITS world coordinate system (WCS) metadata standard contains the key to an-
swering this question. Run the following command to see all the FITS keywords (metadata)
for one of the images (almost identical with the other images because they are scaled to the
same region of Sky):

$ astfits flat-ir/xdf-f160w.fits -hl

Look into the keywords grouped under the ‘World Coordinate System (WCS)’ title.
These keywords define how the image relates to the outside world. In particular, the CDELT*
keywords (or CDELT1 and CDELT2 in this 2D image) contain the “Coordinate DELTa” (or
change in coordinate units) with a change in one pixel. But what is the units of each “world”
coordinate? The CUNIT* keywords (for “Coordinate UNIT”) have the answer. In this case,
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both CUNIT1 and CUNIT1 have a value of deg, so both “world” coordinates are in units of
degrees. We can thus conclude that the value of CDELT* is in units of degrees-per-pixel'2.

With the commands below, we will use CDELT (along with the number of non-blank
pixels) to find the answer of our initial question: “how much of the sky does this image
cover?”. The lines starting with ## are just comments for you to read and understand
each command. Do not type them on the terminal (no problem if you do, they will just
not have any effect). The commands are intentionally repetitive in some places to better
understand each step and also to demonstrate the beauty of command-line features like
history, variables, pipes and loops (which you will commonly use as you become more
proficient on the command-line).

( N
Use shell history: Do not forget to make effective use of your shell’s history: you do not

have to re-type previous command to add something to them (like the examples below).
This is especially convenient when you just want to make a small change to your previous
command. Press the “up” key on your keyboard (possibly multiple times) to see your

previous command(s) and modify them accordingly.
N\ J

( )

Your locale does not use ‘.’ as decimal separator: on systems that do not use an English

language environment, the dates, numbers, etc., can be printed in different formats (for
example, ‘0.5” can be written as ‘0,5”: with a comma). With the LC_NUMERIC line at the
start of the script below, we are ensuring a unified format in the output of seq. For more,

please see Section 4.11 [Numeric locale], page 295.
N )

## Make sure that the decimal separator is a point in any environment.
$ export LC_NUMERIC=C

## See the general statistics of non-blank pixel values.
$ aststatistics flat-ir/xdf-f160w.fits

## We only want the number of non-blank pixels (add '--number').
$ aststatistics flat-ir/xdf-f160w.fits --number

## Keep the result of the command above in the shell variable "n'.
$ n=$(aststatistics flat-ir/xdf-f160w.fits --number)

## See what is stored the shell variable "n'.
$ echo $n

12 With the FITS CDELT convention, rotation (PC or CD keywords) and scales (CDELT) are separated. In the
FITS standard the CDELT keywords are optional. When CDELT keywords are not present, the PC matrix
is assumed to contain both the coordinate rotation and scales. Note that not all FITS writers use the
CDELT convention. So you might not find the CDELT keywords in the WCS metadata of some FITS files.
However, all Gnuastro programs (which use the default FITS keyword writing format of WCSLIB) write
their output WCS with the CDELT convention, even if the input does not have it. If your dataset does not
use the CDELT convention, you can feed it to any (simple) Gnuastro program (for example, Arithmetic)
and the output will have the CDELT keyword. See Section 8 of the FITS standard (https://fits.gsfc.
nasa.gov/standard40/fits_standard40aa-le.pdf) for more


https://fits.gsfc.nasa.gov/standard40/fits_standard40aa-le.pdf
https://fits.gsfc.nasa.gov/standard40/fits_standard40aa-le.pdf
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## Show all the FITS keywords of this image.
$ astfits flat-ir/xdf-f160w.fits -hil

## The resolution (in degrees/pixel) is in the “CDELT' keywords.
## Only show lines that contain these characters, by feeding

## the output of the previous command to the “grep' program.

$ astfits flat-ir/xdf-f160w.fits -hl | grep CDELT

## Since the resolution of both dimensions is (approximately) equal,
## we will only read the value of one (CDELT1) with '--keyvalue'.
$ astfits flat-ir/xdf-f160w.fits -hl --keyvalue=CDELT1

## We do not need the file name in the output (add '--quiet').
$ astfits flat-ir/xdf-f160w.fits -hl --keyvalue=CDELT1 --quiet

## Save it as the shell variable "r'.
$ r=$(astfits flat-ir/xdf-f160w.fits -hl --keyvalue=CDELT1 --quiet)

## Print the values of "n' and "r'.
$ echo $n $r

## Use the number of pixels (first number passed to AWK) and
## length of each pixel's edge (second number passed to AWK)
## to estimate the area of the field in arc-minutes squared.
$ echo $n $r | awk '{print $1 * ($2*60)"2}'

The output of the last command (area of this field) is 4.03817 (or approximately 4.04)
arc-minutes squared. Just for comparison, this is roughly 175 times smaller than the average
moon’s angular area (with a diameter of 30 arc-minutes or half a degree).

Some FITS writers do not use the CDELT convention, making it hard to use the steps
above. In such cases, you can extract the pixel scale with the --pixelscale option of
Gnuastro’s Fits program like the command below. Similar to the --skycoverage option
above, you can also use the —-quiet option to allow easy usage of the values in scripts.

$ astfits flat-ir/xdf-f160w.fits --pixelscale

(" N
AWK for table/value processing: As you saw above AWK is a powerful and simple tool for

text processing. You will see it often in shell scripts. GNU AWK (the most common im-
plementation) comes with a free and wonderful book (https://www.gnu.org/software/
gawk/manual/) in the same format as this book which will allow you to master it nicely.
Just like this manual, you can also access GNU AWK’s manual on the command-line

whenever necessary without taking your hands off the keyboard. Just run info awk.
- J

2.1.6 Cosmological coverage and visualizing tables

Having found the angular coverage of the dataset in Section 2.1.5 [Angular coverage on the
sky], page 28, we can now use Gnuastro to answer a more physically motivated question:


https://www.gnu.org/software/gawk/manual/
https://www.gnu.org/software/gawk/manual/

Chapter 2: Tutorials 31

“How large is this area at different redshifts?”. To get a feeling of the tangential area that
this field covers at redshift 2, you can use Gnuastro’s CosmicCalcular program (Section 9.1
[CosmicCalculator], page 677). In particular, you need the tangential distance covered by
1 arc-second as raw output. Combined with the field’s area that was measured before, we
can calculate the tangential distance in Mega Parsecs squared (M pc?).

## If your system language uses ',' (not '.') as decimal separator.
$ export LC_NUMERIC=C

## Print general cosmological properties at redshift 2 (for example).
$ astcosmiccal -z2

## When given a "Specific calculation" option, CosmicCalculator
## will just print that particular calculation. To see all such
## calculations, add a “~--help' token to the previous command

## (under the same title). Note that with ~--help', no processing
## is done, so you can always simply append it to remember

## something without modifying the command you want to run.

$ astcosmiccal -z2 --help

## Only print the "Tangential dist. for larcsec at z (physical kpc)".
## in units of kpc/arc-seconds.
$ astcosmiccal -z2 --arcsectandist

## It is easier to use the short (single character) version of
## this option when typing (but this is hard to read, so use
## the long version in scripts or notes you plan to archive).
$ astcosmiccal -z2 -s

## Short options can be merged (they are only a single character!)
$ astcosmiccal -sz2

## Convert this distance to kpc”2/arcmin”2 and save in “k'.
$ k=%$(astcosmiccal -sz2 | awk '{print ($1*60)°2}')

## Calculate the area of the dataset in arcmin”2.

$ n=$(aststatistics flat-ir/xdf-f160w.fits —--number)

$ r=$(astfits flat-ir/xdf-f160w.fits -hl --keyvalue=CDELT1 -q)
$ a=$(echo $n $r | awk '{print $1 * ($2*x60)°2 }')

## Multiply "k' and “a' and divide by 1076 for value in Mpc~2.
$ echo $k $a | awk '{print $1 * $2 / 1e6}'

At redshift 2, this field therefore covers approximately 1.07 Mpc?. If you would like to see
how this tangential area changes with redshift, you can use a shell loop like below.

$ for z in 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0; do \
k=$(astcosmiccal -sz$z); \
echo $z $k $a | awk '{print $1, ($2*%60)°2 * $3 / 1le6}'; \
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done

Fortunately, the shell has a useful tool/program to print a sequence of numbers that is nicely
called seq (short for “sequence”). You can use it instead of typing all the different redshifts
in the loop above. For example, the loop below will calculate and print the tangential
coverage of this field across a larger range of redshifts (0.1 to 5) and with finer increments
of 0.1. For more on the LC_NUMERIC command, see Section 4.11 [Numeric locale|, page 295.

## If your system language uses ',' (not '.') as decimal separator.
$ export LC_NUMERIC=C

## The loop over the redshifts

$ for z in $(seq 0.1 0.1 5); do \
k=$(astcosmiccal -z$z --arcsectandist); \
echo $z $k $a | awk '{print $1, ($2%60)°2 * $3 / 1le6}'; \
done

Have a look at the two printed columns. The first is the redshift, and the second is
the area of this image at that redshift (in mega-parsecs squared). Redshift (https://en.
wikipedia.org/wiki/Redshift) (z) is often used as a proxy for distance in galaxy evolu-
tion and cosmology: a higher redshift corresponds to larger line-of-sight comoving distance.

Now, have a look at the first few values. At z = 0.1 and z = 0.5, this image covers
0.05Mpc? and 0.57Mpc? respectively. This increase of coverage with redshift is expected
because a fixed angle will cover a larger tangential area at larger distances. However,
as you come down the list (to higher redshifts) you will notice that this relation does
not hold! The largest coverage is at z = 1.6: at higher redshifts, the area decreases,
and continues decreasing!!! In flat FLRW cosmology (including ACDM), the only factor
contributing to this is the (1 + 2)$ factor from the expansion of the universe, see the
Wikipedia page (https://en.wikipedia.org/wiki/Angular_diameter_distance#
Angular_diameter_turnover_point), with no curvature effect.

In case you have TOPCAT, you can visualize this as a plot (if you do not have TOPCAT,
see Section A.2 [TOPCAT], page 990). To do so, first you need to save the output of the
loop above into a FITS table by piping the output to Gnuastro’s Table program and giving
an output name:

$ for z in $(seq 0.1 0.1 5); do \
k=$(astcosmiccal -z$z --arcsectandist); \
echo $z $k $a | awk '{print $1, ($2%60)°2 * $3 / 1le6}'; \

done | asttable --output=z-vs-tandist.fits

You can now use Gnuastro’s astscript-fits-view to open this table in TOPCAT with
the command below. Do you remember this script from Section 2.1.4 [Dataset inspection
and cropping], page 257 There, we used it to view a FITS image with DS9! This script will
see if the first dataset in the image is a table or an image and will call TOPCAT or DS9
accordingly: making it a very convenient tool to inspect the contents of all types of FITS
data.

$ astscript-fits-view z-vs-tandist.fits

After TOPCAT opens, you will see the name of the table z-vs-tandist.fits in the
left panel. On the top menu bar, select the “Graphics” menu, then select “Plane plot” to


https://en.wikipedia.org/wiki/Redshift
https://en.wikipedia.org/wiki/Redshift
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visualize the two columns printed above as a plot and get a better impression of the turn
over point of the image cosmological coverage.

2.1.7 Building custom programs with the library

In Section 2.1.6 [Cosmological coverage and visualizing tables|, page 30, we repeated a
certain calculation/output of a program multiple times using the shell’s for loop. This
simple way of repeating a calculation is great when it is only necessary once. However, if
you commonly need this calculation and possibly for a larger number of redshifts at higher
precision, the command above can be slow. Please try it out by changing the sequence
command in the previous section to ‘seq 0.1 0.01 10’. It will take about 11 seconds!?!
This can be improved by hundreds of times! This section will show you how.

Generally, repeated calls to a generic program (like CosmicCalculator) are slow, because
a generic program can have a lot of overhead on each call. To be generic and easy to
operate, CosmicCalculator has to parse the command-line and all configuration files (see
Section 2.1.8 [Option management and configuration files], page 35) which contain human-
readable characters and need a lot of pre-processing to be ready for processing by the
computer. Afterwards, CosmicCalculator has to check the sanity of its inputs and check
which of its many options you have asked for. All the this pre-processing takes as much
time as the high-level calculation you are requesting, and it has to re-do all of these for
every redshift in your loop.

To greatly speed up the processing, you can directly access the core work-horse of Cos-
micCalculator without all that overhead by designing your custom program for this job.
Using Gnuastro’s library, you can write your own tiny program particularly designed for
this exact calculation (and nothing else!). To do that, copy and paste the following C
program in a file called myprogram.c.

#include <math.h>

#include <stdio.h>

#include <stdlib.h>

#include <gnuastro/cosmology.h>

int

main(void)

{
double area=4.03817; /* Area of field (arcmin~2). */
double z, adist, tandist; /* Temporary variables. x/

/* Constants from Plank 2018 (arXiv:1807.06209, Table 2) */
double HO=67.66, olambda=0.6889, omatter=0.3111, oradiation=0;

/* Do the same thing for all redshifts (z) between 0.1 and 10. */
for(z=0.1; z<10; z+=0.01)
{

13 To measure how much time the loop of Section 2.1.6 [Cosmological coverage and visualizing tables],
page 30, takes on your system, you can use the time command. First put the whole loop (and pipe) into
a plain-text file (to be loaded as a shell script) called z-vs-tandist.sh. Then run this command: time
-p bash z-vs-tandist.sh. The relevant time (in seconds) is shown after real.
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/* Calculate the angular diameter distance. */
adist=gal_cosmology_angular_distance(z, HO, olambda,
omatter, oradiation);

/* Calculate the tangential distance of one arcsecond. */
tandist = adist * 1000 * M_PI / 3600 / 180;

/* Print the redshift and area. */
printf ("%-5.2f %g\n", z, pow(tandist * 60,2) * area / le6);
}

/* Tell the system that everything finished successfully. */
return EXIT_SUCCESS;
3

Then run the following command to compile your program and run it.
$ astbuildprog myprogram.c

In the command above, you used Gnuastro’s BuildProgram program. Its job is to simplify
the compilation, linking and running of simple C programs that use Gnuastro’s library (like
this one). BuildProgram is designed to manage Gnuastro’s dependencies, compile and link
your custom program and then run it.

Did you notice how your custom program created the table almost instantaneously?
Technically, it only took about 0.03 seconds! Recall that the for loop of Section 2.1.6
[Cosmological coverage and visualizing tables|, page 30, took more than 11 seconds (or
~ 367 times slower!).

Please run the 1s command to see a listing of the files in the current directory. You will
notice that a new file called myprogram has been created. This is the compiled program
that was created and run by the command above (its in binary machine code format, not
human-readable any more). You can run it again to get the same results by executing it:

$ ./myprogram

The efficiency of your custom myprogram compared to repeated calls to CosmicCalculator
is because in the latter, the requested processing is comparable to the necessary overheads.
For other programs that take large input datasets and do complicated processing on them,
the overhead is usually negligible compared to the processing. In such cases, the libraries
are only useful if you want a different/new processing compared to the functionalities in
Gnuastro’s existing programs.

Gnuastro has a large library which is used extensively by all the programs. In other
words, the library is like the skeleton of Gnuastro. For the full list of available functions
classified by context, please see Section 12.3 [Gnuastro library|, page 764. Gnuastro’s library
and BuildProgram are created to make it easy for you to use these powerful features as you
like. This gives you a high level of creativity, while also providing efficiency and robust-
ness. Several other complete working examples (involving images and tables) of Gnuastro’s
libraries can be see in Section 12.4 [Library demo programs|, page 940.

But for this tutorial, let’s stop discussing the libraries here and get back to Gnuastro’s
already built programs (which do not need C programming). But before continuing, let’s
clean up the files we do not need any more:
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$ rm myprogram* z-vs-tandistx

2.1.8 Option management and configuration files

In the previous section (Section 2.1.6 [Cosmological coverage and visualizing tables],
page 30), when you ran CosmicCalculator, you only specified the redshfit with -z2 option.
You did not specify the cosmological parameters that are necessary for the calculations!
Parameters like the Hubble constant (Hy) and the matter density. In spite of this,
CosmicCalculator done its processing and printed results.

None of Gnuastro’s programs keep a default value internally within their code (they are
all set by the user)! So where did the necessary cosmological parameters that are necessary
for its calculations come from? What were the values to those parameters? In short, they
come from a configuration file (see Section 4.2.2 [Configuration file precedence], page 271),
and the final used values can be checked/edited on the command-line. In this section we
will review this important aspect of all the programs in Gnuastro.

Configuration files are an important part of all Gnuastro’s programs, especially the ones
with a large number of options, so it is important to understand this part well. Once you
get comfortable with configuration files, you can make good use of them in all Gnuastro
programs (for example, NoiseChisel). For example, to do optimal detection on various
datasets, you can have configuration files for different noise properties. The configuration
of each program (besides its version) is vital for the reproducibility of your results, so it is
important to manage them properly.

As we saw above, the full list of the options in all Gnuastro programs can be seen with the
—--help option. Try calling it with CosmicCalculator as shown below. Note how options are
grouped by context to make it easier to find your desired option. However, in each group,
options are ordered alphabetically.

$ astcosmiccal --help

After running the command above, please scroll to the line that you ran this command
and read through the output (its the same format for all the programs). All options have
a long format (starting with -- and a multi-character name) and some have a short format
(starting with - and a single character), for more see Section 4.1.1.2 [Options], page 251.
The options that expect a value, have an = sign after their long version. The format of
their expected value is also shown as FLT, INT or STR for floating point numbers, integer
numbers, and strings (filenames for example) respectively.

You can see the values of all options that need one with the --printparams option (or
its short format: -P). --printparams is common to all programs (see Section 4.1.2 [Com-
mon options|, page 253). You can see the default cosmological parameters, from the Plank
collaboration 2020 (https://arxiv.org/abs/1807.06209), under the # Input: title:

$ astcosmiccal -P

# Input:

HO 67.66 # Current expansion rate (Hubble constant).
olambda 0.6889 # Current cosmological cst. dens. per crit. demns.
omatter 0.3111  # Current matter density per critical density.

oradiation O # Current radiation density per critical density.


https://arxiv.org/abs/1807.06209
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Let’s say you want to do the calculation in the previous section using Hy = 70 km/s/Mpc.
To do this, just add -==HO=70 after the command above (while keeping the -P). In the output,
you can see that the used Hubble constant has also changed.

$ astcosmiccal -P --H0=70

Afterwards, delete the -P and add a -z2 to see the calculations with the new cosmology (or
configuration).

$ astcosmiccal --HO=70 -z2

From the output of the --help option, note how the option for Hubble constant has
both short (-H) and long (--HO) formats. One final note is that the equal (=) sign is
not mandatory. In the short format, the value can stick to the actual option (the short
option name is just one character after-all, thus easily identifiable) and in the long format,
a white-space character is also enough.

$ astcosmiccal -H70 -z2
$ astcosmiccal --HO 70 -z2 --arcsectandist

When an option does not need a value, and has a short format (like -—arcsectandist),
you can easily append it before other short options. So the last command above can also
be written as:

$ astcosmiccal --HO 70 -sz2

Let’s assume that in one project, you want to only use rounded cosmological parameters
(Hy of 70km/s/Mpc and matter density of 0.3). You should therefore run CosmicCalculator
like this:

$ astcosmiccal --HO=70 --olambda=0.7 --omatter=0.3 -z2

But having to type these extra options every time you run CosmicCalculator will be
prone to errors (typos in particular), frustrating and slow. Therefore in Gnuastro, you can
put all the options and their values in a “Configuration file” and tell the programs to read
the option values from there.

Let’s create a configuration file... With your favorite text editor, make a file named
my-cosmology.conf (or my-cosmology.txt, the suffix does not matter for Gnuastro, but a
more descriptive suffix like . conf is recommended for humans reading your code and seeing
your files: this includes you, looking into your own project, in a couple of months that you
have forgot the details!). Then put the following lines inside of the plain-text file. One
space between the option value and name is enough, the values are just under each other to
help in readability. Also note that you should only use long option names in configuration
files.

HO 70
olambda 0.7
omatter 0.3

You can now tell CosmicCalculator to read this file for option values immediately using the
--config option as shown below. Do you see how the output of the following command
corresponds to the option values in my-cosmology.conf, and is therefore identical to the
previous command?

$ astcosmiccal --config=my-cosmology.conf -z2
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But still, having to type --config=my-cosmology.conf every time is annoying, is not
it? If you need this cosmology every time you are working in a specific directory, you can
use Gnuastro’s default configuration file names and avoid having to type it manually.

The default configuration files (that are checked if they exist) must be placed in the
hidden .gnuastro sub-directory (in the same directory you are running the program).
Their file name (within .gnuastro) must also be the same as the program’s executable
name. So in the case of CosmicCalculator, the default configuration file in a given directory
is .gnuastro/astcosmiccal.conf.

Let’s do this. We will first make a directory for our custom cosmology, then build a
.gnuastro within it. Finally, we will copy the custom configuration file there:

$ mkdir my-cosmology
$ mkdir my-cosmology/.gnuastro
$ mv my-cosmology.conf my-cosmology/.gnuastro/astcosmiccal.conf

Once you run CosmicCalculator within my-cosmology (as shown below), you will see
how your custom cosmology has been implemented without having to type anything extra
on the command-line.

$ cd my-cosmology

$ astcosmiccal -P # Your custom cosmology is printed.
$ cd ..

$ astcosmiccal -P # The default cosmology is printed.

To further simplify the process, you can use the —-setdirconf option. If you are already
in your desired working directory, calling this option with the others will automatically write
the final values (along with descriptions) in .gnuastro/astcosmiccal.conf. For example,
try the commands below:

$ mkdir my-cosmology2

cd my-cosmology?2

astcosmiccal -P

astcosmiccal --HO 70 --olambda=0.7 --omatter=0.3 --setdirconf
astcosmiccal -P

$ cd ..

Gnuastro’s programs also have default configuration files for a specific user (when run in
any directory). This allows you to set a special behavior every time a program is run by a
specific user. Only the directory and filename differ from the above, the rest of the process
is similar to before. Finally, there are also system-wide configuration files that can be used
to define the option values for all users on a system. See Section 4.2.2 [Configuration file
precedence], page 271, for a more detailed discussion.

#H A L P

We will stop the discussion on configuration files here, but you can always read about
them in Section 4.2 [Configuration files], page 270. Before continuing the tutorial, let’s
delete the two extra directories that we do not need any more:

$ rm -rf my-cosmology*

2.1.9 Warping to a new pixel grid

We are now ready to start processing the deep HST images that were prepared in Sec-
tion 2.1.4 [Dataset inspection and cropping], page 25. One of the most important points
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while using several images for data processing is that those images must have the same pixel
grid. The process of changing the pixel grid is named ‘warp’. Fortunately, Gnuastro has
Warp program for warping the pixel grid (see Section 6.4 [Warp], page 501).

Warping to a different /matched pixel grid is commonly needed before higher-level anal-
ysis especially when you are using datasets from different instruments. The XDF datasets
we are using here are already aligned to the same pixel grid. But let’s have a look at some
of Gnuastro’s linear warping features here. For example, try rotating one of the images by
20 degrees with the first command below. With the second command, open the output and
input to see how it is rotated.

$ astwarp flat-ir/xdf-f160w.fits --rotate=20

$ astscript-fits-view flat-ir/xdf-f160w.fits xdf-f160w_rotated.fits

Warp can generally be used for many kinds of pixel grid manipulation (warping), not
just rotations. For example, the outputs of the commands below will have larger pixels
respectively (new resolution being one quarter the original resolution), get shifted by 2.8
(by sub-pixel), get a shear of 0.2, and be tilted (projected). Run each of them and open
the output file to see the effect, they will become handy for you in the future.

$ astwarp flat-ir/xdf-f160w.fits --scale=0.25

$ astwarp flat-ir/xdf-f160w.fits --translate=2.8

$ astwarp flat-ir/xdf-f160w.fits --shear=0.2

$ astwarp flat-ir/xdf-f160w.fits --project=0.001,0.0005
$ astscript-fits-view flat-ir/xdf-f160w.fits *.fits

If you need to do multiple warps, you can combine them in one call to Warp. For example,
to first rotate the image, then scale it, run this command:

$ astwarp flat-ir/xdf-f160w.fits --rotate=20 --scale=0.25

If you have multiple warps, do them all in one command. Do not warp them in separate
commands because the correlated noise will become too strong. As you see in the matrix
that is printed when you run Warp, it merges all the warps into a single warping matrix
(see Section 6.4.2 [Merging multiple warpings|, page 504) and simply applies that (mixes the
pixel values) just once. However, if you run Warp multiple times, the pixels will be mixed
multiple times, creating a strong artificial blur/smoothing, or stronger correlated noise.

Recall that the merging of multiple warps is done through matrix multiplication, there-
fore order matters in the separate operations. At a lower level, through Warp’s —-matrix
option, you can directly request your desired final warp and do not have to break it up into
different warps like above (see Section 6.4.4 [Invoking Warp], page 506).

Fortunately these datasets are already aligned to the same pixel grid, so you do not
actually need the files that were just generated. You can safely delete them all with the
following command. Here, you see why we put the processed outputs that we need later
into a separate directory. In this way, the top directory can be used for temporary files for
testing that you can simply delete with a generic command like below.

$ rm *.fits

2.1.10 NoiseChisel and Multi-Extension FITS files

In the previous sections, we completed a review of the basics of Gnuastro’s programs.
We are now ready to do some more serious analysis on the downloaded images: extract
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the pixels containing signal from the image, find sub-structure of the extracted signal,
do measurements over the extracted objects and analyze them (finding certain objects of
interest in the image).

The first step is to separate the signal (galaxies or stars) from the background noise in
the image. We will be using the results of Section 2.1.4 [Dataset inspection and cropping],
page 25, so be sure you already have them. Gnuastro has NoiseChisel for this job. But
NoiseChisel’s output is a multi-extension FITS file, therefore to better understand how to
use NoiseChisel, let’s take a look at multi-extension FITS files and how you can interact
with them.

In the FITS format, each extension contains a separate dataset (image in this case). You
can get basic information about the extensions in a FITS file with Gnuastro’s Fits program
(see Section 5.1 [Fits|, page 297). To start with, let’s run NoiseChisel without any options,
then use Gnuastro’s Fits program to inspect the number of extensions in this file.

$ astnoisechisel flat-ir/xdf-f160w.fits
$ astfits xdf-f160w_detected.fits

From the output list, we see that NoiseChisel’s output contains 5 extensions. The zero-
th (counting from zero, with name NOISECHISEL-CONFIG) is empty: it has value of 0 in
the fourth column (which shows its size in pixels). Like NoiseChisel, in all of Gnuastro’s
programs, the first (or zero-th) extension of the output only contains meta-data: data
about/describing the datasets within (all) the output’s extensions. This is recommended
by the FITS standard, see Section 5.1 [Fits], page 297, for more. In the case of Gnuastro’s
programs, this generic zero-th/meta-data extension (for the whole file) contains all the
configuration options of the program that created the file.

Metadata regarding how the analysis was done (or a dataset was created) is very impor-
tant for higher-level analysis and reproducibility. Therefore, Let’s first take a closer look
at the NOISECHISEL-CONFIG extension. If you specify a special header in the FITS file,
Gnuastro’s Fits program will print the header keywords (metadata) of that extension. You
can either specify the HDU /extension counter (starting from 0), or name. Therefore, the
two commands below are identical for this file. We are usually tempted to use the first
(shorter format), but when putting your commands into a script, please use the second
format which is more human-friendly and understandable for readers of your code who may
not know what is in the 0-th extension (this includes yourself in a few months!):

$ astfits xdf-f160w_detected.fits -hO
$ astfits xdf-f160w_detected.fits —-hNOISECHISEL-CONFIG

The first group of FITS header keywords you see (containing the SIMPLE and BITPIX
keywords; before the first empty line) are standard keywords. They are required by the FITS
standard and must be present in any FITS extension. The second group starts with the
input file name (value to the INPUT keyword). The rest of the keywords you see afterwards
have the same name as NoiseChisel’s options, and the value used by NoiseChisel in this run
is shown after the = sign. Finally, the last group (starting with DATE) contains the date and
version information of Gnuastro and its dependencies that were used to generate this file.
Besides the option values, these are also critical for future reproducibility of the result (you
may update Gnuastro or its dependencies, and they may behave differently afterwards).
The “versions and date” group of keywords are present in all Gnuastro’s FITS extension
outputs, for more see Section 4.10 [Output FITS files|, page 293.
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Note that if a keyword name is larger than 8 characters, it is preceded by a HIERARCH
keyword and that all keyword names are in capital letters. These are all part of the FITS
standard and originate from its history. But in short, both can be ignored! For example,
with the commands below, let’s see at first what the default values are, and then just check
the value of --detgrowquant option (using the -P option described in Section 2.1.8 [Option
management and configuration files|, page 35).

$ astnoisechisle -P
$ astnoisechisel -P | grep detgrowquant

To confirm that NoiseChisel used this value when we ran it above, let’s use grep to
extract the keyword line with detgrowquant from the metadata extension. However, as
you saw above, keyword names in the header is in all caps. So we need to ask grep to
ignore case with the -i option.

$ astfits xdf-f160w_detected.fits -h0 | grep -i detgrowquant

In the output of the above command, you see HIERARCH at the start of the line. According
to the FITS standard, HIERARCH is placed at the start of all keywords that have a name
that is more than 8 characters long. Both the all-caps and the HIERARCH keyword can be
annoying when you want to read/check the value. Therefore, the best solution is to use
the --keyvalue option of Gnuastro’s astfits program as shown below. With it, you do
not have to worry about HIERARCH or the case of the name (FITS keyword names are not
case-sensitive).

$ astfits xdf-f160w_detected.fits -h0 --keyvalue=detgrowquant -q

The metadata (that is stored in the output) can later be used to exactly repro-
duce/understand your result, even if you have lost/forgot the command you used to create
the file. This feature is present in all of Gnuastro’s programs, not just NoiseChisel.

The rest of the HDUs in NoiseChisel have data. So let’s open them in a DS9 window
and then describe each:

$ astscript-fits-view xdf-f160w_detected.fits

A “cube” window opens along with DS9’s main window. The buttons and horizontal
scroll bar in this small new window can be used to navigate between the extensions. In
this mode, all DS9’s settings (for example, zoom or color-bar) will be identical between
the extensions. Try zooming into one part and flipping through the extensions to see how
the galaxies were detected along with the Sky and Sky standard deviation values for that
region. Just have in mind that NoiseChisel’s job is only detection (separating signal from
noise). We will do segmentation on this result later to find the individual galaxies/peaks
over the detected pixels.

The second extension of NoiseChisel’s output (numbered 1, named INPUT-NO-SKY) is
the Sky-subtracted input that you provided. The third (DETECTIONS) is NoiseChisel’s main
output which is a binary image with only two possible values for all pixels: 0 for noise and
1 for signal. Since it only has two values, to avoid taking too much space on your computer,
its numeric datatype an unsigned 8-bit integer (or uint8)'*. The fourth and fifth (SKY and
SKY_STD) extensions, have the Sky and its standard deviation values for the input on a tile
grid and were calculated over the undetected regions (for more on the importance of the
Sky value, see Section 7.1.4 [Sky value], page 528).

14 Ty learn more about numeric data types see Section 4.5 [Numeric data types|, page 279.
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Each HDU /extension in a FITS file is an independent dataset (image or table) which you
can delete from the FITS file, or copy/cut to another file. For example, with the command
below, you can copy NoiseChisel’s DETECTIONS HDU /extension to another file:

$ astfits xdf-f160w_detected.fits --copy=DETECTIONS -odetections.fits

There are similar options to conveniently cut (--cut, copy, then remove from the input)
or delete (--remove) HDUs from a FITS file also. See Section 5.1.1.1 [HDU information
and manipulation], page 301, for more.

2.1.11 NoiseChisel optimization for detection

In Section 2.1.10 [NoiseChisel and Multi-Extension FITS files|, page 38, we ran NoiseChisel
and reviewed NoiseChisel’s output format. Now that you have a better feeling for multi-
extension FITS files, let’s optimize NoiseChisel for this particular dataset.

One good way to see if you have missed any signal (small galaxies, or the wings of
brighter galaxies) is to mask all the detected pixels and inspect the noise pixels. For this, you
can use Gnuastro’s Arithmetic program (in particular its where operator, see Section 6.2.4
[Arithmetic operators|, page 412). The command below will produce mask-det.fits. In it,
all the pixels in the INPUT-NO-SKY extension that are flagged 1 in the DETECTIONS extension
(dominated by signal, not noise) will be set to NaN.

Since the various extensions are in the same file, for each dataset we need the file and
extension name. To make the command easier to read/write/understand, let’s use shell
variables: ‘in’ will be used for the Sky-subtracted input image and ‘det’ will be used for
the detection map. Recall that a shell variable’s value can be retrieved by adding a $ before
its name, also note that the double quotations are necessary when we have white-space
characters in a variable value (like this case).

$ in="xdf-f160w_detected.fits -hINPUT-NO-SKY"
$ det="xdf-f160w_detected.fits -hDETECTIONS"
$ astarithmetic $in $det nan where --output=mask-det.fits

To invert the result (only keep the detected pixels), you can flip the detection map (from 0
to 1 and vice-versa) by adding a ‘not’ after the second $det:

$ astarithmetic $in $det not nan where --output=mask-sky.fits

Look again at the DETECTIONS extension, in particular the long worm-like structure
around*® pixel 1650 (X) and 1470 (Y). These types of long wiggly structures show that we
have dug too deep into the noise, and are a signature of correlated noise. Correlated noise
is created when we warp (for example, rotate) individual exposures (that are each slightly
offset compared to each other) into the same pixel grid before adding them into one deeper
image. During the warping, nearby pixels are mixed and the effect of this mixing on the
noise (which is in every pixel) is called “correlated noise”. Correlated noise is a form of
convolution and it slightly smooths the image.

15 To find a particular coordiante easily in DS9, you can do this: Click on the “Edit” menu, and select
“Region”. Then click on any random part of the image to see a circle show up in that location (this is
the “region”). Double-click on the region and a “Circle” window will open. If you have celestial coordi-
nates, keep the default “fk5” in the scroll-down menu after the “Center”. But if you have pixel/image
coordinates, click on the “fk5” and select “Image”. Now you can set the “Center” coordinates of the
region (1650 and 1470 in this case) by manually typing them in the two boxes in front of “Center”. Fi-
nally, when everything is ready, click on the “Apply” button and your region will go over your requested
coordinates. You can zoom out (to see the whole image) and visually find it.



Chapter 2: Tutorials 42

In terms of the number of exposures (and thus correlated noise), the XDF dataset is
by no means an ordinary dataset. Therefore the default parameters need to be slightly
customized. It is the result of warping and adding roughly 80 separate exposures which can
create strong correlated noise/smoothing. In common surveys the number of exposures is
usually 10 or less. See Figure 2 of Akhlaghi 2019 (https://arxiv.org/abs/1909.11230)
and the discussion on --detgrowquant there for more on how NoiseChisel “grow”s the
detected objects and the patterns caused by correlated noise.

Let’s tweak NoiseChisel’s configuration a little to get a better result on this dataset. Do
not forget that “Good statistical analysis is not a purely routine matter, and generally calls
for more than one pass through the computer” (Anscombe 1973, see Section 1.3 [Gnuastro
manifesto: Science and its tools], page 6). A good scientist must have a good understanding
of her tools to make a meaningful analysis. So do not hesitate in playing with the default
configuration and reviewing the manual when you have a new dataset (from a new instru-
ment) in front of you. Robust data analysis is an art, therefore a good scientist must first be
a good artist. Once you have found the good configuration for that particular noise pattern
(instrument) you can safely use it for all new data that have a similar noise pattern.

NoiseChisel can produce “Check images” to help you visualize and inspect how each step
is done. You can see all the check images it can produce with this command.

$ astnoisechisel --help | grep check

Let’s check the overall detection process to get a better feeling of what NoiseChisel is
doing with the following command. To learn the details of NoiseChisel in more detail, please
see Section 7.2 [NoiseChisel|, page 552, Akhlaghi and Ichikawa 2015 (https://arxiv.org/
abs/1505.01664) and Akhlaghi 2019 (https://arxiv.org/abs/1909.11230).

$ astnoisechisel flat-ir/xdf-f160w.fits —--checkdetection

The check images/tables are also multi-extension FITS files. As you saw from the
command above, when check datasets are requested, NoiseChisel will not go to the end.
It will abort as soon as all the extensions of the check image are ready. Please list the
extensions of the output with astfits and then opening it with ds9 as we done above. If
you have read the paper, you will see why there are so many extensions in the check image.

$ astfits xdf-f160w_detcheck.fits
$ astscript-fits-view xdf-f160w_detcheck.fits

In order to understand the parameters and their biases (especially as you are starting
to use Gnuastro, or running it a new dataset), it is strongly encouraged to play with the
different parameters and use the respective check images to see which step is affected by your
changes and how, for example, see Section 2.2 [Detecting large extended targets|, page 80.

Let’s focus on one step: the OPENED_AND_LABELED extension shows the initial detection
step of NoiseChisel. We see the seeds of that correlated noise structure with many small
detections (a relatively early stage in the processing). Such connections at the lowest surface
brightness limits usually occur when the dataset is too smoothed, the threshold is too low,
or the final “growth” is too much.

As you see from the 2nd (CONVOLVED) extension, the first operation that NoiseChisel
does on the data is to slightly smooth it. However, the natural correlated noise of this
dataset is already one level of artificial smoothing, so further smoothing it with the default
kernel may be the culprit. To see the effect, let’s use a sharper kernel as a first step to
convolve/smooth the input.
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By default NoiseChisel uses a Gaussian with full-width-half-maximum (FWHM) of 2
pixels. We can use Gnuastro’s MakeProfiles to build a kernel with FWHM of 1.5 pixel (trun-
cated at 5 times the FWHM, like the default) using the following command. MakeProfiles
is a powerful tool to build any number of mock profiles on one image or independently, to
learn more of its features and capabilities, see Section 8.1 [MakeProfiles], page 652.

$ astmkprof --kernel=gaussian,1.5,5 --oversample=1

Please open the output kernel.fits and have a look (it is very small and sharp). We can
now tell NoiseChisel to use this instead of the default kernel with the following command
(we will keep the --checkdetection to continue checking the detection steps)

$ astnoisechisel flat-ir/xdf-f160w.fits —-kernel=kernel.fits \
—-checkdetection

Open the output xdf-f160w_detcheck.fits as a multi-extension FITS file and go to
the last extension (DETECTIONS-FINAL, it is the same pixels as the final NoiseChisel output
without --checkdetections). Look again at that position mentioned above (1650,1470),
you see that the long wiggly structure is gone. This shows we are making progress :-).

Looking at the new OPENED_AND_LABELED extension, we see that the thin connections
between smaller peaks has now significantly decreased. Going two extensions/steps ahead
(in the first HOLES-FILLED), you can see that during the process of finding false pseudo-
detections, too many holes have been filled: do you see how the many of the brighter galaxies
are connected? At this stage all holes are filled, irrespective of their size.

Try looking two extensions ahead (in the first PSEUDOS-FOR-SN), you can see that there
are not too many pseudo-detections because of all those extended filled holes. If you look
closely, you can see the number of pseudo-detections in the printed outputs of NoiseChisel
(around 6400). This is another side-effect of correlated noise. To address it, we should
slightly increase the pseudo-detection threshold (before changing --dthresh, run with -P
to see the default value):

$ astnoisechisel flat-ir/xdf-f160w.fits --kernel=kermel.fits \
——dthresh=0.1 --checkdetection

Before visually inspecting the check image, you can already see the effect of this small
change in NoiseChisel’s command-line output: notice how the number of pseudo-detections
has increased to more than 7100! Open the check image now and have a look, you can see
how the pseudo-detections are distributed much more evenly in the blank sky regions of the
PSEUDOS-FOR-SN extension.

( A
Maximize the number of pseudo-detections: When using NoiseChisel on datasets with a

new noise-pattern (for example, going to a Radio astronomy image, or a shallow ground-
based image), play with ——dthresh until you get a maximal number of pseudo-detections:
the total number of pseudo-detections is printed on the command-line when you run
NoiseChisel, you do not even need to open a FITS viewer.

In this particular case, try --dthresh=0.2 and you will see that the total printed
number decreases to around 6700 (recall that with --dthresh=0.1, it was roughly 7100).
So for this type of very deep HST images, we should set ——dthresh=0.1.

k J

As discussed in Section 3.1.5 of Akhlaghi and Ichikawa 2015 (https://arxiv.org/
abs/1505.01664), the signal-to-noise ratio of pseudo-detections are critical to identify-
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ing/removing false detections. For an optimal detection they are very important to get
right (where you want to detect the faintest and smallest objects in the image successfully).
Let’s have a look at their signal-to-noise distribution with --checksn.

$ astnoisechisel flat-ir/xdf-f160w.fits —--kernel=kernmel.fits \
—-dthresh=0.1 --checkdetection --checksn

The output (xdf-f160w_detsn.fits) contains two extensions for the pseudo-detections
containing two-column tables over the undetected (SKY_PSEUDODET_SN) regions and those
over detections (DET_PSEUDODET_SN). With the first command below you can see the HDUs
of this file, and with the second you can see the information of the table in the first HDU
(which is the default when you do not use --hdu):

$ astfits xdf-f160w_detsn.fits
$ asttable xdf-f160w_detsn.fits -i

You can see the table columns with the first command below and get a feeling of the signal-
to-noise value distribution with the second command (the two Table and Statistics programs
will be discussed later in the tutorial):

$ asttable xdf-f160w_detsn.fits -hSKY_PSEUDODET_SN
$ aststatistics xdf-f160w_detsn.fits -hSKY_PSEUDODET_SN -c2
[output truncated]
Histogram:
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The correlated noise is again visible in the signal-to-noise distribution of sky pseudo-
detections! Do you see how skewed this distribution is? In an image with less correlated
noise, this distribution would be much more symmetric. A small change in the quantile will
translate into a big change in the S/N value. For example, see the difference between the
three 0.99, 0.95 and 0.90 quantiles with this command:

$ aststatistics xdf-f160w_detsn.fits -hSKY_PSEUDODET_SN -c2 \
--quantile=0.99 --quantile=0.95 --quantile=0.90

We get a change of almost 2 units (which is very significant). If you run NoiseChisel
with -P, you'll see the default signal-to-noise quantile --snquant is 0.99. In effect with
this option you specify the purity level you want (contamination by false detections). With
the aststatistics command above, you see that a small number of extra false detections
(impurity) in the final result causes a big change in completeness (you can detect more
lower signal-to-noise true detections). So let’s loosen-up our desired purity level, remove
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the check-image options, and then mask the detected pixels like before to see if we have
missed anything.

$ astnoisechisel flat-ir/xdf-f160w.fits --kernel=kernel.fits \
--dthresh=0.1 --snquant=0.95

$ in="xdf-f160w_detected.fits -hINPUT-NO-SKY"

$ det="xdf-f160w_detected.fits -hDETECTIONS"

$ astarithmetic $in $det nan where --output=mask-det.fits

Overall it seems good, but if you play a little with the color-bar and look closer in the
noise, you’ll see a few very sharp, but faint, objects that have not been detected. For
example, the object around pixel (456, 1662). Despite its high valued pixels, this object
was lost because erosion ignores the precise pixel values. Losing small/sharp objects like
this only happens for under-sampled datasets like HST (where the pixel size is larger than
the point spread function FWHM). So this will not happen on ground-based images.

To address this problem of sharp objects, we can use NoiseChisel’s -—-noerodequant
option. All pixels above this quantile will not be eroded, thus allowing us to preserve
small/sharp objects (that cover a small area, but have a lot of signal in it). Check its
default value, then run NoiseChisel like below and make the mask again.

$ astnoisechisel flat-ir/xdf-f160w.fits —--kernel=kernel.fits \
--noerodequant=0.95 --dthresh=0.1 --snquant=0.95

This seems to be fine and the object above is now detected. We will stop editing the
configuration of NoiseChisel here, but please feel free to keep looking into the data to see if
you can improve it even more.

Once you have found the proper configuration for the type of images you will be using
you do not need to change them any more. The same configuration can be used for any
dataset that has been similarly produced (and has a similar noise pattern). But entering
all these options on every call to NoiseChisel is annoying and prone to bugs (mistakenly
typing the wrong value for example). To simplify things, we will make a configuration
file in a visible config directory. Then we will define the hidden .gnuastro directory
(that all Gnuastro’s programs will look into for configuration files) as a symbolic link to the
config directory. Finally, we will write the finalized values of the options into NoiseChisel’s
standard configuration file within that directory. We will also put the kernel in a separate
directory to keep the top directory clean of any files we later need.

$ mkdir kernel config

$ In -s config/ .gnuastro

$ mv kernel.fits kernel/noisechisel.fits

$ echo "kernel kernel/noisechisel.fits" > config/astnoisechisel.conf
$ echo "noerodequant 0.95" >> config/astnoisechisel.conf
$ echo "dthresh 0.1" >> config/astnoisechisel.conf
$ echo "snquant 0.95" >> config/astnoisechisel.conf

We are now ready to finally run NoiseChisel on the three filters and keep the output in a
dedicated directory (which we will call nc for simplicity).
$ rm *.fits
$ mkdir nc
$ for £ in f105w f125w £160w; do \
astnoisechisel flat-ir/xdf-$f.fits --output=nc/xdf-$f.fits; \
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done

2.1.12 NoiseChisel optimization for storage

As we showed before (in Section 2.1.10 [NoiseChisel and Multi-Extension FITS files],
page 38), NoiseChisel’s output is a multi-extension FITS file with several images the same
size as the input. As the input datasets get larger this output can become hard to manage
and waste a lot of storage space. Fortunately there is a solution to this problem (which is
also useful for Segment’s outputs).

In this small section we will take a short detour to show this feature. Please note that the
outputs generated here are not needed for the rest of the tutorial. But first, let’s have a look
at the contents/HDUs and volume of NoiseChisel’s output from Section 2.1.11 [NoiseChisel
optimization for detection], page 41, (fast answer, it is larger than 100 mega-bytes):

$ astfits nc/xdf-f160w.fits
$ 1s -1h nc/xdf-f160w.fits

Two options can drastically decrease NoiseChisel’s output file size: 1) With the
--rawoutput option, NoiseChisel will not create a Sky-subtracted output. After all, it is
redundant: you can always generate it by subtracting the SKY extension from the input
image (which you have in your database) using the Arithmetic program. 2) With the
--oneelempertile, you can tell NoiseChisel to store its Sky and Sky standard deviation
results with one pixel per tile (instead of many pixels per tile). So let’s run NoiseChisel
with these options, then have another look at the HDUs and the over-all file size:

$ astnoisechisel flat-ir/xdf-f160w.fits --oneelempertile --rawoutput \
-—-output=nc-for-storage.fits

$ astfits nc-for-storage.fits

$ 1s -1h nc-for-storage.fits

See how nc-for-storage.fits has four HDUs, while nc/xdf-f160w.fits had five HDUs?
As explained above, the missing extension is INPUT-NO-SKY. Also, look at the sizes of the
SKY and SKY_STD HDUs, unlike before, they are not the same size as DETECTIONS, they
only have one pixel for each tile (group of pixels in raw input). Finally, you see that nc-
for-storage.fits is just under 8 mega bytes (while nc/xdf-f160w.fits was 100 mega
bytes)!

But we are not yet finished! You can even be more efficient in storage, archival or
transferring NoiseChisel’s output by compressing this file. Try the command below to see
how NoiseChisel’s output has now shrunk to about 250 kilo-byes while keeping all the
necessary information as the original 100 mega-byte output.

$ gzip --best nc-for-storage.fits
$ 1s -1h nc-for-storage.fits.gz

We can get this wonderful level of compression because NoiseChisel’s output is binary
with only two values: 0 and 1. Compression algorithms are highly optimized in such
scenarios.

You can open nc-for-storage.fits.gz directly in SAO DS9 or feed it to any of
Gnuastro’s programs without having to decompress it. Higher-level programs that take
NoiseChisel’s output (for example, Segment or MakeCatalog) can also deal with this com-
pressed image where the Sky and its Standard deviation are one pixel-per-tile. You just



Chapter 2: Tutorials 47

have to give the “values” image as a separate option, for more, see Section 7.3 [Segment],
page 571, and Section 7.4 [MakeCatalog], page 582.

Segment (the program we will introduce in the next section for identifying sub-structure),
also has similar features to optimize its output for storage. Since this file was only created
for a fast detour demonstration, let’s keep our top directory clean and move to the next
step:

rm nc-for-storage.fits.gz

2.1.13 Segmentation and making a catalog

The main output of NoiseChisel is the binary detection map (DETECTIONS extension, see
Section 2.1.11 [NoiseChisel optimization for detection], page 41). It only has two values: 1
or 0. This is useful when studying the noise or background properties, but hardly of any
use when you actually want to study the targets/galaxies in the image, especially in such a
deep field where almost everything is connected. To find the galaxies over the detections,
we will use Gnuastro’s Section 7.3 [Segment], page 571, program:

$ mkdir seg

$ astsegment nc/xdf-f160w.fits -oseg/xdf-f160w.fits
$ astsegment nc/xdf-f125w.fits -oseg/xdf-f125w.fits
$ astsegment nc/xdf-f105w.fits -oseg/xdf-f105w.fits

Segment’s operation is very much like NoiseChisel (in fact, prior to version 0.6, it was
part of NoiseChisel). For example, the output is a multi-extension FITS file (previously dis-
cussed in Section 2.1.10 [NoiseChisel and Multi-Extension FITS files|, page 38), it has check
images and uses the undetected regions as a reference (previously discussed in Section 2.1.11
[NoiseChisel optimization for detection], page 41). Please have a look at Segment’s multi-
extension output to get a good feeling of what it has done. Do not forget to flip through
the extensions in the “Cube” window.

$ astscript-fits-view seg/xdf-f160w.fits

Like NoiseChisel, the first extension is the input. The CLUMPS extension shows the true
“clumps” with values that are > 1, and the diffuse regions labeled as —1. Please flip
between the first extension and the clumps extension and zoom-in on some of the clumps
to get a feeling of what they are. In the OBJECTS extension, we see that the large detections
of NoiseChisel (that may have contained many galaxies) are now broken up into separate
labels. Play with the color-bar and hover your mouse of the various detections to see their
different labels.

The clumps are not affected by the hard-to-deblend and low signal-to-noise diffuse re-
gions, they are more robust for calculating the colors (compared to objects). From this step
onward, we will continue with clumps.

Having localized the regions of interest in the dataset, we are ready to do measurements
on them with Section 7.4 [MakeCatalog]|, page 582. MakeCatalog is specialized and opti-
mized for doing measurements over labeled regions of an image. In other words, through
MakeCatalog, you can “reduce” an image to a table (catalog of certain properties of objects
in the image). Each requested measurement (over each label) will be given a column in the
output table. To see the full set of available measurements run it with --help like below
(and scroll up), note that measurements are classified by context.

$ astmkcatalog --help
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So let’s select the properties we want to measure in this tutorial. First of all, we need
to know which measurement belongs to which object or clump, so we will start with the
--ids (read as: IDs'%). We also want to measure (in this order) the Right Ascension (with
--ra), Declination (--dec), magnitude (--magnitude), and signal-to-noise ratio (--sn) of
the objects and clumps. Furthermore, as mentioned above, we also want measurements
on clumps, so we also need to call ~——clumpscat. The following command will make these
measurements on Segment’s F160W output and write them in a catalog for each object and
clump in a FITS table. For more on the zero point, see Section 7.4.2 [Brightness, Flux,
Magnitude and Surface brightness|, page 585.

$ mkdir cat
$ astmkcatalog seg/xdf-f160w.fits --ids --ra --dec --magnitude --sn \
--zeropoint=25.94 --clumpscat --output=cat/xdf-f160w.fits

From the printed statements on the command-line, you see that MakeCatalog read all the
extensions in Segment’s output for the various measurements it needed. Let’s look at the
output of the command above:

$ astfits cat/xdf-f160w.fits

You will see that the output of the MakeCatalog has two extensions. The first extension
shows the measurements over the 0BJECTS, and the second extension shows the measure-
ments over the clumps CLUMPS.

To calculate colors, we also need magnitude measurements on the other filters. So let’s
repeat the command above on them, just changing the file names and zero point (which we
got from the XDF survey web page):

$ astmkcatalog seg/xdf-f125w.fits --ids --ra --dec --magnitude --sn \
—--zeropoint=26.23 --clumpscat --output=cat/xdf-f125w.fits

$ astmkcatalog seg/xdf-f105w.fits --ids --ra --dec --magnitude --sn \
--zeropoint=26.27 --clumpscat --output=cat/xdf-f105w.fits

However, the galaxy properties might differ between the filters (which is the whole
purpose behind observing in different filters!). Also, the noise properties and depth of the
datasets differ. You can see the effect of these factors in the resulting clump catalogs, with
Gnuastro’s Table program. We will go deep into working with tables in the next section,
but in summary: the -i option will print information about the columns and number of
rows. To see the column values, just remove the -i option. In the output of each command
below, look at the Number of rows:, and note that they are different.

$ asttable cat/xdf-f105w.fits -hCLUMPS -i
$ asttable cat/xdf-f125w.fits -hCLUMPS -i
$ asttable cat/xdf-f160w.fits -hCLUMPS -i

Matching the catalogs is possible (for example, with Section 7.5 [Match], page 637).
However, the measurements of each column are also done on different pixels: the clump
labels can/will differ from one filter to another for one object. Please open them and focus
on one object to see for yourself. This can bias the result, if you match catalogs.

16 This option is plural because we need two ID columns for identifying “clumps” in the clumps cata-
log/table: the first column will be the ID of the host “object”, and the second one will be the ID of the
clump within that object. In the “objects” catalog/table, only a single column will be returned for this
option.
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An accurate color calculation can only be done when magnitudes are measured from
the same pixels on all images and this can be done easily with MakeCatalog. In fact this
is one of the reasons that NoiseChisel or Segment do not generate a catalog like most
other detection/segmentation software. This gives you the freedom of selecting the pixels
for measurement in any way you like (from other filters, other software, manually, etc.).
Fortunately in these images, the Point spread function (PSF) is very similar, allowing us to
use a single labeled image output for all filters'”.

The F160W image is deeper, thus providing better detection/segmentation, and redder,
thus observing smaller /older stars and representing more of the mass in the galaxies. We will
thus use the F160W filter as a reference and use its segment labels to identify which pixels
to use for which objects/clumps. But we will do the measurements on the sky-subtracted
F105W and F125W images (using MakeCatalog’s —-valuesfile option) as shown below:
Notice that the only difference between these calls and the call to generate the raw F160W
catalog (excluding the zero point and the output name) is the --valuesfile.

$ astmkcatalog seg/xdf-f160w.fits --ids --ra --dec --magnitude --sn \
—--valuesfile=nc/xdf-f125w.fits --zeropoint=26.23 \
--clumpscat --output=cat/xdf-f125w-on-f160w-lab.fits

$ astmkcatalog seg/xdf-f160w.fits --ids --ra --dec --magnitude --sn \
—--valuesfile=nc/xdf-f105w.fits --zeropoint=26.27 \
--clumpscat --output=cat/xdf-f105w-on-f160w-lab.fits

After running the commands above, look into what MakeCatalog printed on the
command-line. You can see that (as requested) the object and clump pixel labels in both
were taken from the respective extensions in seg/xdf-f160w.fits. However, the pixel
values and pixel Sky standard deviation were respectively taken from nc/xdf-f105w.fits
and nc/xdf-f125w.fits. Since we used the same labeled image on all filters, the number
of rows in both catalogs are now identical. Let’s have a look:

$ asttable cat/xdf-f105w-on-f160w-lab.fits -hCLUMPS -i
$ asttable cat/xdf-f125w-on-f160w-lab.fits -hCLUMPS -i
$ asttable cat/xdf-f160w.fits -hCLUMPS -i

Finally, MakeCatalog also does basic calculations on the full dataset (independent of
each labeled region but related to whole data), for example, pixel area or per-pixel surface
brightness limit. They are stored as keywords in the FITS headers (or lines starting with
# in plain text). This (and other ways to measure the limits of your dataset) are discussed
in the next section: Section 2.1.14 [Measuring the dataset limits], page 49.

2.1.14 Measuring the dataset limits

In Section 2.1.13 [Segmentation and making a catalog], page 47, we created a catalog of the
different objects with the image. Before measuring colors, or doing any other kind of analysis
on the catalogs (and detected objects), it is very important to understand the limitations
of the dataset. Without understanding the limitations of your dataset, you cannot make
any physical interpretation of your results. The theory behind the calculations discussed
here is thoroughly introduced in Section 7.4.5 [Metameasurements on full input], page 615.

1T When the PSFs between two images differ largely, you would have to PSF-match the images before using
the same pixels for measurements.
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For example, with the command below, let’s sort all the detected clumps in the image
by magnitude (with ——sort=magnitude) and and print the magnitude and signal-to-noise
ratio (S/N; with -cmagnitude,sn):

$ asttable cat/xdf-f160w.fits -hclumps -cmagnitude,sn \
--sort=magnitude --noblank=magnitude

As you see, we have clumps with a total magnitude of almost 32! This is extremely
faint! Are these things trustable? Let’s have a look at all of those with a magnitude
between 31 and 32 with the command below. We are first using Table to only keep the
relevant columns rows, and using Gnuastro’s DS9 region file creation script (astscript-
ds9-region) to generate DS9 region files, and open DSO:

$ asttable cat/xdf-f160w.fits -hclumps -cra,dec \
--range=magnitude,31:32 \
| astscript-ds9-region -cl1,2 --radius=0.5 \
--command="ds9 -mecube seg/xdf-f160w.fits -zscale"

Zoom-out a little and you will see some green circles (DS9 region files) in some regions
of the image. There actually does seem to be a true peak under the selected regions, but as
you see, they are very small, diffuse and noisy. How reliable are the measured magnitudes?
Using the S/N column from the first command above, you can see that such objects only
have a signal to noise of about 2.6 (which is indeed too low for most analysis purposes)

$ asttable cat/xdf-f160w.fits -hclumps -csn \
--range=magnitude,31:32 | aststatistics

This brings us to the first method of quantifying your dataset’s magnitude limit, which
is also sometimes called detection limit (see Section 7.4.5.2 [Noise based magnitude limit of
image|, page 618). To estimate the 5o detection limit of your dataset, you simply report
the median magnitude of the objects that have a signal to noise of (approximately) five.
This is very easy to calculate with the command below:

$ asttable cat/xdf-f160w.fits -hclumps --range=sn,4.8:5.2 -cmagnitude \
| aststatistics --median
29.9949

Let’s have a look at these objects, to get a feeling of what these clump looks like:

$ asttable cat/xdf-f160w.fits -hclumps --range=sn,4.8:5.2 \
-cra,dec,magnitude \
| astscript-ds9-region -c1,2 --namecol=3 \
--width=2 --radius=0.5 \
--command="ds9 -mecube seg/xdf-f160w.fits -zscale"
The number you see on top of each region is the clump’s magnitude. Please go over the
objects and have a close look at them! It is very important to have a feeling of what your
dataset looks like, and how to interpret the numbers to associate an image with them.

Generally, they look very small with different levels of diffuse-ness! Those that are
sharper make more visual sense (to be 50 detections), but the more diffuse ones extend
over a larger area. Furthermore, the noise is measured on individual pixel measurements.
However, during the reduction many exposures are co-added, mixing the pixels like a small
convolution (creating “correlated noise”). Therefore you clearly see two main issues with
the detection limit as defined above: it depends on the morphology, and it does not take
into account the correlated noise.
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A more realistic way to estimate the significance of the detection is to take its footprint,
randomly place it in thousands of undetected regions of the image and use that distribution
as a reference. This is technically known as upper-limit measurements. For a full discussion,
see Section 7.4.4.6 [Upper limit measurements|, page 605).

Since it is for each separate object, the upper-limit measurements should be requested
as extra columns in MakeCatalog’s output. For example, with the command below, let’s
generate a new catalog of the F160W filter, but with two extra columns compared to the
one in cat/: the upper-limit magnitude and the upper-limit multiple of sigma.

$ astmkcatalog seg/xdf-f160w.fits --ids --ra --dec --magnitude --sn \
--zeropoint=25.94 --clumpscat --upnsigma=3 \
—--upperlimit-mag --upperlimit-sigma \
--output=xdf-f160w.fits
Let’s compare the upper-limit magnitude with the measured magnitude of each clump:
$ asttable xdf-f160w.fits -hclumps -cmagnitude,upperlimit_mag

As you see, in almost all of the cases, the measured magnitude is sufficiently higher than
the upper-limit magnitude. Let’s subtract the latter from the former to better see this
difference in a third column:

$ asttable xdf-f160w.fits -hclumps -cmagnitude,upperlimit_mag \
—-c'arith upperlimit_mag magnitude -'
The ones with a positive third column (difference) show that the clump has sufficiently
higher brightness than the noisy background to be usable. Let’s use Table’s Section 5.3.3
[Column arithmetic|, page 350, to find only those that have a negative difference:

$ asttable xdf-f160w.fits -hclumps -cra,dec --noblankend=3 \
—-c'arith upperlimit_mag magnitude - set-d d d O gt nan where'

From more than 3500 clumps, this command only gave ~ 150 rows (this number may
slightly change on different runs due to the random nature of the upper-limit sampling'®)!
Let’s have a look at them:

$ asttable xdf-f160w.fits -hclumps -cra,dec --noblankend=3 \
-c'arith upperlimit_mag magnitude - set-d d d O gt nan where' \
| astscript-ds9-region -c1,2 --namecol=3 --width=2 \
--radius=0.5 \
--command="ds9 -mecube seg/xdf-f160w.fits -zscale"

You see that they are all extremely faint and diffuse/small peaks. Therefore, if an object’s
magnitude is fainter than its upper-limit magnitude, you should not use the magnitude: it
is not accurate! You should use the upper-limit magnitude instead (with an arrow in your
plots to mark which ones are upper-limits).

But the main point (in relation to the magnitude limit) with the upper-limit, is
the UPPERLIMIT_SIGMA column. you can think of this as a realistic S/N for extremely
faint /diffuse/small objects). The raw S/N column is simply calculated on a pixel-by-pixel
basis, however, the upper-limit sigma is produced by actually taking the label’s footprint,
and randomly placing it thousands of time over undetected parts of the image and
measuring the brightness of the sky. The clump’s brightness is then divided by the

18 You can fix the random number generator seed, so you always get the same sampling, see Section 6.2.3.4
[Generating random numbers], page 410.
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standard deviation of the resulting distribution to give you exactly how significant it is
(accounting for inter-pixel issues like correlated noise, which are strong in this dataset).
You can actually compare the two values with the command below:

$ asttable xdf-f160w.fits -hclumps -csn,upperlimit_sigma

As you see, the second column (upper-limit sigma) is almost always less than the S/N.
This clearly shows the effect of correlated noise! If you now use this column as the reference
for deriving the magnitude limit, you will see that it will shift by almost 0.5 magnitudes
brighter and is now more reasonable:

$ asttable xdf-f160w.fits -hclumps --range=upperlimit_sigma,4.8:5.2 \
-cmagnitude | aststatistics --median
29.6257

We see that the bo detection limit is ~ 29.6! This is extremely deep! For example,
in the Legacy Survey!?, the 50 detection limit for point sources is approximately 24.5 (5
magnitudes, or 100 times, shallower than this image).

As mentioned above, an important caveat in this simple calculation is that we should
only be looking at point-like objects, not simply everything. This is because the shape
or radial slope of the profile has an important effect on this measurement: at the same
total magnitude, a sharper object will have a higher S/N. To be more precise, we should
first perform star-galaxy separation, then do this only for the objects that are classified as
stars. A crude, first-order, method is to use the -—axis-ratio option so MakeCatalog also
measures the axis ratio, then call Table with --range=upperlimit_sigma,,4.8:5.2 and
--range=axis_ratio,0.95:1 (in one command). Please do this for yourself as an exercise
to see the difference with the result above.

Before continuing, let’s remove this temporarily produced catalog:
$ rm xdf-f160w.fits

Another measure of the dataset’s limit is the completeness limit. This is necessary when
you are looking at populations of objects over the image. You want to know until what
magnitude you can be sure that you have detected an object (if it was present). Due to
the different morphologies of the sources the completeness limit is different from one type
of object to another (for example sharper objects are easier to detect/segment). Therefore,
the best way to measure the completeness limit is with mock images: to artificially insert
your desired object in random undetected areas of the image many times and see how
many times they are detected (for more, see Section 7.4.6.4 [Completeness limit for certain
objects], page 622). But a crude, zero-th order result (for the average object in the image)
can be obtained from the actual image: by simply plotting the histogram of the magnitudes:

$ aststatistics cat/xdf-f160w.fits -hclumps -cmagnitude

Histogram:
| *
| *k kKKK
| sk ok ok ok ok kK ok ok ok
| sk ok ok 3k ok ok ok ok ok sk ok ok K
| sk sk ok 3k ok ok 3k ok ok 3k ok ok 3k ok ok K

19 https://www.legacysurvey.org/dr9/description
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This plot (the histogram of magnitudes; where fainter magnitudes are towards the right)
is technically called the dataset’s number count plot. You see that the number of objects
increases with magnitude as the magnitudes get fainter (to the right). However, beyond
a certain magnitude, you see it becomes flat, and soon afterwards, the numbers suddenly
drop.

Once you have your catalog, you can easily find this point with the two commands below.
First we generate a histogram with fewer bins (to have more numbers in each bin). We
then use AWK to find the magnitude bin where the number of points decrease compared
to the previous bin. But we only do this for bins that have more than 50 items (to avoid
scatter in the bright end). Finally, in Statistics, we have manually set the magnitude range
and number of bins so each bin is roughly 0.5 magnitudes thick (with --greaterequal=20,
--lessthan=32 and --numbins=24)

$ aststatistics cat/xdf-f160w.fits -hclumps -cmagnitude --histogram \
--greaterequal=20 --lessthan=32 --numbins=24 \
--output=f160w-hist.txt
$ asttable f160w-hist.txt \
| awk '$2>50 && $2<prev{print prevbin; exitl} \
{prev=$2; prevbin=$1}'
28.932122667631
Therefore, to first order (and very crudely!) we can say that if an object is in our field
of view and has a magnitude of ~ 29 or brighter, we can be highly confident that we have
detected it. But before continuing, let’s clean up behind ourselves:

$ rm f160w-hist.txt

Another important limiting parameter in a processed dataset is the surface brightness
limit (Section 7.4.5.1 [Surface brightness limit of image|, page 615). The surface brightness
limit of a dataset is an important measure for extended structures (for example, when you
want to look at the outskirts of galaxies). In the next tutorial, we have thoroughly described
the derivation of the surface brightness limit of a dataset. So we will just show the final
result here, and encourage you to follow up with that tutorial after finishing this tutorial
(see Section 2.2.4 [Image surface brightness limit], page 92)

By default, MakeCatalog will estimate the surface brightness limit of a given dataset,

and put it in the keywords of the output (all keywords starting with SBL, which is short for
surface brightness limit):

$ astfits cat/xdf-f160w.fits -hl | grep SBL
As you see, the only one with a unit of mag/arcsec”2 is SBL. It contains the surface
brightness limit of the input dataset over SBLAREA arcsec? with SBLNSIG multiples of o.

In the current version of Gnuastro, SBLAREA=100 and SBLNSIG=3, so the surface brightness
limit of this image is 32.66 mag/arcsec? (30, over 100 arcsec?). Therefore, if this default area
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and multiple of sigma are fine for you?® (these are the most commonly used values), you can
simply read the image surface brightness limit from the catalogs produced by MakeCatalog
with this command:

$ astfits cat/*.fits -hl --keyvalue=SBL

2.1.15 Working with catalogs (estimating colors)

In the previous step we generated catalogs of objects and clumps over our dataset (see
Section 2.1.13 [Segmentation and making a catalog], page 47). The catalogs are available
in the two extensions of the single FITS file?!. Let’s see the extensions and their basic
properties with the Fits program:

$ astfits cat/xdf-f160w.fits # Extension information

Let’s inspect the table in each extension with Gnuastro’s Table program (see Section 5.3
[Table], page 344). We should have used ~hOBJECTS and -hCLUMPS instead of -h1 and -h2
respectively. The numbers are just used here to convey that both names or numbers are
possible, in the next commands, we will just use names.

$ asttable cat/xdf-f160w.fits -hl --info # Objects catalog info.

$ asttable cat/xdf-f160w.fits -hil # Objects catalog columns.
$ asttable cat/xdf-f160w.fits -h2 -i # Clumps catalog info.
$ asttable cat/xdf-f160w.fits -h2 # Clumps catalog columns.

As you see above, when given a specific table (file name and extension), Table will print the
full contents of all the columns. To see the basic metadata about each column (for example,
name, units and comments), simply append a --info (or -i) to the command.

To print the contents of special column(s), just give the column number(s) (counting
from 1) or the column name(s) (if they have one) to the -—column (or -c) option. For
example, if you just want the magnitude and signal-to-noise ratio of the clumps (in the
clumps catalog), you can get it with any of the following commands

$ asttable cat/xdf-f160w.fits -hCLUMPS --column=5,6
$ asttable cat/xdf-f160w.fits -hCLUMPS -c5,SN
$ asttable cat/xdf-f160w.fits -hCLUMPS -cb -c6
$ asttable cat/xdf-f160w.fits -hCLUMPS -cMAGNITUDE -cSN
Similar to HDUs, when the columns have names, always use the name: it is so common to
mis-write numbers or forget the order later! Using column names instead of numbers has
many advantages:
1. You do not have to worry about the order of columns in the table.
2. It acts as a documentation in the script.

3. Column meta-data (including a name) are not just limited to FITS tables and can also
be used in plain text tables, see Section 4.7.2 [Gnuastro text table format]|, page 287.

Table also has tools to limit the displayed rows. For example, with the first command
below only rows with a magnitude in the range of 29 to 30 will be shown. With the second

20 You can change these values with the --sbl-area and --sbl-sigma

2 MakeCatalog can also output plain text tables. However, in the plain text format you can only have
one table per file. Therefore, if you also request measurements on clumps, two plain text tables will be
created (suffixed with _o.txt and _c.txt).
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command, you can further limit the displayed rows to rows with an S/N larger than 10 (a
range between 10 to infinity). You can further sort the output rows, only show the top (or
bottom) N rows, etc., see Section 5.3 [Table], page 344, for more.

$ asttable cat/xdf-f160w.fits -hCLUMPS --range=MAGNITUDE,28:29
$ asttable cat/xdf-f160w.fits -hCLUMPS \
--range=MAGNITUDE, 28:29 --range=SN,10:inf
Now that you are comfortable in viewing table columns and rows, let’s look into merging

columns of multiple tables into one table (which is necessary for measuring the color of
the clumps). Since cat/xdf-f160w.fits and cat/xdf-f105w-on-f160w-lab.fits have
exactly the same number of rows and the rows correspond to the same clump, let’s merge
them to have one table with magnitudes in both filters.

We can merge columns with the --catcolumnfile option like below. You give this
option a file name (which is assumed to be a table that has the same number of rows as
the main input), and all the table’s columns will be concatenated/appended to the main
table. Now, try it out with the commands below. We will first look at the metadata of the
first table (only the CLUMPS extension). With the second command, we will concatenate the
two tables and write them in, two-in-one.fits and finally, we will check the new catalog’s
metadata.

$ asttable cat/xdf-f160w.fits -i —-hCLUMPS

$ asttable cat/xdf-f160w.fits -hCLUMPS --output=two-in-one.fits \
--catcolumnfile=cat/xdf-f125w-on-f160w-1lab.fits \
—-catcolumnhdu=CLUMPS

$ asttable two-in-one.fits -i

By comparing the two metadata, we see that both tables have the same number of rows.
But what might have attracted your attention more, is that two-in-one.fits has double
the number of columns (as expected, after all, you merged both tables into one file, and did
not ask for any specific column). In fact you can concatenate any number of other tables
in one command, for example:

$ asttable cat/xdf-f160w.fits -hCLUMPS --output=three-in-one.fits \
--catcolumnfile=cat/xdf-f125w-on-f160w-lab.fits \
--catcolumnfile=cat/xdf-f105w-on-f160w-lab.fits \
—-catcolumnhdu=CLUMPS --catcolumnhdu=CLUMPS

$ asttable three-in-one.fits -i

As you see, to avoid confusion in column names, Table has intentionally appended a -1
to the column names of the first concatenated table if the column names are already present
in the original table. For example, we have the original RA column, and another one called
RA-1). Similarly a -2 has been added for the columns of the second concatenated table.

However, this example clearly shows a problem with this full concatenation: some
columns are identical (for example, HOST_0BJ_ID and HOST_OBJ_ID-1), or not needed
(for example, RA-1 and DEC-1 which are not necessary here). In such cases, you can use
--catcolumns to only concatenate certain columns, not the whole table. For example, this
command:

$ asttable cat/xdf-f160w.fits -hCLUMPS --output=two-in-one-2.fits \
-—catcolumnfile=cat/xdf-f125w-on-f160w-lab.fits \
—-catcolumnhdu=CLUMPS --catcolumns=MAGNITUDE
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$ asttable two-in-one-2.fits -i

You see that we have now only appended the MAGNITUDE column of cat/xdf-f125w-
on-f160w-1lab.fits. This is what we needed to be able to later subtract the magnitudes.
Let’s go ahead and add the F105W magnitudes also with the command below. Note how
we need to call ——catcolumnhdu once for every table that should be appended, but we only
call -=-catcolumn once (assuming all the tables that should be appended have this column).

$ asttable cat/xdf-f160w.fits -hCLUMPS --output=three-in-one-2.fits \
--catcolumnfile=cat/xdf-f125w-on-f160w-lab.fits \
--catcolumnfile=cat/xdf-f105w-on-f160w-lab.fits \
--catcolumnhdu=CLUMPS --catcolumnhdu=CLUMPS \
—-catcolumns=MAGNITUDE

$ asttable three-in-one-2.fits -i

But we are not finished yet! There is a very big problem: it is not immediately clear
which one of MAGNITUDE, MAGNITUDE-1 or MAGNITUDE-2 columns belong to which filter!
Right now, you know this because you just ran this command. But in one hour, you’ll start
doubting yourself and will be forced to go through your command history, trying to figure
out if you added F105W first, or F125W. You should never torture your future-self (or your
colleagues) like this! So, let’s rename these confusing columns in the matched catalog.

Fortunately, with the -—colmetadata option, you can correct the column metadata of
the final table (just before it is written). It takes four values: 1) the original column name
or number, 2) the new column name, 3) the column unit and 4) the column comments.
Since the comments are usually human-friendly sentences and contain space characters,
you should put them in double quotations like below. For example, by adding three calls
of this option to the previous command, we write the filter name in the magnitude column
name and description.

$ asttable cat/xdf-f160w.fits -hCLUMPS --output=three-in-one-3.fits \
--catcolumnfile=cat/xdf-f125w-on-f160w-lab.fits \
--catcolumnfile=cat/xdf-f105w-on-f160w-lab.fits \
--catcolumnhdu=CLUMPS --catcolumnhdu=CLUMPS \
--catcolumns=MAGNITUDE \
--colmetadata=MAGNITUDE,MAG-F160W,log, "Magnitude in F160W." \
--colmetadata=MAGNITUDE-1,MAG-F125W,log, "Magnitude in F125W." \
--colmetadata=MAGNITUDE-2,MAG-F105W,log, "Magnitude in F105W."

$ asttable three-in-one-3.fits -i

We now have all three magnitudes in one table and can start doing arithmetic on them
(to estimate colors, which are just a subtraction of magnitudes). To use column arith-
metic, simply call the column selection option (--column or -c), put the value in single
quotations and start the value with arith (followed by a space) like the example below.
Column arithmetic uses the same “reverse polish notation” as the Arithmetic program (see
Section 6.2.1 [Reverse polish notation], page 404), with almost all the same operators (see
Section 6.2.4 [Arithmetic operators], page 412), and some column-specific operators (that
are not available for images). In column-arithmetic, you can identify columns by number
(prefixed with a $) or name, for more see Section 5.3.3 [Column arithmetic], page 350.

So let’s estimate one color from three-in-one-3.fits using column arithmetic. All the
commands below will produce the same output, try them each and focus on the differences.
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Note that column arithmetic can be mixed with other ways to choose output columns (the
-c option).
$ asttable three-in-one-3.fits -ocolor-cat.fits \
-c1,2,3,4,'arith $5 $7 -'

$ asttable three-in-one-3.fits -ocolor-cat.fits \
-c1,2,RA,DEC, 'arith MAG-F125W MAG-F160W -'

$ asttable three-in-one-3.fits -ocolor—-cat.fits -c1,2 \
-cRA,DEC --column='arith MAG-F105W MAG-F160W -'

This example again highlights the important point on using column names: if you do
not know the commands before, you have no way of making sense of the first command:
what is in column 5 and 7?7 why not subtract columns 3 and 4 from each other? Do
you see how cryptic the first one is? Then look at the last one: even if you have no idea
how this table was created, you immediately understand the desired operation. When you
have column names, please use them. If your table does not have column names, give them
names with the -—colmetadata (described above) as you are creating them. But how about
the metadata for the column you just created with column arithmetic? Have a look at the
column metadata of the table produced above:

$ asttable color-cat.fits -i

The name of the column produced by arithmetic column is ARITH_1! This is natural:
Arithmetic has no idea what the modified column is! You could have multiplied two columns,
or done much more complex transformations with many columns. Metadata cannot be
set automatically, your (the human) input is necessary. To add metadata, you can use
--colmetadata like before:

$ asttable three-in-one-3.fits -ocolor-cat.fits -c1,2,RA,DEC \
--column="'arith MAG-F105W MAG-F160W -' \
--colmetadata=ARITH_1,F105W-F160W,log, "Magnitude difference"
$ asttable color-cat.fits -i

Sometimes, because of a particular way of storing data, you might need to take all input
columns. If there are many columns (for example hundreds!), listing them (like above) will
become annoying, buggy and time-consuming. In such cases, you can give -c_all. Upon
execution, _all will be replaced with a comma-separated list of all the input columns. This
allows you to add new columns easily, without having to worry about the number of input
columns that you want anyway. A lower-level but more customizable method is to use the
seq (sequence) command with the -s (separator) option set to ',"'). For example, if you
have 216 columns and only want to return columns 1 and 2 as well as all the columns
between 12 to 58 (inclusive), you can use the command below:

$ asttable table.fits -c1,2,$(seq -s',' 12 58)

We are now ready to make our final table. We want it to have the magnitudes in all
three filters, as well as the three possible colors. Recall that by convention in astronomy
colors are defined by subtracting the bluer magnitude from the redder magnitude. In this
way a larger color value corresponds to a redder object. So from the three magnitudes,
we can produce three colors (as shown below). Also, because this is the final table we are
creating here and want to use it later, we will store it in cat/ and we will also give it a
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clear name and use the --range option to only print columns with a signal-to-noise ratio
(SN column, from the F160W filter) above 5.
$ asttable three-in-one-3.fits --range=SN,5,inf -c1,2,RA,DEC,SN \
-cMAG-F160W,MAG-F125W,MAG-F105W \
-c'arith MAG-F125W MAG-F160W -' \
-c'arith MAG-F105W MAG-F125W -' \
-c'arith MAG-F105W MAG-F160W -' \
--colmetadata=SN,SN-F160W,ratio,"F160W signal to noise ratio" \
--colmetadata=ARITH_1,F125W-F160W,log,"Color F125W-F160W." \
--colmetadata=ARITH_2,F105W-F125W,log,"Color F105W-F125W." \
--colmetadata=ARITH_3,F105W-F160W,log,"Color F105W-F160W." \
--output=cat/mags-with-color.fits
$ asttable cat/mags-with-color.fits -i

The table now has all the columns we need and it has the proper metadata to let us
safely use it later (without frustrating over column orders!) or passing it to colleagues.

Let’s finish this section of the tutorial with a useful tip on modifying column metadata.
Above, updating/changing column metadata was done with the --~colmetadata in the same
command that produced the newly created Table file. But in many situations, the table
is already made and you just want to update the metadata of one column. In such cases
using --colmetadata is over-kill (wasting CPU/RAM energy or time if the table is large)
because it will load the full table data and metadata into memory, just change the metadata
and write it back into a file.

In scenarios when the table’s data does not need to be changed and you just want to set
or update the metadata, it is much more efficient to use basic FITS keyword editing. For
example, in the FITS standard, column names are stored in the TTYPE header keywords, so
let’s have a look:

$ asttable two-in-one.fits -i
$ astfits two-in-one.fits -hl | grep TTYPE

Changing/updating the column names is as easy as updating the values to these key-
words. You do not need to touch the actual data! With the command below, we will
just update the MAGNITUDE and MAGNITUDE-1 columns (which are respectively stored in the
TTYPE5S and TTYPE11 keywords) by modifying the keyword values and checking the effect
by listing the column metadata again:

$ astfits two-in-omne.fits -hl \
--update=TTYPE5,MAG-F160W \
--update=TTYPE11,MAG-F125W
$ asttable two-in-one.fits -i

You can see that the column names have indeed been changed without touching any
of the data. You can do the same for the column units or comments by modifying the
keywords starting with TUNIT or TCOMM.

Generally, Gnuastro’s table is a very useful program in data analysis and what you have
seen so far is just the tip of the iceberg. But to avoid making the tutorial even longer,
we will stop reviewing the features here, for more, please see Section 5.3 [Table], page 344.
Before continuing, let’s just delete all the temporary FITS tables we placed in the top
project directory:
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rm *.fits

2.1.16 Column statistics (color-magnitude diagram)

In Section 2.1.15 [Working with catalogs (estimating colors)], page 54, we created a single
catalog containing the magnitudes of our desired clumps in all three filters, and their colors.
To start with, let’s inspect the distribution of three colors with the Statistics program.

$ aststatistics cat/mags-with-color.fits -cF105W-F125W
$ aststatistics cat/mags-with-color.fits -cF105W-F160W
$ aststatistics cat/mags-with-color.fits -cF125W-F160W

This tiny and cute ASCII histogram (and the general information printed above it)
gives you a crude (but very useful and fast) feeling on the distribution. You can later use
Gnuastro’s Statistics program with the —-histogram option to build a much more fine-
grained histogram as a table to feed into your favorite plotting program for a much more
accurate/appealing plot (for example, with PGFPlots in IWTEX). If you just want a specific
measure, for example, the mean, median and standard deviation, you can ask for them
specifically, like below:

$ aststatistics cat/mags-with-color.fits -cF105W-F160W \
--mean --median --std

The basic statistics we measured above were just on one column. In many scenarios this
is fine, but things get much more exciting if you look at the correlation of two columns
with each other. For example, let’s create the color-magnitude diagram for our measured
targets.

In many papers, the color-magnitude diagram is usually plotted as a scatter plot. How-
ever, scatter plots have a major limitation when there are a lot of points and they cluster
together in one region of the plot: the possible correlation in that dense region is lost (be-
cause the points fall over each other). In such cases, it is much better to use a 2D histogram.
In a 2D histogram, the full range in both columns is divided into discrete 2D bins (or pixels!)
and we count how many objects fall in that 2D bin.

Since a 2D histogram is a pixelated space, we can simply save it as a FITS image and
view it in a FITS viewer. Let’s do this in the command below. As is common with color-
magnitude plots, we will put the redder magnitude on the horizontal axis and the color on
the vertical axis. We will set both dimensions to have 100 bins (with --numbins for the
horizontal and --numbins2 for the vertical). Also, to avoid strong outliers in any of the
dimensions, we will manually set the range of each dimension with the --greaterequal,
--greaterequal2, --lessthan and --lessthan2 options.

$ aststatistics cat/mags-with-color.fits -cMAG-F160W,F105W-F160W \
--histogram2d=image --manualbinrange \
--numbins=100 --greaterequal=22 --lessthan=30 \
--numbins2=100 --greaterequal2=-1 --lessthan2=3 \
--manualbinrange —--output=cmd.fits

You can now open this FITS file as a normal FITS image, for example, with the command
below. Try hovering/zooming over the pixels: not only will you see the number of objects
in catalog that fall in each bin/pixel, but you also see the F160W magnitude and color of
that pixel also (in the same place you usually see RA and Dec when hovering over an
astronomical image).
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$ astscript-fits-view cmd.fits --ds9scale=minmax

Having a 2D histogram as a FITS image with WCS has many great advantages. For
example, just like FITS images of the night sky, you can “match” many 2D histograms that
were created independently. You can add two histograms with each other, or you can use
advanced features of FITS viewers to find structure in the correlation of your columns.

With the first command below, you can activate the grid feature of DS9 to actually see the
coordinate grid, as well as values on each line. With the second command, DS9 will even
read the labels of the axes and use them to generate an almost publication-ready plot.

$ astscript-fits-view cmd.fits --ds9scale=minmax --ds9extra="-grid yes"
$ astscript-fits-view cmd.fits --ds9scale=minmax \
--ds9extra="-grid yes -grid type publication"

If you are happy with the grid and coloring and the rest, you can also use ds9 to save
this as a JPEG image to directly use in your documents/slides with these extra DS9 options
(DS9 will write the image to cmd-2d. jpeg and quit immediately afterwards):

$ astscript-fits-view cmd.fits --ds9scale=minmax \
--ds9extra="-grid yes -grid type publication" \
--ds9extra="-saveimage cmd-2d.jpeg -quit"

This is good for a fast progress update. But for your paper or more official report,
you want to show something with higher quality. For that, you can use the PGFPlots
package in TEX to add axes in the same font as your text, sharp grids and many other
elegant /powerful features (like over-plotting interesting points and lines). But to load the
2D histogram into PGFPlots first you need to convert the FITS image into a more standard
format, for example, PDF. We will use Gnuastro’s Section 5.2 [ConvertType|, page 316, for
this, and use the sls-inverse color map (which will map the pixels with a value of zero to
white):

$ astconvertt cmd.fits --colormap=sls-inverse --borderwidth=0 -ocmd.pdf

Open the resulting cmd.pdf and see the PDF. Below you can see a minimally working
example of how to add axis numbers, labels and a grid to the PDF generated above. First,
let’s create a new report directory to keep the IXTEX outputs, then put the minimal report’s
source in a file called report.tex. Notice the xmin, xmax, ymin, ymax values and how they
are the same as the range specified above.

$ mkdir report-cmd

$ mv cmd.pdf report-cmd/

$ cat report-cmd/report.tex
\documentclass{article}
\usepackage{pgfplots}
\dimendef\prevdepth=0
\begin{document}

You can write all you want here...

\begin{tikzpicture}
\begin{axis}[
enlargelimits=false,
grid,
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axis on top,
width=\linewidth,
height=\linewidth,
xlabel={Magnitude (F160W)},
ylabel={Color (F105W-F160W)}]

\addplot graphics[xmin=22, xmax=30, ymin=-1, ymax=3] {cmd.pdf};
\end{axis}
\end{tikzpicture}
\end{document}

Run this command to build your PDF (assuming you have ITEX and PGFPlots).

$ cd report-cmd
$ pdflatex report.tex

Open the newly created report.pdf and enjoy the exquisite quality. The improved
quality, blending in with the text, vector-graphics resolution and other features make this
plot pleasing to the eye, and let your readers focus on the main point of your scientific
argument. PGFPlots can also built the PDF of the plot separately from the rest of the
paper/report, see Section 7.1.2.1 [2D histogram as a table for plotting], page 519, for the
necessary changes in the preamble.

We will not go much deeper into the Statistics program here, but there is so much more
you can do with it. After finishing the tutorial, see Section 7.1 [Statistics], page 517.

2.1.17 Aperture photometry

The colors we calculated in Section 2.1.15 [Working with catalogs (estimating colors)],
page 54, used a different segmentation map for each object. This might not satisfy some
science cases that need the flux within a fixed area/aperture. Fortunately Gnuastro’s mod-
ular programs make it very easy do this type of measurement (photometry). To do this, we
can ignore the labeled images of NoiseChisel of Segment, we can just built our own labeled
image! That labeled image can then be given to MakeCatalog

To generate the apertures catalog we will use Gnuastro’s MakeProfiles (see Section 8.1
[MakeProfiles], page 652). But first we need a list of positions (aperture photometry needs
a-priori knowledge of your target positions). So we will first read the clump positions from
the F160W catalog, then use AWK to set the other parameters of each profile to be a fixed
circle of radius 5 pixels (recall that we want all apertures to have an identical size/area in
this scenario).

$ rm *.fits *.txt

$ asttable cat/xdf-f160w.fits -hCLUMPS -cRA,DEC \
| awk '!/~“#/{print NR, $1, $2, 5, 5, 0, 0, 1, NR, 1}' \
> apertures.txt

$ cat apertures.txt

We can now feed this catalog into MakeProfiles using the command below to build
the apertures over the image. The most important option for this particular job is
--mforflatpix, it tells MakeProfiles that the values in the magnitude column should be
used for each pixel of a flat profile. Without it, MakeProfiles would build the profiles such
that the sum of the pixels of each profile would have a magnitude (in log-scale) of the value
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given in that column (what you would expect when simulating a galaxy for example). See
Section 8.1.4 [Invoking MakeProfiles|, page 659, for details on the options.

$ astmkprof apertures.txt --background=flat-ir/xdf-f160w.fits \
--clearcanvas --replace --type=intl1l6 --mforflatpix \
--mode=wcs —--output=apertures.fits

Open apertures.fits with a FITS image viewer (like SAO DS9) and look around at
the circles placed over the targets. Also open the input image and Segment’s clumps image
and compare them with the positions of these circles. Where the apertures overlap, you
will notice that one label has replaced the other (because of the ~—replace option). In the
future, MakeCatalog will be able to work with overlapping labels, but currently it does not.
If you are interested, please join us in completing Gnuastro with added improvements like
this (see task 14750%2).

We can now feed the apertures.fits labeled image into MakeCatalog instead of Seg-
ment’s output as shown below. In comparison with the previous MakeCatalog call, you will
notice that there is no more --clumpscat option, since there is no more separate “clump”
image now, each aperture is treated as a separate “object”.

$ astmkcatalog apertures.fits -hl --zeropoint=26.27 \
--valuesfile=nc/xdf-f105w.fits \
--ids --ra --dec --magnitude --sn \
--output=cat/xdf-f105w-aper.fits

This catalog has the same number of rows as the catalog produced from clumps in
Section 2.1.15 [Working with catalogs (estimating colors)], page 54. Therefore similar to
how we found colors, you can compare the aperture and clump magnitudes for example.

You can also change the filter name and zero point magnitudes and run this command
again to have the fixed aperture magnitude in the F160W filter and measure colors on
apertures.

2.1.18 Matching catalogs

In the example above, we had the luxury to generate the catalogs ourselves, and where thus
able to generate them in a way that the rows match. But this is not generally the case.
In many situations, you need to use catalogs from many different telescopes, or catalogs
with high-level calculations that you cannot simply regenerate with the same pixels without
spending a lot of time or using heavy computation. In such cases, when each catalog has
the coordinates of its own objects, you can use the coordinates to match the rows with
Gnuastro’s Match program (see Section 7.5 [Match], page 637).

As the name suggests, Gnuastro’s Match program will match rows based on distance (or
aperture in 2D) in one, two, or three columns. For this tutorial, let’s try matching the two
catalogs that were not created from the same labeled images, recall how each has a different
number of rows:

$ asttable cat/xdf-f105w.fits -hCLUMPS -i
$ asttable cat/xdf-f160w.fits -hCLUMPS -i

You give Match two catalogs (from the two different filters we derived above) as argu-
ment, and the HDUs containing them (if they are FITS files) with the -—hdu and --hdu2

22 https://savannah.gnu.org/task/index.php?14750
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options. The --ccoll and --ccol2 options specify the coordinate-columns which should
be matched with which in the two catalogs. With --aperture you specify the acceptable
error (radius in 2D), in the same units as the columns.

$ astmatch cat/xdf-f160w.fits cat/xdf-f105w.fits \
—-hdu=CLUMPS --hdu2=CLUMPS \
--ccol1=RA,DEC --ccol2=RA,DEC \

--aperture=0.5/3600 \
--output=matched.fits
$ astfits matched.fits

From the second command, you see that the output has two extensions and that both
have the same number of rows. The rows in each extension are the matched rows of the
respective input table: those in the first HDU come from the first input and those in the
second HDU come from the second. However, their order may be different from the input
tables because the rows match: the first row in the first HDU matches with the first row in
the second HDU, etc. You can also see which objects did not match with the ——notmatched,
like below. Note how each extension of now has a different number of rows.

$ astmatch cat/xdf-f160w.fits cat/xdf-f105w.fits \
——hdu=CLUMPS --hdu2=CLUMPS \
--ccol1=RA,DEC --ccol2=RA,DEC \
--aperture=0.5/3600 \
--output=not-matched.fits --notmatched

$ astfits not-matched.fits

The --outcols of Match is a very convenient feature: you can use it to specify which
columns from the two catalogs you want in the output (merge two input catalogs into one).
If the first character is an ‘a’, the respective matched column (number or name, similar to
Table above) in the first catalog will be written in the output table. When the first character
is a ‘b’, the respective column from the second catalog will be written in the output. Also,
if the first character is followed by _all, then all the columns from the respective catalog
will be put in the output.

$ astmatch cat/xdf-f160w.fits cat/xdf-f105w.fits \
—-hdu=CLUMPS --hdu2=CLUMPS \
—--ccol1=RA,DEC --ccol2=RA,DEC \

--aperture=0.35/3600 \
--outcols=a_all,bMAGNITUDE,bSN \
--output=matched.fits

$ astfits matched.fits

2.1.19 Reddest clumps, cutouts and parallelization

As a final step, let’s go back to the original clumps-based color measurement we generated
in Section 2.1.15 [Working with catalogs (estimating colors)], page 54. We will find the
objects with the strongest color and make a cutout to inspect them visually and finally, we
will see how they are located on the image. With the command below, we will select the
reddest objects (those with a color larger than 1.5):

$ asttable cat/mags-with-color.fits --range=F105W-F160W,1.5,inf

You can see how many they are by piping it to wec -1:
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$ asttable cat/mags-with-color.fits --range=F105W-F160W,1.5,inf | wc -1
Let’s crop the F160W image around each of these objects, but we first need a unique
identifier for them. We will define this identifier using the object and clump labels (with an
underscore between them) and feed the output of the command above to AWK to generate
a catalog. Note that since we are making a plain text table, we will define the necessary
(for the string-type first column) metadata manually (see Section 4.7.2 [Gnuastro text table
format], page 287).
$ echo "# Column 1: ID [name, str10] Object ID" > cat/reddest.txt
$ asttable cat/mags-with-color.fits --range=F105W-F160W,1.5,inf \
| awk '{printf("}d_%-10d %f %f\n", $1, $2, $3, $4)}' \
>> cat/reddest.txt
Let’s see how these objects are positioned over the dataset. DS9 has the “Region”s
concept for this purpose. And you build such regions easily from a table using Gnuastro’s
astscript-ds9-region installed script, using the command below:
$ astscript-ds9-region cat/reddest.txt -c2,3 --mode=wcs \
--command="ds9 flat-ir/xdf-f160w.fits -zscale"

We can now feed cat/reddest.txt into Gnuastro’s Crop program to get separate
postage stamps for each object. To keep things clean, we will make a directory called
crop-red and ask Crop to save the crops in this directory. We will also add a -f160w.fits
suffix to the crops (to remind us which filter they came from). The width of the crops will
be 15 arc-seconds (or 15/3600 degrees, which is the units of the WCS).

$ mkdir crop-red
$ astcrop flat-ir/xdf-f160w.fits --mode=wcs --namecol=ID \
--catalog=cat/reddest.txt --width=15/3600,15/3600 \
--suffix=-f160w.fits --output=crop-red
Like the MakeProfiles command in Section 2.1.17 [Aperture photometry], page 61, if
you look at the order of the crops, you will notice that the crops are not made in order!
This is because each crop is independent of the rest, therefore crops are done in parallel,
and parallel operations are asynchronous. So the order can differ in each run, but the final
output is the same! In the command above, you can change £160w to £105w to make the
crops in both filters. You can see all the cropped FITS files in the crop-red directory with
this command:
$ astscript-fits-view crop-red/*.fits
To view the crops more easily (not having to open ds9 for each image), you can convert
the FITS crops into the JPEG format with a shell loop like below.
$ cd crop-red
$ for f in *.fits; do \
astconvertt $f --fluxlow=-0.001 --fluxhigh=0.005 --invert -ojpg; \
done
$ cad ..
$ 1s crop-red/
You can now use your general graphic user interface image viewer to flip through the
images more easily, or import them into your papers/reports.
The for loop above to convert the images will do the job in series: each file is con-
verted only after the previous one is complete. But like the crops, each JPEG image is



Chapter 2: Tutorials 65

independent, so let’s parallelize it. In other words, we want to run more than one instance
of the command at any moment. To do that, we will use Make (https://en.wikipedia.
org/wiki/Make_(software)). Make is a very wonderful pipeline management system, and
the most common and powerful implementation is GNU Make (https://www.gnu.org/
software/make), which has a complete manual just like this one. We cannot go into the
details of Make here, for a hands-on video tutorial, see this video introduction (https://
peertube.stream/w/iJitjS3r232Z8UPMxKo63jq). To do the process above in Make, please
copy the contents below into a plain-text file called Makefile. Just replace the __[TAB] __
part at the start of the line with a single ‘TAB’ button on your keyboard.

jpgs=$(subst .fits,.jpg,$(wildcard *.fits))

all: $(jpgs)

$(jpgs): %.jpg: %.fits

__[TAB] __astconvertt $< --fluxlow=-0.001 --fluxhigh=0.005 \
__[TaB]__ --invert -o$

Now that the Makefile is ready, you can run Make on 12 threads using the commands
below. Feel free to replace the 12 with any number of threads you have on your system
(you can find out by running the nproc command on GNU/Linux operating systems):

$ make -j12

Did you notice how much faster this one was? When possible, it is always very helpful to do
your analysis in parallel. You can build very complex workflows with Make, for example,
see Akhlaghi 2021 (https://arxiv.org/abs/2006.03018) so it is worth spending some
time to master.

2.1.20 FITS images in a publication

In the previous section (Section 2.1.19 [Reddest clumps, cutouts and parallelization],
page 63), we visually inspected the positions of the reddest objects using DS9. That is
very good for an interactive inspection of the objects: you can zoom-in and out, you can
do measurements, etc. Once the experimentation phase of your project is complete, you
want to show these objects over the whole image in a report, paper or slides.

One solution is to use DS9 itself! For example, run the astscript-fits-view command
of the previous section to open DS9 with the regions over-plotted. Click on the “File” menu
and select “Save Image”. In the side-menu that opens, you have multiple formats to select
from. Usually for publications, we want to show the regions and text (in the colorbar) in
vector graphics, so it is best to export to EPS. Once you have made the EPS, you can then
convert it to PDF with the epspdf command.

Another solution is to use Gnuastro’s ConvertType program. The main difference is that
DS9 is a Graphic User Interface (GUI) program, so it takes relatively long (about a second)
to load, and it requires many dependencies. This will slow-down automatic conversion
of many files, and will make your code hard to move to another operating system. DS9
does have a command-line interface that you can use to automate the creation of each file,
however, it has a very peculiar command-line interface and formats (like the “region” files).
However, in ConvertType, there is no graphic interface, so it has very few dependencies, it is
fast, and finally, it takes normal tables (in plain-text or FITS) as input. So in this concluding
step of the analysis, let’s build a nice publication-ready plot, showing the positions of the
reddest objects in the image for our paper.
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In Section 2.1.19 [Reddest clumps, cutouts and parallelization|, page 63, we already used
ConvertType to make JPEG postage stamps. Here, we will use it to make a PDF image of
the whole deep region. To start, let’s simply run ConvertType on the F160W image:

$ astconvertt flat-ir/xdf-f160w.fits -oxdf.pdf

Open the output in a PDF viewer. You see that it is almost fully black! Let’s see why
this happens! First, with the two commands below, let’s calculate the maximum value, and
the standard deviation of the sky in this image (using NoiseChisel’s output, which we found
at the end of Section 2.1.11 [NoiseChisel optimization for detection]|, page 41). Note that
NoiseChisel writes the median sky standard deviation before interpolation in the MEDSTD
keyword of the SKY_STD HDU. This is more robust than the median of the Sky standard
deviation image (which has gone through interpolation).

$ max=$(aststatistics nc/xdf-f160w.fits —-hINPUT-NO-SKY --maximum)
$ skystd=$(astfits nc/xdf-f160w.fits -hSKY_STD --keyvalue=MEDSTD -q)

$ echo $max $skystd
58.8292 0.000410282

$ echo $max $skystd | awk '{print $1/$2}'
143387

In the last command above, we divided the maximum by the sky standard deviation. You
see that the maximum value is more than 140000 times larger than the noise level! On the
other hand common monitors or printers, usually have a maximum dynamic range of 8-bits,
only allowing for 2% = 256 layers. This is therefore the maximum number of “layers” you
can have in a common display formats like JPEG, PDF or PNG! Dividing the result above
by 256, we get a layer spacing of

$ echo $max $skystd | awk '{print $1/$2/2563}"

560.106

In other words, the first layer (which is black) will contain all the pixel values below
~ 560! So all pixels with a signal-to-noise ratio lower than ~ 560 will have a black color
since they fall in the first layer of an 8-bit PDF (or JPEG) image. This happens because
by default we are assuming a linear mapping from floating point to 8-bit integers.

To fix this, we should move to a different mapping. A good, physically motivated,
mapping is Surface Brightness (which is in log-scale, see Section 7.4.2 [Brightness, Flux,
Magnitude and Surface brightness|, page 585). Fortunately this is very easy to do with
Gnuastro’s Arithmetic program, as shown in the commands below (using the known zero
point?3, and after calculating the pixel area in units of arcsec?):

$ zeropoint=25.94

$ pixarcsec2=$(astfits nc/xdf-f160w.fits --pixelareaarcsec?2)

$ astarithmetic nc/xdf-f160w.fits $zeropoint $pixarcsec2 counts-to-sb \
--output=xdf-f160w-sb.fits

With the two commands below, first, let’s look at the dynamic range of the image now
(dividing the maximum by the minimum), and then let’s open the image and have a look
at it:

23 https://archive.stsci.edu/prepds/xdf/#science-images
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$ aststatistics xdf-f160w-sb.fits —--minimum --maximum
$ astscript-fits-view xdf-f160w-sb.fits

The good news is that the dynamic range has now decreased to about 2! In other words,
we can distribute the 256 layers of an 8-bit display over a much smaller range of values, and
therefore better visualize the data. However, there are two important points to consider
from the output of the first command and a visual inspection of the second.

e The largest pixel value (faintest surface brightness level) in the image is ~ 43! This
is far too low to be realistic, and is just due to noise. As discussed in Section 2.1.14
[Measuring the dataset limits], page 49, the 30 surface brightness limit of this image,
over 100 arcsec? is roughly 32.66 mag/arcsec?.

e You see many NaN pixels in between the galaxies! These are due to the fact that the
magnitude is defined on a logarithmic scale and the logarithm of a negative number is
not defined.

In other words, we should replace all NaN pixels, and pixels with a surface brightness
value fainter than the image surface brightness limit to this limit. With the first command
below, we will first extract the surface brightness limit from the catalog headers that we
calculated before, and then call Arithmetic to use this limit.

$ sblimit=$(astfits cat/xdf-f160w.fits --keyvalue=SBL -q)

$ astarithmetic nc/xdf-f160w.fits $zeropoint $pixarcsec2 \
counts-to-sb set-sb \
sb sb $sblimit gt sb isblank or $sblimit where \
--output=xdf-f160w-sb.fits

Let’s convert this image into a PDF with the command below:
$ astconvertt xdf-f160w-sb.fits --output=xdf-f160w-sb.pdf

It is much better now and we can visualize many features of the FITS file (from the
central structures of the galaxies and stars, to a little into the noise and their low surface
brightness features. However, the image generally looks a little too gray! This is because
of that bright star in the bottom half of the image! Stars are very sharp! So let’s manually
tell ConvertType to set any pixel with a value less than (brighter than) 20 to black (and
not use the minimum). We do this with the --fluxlow option:

$ astconvertt xdf-f160w-sb.fits --output=xdf-f160w-sb.pdf --fluxlow=20

We are still missing some of the diffuse flux in this PDF. This is because of those negative
pixels that were set to NaN. To better show these structures, we should warp the image to
larger pixels. So let’s warp it to a pixel grid where the new pixels are 4 x 4 larger than the
original pixels. But be careful that warping should be done on the original image, not on
the surface brightness image. We should re-calculate the surface brightness image after the
warping is one. This is because log(a + b) # log(a) + log(b). Recall that surface brightness
calculation involves a logarithm, and warping involves addition of pixel values.

$ astwarp nc/xdf-f160w.fits --scale=1/4 --centeroncorner \
--output=xdf-f160w-warped.fits

$ pixarcsec2=$(astfits xdf-f160w-warped.fits --pixelareaarcsec?2)

$ astarithmetic xdf-f160w-warped.fits $zeropoint $pixarcsec2 \
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counts-to-sb set-sb \
sb sb $sblimit gt sb isblank or $sblimit where \
--output=xdf-f160w-sb.fits

$ astconvertt xdf-f160w-sb.fits --output=xdf-f160w-sb.pdf --fluxlow=20

Above, we needed to re-calculate the pixel area of the warpped image, but we did not
need to re-calculate the surface brightness limit! The reason is that the surface brightness
limit is independent of the pixel area (in its derivation, the pixel area has been accounted
for). As a side-effect of the warping, the number of pixels in the image also dramatically
decreased, therefore the volume of the output PDF (in bytes) is also smaller, making your
paper /report easier to upload/download or send by email. This visual resolution is still
more than enough for including on top of a column in your paper!

a N
I do not have the zero point of my image: The absolute value of the zero point is irrelevant

for the finally produced PDF. We used it here because it was available and makes the
numbers physically understandable. If you do not have the zero point, just set it to zero
(which is also the default zero point used by MakeCatalog when it estimates the surface
brightness limit). For the value to -—-fluxlow above, you can simply subtract ~ 10 from

the surface brightness limit.
N J

To summarize, and to keep the image for the next section in a separate directory, here are
the necessary commands:

$ zeropoint=25.94

$ mkdir report-image

$ cd report-image

$ sblimit=$(astfits cat/xdf-f160w.fits --keyvalue=SBL -q)

$ astwarp nc/xdf-f160w.fits --scale=1/4 --centeroncorner \
--output=warped.fits

$ pixarcsec2=$(astfits warped.fits --pixelareaarcsec?2)

$ astarithmetic warped.fits $zeropoint $pixarcsec2 \

counts-to-sb set-sb \
sb sb $sblimit gt sb isblank or $sblimit where \
--output=sb.fits

$ astconvertt sb.fits --output=sb.pdf --fluxlow=20

Finally, let’s remove all the temporary files we built in the top-level tutorial directory:

$ rm *.fits *.pdf

Color images: In this tutorial we just used one of the filters and showed the surface
brightness image of that single filter as a grayscale image. But the image can also be
in color (using three filters) to better convey the physical properties of the objects in
your image. To create an image that shows the full dynamic range of your data, see this
dedicated tutorial Section 2.6 [Color images with full dynamic range|, page 152.
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2.1.21 Marking objects for publication

In Section 2.1.20 [FITS images in a publication], page 65, we created a ready-to-print
visualization of the FITS image used in this tutorial. However, you rarely want to show
a naked image like that! You usually want to highlight some objects (that are the target
of your science) over the image and show different marks for the various types of objects
you are studying. In this tutorial, we will do just that: select a sub-set of the full catalog
of clumps, and show them with different marks shapes and colors, while also adding some
text under each mark. To add coordinates on the edges of the figure in your paper, see
Section 5.2.4 [Annotations for figure in paper], page 322.

To start with, let’s put a red plus sign over the sub-sample of reddest clumps similar to
Section 2.1.19 [Reddest clumps, cutouts and parallelization], page 63. First, we will need to
make the table of marks. We will choose those with a color stronger than 1.5 magnitudes
and a signal-to-noise ratio (in F160W) larger than 5. We also only need the RA, Dec, color
and magnitude (in F160W) columns (recall that at the end of the previous section we were
already in the report-image/ directory):

$ asttable cat/mags-with-color.fits --range=F105W-F160W,1.5:inf \
--range=sn-f160w,5:inf -cRA,DEC,MAG-F160w,F105W-F160W \
--output=reddest-cat.fits

Gnuastro’s ConvertType program also has features to add marks over the finally pro-
duced PDF. Below, we will start with the same astconvertt command of the previous
section. The positions of the marks should be given as a table to the --marks option.
Two other options are also mandatory: --markcoords identifies the columns that contain
the coordinates of each mark and --mode specifies if the coordinates are in image or WCS
coordinates.

$ astconvertt sb.fits --output=reddest.pdf --fluxlow=20 \
--marks=reddest-cat.fits --mode=wcs \
—-markcoords=RA,DEC

Open the output reddest.pdf and see the result. You will see relatively thick red circles
placed over the given coordinates. In your PDF browser, zoom-in to one of the regions,
you will see that while the pixels of the background image become larger, the lines of these
regions do not degrade! This is the concept/power of Vector Graphics: ideal for publication!
For more on raster (pixelated) and vector (infinite-resolution) graphics, see Section 5.2.1
[Raster and Vector graphics], page 316.

We had planned to put a plus-sign on each object. However, because we did not explicitly
ask for a certain shape, ConvertType put a circle. Each mark can have its own separate
shape. Shapes can be given by a name or a code. The full list of available shapes names
and codes is given in the description of --markshape option of Section 5.2.5.3 [Drawing
with vector graphics], page 338.

To use a different shape, we need to add a new column to the base table, containing
the identifier of the desired shape for each mark. For example, the code for the plus sign
is 2. With the commands below, we will add a new column with this fixed value. With
the first AWK command we will make a single-column file, where all the rows have the
same value. We pipe our base table into AWK, so it has the same number of rows. With
the second command, we concatenate (or append) the new column with Table, and give
this new column the name SHAPE (to easily refer to it later and not have to count). With
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the third command, we clean-up behind our selves (deleting the extra params.txt file).
Finally, we use the ——markshape option to tell ConvertType which column to use for the
shape identifier.

$ asttable reddest-cat.fits | awk '{print 2}' > params.txt

$ asttable reddest-cat.fits --catcolumnfile=params.txt \
--colmetadata=5,SHAPE, id, "Shape of mark" \
--output=reddest-marks.fits

$ rm params.txt

$ astconvertt sb.fits --output=reddest.pdf --fluxlow=20 \
--marks=reddest-marks.fits --mode=wcs \
—--markcoords=RA,DEC --markshape=SHAPE

Open the PDF and have a look! You do see red signs over the coordinates, but the thick
plus-signs only become visible after you zoom-in multiple times! To make them larger, you
can give another column to specify the size of each mark. Let’s set the full width of the
plus sign to extend 3 arcseconds. The commands are similar to above, try to follow the
difference (in particular, how we use --sizeinarcsec).

$ asttable reddest-cat.fits | awk '{print 2, 3}' > params.txt

$ asttable reddest-cat.fits --catcolumnfile=params.txt \
--colmetadata=5,SHAPE,id, "Shape of mark" \
--colmetadata=6,SIZE,arcsec,"Size in arcseconds" \
--output=reddest-marks.fits

$ rm params.txt

$ astconvertt sb.fits --output=reddest.pdf --fluxlow=20 \
--marks=reddest-marks.fits --mode=wcs \
--markcoords=RA,DEC --markshape=SHAPE \
-—-marksize=SIZE --sizeinarcsec

The power of this methodology is that each mark can be completely different! For
example, let’s show the objects with a color less than 2 magnitudes with a circle, and those
with a stronger color with a plus (recall that the code for a circle was 1 and that of a plus
was 2). You only need to replace the first command above with the one below. Afterwards,
run the rest of the commands in the last code-block.

$ asttable reddest-cat.fits -cF105W-F160W \
| awk '{if($1<2) shape=1; else shape=2; print shape, 3}' \
> params.txt

Have a look at the resulting reddest.pdf. You see that the circles are much larger than
the plus signs. This is because the “size” of a cross is defined to be its full width, but for a
circle, the value in the size column is the radius. The way each shape interprets the value
of the size column is fully described under --markshape of Section 5.2.5.3 [Drawing with
vector graphics|, page 338. To make them more comparable, let’s set the circle sizes to be
half of the cross sizes.

$ asttable reddest-cat.fits -cF105W-F160W \
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| awk '{if($1<2) {shape=1; size=1.5} \
else {shape=2; size=3} \
print shape, size}' \

> params.txt

Let’s make things a little more complex (and show more information in the visualization)
by using color. Gnuastro recognizes the full extended web colors (https://en.wikipedia.
org/wiki/Web_colors#Extended_colors), for their full list (containing names and codes)
see Section 5.2.3.3 [Vector graphics colors|, page 322. But like everything else, an even easier
way to view and select the color for your figure is on the command-line! If your terminal
supports 24-bit true-color, you can see all the colors by running this command (supported
on modern GNU/Linux distributions):

$ astconvertt —-listcolors

we will give a “Sienna” color for the objects that are fainter than 29th magnitude and a
“deeppink” color to the brighter ones (while keeping the same shapes definition as before)
Since there are many colors, using their codes can make the table hard to read by a human!
So let’s use the color names instead of the color codes in the example below (this is useful
in other columns require strings-only, like the font name).

The only intricacy is in the making of params.txt. Recall that string columns need
column metadata (Section 4.7.2 [Gnuastro text table format], page 287). In this particular
case, since the string column is the last one, we can safely use AWK’s print command.
But if you have multiple string columns, to be safe it is better to use AWK’s printf and
explicitly specify the number of characters in the string columns.

$ asttable reddest-cat.fits -cF105W-F160W,MAG-F160W \
| awk 'BEGIN{print "# Column 3: COLOR [name, str8]"}\
{if($1<2) {shape=1; size=1.5} \

else {shape=2; size=3} \
if ($2>29) {color="sienna"} \
else {color="deeppink"} \

print shape, size, color}' \
> params.txt

$ asttable reddest-cat.fits --catcolumnfile=params.txt \
--colmetadata=5,SHAPE,id, "Shape of mark" \
--colmetadata=6,SIZE,arcsec,"Size in arcseconds" \
--output=reddest-marks.fits

$ rm params.txt

$ astconvertt sb.fits --output=reddest.pdf --fluxlow=20 \
--marks=reddest-marks.fits --mode=wcs \
--markcoords=RA,DEC --markshape=SHAPE \
—-—-marksize=SIZE --sizeinarcsec —--markcolor=COLOR

As one final example, let’s write the magnitude of each object under it. Since the
magnitude is already in the marks.fits that we produced above, it is very easy to add it
(just add --marktext option to ConvertType):

$ astconvertt sb.fits --output=reddest.pdf --fluxlow=20 \
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--marks=reddest-marks.fits --mode=wcs \
--markcoords=RA,DEC --markshape=SHAPE \
--marksize=SIZE --sizeinarcsec \

--markcolor=COLOR --marktext=MAG-F160W

Open the final PDF (reddest.pdf) and you will see the magnitudes written under each
mark in the same color. In the case of magnitudes (where the magnitude error is usually
much larger than 0.01 magnitudes, four decimals is not too meaningful. By default, for
printing floating point columns, we use the compiler’s default precision (which is about 4
digits for 32-bit floating point numbers). But you can over-write this (to only show two
digits after the decimal point) with the --marktextprecision=2 option.

You can customize the written text by specifying a different line-width (for the text,
different from the main mark), or even specifying a different font for each mark! You can
see the full list of available fonts for the text under a mark with the first command below
and with the second, you can actually see them in a custom PDF (to only show the fonts).

$ astconvertt --listfonts
$ astconvertt --showfonts

As you see, there are many ways you can customize each mark! The above examples
were just the tip of the iceburg! But this section has already become long so we will stop
it here (see the box at the end of this section for yet another useful example). Like above,
each feature of a mark can be controlled with a column in the table of mark information.
Please see in Section 5.2.5.3 [Drawing with vector graphics|, page 338, for the full list of
columns/features that you can use.

(" N
Drawing ellipses: With the commands below, you can measure the elliptical properties of

the objects and visualized them in a ready-to-publish PDF (we will only show the ellipses
of the largest clumps):

$ astmkcatalog ../seg/xdf-f160w.fits --ra --dec --semi-major \
--axis-ratio --position-angle --clumpscat \
--output=ellipseinfo.fits
$ asttable ellipseinfo.fits -hCLUMPS | awk '{print 4}' > params.txt
$ asttable ellipseinfo.fits -hCLUMPS --catcolumnfile=params.txt \
--range=SEMI_MAJOR,10,inf -oellipse-marks.fits \
--colmetadata=6,SHAPE,id, "Shape of mark"
$ astconvertt sb.fits --output=ellipse.pdf --fluxlow=20 \
--marks=ellipse-marks.fits --mode=wcs \
--markcoords=RA,DEC --markshape=SHAPE \
--marksize=SEMI_MAJOR,AXIS_RATIO --sizeinpix \

—--markrotate=POSITION_ANGLE
_ J

To conclude this section, let us highlight an important factor to consider in vector graph-
ics. In ConvertType, things like line width or font size are defined in units of points. In
vector graphics standards, 72 points correspond to one inch. Therefore, one way you can
change these factors for all the objects is to assign a larger or smaller print size to the im-
age. The print size is just a meta-data entry, and will not affect the file’s volume in bytes!
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You can do this with the ——widthincm option. Try adding this option and giving it very
different values like 5 or 30.

2.1.22 Writing scripts to automate the steps

In the previous sub-sections, we went through a series of steps like downloading the necessary
datasets (in Section 2.1.3 [Setup and data download], page 25), detecting the objects in the
image, and finally selecting a particular subset of them to inspect visually (in Section 2.1.19
[Reddest clumps, cutouts and parallelization]|, page 63). To benefit most effectively from
this subsection, please go through the previous sub-sections, and if you have not actually
done them, we recommended to do/run them before continuing here.

Each sub-section/step of the sub-sections above involved several commands on the
command-line. Therefore, if you want to reproduce the previous results (for example, to
only change one part, and see its effect), you'll have to go through all the sections above
and read through them again. If you have ran the commands recently, you may also have
them in the history of your shell (command-line environment). You can see many of your
previous commands on the shell (even if you have closed the terminal) with the history
command, like this:

$ history

Try it in your teminal to see for yourself. By default in GNU Bash, it shows the last
500 commands. You can also save this “history” of previous commands to a file using shell
redirection (to have it after your next 500 commands), with this command

$ history > my-previous-commands.txt

This is a good way to temporarily keep track of every single command you ran. But
in the middle of all the useful commands, you will have many extra commands, like tests
that you did before/after the good output of a step (that you decided to continue working
on), or an unrelated job you had to do in the middle of this project. Because of these
impurities, after a few days (that you have forgot the context: tests you did not end-up
using, or unrelated jobs) reading this full history will be very frustrating.

Keeping the final commands that were used in each step of an analysis is a common
problem for anyone who is doing something serious with the computer. But simply keeping
the most important commands in a text file is not enough, the small steps in the middle
(like making a directory to keep the outputs of one step) are also important. In other words,
the only way you can be sure that you are under control of your processing (and actually
understand how you produced your final result) is to run the commands automatically.

Fortunately, typing commands interactively with your fingers is not the only way to
operate the shell. The shell can also take its orders/commands from a plain-text file, which
is called a script. When given a script, the shell will read it line-by-line as if you have
actually typed it manually.

Let’s continue with an example: try typing the commands below in your shell. With these
commands we are making a text file (a.txt) containing a simple 3 x 3 matrix, converting
it to a FITS image and computing its basic statistics. After the first three commands open
a.txt with a text editor to actually see the values we wrote in it, and after the fourth, open
the FITS file to see the matrix as an image. a.txt is created through the shell’s redirection
feature: ‘>’ overwrites the existing contents of a file, and ‘>>’ appends the new contents
after the old contents.
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echo "1 1 1" > a.txt
echo "1 2 1" >> a.txt
echo "1 1 1" >> a.txt
astconvertt a.txt --output=a.fits
$ aststatistics a.fits
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To automate these series of commands, you should put them in a text file. But that text
file must have two special features: 1) It should tell the shell what program should interpret
the script. 2) The operating system should know that the file can be directly executed.

For the first, Unix-like operating systems define the shebang concept (also known as
sha-bang or hashbang). In the shebang convention, the first two characters of a file should
be ‘#!’. When confronted with these characters, the script will be interpreted with the
program that follows them. In this case, we want to write a shell script and the most
common shell program is GNU Bash which is installed in /bin/bash. So the first line of
your script should be ‘#!/bin/bash’.

It may happen (rarely) that GNU Bash is in another location on your system. In other
cases, you may prefer to use a non-standard version of Bash installed in another location
(that has higher priority in your PATH, see Section 3.3.1.2 [Installation directory]|, page 235).
In such cases, you can use the ‘#!/usr/bin/env bash’ shebang instead. Through the env
program, this shebang will look in your PATH and use the first bash it finds to run your
script. But for simplicity in the rest of the tutorial, we will continue with the ‘#!/bin/bash’
shebang.

Using your favorite text editor, make a new empty file, let’s call it my-first-script.sh.
Write the GNU Bash shebang (above) as its first line. After the shebang, copy the series
of commands we ran above. Just note that the ‘$’ sign at the start of every line above is
the prompt of the interactive shell (you never actually typed it, remember?). Therefore,
commands in a shell script should not start with a ‘$’. Once you add the commands, close
the text editor and run the cat command to confirm its contents. It should look like the
example below. Recall that you should only type the line that starts with a ‘$’, the lines
without a ‘$’, are printed automatically on the command-line (they are the contents of your
script).

$ cat my-first-script.sh
#!/bin/bash

echo "1 1 1" > a.txt

echo "1 2 1" >> a.txt

echo "1 1 1" >> a.txt

astconvertt a.txt --output=a.fits
aststatistics a.fits

The script contents are now ready, but to run it, you should activate the script file’s
executable flag. In Unix-like operating systems, every file has three types of flags: read (or
r), write (or w) and ezxecute (or x). To toggle a file’s flags, you should use the chmod (for
“change mode”) command. To activate a flag, you put a ‘+’ before the flag character (for

24 When the script is to be run by the same shell that is calling it (like this script), the shebang is optional.
But it is still recommended, because it ensures that even if the user is not using GNU Bash, the script will
be run in GNU Bash: given the differences between various shells, writing truly portable shell scripts,
that can be run by many shell programs/implementations, is not easy (sometimes not possible!).
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example, +x). To deactivate it, you put a ‘=’ (for example, -x). In this case, you want to
activate the script’s executable flag, so you should run

$ chmod +x my-first-script.sh

Your script is now ready to run/execute the series of commands. To run it, you should
call it while specifying its location in the file system. Since you are currently in the same
directory as the script, it is easiest to use relative addressing like below (where ¢./’ means
the current directory). But before running your script, first delete the two a.txt and
a.fits files that were created when you interactively ran the commands.

$ rm a.txt a.fits

$ 1s

$ ./my-first-script.sh
$ 1s

The script immediately prints the statistics while doing all the previous steps in the back-
ground. With the last 1s, you see that it automatically re-built the a.txt and a.fits files,
open them and have a look at their contents.

An extremely useful feature of shell scripts is that the shell will ignore anything after a
‘#’ character. You can thus add descriptions/comments to the commands and make them
much more useful for the future. For example, after adding comments, your script might
look like this:

$ cat my-first-script.sh
#!/bin/bash

# This script is my first attempt at learning to write shell scripts.
# As a simple series of commands, I am just building a small FITS
# image, and calculating its basic statistics.

# Write the matrix into a file.
echo "1 1 1" > a.txt
echo "1 2 1" >> a.txt
echo "1 1 1" >> a.txt

# Convert the matrix to a FITS image.
astconvertt a.txt --output=a.fits

# Calculate the statistics of the FITS image.
aststatistics a.fits

Is Not this much more easier to read now? Comments help to provide human-friendly
context to the raw commands. At the time you make a script, comments may seem like an
extra effort and slow you down. But in one year, you will forget almost everything about
your script and you will appreciate the effort so much! Think of the comments as an email
to your future-self and always put a well-written description of the context/purpose (most
importantly, things that are not directly clear by reading the commands) in your scripts.

The example above was very basic and mostly redundant series of commands, to show
the basic concepts behind scripts. You can put any (arbitrarily long and complex) series
of commands in a script by following the two rules: 1) add a shebang, and 2) enable the
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executable flag. In fact, as you continue your own research projects, you will find that any
time you are dealing with more than two or three commands, keeping them in a script (and
modifying that script, and running it) is much more easier, and future-proof, then typing
the commands directly on the command-line and relying on things like history. Here are
some tips that will come in handy when you are writing your scripts:

As a more realistic example, let’s have a look at a script that will do the steps of
Section 2.1.3 [Setup and data download], page 25, and Section 2.1.4 [Dataset inspection and
cropping], page 25. In particular note how often we are using variables to avoid repeating
fixed strings of characters (usually file/directory names). This greatly helps in scaling up
your project, and avoiding hard-to-find bugs that are caused by typos in those fixed strings.

$ cat gnuastro-tutorial-1.sh
#!/bin/bash

+*

Download the input datasets
# ___________________________

#

# The default file names have this format (where “FILTER' differs for
# each filter):

# hlsp_xdf_hst_wfc3ir-6Omas_hudf_ FILTER_vl_sci.fits

# To make the script easier to read, a prefix and suffix variable are
# used to sandwich the filter name into one short line.
dldir=download

xdfsuffix=_vi_sci.fits

xdfprefix=hlsp_xdf_hst_wfc3ir-60mas_hudf_
xdfurl=http://archive.stsci.edu/pub/hlsp/xdf

# The file name and full URLs of the input data.
f105w_in=$xdfprefix"f105w" $xdfsuffix
£160w_in=$xdfprefix"f160w"$xdfsuffix
£105w_url=$xdfurl/$£f105w_in
£160w_url=$xdfurl/$£160w_in

# Go into the download directory and download the images there,
# then come back up to the top running directory.

mkdir $dldir

cd $dldir

wget $£105w_url

wget $£f160w_url

cd ..

# Only work on the deep region

# To help in readability, each vertice of the deep/flat field is stored
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# as a separate variable. They are then merged into one variable to
# define the polygon.

flatdir=flat-ir

verticel="53.187414,-27.779152"

vertice2="53.159507,-27.759633"

vertice3="53.134517,-27.787144"

vertice4="53.161906,-27.807208"

f105w_flat=$flatdir/xdf-£105w.fits
f160w_flat=$flatdir/xdf-f160w.fits
deep_polygon="$verticel:$vertice2:$vertice3:$vertices"

mkdir $flatdir

astcrop --mode=wcs -h0 --output=$£105w_flat \
--polygon=$deep_polygon $dldir/$f105w_in

astcrop --mode=wcs -hO0 --output=$£160w_flat \
--polygon=$deep_polygon $dldirdir/$f160w_in

The first thing you may notice is that even if you already have the downloaded input
images, this script will always try to re-download them. Also, if you re-run the script, you
will notice that mkdir prints an error message that the download directory already exists.
Therefore, the script above is not too useful and some modifications are necessary to make
it more generally useful. Here are some general tips that are often very useful when writing
scripts:

Stop script if a command crashes
By default, if a command in a script crashes (aborts and fails to do what it was
meant to do), the script will continue onto the next command. In GNU Bash,
you can tell the shell to stop a script in the case of a crash by adding this line
at the start of your script:

set -e

Check if a file/directory exists to avoid re-creating it
Conditionals are a very useful feature in scripts. One common conditional is
to check if a file exists or not. Assuming the file’s name is FILENAME, you can
check its existance (to avoid re-doing the commands that build it) like this:

if [ -f FILENAME ]; then
echo "FILENAME exists"
else
# Some commands to generate the file
echo "done" > FILENAME
fi
To check the existance of a directory instead of a file, use -d instead of -f. To
negate a conditional, use ‘!’ and note that conditionals can be written in one
line also (useful for when it is short).

One common scenario that you’ll need to check the existance of directories
is when you are making them: the default mkdir command will crash if the
desired directory already exists. On some systems (including GNU /Linux dis-
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tributions), mkdir has options to deal with such cases. But if you want your
script to be portable, it is best to check yourself like below:

if ' [ -d DIRNAME ]; then mkdir DIRNAME; fi

Avoid changing directories (with ‘cd’) within the script

You can directly read and write files within other directories. Therefore using
cd to enter a directory (like what we did above, around the wget commands),
running command there and coming out is extra, and not good practice. This
is because the running directory is part of the environment of a command. You
can simply give the directory name before the input and output file names to
use them from anywhere on the file system. See the same wget commands
below for an example.

( A
Copyright notice: A very important thing to put at the top of your script is a one-line

description of what it does and its copyright information (see the example below). Here,
we specify who is the author(s) of this script, in which years, and under what license others
are allowed to use this file. Without it, your script does not credibility or identity, and
others cannot trust, use or acknowledge your work on it. Since Gnuastro is itself licensed
under a copyleft (https://en.wikipedia.org/wiki/Copyleft) license (see Section 1.4
[Your rights], page 10, and Appendix C [GNU Gen. Pub. License v3], page 1001, or GNU
GPL, the license finishes with a template on how to add it), any script that uses Gnuastro

should also have a copyleft license: we recommend the same GNU GPL v3+ like below.
\ J

Taking the above points into consideration, we can write a better version of the script
above. Please compare this script with the previous one carefully to spot the differences.
These are very important points that you will definitely encouter during your own research,
and knowing them can greatly help your productiveity, so pay close attention (even in the
comments).

#!/bin/bash
# Script to download and keep the deep region of the XDF survey.

Copyright (C) 2025 Your Name <yourname®@email.company>
Copyright (C) 2021-2025 Initial Author <incase@there-is.any>

This script is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This script is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with Gnuastro. If not, see <http://www.gnu.org/licenses/>.
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# Abort the script in case of an error.
set -e

# Download the input datasets
# ___________________________

#

# The default file names have this format (where “FILTER' differs for
# each filter):

# hlsp_xdf_hst_wfc3ir-60mas_hudf_ FILTER_vl_sci.fits

# To make the script easier to read, a prefix and suffix variable are
# used to sandwich the filter name into one short line.
dldir=download

xdfsuffix=_v1_sci.fits

xdfprefix=hlsp_xdf_hst_wfc3ir-60mas_hudf_
xdfurl=http://archive.stsci.edu/pub/hlsp/xdf

# The file name and full URLs of the input data.
£105w_in=$xdfprefix"f105w"$xdfsuffix
f160w_in=$xdfprefix"f160w"$xdfsuffix
£f105w_url=$xdfurl/$£105w_in
£160w_url=$xdfurl/$£f160w_in

# Make sure the download directory exists, and download the images.
if ' [ -d $d1dir ]; then mkdir $dldir; fi

if ' [ -f $£f105w_in ]; then wget $f105w_url -0 $d1dir/$£f105w_in; fi
if ' [ -f $£f160w_in ]; then wget $f160w_url -0 $d1dir/$£f160w_in; fi

# Crop out the deep region

# To help in readability, each vertice of the deep/flat field is stored
# as a separate variable. They are then merged into one variable to
# define the polygon.

flatdir=flat-ir

verticel="53.187414,-27.779152"

vertice2="53.159507,-27.759633"

vertice3="53.134517,-27.787144"

vertice4="53.161906,-27.807208"

f105w_flat=$flatdir/xdf-£105w.fits
f160w_flat=$flatdir/xdf-f160w.fits
deep_polygon="8$verticel:$vertice2:$vertice3:$verticed"

if ' [ -d $flatdir ]; then mkdir $flatdir; fi



Chapter 2: Tutorials 80

if ' [ -f $£f105w_flat ]; then
astcrop ——mode=wcs -hO --output=$£f105w_flat \
--polygon=3deep_polygon $dldir/$£105w_in
fi
if ' [ -f $£f160w_flat ]; then
astcrop --mode=wcs -h0 --output=$£f160w_flat \
—--polygon=3deep_polygon $dldir/$f160w_in
fi

2.1.23 Citing and acknowledging Gnuastro

In conclusion, we hope this extended tutorial has been a good starting point to help in your
exciting research. If this book or any of the programs in Gnuastro have been useful for
your research, please cite the respective papers, and acknowledge the funding agencies that
made all of this possible. Without citations, we will not be able to secure future funding
to continue working on Gnuastro or improving it, so please take software citation seriously
(for all the scientific software you use, not just Gnuastro).

To help you in this, all Gnuastro programs have a ——cite option to facilitate the citation
and acknowledgment. Just note that it may be necessary to cite additional papers for
different programs, so please try it out on all the programs that you used, for example:

$ astmkcatalog --cite
$ astnoisechisel --cite

2.2 Detecting large extended targets

The outer wings of large and extended objects can sink into the noise very gradually and can
have a large variety of shapes (for example, due to tidal interactions). Therefore separating
the outer boundaries of the galaxies from the noise can be particularly tricky. Besides
causing an under-estimation in the total estimated brightness of the target, failure to detect
such faint wings will also cause a bias in the noise measurements, thereby hampering the
accuracy of any measurement on the dataset. Therefore even if they do not constitute a
significant fraction of the target’s light, or are not your primary target, these regions must
not be ignored. In this tutorial, we will walk you through the strategy of detecting such
targets using Section 7.2 [NoiseChisel], page 552.

( 0
Do not start with this tutorial: If you have not already completed Section 2.1 [General

program usage tutorial], page 22, we strongly recommend going through that tutorial
before starting this one. Basic features like access to this book on the command-line,
the configuration files of Gnuastro’s programs, benefiting from the modular nature of the
programs, viewing multi-extension FITS files, or using NoiseChisel’s outputs are discussed
in more detail there.
- )
We will try to detect the faint tidal wings of the beautiful M51 group? in this tutorial.
We will use a dataset/image from the public Sloan Digital Sky Survey (http://www.sdss.
org/), or SDSS. Due to its more peculiar low surface brightness structure/features, we will
focus on the dwarf companion galaxy of the group (or NGC 5195).

25 https://en.wikipedia.org/wiki/M51_Group
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2.2.1 Downloading and validating input data

To get the image, you can use the Imaging search (https://skyserver.sdss.org/dr18/
SearchTools/IQS) tool of SDSS. As long as it is covered by the SDSS, you can find an
image containing your desired target either by providing a standard name (if it has one),
or its coordinates. To access the dataset we will use here, under “position constraints”
section, select “cone”. Fill the declination (47.194444) and right ascention (202.467917) of
NGC5195 in the respective box and click on “Submit”.

Type the example commands: Try to type the example commands on your terminal and
use the history feature of your command-line (by pressing the “up” button to retrieve
previous commands). Do not simply copy and paste the commands shown here. This will
help simulate future situations when you are processing your own datasets.

You can see the list of available filters by clicking on the “Get Wget” file button at the
bottom of the page. For this demonstration, we will use the r-band filter image.

The original version of this tutorial was written for the previous (DR12) version of SDSS’s
interface. Fortuantely while their web interface has changed, the data sets from DR12 have
not been deleted/removed. To ensure reproducibility, let’s use the same data set that
this tutorial was initially written. You can do that by running the following command
to download it with GNU Wget?S. To keep things clean, let’s also put it in a directory
called ngc5195. With the -0 option, we are asking Wget to save the downloaded file with
a more manageable name: r.fits.bz2 (this is an r-band image of NGC 5195, which was
the directory name).

$ mkdir ngcb5195

$ cd ngcb195

$ topurl=https://dr12.sdss.org/sas/dr12/boss/photolbj/frames

$ wget $topurl/301/3716/6/frame-r-003716-6-0117.fits.bz2 -Or.fits.bz2

When you want to reproduce a previous result (a known analysis, on a known dataset,
to get a known result: like the case here!) it is important to verify that the file is correct:
that the input file has not changed (on the remote server, or in your own archive), or there
was no downloading problem. Otherwise, if the data have changed in your server/archive,
and you use the same script, you will get a different result, causing a lot of confusion!

One good way to verify the contents of a file is to store its Checksum in your analysis
script and check it before any other operation. The Checksum algorithms look into the
contents of a file and calculate a fixed-length string from them. If any change (even in a
bit or byte) is made within the file, the resulting string will change, for more see Wikipedia
(https://en.wikipedia.org/wiki/Checksum). There are many common algorithms, but
a simple one is the SHA-1 algorithm (https://en.wikipedia.org/wiki/SHA-1) (Secure
Hash Algorithm 1) that you can calculate easily with the command below (the second line
is the output, and the checksum is the first/long string: it is independent of the file name)

$ shalsum r.fits.bz2
5fb06ab572c6107c72cbc5eb8a9329f536¢c7e7f65 r.fits.bz2

26 To make the command easier to view on screen or in a page, we have defined the top URL of the image
as the topurl shell variable. You can just replace the value of this variable with $topurl in the wget
command.
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If the checksum on your computer is different from this, either the file has been incorrectly
downloaded (most probable), or it has changed on SDSS servers (very unlikely®”). To get
a better feeling of checksums open your favorite text editor and make a test file by writing
something in it. Save it and calculate the text file’s SHA-1 checksum with shalsum. Try
renaming that file, and you’ll see the checksum has not changed (checksums only look into
the contents, not the name/location of the file). Then open the file with your text editor
again, make a change and re-calculate its checksum, you’ll see the checksum string has
changed.

Its always good to keep this short checksum string with your project’s scripts and validate
your input data before using them. You can do this with a shell conditional like this:

filename=r.fits.bz2
expected=5fb06a572c6107c72cbc5eb8a9329£536¢c7e7£65
sum=$(shalsum $filename | awk '{print $1}')
if [ $sum = $expected ]; then
echo "$filename: validated"
else
echo "$filename: wrong checksum!"
exit 1
fi
Now that we know you have the same data that we wrote this tutorial with, let’s continue.
The SDSS server keeps the files in a Bzip2 compressed file format (that have a .bz2 suffix).
So we will first decompress it with the following command to use it as a normal FITS file. By
convention, compression programs delete the original file (compressed when uncompressing,
or uncompressed when compressing). To keep the original file, you can use the --keep or
-k option which is available in most compression programs for this job. Here, we do not
need the compressed file any more, so we will just let bunzip delete it for us and keep the
directory clean.

$ bunzip2 r.fits.bz2

2.2.2 NoiseChisel optimization

In Section 2.2.1 [Downloading and validating input data], page 81, we downloaded the single
exposure SDSS image. Let’s see how NoiseChisel operates on it with its default parameters:

$ astnoisechisel r.fits -hO
As described in Section 2.1.10 [NoiseChisel and Multi-Extension FITS files],
page 38, NoiseChisel’s default output is a multi-extension FITS file. Open the output
r_detected.fits file and have a look at the extensions, the 0-th extension is only
meta-data and contains NoiseChisel’s configuration parameters.  The rest are the
Sky-subtracted input, the detection map, Sky values and Sky standard deviation.
$ ds9 -mecube r_detected.fits -zscale -zoom to fit
Flipping through the extensions in a FITS viewer, you will see that the first image (Sky-
subtracted image) looks reasonable: there are no major artifacts due to bad Sky subtraction

2T 1f your checksum is different, try uncompressing the file with the bunzip2 command after this, and open
the resulting FITS file. If it opens and you see the image of M51 and NGC5195, then there was no
download problem, and the file has indeed changed on the SDSS servers! In this case, please contact us
at bug-gnuastro@gnu.org.
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compared to the input. The second extension also seems reasonable with a large detection
map that covers the whole of NGC5195, but also extends towards the bottom of the image
where we actually see faint and diffuse signal in the input image.

Now try flipping between the DETECTIONS and SKY extensions. In the SKY extension,
you’ll notice that there is still significant signal beyond the detected pixels. You can tell
that this signal belongs to the galaxy because the far-right side of the image (away from
M51) is dark (has lower values) and the brighter parts in the Sky image (with larger values)
are just under the detections and follow a similar pattern.

The fact that signal from the galaxy remains in the SKY HDU shows that NoiseChisel
can be optimized for a much better result. The SKY extension must not contain any light
around the galaxy. Generally, any time your target is much larger than the tile size and
the signal is very diffuse and extended at low signal-to-noise values (like this case), this will
happen. Therefore, when there are large objects in the dataset, the best place to check the
accuracy of your detection is the estimated Sky image.

When dominated by the background, noise has a symmetric distribution. However, sig-
nal is not symmetric (we do not have negative signal). Therefore when non-constant®® signal
is present in a noisy dataset, the distribution will be positively skewed. For a demonstra-
tion, see Figure 1 of Akhlaghi and Ichikawa 2015 (https://arxiv.org/abs/1505.01664).
This skewness is a good measure of how much faint signal we have in the distribution. The
skewness can be accurately measured by the difference in the mean and median (assuming
no strong outliers): the more distant they are, the more skewed the dataset is. This impor-
tant concept will be discussed more extensively in the next section (Section 2.2.3 [Skewness
caused by signal and its measurement], page 88).

However, skewness is only a proxy for signal when the signal has structure (varies per
pixel). Therefore, when it is approximately constant over a whole tile, or sub-set of the
image, the constant signal’s effect is just to shift the symmetric center of the noise distribu-
tion to the positive and there will not be any skewness (major difference between the mean
and median). This positive?® shift that preserves the symmetric distribution is the Sky
value. When there is a gradient over the dataset, different tiles will have different constant
shifts/Sky-values, for example, see Figure 11 of Akhlaghi and Ichikawa 2015 (https://
arxiv.org/abs/1505.01664).

To make this very large diffuse/flat signal detectable, you will therefore need a larger tile
to contain a larger change in the values within it (and improve number statistics, for less
scatter when measuring the mean and median). So let’s play with the tessellation a little
to see how it affects the result. In Gnuastro, you can see the option values (--tilesize in
this case) by adding the -P option to your last command. Try running NoiseChisel with -P
to see its default tile size.

You can clearly see that the default tile size is indeed much smaller than this (huge)
galaxy and its tidal features. As a result, NoiseChisel was unable to identify the skewness
within the tiles under the outer parts of M51 and NGC 5159 and the threshold has been
over-estimated on those tiles. To see which tiles were used for estimating the quantile
threshold (no skewness was measured), you can use NoiseChisel’s -~-checkqthresh option:

$ astnoisechisel r.fits -hO --checkqthresh

28 by constant, we mean that it has a single value in the region we are measuring.
29 In processed images, where the Sky value can be over-estimated, this constant shift can be negative.
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Did you see how NoiseChisel aborted after finding and applying the quantile thresholds?
When you call any of NoiseChisel’s ——check* options, by default, it will abort as soon as
all the check steps have been written in the check file (a multi-extension FITS file). This
allows you to focus on the problem you wanted to check as soon as possible (you can disable
this feature with the -~continueaftercheck option).

To optimize the threshold-related settings for this image, let’s play with this quantile
threshold check image a little. Do not forget that “Good statistical analysis is not a purely
routine matter, and generally calls for more than one pass through the computer” (Anscombe
1973, see Section 1.3 [Gnuastro manifesto: Science and its tools], page 6). A good scientist
must have a good understanding of her tools to make a meaningful analysis. So do not
hesitate in playing with the default configuration and reviewing the manual when you have
a new dataset (from a new instrument) in front of you. Robust data analysis is an art,
therefore a good scientist must first be a good artist. So let’s open the check image as a
multi-extension cube:

$ ds9 -mecube r_qthresh.fits -zscale -cmap sls -zoom to fit

The first extension (called CONVOLVED) of r_qthresh.fits is the convolved input im-
age where the threshold(s) is(are) defined (and later applied to). For more on the effect
of convolution and thresholding, see Sections 3.1.1 and 3.1.2 of Akhlaghi and Ichikawa
2015 (https://arxiv.org/abs/1505.01664). The second extension (QTHRESH_ERODE) has
a blank/white value for all the pixels of any tile that was identified as having significant
signal. The other tiles have the measured threshold over them. The next two extensions
(QTHRESH_NOERODE and QTHRESH_EXPAND) are the other two quantile thresholds that are
necessary in NoiseChisel’s later steps. Every step in this file is repeated on the three
thresholds.

Play a little with the color bar of the QTHRESH_ERODE extension, you clearly see how the
non-blank tiles around NGC 5195 have a gradient. As one line of attack against discarding
too much signal below the threshold, NoiseChisel rejects outlier tiles. Go forward by three
extensions to VALUE1_NO_OUTLIER and you will see that many of the tiles over the galaxy
have been removed in this step. For more on the outlier rejection algorithm, see the latter
half of Section 7.1.4.3 [Quantifying signal in a tile], page 531.

Even though much of the galaxy’s footprint has been rejected as outliers, there are still
tiles with signal remaining: play with the DS9 color-bar and you still see a gradient near
the outer tidal feature of the galaxy. Before trying to correct this, let’s look at the other
extensions of this check image. We will use a * as a wild-card that can be 1, 2 or 3. In the
THRESH*_INTERP extensions, you see that all the blank tiles have been interpolated using
their nearest neighbors (the relevant option here is --interpnumngb). In the following
THRESH#*_SMOOTH extensions, you can see the tile values after smoothing (configured with
--smoothwidth option). Finally, in QTHRESH-APPLIED, you see the thresholded image:
pixels with a value of 1 will be eroded later, but pixels with a value of 2 will pass the
erosion step un-touched.

Let’s get back to the problem of optimizing the result. You have two strategies for
detecting the outskirts of the merging galaxies: 1) Increase the tile size to get more accurate
measurements of skewness. 2) Strengthen the outlier rejection parameters to discard more
of the tiles with signal (primarily by increasing --outliernumngb). Fortunately in this
image we have a sufficiently large region on the right side of the image that the galaxy does
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not extend to. So we can use the more robust first solution. In situations where this does
not happen (for example, if the field of view in this image was shifted to the left to have
more of M51 and less sky) you are limited to a combination of the two solutions or just to
the second solution.

e N
Skipping convolution for faster tests: The slowest step of NoiseChisel is the convolution of

the input dataset. Therefore when your dataset is large (unlike the one in this test), and
you are not changing the input dataset or kernel in multiple runs (as in the tests of this
tutorial), it is faster to do the convolution separately once (using Section 6.3 [Convolve],
page 479) and use NoiseChisel’s -—convolved option to directly feed the convolved image
and avoid convolution. For more on --convolved, see Section 7.2.2.1 [NoiseChisel input],
page H57.
- J
To better identify the skewness caused by the flat NGC 5195 and M51 tidal features on
the tiles under it, we have to choose a larger tile size. Let’s try a tile size of 100 by 100
pixels and inspect the check image.

$ astnoisechisel r.fits -hO --tilesize=100,100 --checkqthresh
$ ds9 -mecube r_qthresh.fits -zscale -cmap sls -zoom to fit

You can clearly see the effect of this increased tile size: the tiles are much larger and
when you look into VALUE1_NO_OUTLIER, you see that all the tiles are nicely grouped on the
right side of the image (the farthest from M51, where we do not see a gradient in QTHRESH_
ERODE). Things look good now, so let’s remove --checkqthresh and let NoiseChisel proceed
with its detection.

$ astnoisechisel r.fits -h0 --tilesize=100,100
$ ds9 -mecube r_detected.fits -zscale -cmap sls -zoom to fit

The detected pixels of the DETECTIONS extension have expanded a little, but not as
much. Also, the gradient in the SKY image is almost fully removed (and does not fall over
M51 anymore). However, on the bottom-right of the m51 detection, we see many holes
gradually increasing in size. This hints that there is still signal out there. Let’s check the
next series of detection steps by adding the --checkdetection option this time:

$ astnoisechisel r.fits -h0 --tilesize=100,100 --checkdetection
$ ds9 -mecube r_detcheck.fits -zscale -cmap sls -zoom to fit

The output now has 16 extensions, showing every step that is taken by NoiseChisel.
The first and second (INPUT and CONVOLVED) are clear from their names. The third
(THRESHOLDED) is the thresholded image after finding the quantile threshold (last extension
of the output of -~-checkqthresh). The fourth HDU (ERODED) is new: it is the name-stake
of NoiseChisel, or eroding pixels that are above the threshold. By erosion, we mean that
all pixels with a value of 1 (above the threshold) that are touching a pixel with a value of
0 (below the threshold) will be flipped to zero (or “carved” out)*’. You can see its effect
directly by going back and forth between the THRESHOLDED and ERODED extensions.

In the fifth extension (OPENED-AND-LABELED) the image is “opened”, which is a name
for eroding once, then dilating (dilation is the inverse of erosion). This is good to remove

30 Pixels with a value of 2 are very high signal-to-noise pixels, they are not eroded, to preserve sharp and
bright sources.
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thin connections that are only due to noise. Each separate connected group of pixels is also
given its unique label here. Do you see how just beyond the large M51 detection, there
are many smaller detections that get smaller as you go more distant? This hints at the
solution: the default number of erosions is too much. Let’s see how many erosions take
place by default (by adding -P | grep erode to the previous command)

$ astnoisechisel r.fits -hO --tilesize=100,100 -P | grep erode

We see that the value of erode is 2. The default NoiseChisel parameters are primarily
targeted to processed images (where there is correlated noise due to all the processing that
has gone into the warping and coadding of raw images, see Section 2.1.11 [NoiseChisel
optimization for detection], page 41). In those scenarios 2 erosions are commonly necessary.
But here, we have a single-exposure image where there is no correlated noise (the pixels are
not mixed). So let’s see how things change with only one erosion:

$ astnoisechisel r.fits -hO0 --tilesize=100,100 —--erode=1 \
—-checkdetection
$ ds9 -mecube r_detcheck.fits -zscale -cmap sls -zoom to fit

Looking at the OPENED-AND-LABELED extension again, we see that the main/large detec-
tion is now much larger than before. While the immediately-outer connected regions are
still present, they have decreased dramatically, so we can pass this step.

After the OPENED-AND-LABELED extension, NoiseChisel goes onto finding false detec-
tions using the undetected pixels. The process is fully described in Section 3.1.5. (Defining
and Removing False Detections) of Akhlaghi and Ichikawa 2015 (https://arxiv.org/pdf/
1505.01664.pdf). Please compare the extensions to what you read there and things will be
very clear. In the last HDU (DETECTION-FINAL), we have the final detected pixels that will
be used to estimate the Sky and its Standard deviation. We see that the main detection
has indeed been detected very far out, so let’s see how the full NoiseChisel will estimate the
Sky and its standard deviation (by removing --checkdetection):

$ astnoisechisel r.fits -h0 --tilesize=100,100 --erode=1
$ ds9 -mecube r_detected.fits -zscale -cmap sls -zoom to fit

The DETECTIONS extension of r_detected.fits closely follows what the DETECTION-
FINAL of the check image (looks good!). If you go ahead to the SKY extension, things still
look good. But it can still be improved.

Look at the DETECTIONS again, you will see the right-ward edges of M51’s detected pixels
have many “holes” that are fully surrounded by signal (value of 1) and the signal stretches
out in the noise very thinly (the size of the holes increases as we go out). This suggests
that there is still undetected signal and that we can still dig deeper into the noise.

With the --detgrowquant option, NoiseChisel will “grow” the detections in to the noise.
Its value is the ultimate limit of the growth in units of quantile (between 0 and 1). Therefore
-—detgrowquant=1 means no growth and --detgrowquant=0.5 means an ultimate limit of
the Sky level (which is usually too much and will cover the whole image!). See Figure 2 of
Akhlaghi 2019 (https://arxiv.org/pdf/1909.11230.pdf) for more on this option. Try
running the previous command with various values (from 0.6 to higher values) to see this
option’s effect on this dataset. For this particularly huge galaxy (with signal that extends
very gradually into the noise), we will set it to 0.75:

$ astnoisechisel r.fits -hO --tilesize=100,100 —--erode=1 \
--detgrowquant=0.75
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$ ds9 -mecube r_detected.fits -zscale -cmap sls -zoom to fit

Beyond this level (smaller --detgrowquant values), you see many of the smaller back-
ground galaxies (towards the right side of the image) starting to create thin spider-leg-like
features, showing that we are following correlated noise for too much. Please try it for
yourself by changing it to 0.6 for example.

When you look at the DETECTIONS extension of the command shown above, you see the
wings of the galaxy being detected much farther out, But you also see many holes which are
clearly just caused by noise. After growing the objects, NoiseChisel also allows you to fill
such holes when they are smaller than a certain size through the --detgrowmaxholesize
option. In this case, a maximum area/size of 10,000 pixels seems to be good:

$ astnoisechisel r.fits -hO --tilesize=100,100 --erode=1 \
--detgrowquant=0.75 --detgrowmaxholesize=10000
$ ds9 -mecube r_detected.fits -zscale -cmap sls -zoom to fit

When looking at the raw input image (which is very “shallow”: less than a minute ex-
posure!), you do not see anything so far out of the galaxy. You might just think to yourself
that “this is all noise, I have just dug too deep and I'm following systematics”! If you feel
like this, have a look at the deep images of this system in Watkins 2015 (https://arxiv.
org/abs/1501.04599), or a 12 hour deep image of this system (with a 12-inch telescope):
https://i.redd.it/jfqgpqgOhfk1l. jpg’. In these deeper images you clearly see how the
outer edges of the M51 group follow this exact structure, below in Section 2.2.5 [Achieved
surface brightness level], page 97, we will measure the exact level.

As the gradient in the SKY extension shows, and the deep images cited above confirm,
the galaxy’s signal extends even beyond this. But this is already far deeper than what most
(if not all) other tools can detect. Therefore, we will stop configuring NoiseChisel at this
point in the tutorial and let you play with the other options a little more, while reading
more about it in the papers: Akhlaghi and Ichikawa 2015 (https://arxiv.org/abs/1505.
01664) and 2019 (https://arxiv.org/abs/1909.11230) and Section 7.2 [NoiseChisel],
page 552. When you do find a better configuration feel free to contact us for feedback. Do
not forget that good data analysis is an art, so like a sculptor, master your chisel for a good
result.

To avoid typing all these options every time you run NoiseChisel on this image, you can
use Gnuastro’s configuration files, see Section 4.2 [Configuration files|, page 270. For an
applied example of setting/using them, see Section 2.1.8 [Option management and config-
uration files|, page 35.

31 The image is taken from this Reddit discussion: https://www.reddit.com/r/Astronomy/comments/
9d6x0q/12_hours_of_exposure_on_the_whirlpool_galaxy/
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( N
This NoiseChisel configuration is NOT GENERIC: Do not use the configuration derived

above, on another instrument’s image blindly. If you are unsure, just use the default
values. As you saw above, the reason we chose this particular configuration for NoiseChisel
to detect the wings of the Mb51 group was strongly influenced by the noise properties of
this particular image. Remember Section 2.1.11 [NoiseChisel optimization for detection],
page 41, where we looked into the very deep XDF image which had strong correlated
noise?

As long as your other images have similar noise properties (from the same data-
reduction step of the same instrument), you can use your configuration on any of them.
But for images from other instruments, please follow a similar logic to what was presented

in these tutorials to find the optimal configuration.
- /

( N
Smart NoiseChisel: As you saw during this section, there is a clear logic behind the optimal

parameter value for each dataset. Therefore, we plan to add capabilities to (optionally)
automate some of the choices made here based on the actual dataset, please join us in
doing this if you are interested. However, given the many problems in existing “smart”
solutions, such automatic changing of the configuration may cause more problems than
they solve. So even when they are implemented, we would strongly recommend quality

checks for a robust analysis.
- /)

2.2.3 Skewness caused by signal and its measurement

In the previous section (Section 2.2.2 [NoiseChisel optimization], page 82) we showed how
to customize NoiseChisel for a single-exposure SDSS image of the M51 group. During
the customization, we also discussed the skewness caused by signal. In the next section
(Section 2.2.4 [Image surface brightness limit], page 92), we will use this to measure the
surface brightness limit of the image. However, to better understand NoiseChisel and also,
the image surface brightness limit, understanding the skewness caused by signal, and how
to measure it properly are very important. Therefore now that we have separated signal
from noise, let’s pause for a moment and look into skewness, how signal creates it, and find
the best way to measure it.

Let’s start masking all the detected pixels found at the end of the previous section
(Section 2.2.2 [NoiseChisel optimization], page 82) and having a look at the noise distri-
bution with Gnuastro’s Arithmetic and Statistics programs as shown below (while visually
inspecting the masked image with DS9 in the middle).

$ astarithmetic r_detected.fits -hINPUT-NO-SKY set-in \
r_detected.fits -hDETECTIONS set-det \
in det nan where -odet-masked.fits

$ ds9 det-masked.fits

$ aststatistics det-masked.fits

You will see that Gnuastro’s Statistics program prints an ASCII histogram when no option
is given (it is shown below). This is done to give you a fast and easy view of the distribution
of values in the dataset (pixels in an image, or rows in a table’s column).
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Input: det-masked.fits (hdu: 1)

Number of elements: 903920
Minimum: -0.113543
Maximum: 0.130339
Median: -0.00216306
Mean: -0.0001893073877
Standard deviation: 0.02569057188
Histogram:
| *% ok
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This histogram shows a roughly symmetric noise distribution, so let’s have a look at its
skewness. The most commonly used definition of skewness is known as the “Pearson’s first
skewness coefficient”. It measures the difference between the mean and median, in units of
the standard deviation (STD):

(mean — median)

Sk =
ewness STD

The logic behind this definition is simple: as more signal is added to the same pixels
that originally only have raw noise (skewness is increased), the mean shifts to the positive
faster than the median, so the distance between the mean and median should increase. Let’s
measure the skewness (as defined above) over the image without any signal. Its very easy
with Gnuastro’s Statistics program (and piping the output to AWK):

$ aststatistics det-masked.fits --mean --median --std \
| awk '{print ($1-$2)/$3}'
0.0768279

We see that the mean and median are only 0.08¢ (rounded) away from each other (which is
very close)! All pixels with significant signal are masked, so this is expected, and everything
is fine. Now, let’s check the pixel distribution of the sky-subtracted input (where pixels with
significant signal remain, and are not masked):

$ ds9 r_detected.fits
$ aststatistics r_detected.fits -hINPUT-NO-SKY
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Input: r_detected.fits (hdu: INPUT-NO-SKY)

Unit: nanomaggy
Number of elements: 3049472
Minimum: -0.113543
Maximum: 159.25
Median: 0.0241158
Mean: 0.1057885317
Standard deviation: 0.698167489

|******************************************* kkk  kk kkxkxk ok Xk * ok X

Comparing the distributions above, you can see that the minimum value of the image has
not changed because we have not masked the minimum values. However, as expected, the
mazimum value of the image has changed (from 0.13 to 159.25). This is clearly evident
from the ASCII histogram: the distribution is very elongated because the galaxy inside the
image is extremely bright.

Now, let’s limit the displayed information with the -—lessthan=0. 13 option of Statistics
as shown below (to only use values less than 0.13; the maximum of the image where all
signal is masked).

$ aststatistics r_detected.fits -hINPUT-NO-SKY --lessthan=0.13
Input: r_detected.fits (hdu: INPUT-NO-SKY)

Range: up to (exclusive) 0.13.

Unit: nanomaggy

Number of elements: 2531949

Minimum: -0.113543

Maximum: 0.126233

Median: 0.0137138

Mean: 0.01735551527

Standard deviation: 0.03590550597
Histogram:

| *
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The improvement is obvious: the ASCII histogram better shows the pixel values near the
noise level. We can now compare with the distribution of det-masked.fits that we found
earlier. The ASCII histogram of det-masked.fits was approximately symmetric, while
this is asymmetric in this range, especially in outer (to the right, or positive) direction.
The heavier right-side tail is a clear visual demonstration of skewness that is caused by the
signal in the un-masked image.

Having visually confirmed the skewness, let’s quantify it with Pearson’s first skewness
coefficient. Like before, we can simply use Gnuastro’s Statistics and AWK for the measure-
ment and calculation:

$ aststatistics r_detected.fits --mean --median --std \
| awk '{print ($1-$2)/$3}'
0.116982

The difference between the mean and median is now approximately 0.12¢. This is larger
than the skewness of the masked image (which was approximately 0.08¢). At a glance
(only looking at the numbers), it seems that there is not much difference between the two
distributions. However, visually looking at the non-masked image, or the ASCII histogram,
you would expect the quantified skewness to be much larger than that of the masked image,
but that has not happened! Why is that?

The reason is that the presence of signal does not only shift the mean and median, it
also increases the standard deviation! To see this for yourself, compare the standard devi-
ation of det-masked.fits (which was approximately 0.025) to r_detected.fits (without
--lessthan; which was approximately 0.699). The latter is almost 28 times larger!

This happens because the standard deviation is defined only in a symmetric (and Gaus-
sian) distribution. In a non-Gaussian distribution, the standard deviation is poorly defined
and is not a good measure of “width”. Since Pearson’s first skewness coefficient is defined
in units of the standard deviation, this very large increase in the standard deviation has
hidden the much increased distance between the mean and median after adding signal.

We therefore need a better unit or scale to quantify the distance between the mean and
median. A unit that is less affected by skewness or outliers. One solution that we have
found to be very useful is the quantile units or quantile scale. The quantile scale is defined
by first sorting the dataset (which has N elements). If we want the quantile of a value V'
in a distribution, we first find the nearest data element to V in the sorted dataset. Let’s
assume the nearest element is the i-th element, counting from 0, after sorting. The quantile
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of V in that distribution is then defined as i/(N — 1) (which will have a value between 0
and 1).

The quantile of the median is obvious from its definition: 0.5. This is because the median
is defined to be the middle element of the distribution after sorting. We can therefore define
skewness as the quantile of the mean (g,,). If ¢, ~ 0.5 (the median), then the distribution
(of signal blended in noise) is symmetric (possibly Gaussian, but the functional form is
irrelevant here). A larger value for |g,, — 0.5| quantifies a more skewed the distribution.
Furthermore, a ¢, > 0.5 signifies a positive skewness, while ¢,, < 0.5 signifies a negative
skewness.

Let’s put this definition to a test on the same two images we have already created.
Fortunately Gnuastro’s Statistics program has the -—quantofmean option to easily calculate
Gm for you. So testing is easy:

$ aststatistics det-masked.fits --quantofmean
0.51295636

$ aststatistics r_detected.fits -hINPUT-NO-SKY --quantofmean
0.8105163158

The two quantiles of mean are now very distinctly different (0.51 and 0.81): differing by
about 0.3 (on a scale of 0 to 1)! Recall that when defining skewness with Pearson’s first skew-
ness coefficient, their difference was negligible (0.040)! You can now better appreciate why
we discussed quantile so extensively in Section 2.2.2 [NoiseChisel optimization|, page 82. In
case you would like to know more about the usage of the quantile of the mean in Gnuastro,
please see Section 7.1.4.3 [Quantifying signal in a tile], page 531, or watch this video demon-
stration: https://peertube.stream/w/35b7c398-9fd7-4bcf-8911-1e01c5124585.

2.2.4 Image surface brightness limit

When your science is related to extended emission (like the example here) and you are
presenting your results in a scientific conference, usually the first thing that someone will
ask (if you do not explicitly say it!), is the dataset’s surface brightness limit (a standard
measure of the noise level), and your target’s surface brightness (a measure of the signal,
either in the center or outskirts, depending on context). For more on the basics of these
important concepts please see Section 7.4.5 [Metameasurements on full input], page 615.
So in this section of the tutorial, we will measure these values for the single-exposure SDSS
image of the M51 group that we downloaded in Section 2.2.1 [Downloading and validating
input data], page 81.

Before measuring the surface brightness limit, let’s see how reliable our detection was. In
other words, let’s see how “clean” our noise is (after masking all detections, as described
previously in Section 2.2.3 [Skewness caused by signal and its measurement], page 88):

$ aststatistics det-masked.fits --quantofmean
0.5111848629

Showing that the mean is indeed very close to the median, although just about 1 quantile
larger. As we saw in Section 2.2.2 [NoiseChisel optimization|, page 82, a very small residual
signal still remains in the undetected regions and this very small difference is a quantitative
measure of that undetected signal. It was up to you as an exercise to improve it, so we will
continue with this dataset.
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The surface brightness limit of the image can be measured from the masked image and
the equation in Section 7.4.5 [Metameasurements on full input], page 615. Let’s do it for a
30 surface brightness limit over an area of 25arcsec?

$ nsigma=3
zeropoint=22.5
areaarcsec2=25
std=$(aststatistics det-masked.fits --sigclip-std)
pixarcsec2=$(astfits det-masked.fits --pixelscale --quiet \
| awk '{print $3%3600%*3600}')
$ astarithmetic --quiet $nsigma $std x \
$areaarcsec2 $pixarcsec2 x \
sqrt / $zeropoint counts-to-mag

€ H H P

26.0241

The customizable steps above are good for any type of mask. For example, your field
of view may contain a very deep part so you need to mask all the shallow parts as well
as the detections before these steps. But when your image is flat (like this), there is a
much simpler method to obtain the same value through MakeCatalog (when the standard
deviation image is made by NoiseChisel). NoiseChisel has already calculated the minimum
(MINSTD), maximum (MAXSTD) and median (MEDSTD) standard deviation within the tiles
during its processing and has stored them as FITS keywords within the SKY_STD HDU.
You can see them by piping all the keywords in this HDU into grep. In Grep, each ‘.’
represents one character that can be anything so M..STD will match all three keywords
mentioned above.

$ astfits r_detected.fits --hdu=SKY_STD | grep 'M..STD'

The MEDSTD value is very similar to the standard deviation derived above, so we can
safely use it instead of having to mask and run Statistics.

( N
MEDSTD is more reliable than the standard deviation of masked pixels: it may happen that

differences between these two become more significant than the experiment above. In such
cases, the MEDSTD is more reliable because NoiseChisel estimates it within the tiles and
after several steps of outlier rejection (for example due to undetected signal) and before
interpolation. Whereas the standard deviation of the masked image is calculated based on
the final detection, does no higher-level outlier rejection and is based on the interpolated
image. Therefore, it can be easily biased by signal or artifacts in the image and besides

being easier to measure, MEDSTD is also more statistically robust.
N\ J

Fortunately, MakeCatalog will use this keyword and will report the dataset’s no surface
brightness limit as keywords in the output (not as measurement columns, since it is related
to the noise, not labeled signal) as described below.

$ astmkcatalog r_detected.fits -hDETECTIONS --output=sbl.fits \
--forcereadstd --ids

Before looking into the measured surface brightness limits, let’s review some important
points about this call to MakeCatalog first:

e We are only concerned with the noise (not the signal), so we do not ask for any further
measurements, because they can un-necessarily slow it down. However, MakeCatalog



Chapter 2: Tutorials 94

requires at least one column, so we will only ask for the -—ids column (which does not
need any measurement!). The output catalog will therefore have a single row and a
single column, with 1 as its value32.

e If we do not ask for any noise-related column (for example, the signal-to-noise ratio
column with --sn, among other noise-related columns), MakeCatalog is not going
to read the noise standard deviation image (again, to speed up its operation when
it is redundant). We are thus using the --forcereadstd option (short for “force
read standard deviation image”) here so it is ready for the surface brightness limit
measurements that are written as keywords.

With the command below you can see all the keywords that were measured with the
table. Notice the group of keywords that are under the “Surface brightness limit (SBL)”
title.

$ astfits sbl.fits -hil

Since all the keywords of interest here start with SBL, we can get a more cleaner view with
this command.

$ astfits sbl.fits -hl | grep “SBL

Notice how the SBLSTD has the same value as NoiseChisel’s MEDSTD above. Using SBLSTD,
MakeCatalog has determined the no surface brightness limiting magnitude in these header
keywords. The multiple of o, or n, is the value of the SBLNSIG keyword which you can
change with the ——sbl-sigma. The surface brightness limiting magnitude within a pixel
(SBLNSIG) and within a pixel-agnostic area of SBLAREA arcsec? are stored in SBL.

You will notice that the two surface brightness limiting magnitudes above have values
around 3 and 4 (which is not correct!). This is because we have not given a zero point
magnitude to MakeCatalog, so it uses the default value of 0. SDSS image pixel values are
calibrated in units of “nanomaggy” which are defined to have a zero point magnitude of
22.5%3. So with the first command below we give the zero point value and with the second
we can see the surface brightness limiting magnitudes with the correct values (around 25

and 26)

$ astmkcatalog r_detected.fits -hDETECTIONS --zeropoint=22.5 \
--output=sbl.fits --forcereadstd --ids
$ astfits sbl.fits -hl | grep “SBL

As you see from SBLNSIG and SBLAREA, the default multiple of sigma is 1 and the default
area is 1 arcsec?. Usually higher values are used for these two parameters. Following the
manual example we did above, you can ask for the multiple of sigma to be 3 and the area
to be 25 arcsec?:

$ astmkcatalog r_detected.fits -hDETECTIONS --zeropoint=22.5 \
—-—output=sbl.fits --sbl-area=25 --sbl-sigma=3 \
--forcereadstd --ids

$ astfits sbl.fits -hl | awk '/"SBL /{print $3}'

26.02296

32 Recall that NoiseChisel’s output is a binary image: 0-valued pixels are noise and 1-valued pixel are signal.
NoiseChisel does not identify sub-structure over the signal, this is the job of Segment, see Section 2.2.6
[Extract clumps and objects (Segmentation)], page 99.

33 From https://www.sdss. org/dri12/algorithms/magnitudes
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You see that the value is identical to the custom surface brightness limiting magnitude
we measured above (a difference of 0.00114 magnitudes is negligible and hundreds of times
larger than the typical errors in the zero point magnitude or magnitude measurements).
But it is much more easier to have MakeCatalog do this measurement, because these values
will be appended (as keywords) into your final catalog of objects within that image.

( )
Custom STD for MakeCatalog’s Surface brightness limit: You can manually change/set

the value of the MEDSTD keyword in your input STD image with Section 5.1 [Fits], page 297:

$ std=$(aststatistics masked.fits --sigclip-std)
$ astfits noisechisel.fits -hSKY_STD --update=MEDSTD, $std

With this change, MakeCatalog will use your custom standard deviation for the surface
brightness limit. This is necessary in scenarios where your image has multiple depths and
during your masking, you also mask the shallow regions (as well as the detections of

course).
- J

We have successfully measured the image’s 30 surface brightness limiting magnitude
over 25 arcsec’. However, as discussed in Section 7.4.5 [Metameasurements on full input],
page 615, this value is just an extrapolation of the per-pixel standard deviation. Issues like
correlated noise will cause the real noise over a large area to be different. So for a more
robust measurement, let’s use the upper-limit magnitude of similarly sized region. For more
on the upper-limit magnitude, see the respective item in Section 7.4.5 [Metameasurements
on full input|, page 615.

In summary, the upper-limit measurements involve randomly placing the footprint of an
object in undetected parts of the image many times. This results in a random distribution
of brightness measurements, the standard deviation of that distribution is then converted
into magnitudes. To be comparable with the results above, let’s make a circular aperture
that has an area of 25 arcsec® (thus with a radius of 2.82095 arcsec).

zeropoint=22.5
r_arcsec=2.82095

## Convert the radius (in arcseconds) to pixels.
r_pixel=$(astfits r_detected.fits --pixelscale -q \
| awk '{print '$r_arcsec'/($1*3600)}"')

## Make circular aperture at pixel (100,100) position is irrelevant.
echo "1 100 100 5 $r_pixel 0 0 1 1 1" \
| astmkprof --background=r_detected.fits \
--clearcanvas --mforflatpix --type=uint8 \
--output=lab.fits

## Do the upper-limit measurement, ignoring all NoiseChisel's

## detections as a mask for the upper-limit measurements.

astmkcatalog lab.fits -hl --zeropoint=$zeropoint -osbl.fits \
--sbl-area=25 --sbl-sigma=3 --forcereadstd \
--valuesfile=r_detected.fits --valueshdu=INPUT-NO-SKY \
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—--upmaskfile=r_detected.fits --upmaskhdu=DETECTIONS \

-—upnsigma=3 --checkuplim=1 --upnum=1000 \

--ids --upperlimit-sb

The sbl.fits catalog now contains the upper-limit surface brightness for a circle with

an area of 25 arcsec?. You can check the value with the command below, but the great
thing is that now you have both of the surface brightness limiting magnitude in the headers
discussed above, and the upper-limit surface brightness within the table. You can also
add more profiles with different shapes and sizes if necessary. Of course, you can also use
—--upperlimit-sb in your actual science objects and clumps to get an object-specific or
clump-specific value.

$ asttable sbl.fits -cUPPERLIMIT_SB
25.9119

You will get a slightly different value from the command above. In fact, if you run the
MakeCatalog command again and look at the measured upper-limit surface brightness, it
will be slightly different with your first triall Please try exactly the same MakeCatalog
command above a few times to see how it changes.

This is because of the random factor in the upper-limit measurements: every time you
run it, different random points will be checked, resulting in a slightly different distribution.
You can decrease the random scatter by increasing the number of random checks (for
example, setting —-upnum=100000, compared to 1000 in the command above). But this
will be slower and the results will not be exactly reproducible. The only way to ensure you
get an identical result later is to fix the random number generator function and seed like the
command below?*. This is a very important point regarding any statistical process involving
random numbers, please see Section 6.2.3.4 [Generating random numbers], page 410.

export GSL_RNG_TYPE=ranlxsl
export GSL_RNG_SEED=1616493518
astmkcatalog lab.fits -hl --zeropoint=$zeropoint -osbl.fits \
--sbl-area=25 --sbl-sigma=3 --forcereadstd \
--valuesfile=r_detected.fits --valueshdu=INPUT-NO-SKY \
—-upmaskfile=r_detected.fits --upmaskhdu=DETECTIONS \
—--upnsigma=3 --checkuplim=1 --upnum=1000 \
--ids --upperlimit-sb --envseed
But where do all the random apertures of the upper-limit measurement fall on the image?
It is good to actually inspect their location to get a better understanding for the process and
also detect possible bugs/biases. When MakeCatalog is run with the —-checkuplim option,
it will print all the random locations and their measured brightness as a table in a file with
the suffix _upcheck.fits. With the first command below you can use Gnuastro’s asttable
and astscript-ds9-region to convert the successful aperture locations into a DS9 region
file, and with the second can load the region file into the detections and sky-subtracted
image to visually see where they are.

## Create a DS9 region file from the check table (activated

## with '--checkuplim')
asttable sbl_upcheck.fits --noblank=RANDOM_SUM \

34 You can use any integer for the seed. One recommendation is to run MakeCatalog without --envseed
once and use the randomly generated seed that is printed on the terminal.



Chapter 2: Tutorials 97

| astscript-ds9-region -c1,2 --mode=img \
--radius=$r_pixel

## Have a look at the regions in relation with NoiseChisel's
## detections.

ds9 r_detected.fits[INPUT-NO-SKY] -regions load ds9.reg

ds9 r_detected.fits[DETECTIONS] -regions load ds9.reg

In this example, we were looking at a single-exposure image that has no correlated
noise. Because of this, the surface brightness limit and the upper-limit surface brightness
are very close. They will have a bigger difference on deep datasets with stronger correlated
noise (that are the result of coadding many individual exposures). As an exercise, please
try measuring the upper-limit surface brightness level and surface brightness limit for the
deep HST data that we used in the previous tutorial (Section 2.1 [General program usage
tutorial], page 22).

2.2.5 Achieved surface brightness level

In Section 2.2.2 [NoiseChisel optimization], page 82, we customized NoiseChisel for a single-
exposure SDSS image of the M51 group and in Section 2.2.4 [Image surface brightness limit],
page 92, we measured the surface brightness limit and the upper-limit surface brightness
level (which are both measures of the noise level). In this section, let’s do some mea-
surements on the outer-most edges of the M51 group to see how they relate to the noise
measurements found in the previous section.

For this measurement, we will need to estimate the average flux on the outer edges of the
detection. Fortunately all this can be done with a few simple commands using Section 6.2
[Arithmetic], page 403, and Section 7.4 [MakeCatalog], page 582. First, let’s separate each
detected region, or give a unique label/counter to all the connected pixels of NoiseChisel’s
detection map with the command below. Recall that with the set- operator, the popped
operand will be given a name (det in this case) for easy usage later.

$ astarithmetic r_detected.fits -hDETECTIONS set-det \
det 2 connected-components -olabeled.fits

You can find the label of the main galaxy visually (by opening the image and hovering
your mouse over the M51 group’s label). But to have a little more fun, let’s do this auto-
matically (which is necessary in a general scenario). The M51 group detection is by far the
largest detection in this image, this allows us to find its ID/label easily. We will first run
MakeCatalog to find the area of all the labels, then we will use Table to find the ID of the
largest object and keep it as a shell variable (id):

# Run MakeCatalog to find the area of each label.
$ astmkcatalog labeled.fits --ids --geo-area -hl -ocat.fits

## Sort the table by the area column.
$ asttable cat.fits --sort=AREA_FULL

## The largest object, is the last one, so we will use '--tail'.
$ asttable cat.fits --sort=AREA_FULL --tail=1

## We only want the ID, so let's only ask for that column:



Chapter 2: Tutorials 98

$ asttable cat.fits ——sort=AREA_FULL --tail=1 —--column=0BJ_ID

## Now, let's put this result in a variable (instead of printing)
$ id=$(asttable cat.fits --sort=AREA_FULL --tail=1 --column=0BJ_ID)

## Just to confirm everything is fine.
$ echo $id

We can now use the id variable to reject all other detections:
$ astarithmetic labeled.fits $id eq -oonly-m51.fits

Open the image and have a look. To separate the outer edges of the detections, we will
need to “erode” the M51 group detection. So in the same Arithmetic command as above,
we will erode three times (to have more pixels and thus less scatter), using a maximum
connectivity of 2 (8-connected neighbors). We will then save the output in eroded.fits.

$ astarithmetic labeled.fits $id eq 2 erode 2 erode 2 erode \
-oeroded.fits

In labeled.fits, we can now set all the 1-valued pixels of eroded.fits to 0 using Arith-
metic’s where operator added to the previous command. We will need the pixels of the
M51 group in labeled.fits two times: once to do the erosion, another time to find the
outer pixel layer. To do this (and be efficient and more readable) we will use the set-i
operator (to give this image the name ‘i’). In this way we can use it any number of times
afterwards, while only reading it from disk and finding M51’s pixels once.

$ astarithmetic labeled.fits $id eq set-i i \
1 2 erode 2 erode 2 erode O where -oedge.fits

Open the image and have a look. You'll see that the detected edge of the M51 group is
now clearly visible. You can use edge.fits to mark (set to blank) this boundary on the
input image and get a visual feeling of how far it extends:

$ astarithmetic r.fits -hO edge.fits nan where -oedge-masked.fits

To quantify how deep we have detected the low-surface brightness regions (in units of
signal to-noise ratio), we will use the command below. In short it just divides all the
non-zero pixels of edge.fits in the Sky subtracted input (first extension of NoiseChisel’s
output) by the pixel standard deviation of the same pixel. This will give us a signal-to-noise
ratio image. The mean value of this image shows the level of surface brightness that we
have achieved. You can also break the command below into multiple calls to Arithmetic and
create temporary files to understand it better. However, if you have a look at Section 6.2.1
[Reverse polish notation], page 404, and Section 6.2.4 [Arithmetic operators], page 412, you
should be able to easily understand what your computer does when you run this command?®.

$ astarithmetic edge.fits -hil set-edge \

3% edge.fits (extension 1) is a binary (0 or 1 valued) image. Applying the not operator on it, just

flips all its pixels (from 0 to 1 and vice-versa). Using the where operator, we are then setting all
the newly 1-valued pixels (pixels that are not on the edge) to NaN/blank in the sky-subtracted input
image (r_detected.fits, extension INPUT-NO-SKY, which we call skysub). We are then dividing all the
non-blank pixels (only those on the edge) by the sky standard deviation (r_detected.fits, extension
SKY_STD, which we called skystd). This gives the signal-to-noise ratio (S/N) for each of the pixels on
the boundary. Finally, with the meanvalue operator, we are taking the mean value of all the non-blank
pixels and reporting that as a single number.
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r_detected.fits -hSKY_STD set-skystd \
r_detected.fits -hINPUT-NO-SKY set-skysub \
skysub skystd / edge not nan where meanvalue --quiet

We have thus detected the wings of the M51 group down to roughly 1/3rd of the noise
level in this image which is a very good achievement! But the per-pixel S/N is a relative
measurement. Let’s also measure the depth of our detection in absolute surface brightness
units; or magnitudes per square arc-seconds (see Section 7.4.2 [Brightness, Flux, Magnitude
and Surface brightness], page 585). We will also ask for the S/N and magnitude of the full
edge we have defined. Fortunately doing this is very easy with Gnuastro’s MakeCatalog:

$ astmkcatalog edge.fits -hl --valuesfile=r_detected.fits \
--zeropoint=22.5 --ids --sb --sn --magnitude

$ asttable edge_cat.fits

1 25.6971 55.2406 15.8994

We have thus reached an outer surface brightness of 25.70 magnitudes/arcsec? (second
column in edge_cat.fits) on this single exposure SDSS image! This is very similar to the
surface brightness limit measured in Section 2.2.4 [Image surface brightness limit], page 92,
(which is a big achievement!). But another point in the result above is very interesting:
the total S/N of the edge is 55.24 with a total edge magnitude®® of 15.90!!! This is very
large for such a faint signal (recall that the mean S/N per pixel was 0.32) and shows a very
important point in the study of galaxies: While the per-pixel signal in their outer edges
may be very faint (and invisible to the eye in noise), a lot of signal hides deeply buried in
the noise.

In interpreting this value, you should just have in mind that NoiseChisel works based on
the contiguity of signal in the pixels. Therefore the larger the object, the deeper NoiseChisel
can carve it out of the noise (for the same outer surface brightness). In other words, this
reported depth, is the depth we have reached for this object in this dataset, processed with
this particular NoiseChisel configuration. If the M51 group in this image was larger/smaller
than this (the field of view was smaller/larger), or if the image was from a different instru-
ment, or if we had used a different configuration, we would go deeper/shallower.

2.2.6 Extract clumps and objects (Segmentation)

In Section 2.2.2 [NoiseChisel optimization|, page 82, we found a good detection map over the
image, so pixels harboring signal have been differentiated from those that do not. For noise-
related measurements like the surface brightness limit, this is fine. However, after finding
the pixels with signal, you are most likely interested in knowing the sub-structure within
them. For example, how many star forming regions (those bright dots along the spiral
arms) of M51 are within this image? What are the colors of each of these star forming
regions? In the outer most wings of M51, which pixels belong to background galaxies and
foreground stars? And many more similar questions. To address these questions, you can
use Section 7.3 [Segment]|, page 571, to identify all the “clumps” and “objects” over the
detection.

$ astsegment r_detected.fits --output=r_segmented.fits
$ ds9 -mecube r_segmented.fits -cmap sls -zoom to fit -scale limits 0 2

36 You can run MakeCatalog on only-mb1.fits instead of edge.fits to see the full magnitude of the M51
group in this image.
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Open the output r_segmented.fits as a multi-extension data cube with the second
command above and flip through the first and second extensions, zoom-in to the spiral
arms of M51 and see the detected clumps (all pixels with a value larger than 1 in the second
extension). To optimize the parameters and make sure you have detected what you wanted,
we recommend to visually inspect the detected clumps on the input image.

For visual inspection, you can make a simple shell script like below. It will first call
MakeCatalog to estimate the positions of the clumps, then make an SAO DS9 region file
and open ds9 with the image and region file. Recall that in a shell script, the numeric
variables (like $1, $2, and $3 in the example below) represent the arguments given to the
script. But when used in the AWK arguments, they refer to column numbers.

To create the shell script, using your favorite text editor, put the contents below into a
file called check-clumps.sh. Recall that everything after a # is just comments to help you
understand the command (so read them!). Also note that if you are copying from the PDF
version of this book, fix the single quotes in the AWK command.

#! /bin/bash
set -e # Stop execution when there is an error.
set -u # Stop execution when a variable is not initialized.

# Run MakeCatalog to write the coordinates into a FITS table.
# Default output is “$1_cat.fits'.
astmkcatalog $1.fits --clumpscat --ids --ra --dec

# Use Gnuastro's Table and astscript-ds9-region to build the DS9
# region file (a circle of radius 1 arcseconds on each point).
asttable $1"_cat.fits" -hCLUMPS -cRA,DEC \
| astscript-ds9-region -c1,2 --mode=wcs --radius=1 \
—--output=$1.reg

# Show the image (with the requested color scale) and the region file.
ds9 -geometry 1800x3000 -mecube $1.fits -zoom to fit \
-scale limits $2 $3 -regions load all $1.reg

# Clean up (delete intermediate files).
rm $1"_cat.fits" $1.reg

Finally, you just have to activate the script’s executable flag with the command below. This
will enable you to directly /easily call the script as a command.

$ chmod +x check-clumps.sh

This script does not expect the .fits suffix of the input’s filename as the first argument.
Because the script produces intermediate files (a catalog and DS9 region file, which are later
deleted). However, we do not want multiple instances of the script (on different files in the
same directory) to collide (read/write to the same intermediate files). Therefore, we have
used suffixes added to the input’s name to identify the intermediate files. Note how all the
$1 instances in the commands (not within the AWK command?®") are followed by a suffix.
If you want to keep the intermediate files, put a # at the start of the last line.

37 In AWK, $1 refers to the first column, while in the shell script, it refers to the first argument.
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The few, but high-valued, bright pixels in the central parts of the galaxies can hinder easy
visual inspection of the fainter parts of the image. With the second and third arguments
to this script, you can set the numerical values of the color map (first is minimum/black,
second is maximum/white). You can call this script with any® output of Segment (when
--rawoutput is not used) with a command like this:

$ ./check-clumps.sh r_segmented -0.1 2

Go ahead and run this command. You will see the intermediate processing being done
and finally it opens SAO DS9 for you with the regions superimposed on all the extensions
of Segment’s output. The script will only finish (and give you control of the command-line)
when you close DS9. If you need your access to the command-line before closing DS9, add
a & after the end of the command above.

While DS9 is open, slide the dynamic range (values for black and white, or mini-
mum/maximum values in different color schemes) and zoom into various regions of the
M51 group to see if you are satisfied with the detected clumps. Do not forget that through
the “Cube” window that is opened along with DS9, you can flip through the extensions and
see the actual clumps also. The questions you should be asking yourself are these: 1) Which
real clumps (as you visually feel) have been missed? In other words, is the completeness
good? 2) Are there any clumps which you feel are false? In other words, is the purity good?

Note that completeness and purity are not independent of each other, they are anti-
correlated: the higher your purity, the lower your completeness and vice-versa. You can see
this by playing with the purity level using the ~—snquant option. Run Segment as shown
above again with -P and see its default value. Then increase/decrease it for higher/lower
purity and check the result as before. You will see that if you want the best purity, you
have to sacrifice completeness and vice versa.

One interesting region to inspect in this image is the many bright peaks around the
central parts of M51. Zoom into that region and inspect how many of them have actually
been detected as true clumps. Do you have a good balance between completeness and
purity? Also look out far into the wings of the group and inspect the completeness and
purity there.

An easier way to inspect completeness (and only completeness) is to mask all the pixels
detected as clumps and visually inspecting the rest of the pixels. You can do this using
Arithmetic in a command like below. For easy reading of the command, we will define the
shell variable i for the image name and save the output in masked.fits.

$ in="r_segmented.fits -hINPUT-NO-SKY"
$ clumps="r_segmented.fits -hCLUMPS"
$ astarithmetic $in $clumps O gt nan where -oclumps-masked.fits

Inspecting clumps-masked.fits, you can see some very diffuse peaks that have been
missed, especially as you go farther away from the group center and into the diffuse wings.
This is due to the fact that with this configuration, we have focused more on the sharper
clumps. To put the focus more on diffuse clumps, you can use a wider convolution kernel.

38 Some modifications are necessary based on the input dataset: depending on the dynamic range, you
have to adjust the second and third arguments. But more importantly, depending on the dataset’s world
coordinate system, you have to change the region width, in the AWK command. Otherwise the circle
regions can be too small/large.
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Using a larger kernel can also help in detecting the existing clumps to fainter levels (thus
better separating them from the surrounding diffuse signal).

You can make any kernel easily using the --kernel option in Section 8.1 [MakeProfiles],
page 652. But note that a larger kernel is also going to wash-out many of the sharp/small
clumps close to the center of M51 and also some smaller peaks on the wings. Please
continue playing with Segment’s configuration to obtain a more complete result (while
keeping reasonable purity). We will finish the discussion on finding true clumps at this
point.

The properties of the clumps within M51, or the background objects can then easily
be measured using Section 7.4 [MakeCatalog], page 582. To measure the properties of the
background objects (detected as clumps over the diffuse region), you should not mask the
diffuse region. When measuring clump properties with Section 7.4 [MakeCatalog], page 582,
and using the --clumpscat, the ambient flux (from the diffuse region) is calculated and
subtracted. If the diffuse region is masked, its effect on the clump brightness cannot be
calculated and subtracted.

To keep this tutorial short, we will stop here. See Section 2.1.13 [Segmentation and
making a catalog], page 47, and Section 7.3 [Segment|, page 571, for more on using Segment,
producing catalogs with MakeCatalog and using those catalogs.

2.3 Building the extended PSF

Deriving the extended PSF of an image is very important in many aspects of the analysis of
the objects within it. Gnuastro has a set of installed scripts, designed to simplify the process
following the recipe of Infante-Sainz et al. 2020 (https://arxiv.org/abs/1911.01430);
for more, see Section 10.8 [PSF construction and subtraction], page 725. An overview of
the process is given in Section 10.8.1 [Overview of the PSF scripts|, page 726.

2.3.1 Preparing input for extended PSF

We will use an image of the M51 galaxy group in the r (SDSS) band of the Javalambre
Photometric Local Universe Survey (J-PLUS) to extract its extended PSF. For more infor-
mation on J-PLUS, and its unique features visit: http://www.j-plus.es.

First, let’s download the image from the J-PLUS web page using wget. But to have a
generalize-able, and easy to read command, we will define some base variables (in all-caps)
first. After the download is complete, open the image with SAO DS9 (or any other FITS
viewer you prefer!) to have a feeling of the data (and of course, enjoy the beauty of M51 in
such a wide field of view):

urlend="jplus-dr2/get_fits?id=67510"
urlbase="http://archive.cefca.es/catalogues/vo/siap/"
mkdir jplus-dr2

wget $urlbase$urlend -0 jplus-dr2/67510.fits.fz

$ astscript-fits-view jplus-dr2/67510.fits.fz

€ H P P

After enjoying the large field of view, have a closer look at the edges of the image. Please
zoom in to the corners. You will see that on the edges, the pixel values are either zero or
with significantly different values than the main body of the image. This is due to the


https://arxiv.org/abs/1911.01430
http://www.j-plus.es
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dithering pattern that was used to make this image and happens in all imaging surveys®’.
To avoid potential issues or problems that these regions may cause, we will first crop out
the main body of the image with the command below. To keep the top-level directory clean,
let’s also put the crop in a directory called flat.

$ mkdir flat

$ astcrop jplus-dr2/67510.fits.fz --section=225:9275,150:9350 \
—--mode=img -oflat/67510.fits

$ astscript-fits-view flat/67510.fits

Please zoom into the edges again, you will see that they now have the same noise-level as
the rest of the image (the problematic parts are now gone).

2.3.2 Saturated pixels and Segment’s clumps

A constant-depth (flat) image was created in the previous section (Section 2.3.1 [Preparing
input for extended PSF|, page 102). As explained in Section 10.8.1 [Overview of the PSF
scripts], page 726, an important step when building the PSF is to mask other sources in the
image. Therefore, before going onto selecting stars, let’s detect all significant signal, and
identify the clumps of background objects over the wings of the extended PSF.

There is a problem however: the saturated pixels of the bright stars are going to cause
problems in the segmentation phase. To see this problem, let’s make a 1000 x 1000 crop
around a bright star to speed up the test (and its solution). Afterwards we will apply the
solution to the whole image.

$ astcrop flat/67510.fits --mode=wcs --widthinpix --width=1000 \
--center=203.3916736,46.7968652 --output=saturated.fits

$ astnoisechisel saturated.fits --output=sat-nc.fits

$ astsegment sat-nc.fits --output=sat-seg.fits

$ astscript-fits-view sat-seg.fits

Have a look at the CLUMPS extension. You will see that instead of a single clump at the

center of the bright star, we have many clumps! This has happened because of the saturated
pixels! When saturation occurs, the sharp peak of the profile is lost (like cutting off the tip
of a mountain to build a telescope!) and all saturated pixels get a noisy value close to the
saturation level. To see this saturation noise run the last command again and in SAO DS9,
set the “Scale” to “min max” and zoom into the center. You will see the noisy saturation
pixels at the center of the star in red.

This noise-at-the-peak disrupts Segment’s assumption to expand clumps from a local
maxima: each noisy peak is being treated as a separate local maxima and thus a separate
clump. For more on how Segment defines clumps, see Section 3.2.1 and Figure 8 of Akhlaghi
and Ichikawa 2015 (https://arxiv.org/abs/1505.01664). To have the center identified
as a single clump, we should mask these saturated pixels in a way that suites Segment’s
non-parametric methodology.

First we need to find the saturation level! The saturation level is usually fixed for any
survey or input data that you receive from a certain database, so you will usually have to do
this only once (the first time you get data from that database). Let’s make a smaller crop
of 50 x 50 pixels around the star with the first command below. With the next command,

39 Recall the cropping in a previous tutorial for a similar reason (varying “depth” across the image):
Section 2.1.4 [Dataset inspection and cropping], page 25.
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please look at the crop with DS9 to visually understand the problem. You will see the
saturated pixels as the noisy red pixels in the center of the image. A non-saturated star will
have a single pixel as the maximum and will not have such a large area covered by a noisy
constant value (find a few stars in the image and see for yourself). Visual and qualitative
inspection of the process is very important for understanding the solution.

$ astcrop saturated.fits --mode=wcs --widthinpix --width=50 \
--center=203.3916736,46.7968652 --output=sat-center.fits
$ astscript-fits-view sat-center.fits --ds9scale=minmax

To quantitatively identify the saturation level in this image, let’s have a look at the distri-
bution of pixels with a value larger than 100 (above the noise level):

$ aststatistics sat-center.fits --greaterequal=100
Histogram:

| %%

| k% *%

| sk x *k

| sk ok >k k ok 5k ok kk

| kkskokkokkokkok >k * * sk ok ok ok oK
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The peak you see in the right end (larger values) of the histogram shows the saturated
pixels (a constant level, with some scatter due to the large Poisson noise). If there was no
saturation, the number of pixels should have decreased at increasing values; until reaching
the maximum value of the profile in one pixel. But that is not the case here. Please try
this experiment on a non-saturated (fainter) star to see what we mean.

If you still have not experimented on a non-saturated star, please stop reading this
tutorial! Please open flat/67510.fits in DS9, select a fainter/smaller star and repeat the
last three commands (with a different center). After you have confirmed the point above
(visually, and with the histogram), please continue with the rest of this tutorial.

Finding the saturation level is easy with Statistics (by using the ~—1essthan option until
the histogram becomes as expected: only decreasing). First, let’s try -—-lessthan=3000:

$ aststatistics sat-center.fits --greaterequal=100 --lessthan=3000
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We still see an increase in the histogram around 3000. Let’s try a threshold of 2500:

$ aststatistics sat-center.fits --greaterequal=100 --lessthan=2500
Histogram:

| *

| *
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The peak at the large end of the histogram has gone! But let’s have a closer look at the
values (the resolution of an ASCII histogram is limited!). To do this, we will ask Statistics
to save the histogram into a table with the --histogram option, then look at the last 20

TOWS:

$ aststatistics sat-center.fits --greaterequal=100 --lessthan=2500 \
--histogram --output=sat-center-hist.fits
$ asttable sat-center-hist.fits --tail=20
2021.1849112701 1
2045.0495397186
2068.9141681671
2092.7787966156
2116.6434250641
2140.5080535126
2164.3726819611
2188.2373104095
2212.101938858
2235.9665673065
2259.831195755
2283.6958242035
2307.560452652
2331.4250811005
2355.289709549
2379.1543379974
2403.0189664459
2426.8835948944
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2450.7482233429 2
2474.6128517914 2

Since the number of points at the extreme end are increasing (from 1 to 2), We therefore
see that a value 2500 is still above the saturation level (the number of pixels has started to
increase)! A more reasonable saturation level for this image would be 2200! As an exercise,
you can try automating this selection with AWK.

Therefore, we can set the saturation level in this image®’ to be 2200. Let’s mask all such
pixels with the command below:

$ astarithmetic saturated.fits set-i i i 2200 gt nan where \
--output=sat-masked.fits
$ astscript-fits-view sat-masked.fits --ds9scale=minmax

Please see the peaks of several bright stars, not just the central very bright star. Zoom
into each of the peaks you see. Besides the central very bright one that we were looking
at closely until now, only one other star is saturated (its center is NaN, or Not-a-Number).
Try to find it.

But we are not done yet! Please zoom-in to that central bright star and have another look
on the edges of the vertical “bleeding” saturated pixels, there are strong positive/negative
values touching it (almost like “waves”). These will also cause problems and have to be
masked! So with a small addition to the previous command, let’s dilate the saturated
regions (with 2-connectivity, or 8-connected neighbors) four times and have another look:

$ astarithmetic saturated.fits set-i i i 2200 gt \
2 dilate 2 dilate 2 dilate 2 dilate \
nan where --output=sat-masked.fits

$ astscript-fits-view sat-masked.fits --ds9scale=minmax

Now that saturated pixels (and their problematic neighbors) have been masked, we can
convolve the image (recall that Segment will use the convolved image for identifying clumps)
with the command below. However, we will use the Spatial Domain convolution which can
account for blank pixels (for more on the pros and cons of spatial and frequency domain
convolution, see Section 6.3.3 [Spatial vs. Frequency domain], page 497). We will also
create a Gaussian kernel with FWHM = 2 pixels, truncated at 5 x FWHM.

$ astmkprof --kernel=gaussian,2,5 --oversample=1 -okernel.fits

$ astconvolve sat-masked.fits --kernel=kernel.fits --domain=spatial \
--output=sat-masked-conv.fits

$ astscript-fits-view sat-masked-conv.fits --ds9scale=minmax

Please zoom-in to the star and look closely to see how after spatial-domain convolution, the
problematic pixels are still NaN. But Segment requires the profile to start with a maximum
value and decrease. So before feeding into Segment, let’s fill the blank values with the
maximum value of the neighboring pixels in both the input and convolved images (see
Section 6.2.4.10 [Interpolation operators|, page 437):

$ astarithmetic sat-masked.fits 2 2 interpolate-maxofregion \
--output=sat-fill.fits

40 Tn raw exposures, this value is usually around 65000 (close to 216, since most CCDs have 16-bit pixels;
see Section 4.5 [Numeric data types|, page 279). But that is not the case here, because this is a
processed/coadded image that has been calibrated.
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$ astarithmetic sat-masked-conv.fits 2 2 interpolate-maxofregion \
--output=sat-fill-conv.fits
$ astscript-fits-view sat-fill*x --ds9scale=minmax

Have a closer look at the opened images. Please zoom-in (you will notice that they are
already matched and locked, so they will both zoom-in together). Go to the centers of the
saturated stars and confirm how they are filled with the largest non-blank pixel. We can
now feed this image to NoiseChisel and Segment as the convolved image:

$ astnoisechisel sat-fill.fits --convolved=sat-fill-conv.fits \
--output=sat-nc.fits
$ astsegment sat-nc.fits --convolved=sat-fill-conv.fits \
--output=sat-seg.fits --rawoutput
$ ds9 -mecube sat-seg.fits -zoom to fit -scale limits -1 1

See the CLUMPS extension. Do you see how the whole center of the star has indeed been
identified as a single clump? We thus achieved our aim and did not let the saturated pixels
harm the identification of the center!

If the issue was only clumps (like in a normal deep image processing), this was the end
of Segment’s special considerations. However, in the scenario here, with the very extended
wings of the bright stars, it usually happens that background objects become “clumps”
in the outskirts and will rip the bright star outskirts into separate “objects”. In the next
section (Section 2.3.3 [One object for the whole detection|, page 107), we will describe how
you can modify Segment to avoid this issue.

2.3.3 One object for the whole detection

In Section 2.3.2 [Saturated pixels and Segment’s clumps], page 103, we described how you
can run Segment such that saturated pixels do not interfere with its clumps. However, due
to the very extended wings of the PSF, the default definition of “objects” should also be
modified for the scenario here. To better see the problem, let’s inspect now the OBJECTS
extension, focusing on those objects with a label between 50 to 150 (which include the main
star):

$ astscript-fits-view sat-seg.fits -hOBJECTS --ds9scale="limits 50 150"

We can see that the detection corresponding to the star has been broken into different
objects. This is not a good object segmentation image for our scenario here. Since those
objects in the outer wings of the bright star’s detection harbor a lot of the extended PSF.
We want to keep them with the same “object” label as the star (we only need to mask the
“clumps” of the background sources). To do this, we will make the following changes to
Segment’s options (see Section 7.3.1.2 [Segmentation options|, page 577, for more on this
options):

e Since we want the extended diffuse flux of the PSF to be taken as a single object, we
want all the grown clumps to touch. Therefore, it is necessary to decrease -—gthresh
to very low values, like —10. Recall that its value is in units of the input standard
deviation, so ——gthresh=-10 corresponds to —10c. The default value is not for such
extended sources that dominate all background sources.

e Since we want all connected grown clumps to be counted as a single object in any case,
we will set ——objbordersn=0 (its smallest possible value).
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Let’s make these changes and check if the star has been kept as a single object in the
OBJECTS extension or not:

$ astsegment sat-nc.fits --convolved=sat-fill-conv.fits \
--gthresh=-10 --objbordersn=0 \
--output=sat-seg.fits --rawoutput
$ astscript-fits-view sat-seg.fits -hOBJECTS --ds9scale="limits 50 150"

Now we can extend these same steps to the whole image. To detect signal, we can run
NoiseChisel using the command below. We modified the default value to two of the options,
below you can see the reason for these changes. See Section 2.2 [Detecting large extended
targets], page 80, for more on optimizing NoiseChisel.

e Since the image is so large, we have increased --outliernumngb to get better outlier
statistics on the tiles. The default value is primarily for small images, so this is usually
the first thing you should do when running NoiseChisel on a real/large image.

e Since the image is not too deep (made from few exposures), it does not have strong cor-
related noise, so we will decrease --detgrowquant and increase --detgrowmaxholesize
to better extract signal.

Furthermore, since both NoiseChisel and Segment need a convolved image, we will do the
convolution before and feed it to both (to save running time). But in the first command
below, let’s delete all the temporary files we made above.

Since the image is large (+300 MB), to avoid wasting storage, any temporary file that is
no longer necessary for later processing is deleted after it is used. You can visually check
each of them with DS9 before deleting them (or not delete them at all!). Generally, within a
pipeline it is best to remove such large temporary files, because space runs out much faster
than you think (for example, once you get good results and want to use more fields).

$ rm *.fits
$ mkdir label
$ astmkprof --kernel=gaussian,2,5 --oversample=1 \
-olabel/kernel.fits
$ astarithmetic flat/67510.fits set-i i i 2200 gt \
2 dilate 2 dilate 2 dilate 2 dilate nan where \
--output=label/67510-masked-sat.fits
$ astconvolve label/67510-masked-sat.fits --kernel=label/kernel.fits \
--domain=spatial --output=label/67510-masked-conv.fits
$ rm label/kernel.fits

$ astarithmetic label/67510-masked-sat.fits 2 2 interpolate-maxofregion \J

--output=label/67510-fill.fits

$ astarithmetic label/67510-masked-conv.fits 2 2 interpolate-maxofregion \li

--output=label/67510-fill-conv.fits

$ rm label/67510-masked-conv.fits

$ astnoisechisel label/67510-fill.fits --outliernumngb=100 \
--detgrowquant=0.8 --detgrowmaxholesize=100000 \
--convolved=label/67510-fill-conv.fits \
--output=label/67510-nc.fits

$ rm label/67510-fill.fits

$ astsegment label/67510-nc.fits --output=label/67510-seg-raw.fits \
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--convolved=1label/67510-fill-conv.fits --rawoutput \
--gthresh=-10 --objbordersn=0

$ rm label/67510-fill-conv.fits

$ astscript-fits-view label/67510-seg-raw.fits

We see that the saturated pixels have not caused any problem and the central
clumps/objects of bright stars are now a single clump/object. We can now proceed to
estimating the outer PSF. But before that, let’s make a “standard” segment output: one
that can safely be fed into MakeCatalog for measurements and can contain all necessary
outputs of this whole process in a single file (as multiple extensions).

The main problem is again the saturated pixels: we interpolated them to be the maxi-
mum of their nearby pixels. But this will cause problems in any measurement that is done
over those regions. To let MakeCatalog know that those pixels should not be used, the first
extension of the file given to MakeCatalog should have blank values on those pixels. We
will do this with the commands below:

## First HDU of Segment (Sky-subtracted input)

$ astarithmetic label/67510-nc.fits -hINPUT-NO-SKY \
label/67510-masked-sat.fits isblank nan where \
--output=label/67510-seg.fits

$ astfits label/67510-seg.fits --update=EXTNAME,INPUT-NO-SKY

## Second and third HDUs: CLUMPS and OBJECTS
$ astfits label/67510-seg-raw.fits --copy=CLUMPS --copy=0BJECTS \
--output=label/67510-seg.fits

## Fourth HDU: Sky standard deviation (from NoiseChisel):
$ astfits label/67510-nc.fits --copy=SKY_STD \
—-output=label/67510-seg.fits

## Clean up all the un-necessary files:
$ rm label/67510-masked-sat.fits label/67510-nc.fits \
label/67510-seg-raw.fits

You can now simply run MakeCatalog on this image and be sure that saturated pixels
will not affect the measurements. As one example, you can use MakeCatalog to find the
clumps containing saturated pixels: recall that the -—area column only calculates the area
of non-blank pixels, while --geo-area calculates the area of the label (independent of their
blank-ness in the values image):

$ astmkcatalog label/67510-seg.fits --ids --ra --dec --area \
--geo—area --clumpscat --output=cat.fits

The information of the clumps that have been affected by saturation can easily be found
by selecting those with a differing value in the AREA and AREA_FULL columns:

## With AWK (second command, counts the number of rows)
$ asttable cat.fits -hCLUMPS | awk '$5!=$6"
$ asttable cat.fits -hCLUMPS | awk '$5'!'=$6' | wc -1

## Using Table arithmetic (compared to AWK, you can use column
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## names, save as FITS, and be faster):
$ asttable cat.fits -hCLUMPS -cRA,DEC --noblankend=3 \
—-c'arith AREA AREA AREA_FULL eq nan where'

## Remove the table (which was just for a demo)
$ rm cat.fits

We are now ready to start building the outer parts of the PSF in Section 2.3.4 [Building
outer part of PSF], page 110.

2.3.4 Building outer part of PSF

In Section 2.3.2 [Saturated pixels and Segment’s clumps|, page 103, and Section 2.3.3 [One
object for the whole detection], page 107, we described how to create a Segment clump
and object map, while accounting for saturated stars and not having over-fragmentation of
objects in the outskirts of stars. We are now ready to start building the extended PSF.

First we will build the outer parts of the PSF, so we want the brightest stars. You will
see we have several bright stars in this very large field of view, but we do not yet have a
feeling how many they are, and at what magnitudes. So let’s use Gnuastro’s Query program
to find the magnitudes of the brightest stars (those brighter than g-magnitude 10 in Gaia
data release 3, or DR3). For more on Query, see Section 5.4 [Query], page 378.

$ astquery gaia --dataset=dr3 --overlapwith=flat/67510.fits \
--range=phot_g_mean_mag,-inf,10 \
——output=flat/67510-bright.fits
Now, we can easily visualize the magnitude and positions of these stars using astscript-
ds9-region and the command below (for more on this script, see Section 10.3 [SAO DS9
region files from table|, page 702)

$ astscript-ds9-region flat/67510-bright.fits -cra,dec \
--namecol=phot_g_mean_mag \
--command="ds9 flat/67510.fits -zoom to fit -zscale"

You can see that we have several stars between magnitudes 6 to 10. Let’s use astscript-
psf-select-stars in the command below to select the relevant stars in the image (the
brightest; with a magnitude between 6 to 10). The advantage of using this script (instead
of a simple --range in Table), is that it will also check distances to nearby stars and reject
those that are too close (and not good for constructing the PSF). Since we have very bright
stars in this very wide-field image, we will also increase the distance to nearby neighbors
with brighter or similar magnitudes (the default value is 1 arcmin). To do this, we will set
--mindistdeg=0.02, which corresponds to 1.2 arcmin. The details of the options for this
script are discussed in Section 10.8.2 [Invoking astscript-psf-select-stars|, page 727.

$ mkdir outer
$ astscript-psf-select-stars flat/67510.fits \
--magnituderange=6,10 --mindistdeg=0.02 \
--output=outer/67510-6-10.fits
Let’s have a look at the selected stars in the image (it is very important to visually check
every step when you are first discovering a new dataset).

$ astscript-ds9-region outer/67510-6-10.fits -cra,dec \
--namecol=phot_g_mean_mag \
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—-—command="ds9 flat/67510.fits -zoom to fit -zscale"

Now that the catalog of good stars is ready, it is time to construct the individual stamps
from the catalog above. To create stamps, first, we need to crop a fixed-size box around
each isolated star in the catalog. The contaminant objects in the crop should be masked
and finally, the fluxes in these cropped images should be normalized. To do these, we will
use astscript-psf-stamp (for more on this script see Section 10.8.3 [Invoking astscript-
psf-stamp], page 730).

One of the most important parameters for this script is the normalization radii
—--normradii. This parameter defines a ring for the flux normalization of each star stamp.
The normalization of the flux is necessary because each star has a different brightness, and
consequently, it is crucial for having all the stamps with the same flux level in the same
region. Otherwise the final coadd of the different stamps would have no sense. Depending
on the PSF shape, internal reflections, ghosts, saturated pixels, and other systematics, it
would be necessary to choose the ——normradii appropriately.

The selection of the normalization radii is something that requires a good understanding
of the data. To do that, let’s use two useful parameters that will help us in the checking of
the data: --tmpdir and --keeptmp;

e With --tmpdir=checking-normradii all temporary files, including the radial profiles,
will be save in that directory (instead of an internally-created name).

e With --keeptmp we will not remove the temporal files, so it is possible to have a look
at them (by default the temporary directory gets deleted at the end). It is necessary
to specify the ——normradii even if we do not know yet the final values. Otherwise the
script will not generate the radial profile.

As a consequence, in this step we put the normalization radii equal to the size of the
stamps. By doing this, the script will generate the radial profile of the entire stamp. In
this particular step we set it to ——normradii=500,510. We also use the —-nocentering
option to disable sub-pixel warping in this phase (it is only relevant for the central part of
the PSF). Furthermore, since there are several stars, we iterate over each row of the catalog
using a while loop.

$ counter=1
$ mkdir finding-normradii
$ asttable outer/67510-6-10.fits \
| while read -r ra dec mag; do
astscript-psf-stamp label/67510-seg.fits \
--mode=wcs \
--nocentering \
—-center=$ra,$dec \
—--normradii=500,510 \
--widthinpix=1000,1000 \
--segment=label/67510-seg.fits \
--output=finding-normradii/$counter.fits \
--tmpdir=finding-normradii --keeptmp; \
counter=$((counter+1)); \
done
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First let’s have a look at all the masked postage stamps of the cropped stars. Once they
all open, feel free to zoom-in, they are all matched and locked. It is always good to check
the different stamps to ensure the quality and possible two dimensional features that are
difficult to detect from the radial profiles (such as ghosts and internal reflections).

$ astscript-fits-view finding-normradii/cropped-maskedx.fits

If everything looks good in the image, let’s open all the radial profiles and visually check
those with the command below. Note that astscript-fits-view calls the topcat graphic
user interface (GUI) program to visually inspect (plot) tables. If you do not already have
it, see Section A.2 [TOPCAT], page 990.

$ astscript-fits-view finding-normradii/rprofilex.fits

After some study of this data, we could say that a good normalization ring is those
pixels between R=20 and R=30 pixels. Such a ring ensures having a high number of pixels
so the estimation of the flux normalization will be robust. Also, at such distance from the
center the signal to noise is high and there are not obvious features that can affect the
normalization. Note that the profiles are different because we are considering a wide range
of magnitudes, so the fainter stars are much more noisy. However, in this tutorial we will
keep these stars in order to have a higher number of stars for the outer part. In a real case
scenario, we should look for stars with a much more similar brightness (smaller range of
magnitudes) to not lose signal to noise as a consequence of the inclusion of fainter stars.

$ rm -r finding-normradii
$ counter=1
$ mkdir outer/stamps
$ asttable outer/67510-6-10.fits \
| while read -r ra dec mag; do
astscript-psf-stamp label/67510-seg.fits \
--mode=wcs \
--nocentering \
--center=%$ra,$dec \
--normradii=20,30 \
--widthinpix=1000,1000 \
--segment=label/67510-seg.fits \
--output=outer/stamps/67510-$counter.fits; \
counter=$((counter+1)); \
done

After the stamps are created, we need to coadd them together with a simple Arithmetic
command (see Section 6.2.4.7 [Coadding operators|, page 428). The coadd is done using the
sigma-clipped mean operator that will preserve more of the signal, while rejecting outliers
(more than 30 with a tolerance of 0.2, for more on sigma-clipping see Section 2.10.2 [Sigma
clipping], page 200). Just recall that we need to specify the number of inputs into the
coadding operators, so we are reading the list of images and counting them as separate
variables before calling Arithmetic.

$ numimgs=$(echo outer/stamps/*.fits | wc -w)

$ astarithmetic outer/stamps/*.fits $numimgs 3 0.2 sigclip-mean \
-gl --output=outer/coadd.fits --wcsfile=none \
--writeall
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Did you notice the ——wcsfile=none option above? With it, the coadded image no longer
has any WCS information. This is natural, because the coadded image does not correspond
to any specific region of the sky any more. Also note the ——writeall option: it is necessary
because sigclip-mean will return two datasets: the actual coadded image and an image
showing how many images were ultimately used for each pixel. Because of this, the output
has two HDUs, containing both these images respectiely. This is a good check to help
improve/debug your results.

Let’s compare this coadded PSF with the images of the individual stars that were used
to create it. You can clearly see that the number of masked pixels is significantly decreased
and the PSF is much more “cleaner”.

$ astscript-fits-view outer/coadd.fits outer/stamps/*.fits

However, the saturation in the center still remains. Also, because we did not have too
many images, some regions still are very noisy. If we had more bright stars in our selected
magnitude range, we could have filled those outer remaining patches. In a large survey like
J-PLUS (that we are using here), you can simply look into other fields that were observed
soon before/after the image ID 67510 that we used here (to have a similar PSF) and get
more stars in those images to add to these. In fact, the J-PLUS DR2 image ID of the
field above was intentionally preserved during the steps above to show how easy it is to use
images from other fields and blend them all into the output PSF.

2.3.5 Inner part of the PSF

In Section 2.3.4 [Building outer part of PSF], page 110, we were able to create a coadd of
the outer-most behavior of the PSF in a J-PLUS survey image. But the central part that
was affected by saturation and non-linearity is still remaining, and we still do not have a
“complete” PSF! In this section, we will use the same steps before to make coadds of more
inner regions of the PSF to ultimately unite them all into a single PSF in Section 2.3.6
[Uniting the different PSF components], page 114.

For the outer PSF, we selected stars in the magnitude range of 6 to 10. So let’s have
a look and see how many stars we have in the magnitude range of 12 to 13 with a more
relaxed condition on the minimum distance for neighbors, ~-mindistdeg=0.01 (36 arcsec,
since these stars are fainter), and use the ds9 region script to visually inspect them:

$ mkdir inner

$ astscript-psf-select-stars flat/67510.fits \
--magnituderange=12,13 --mindistdeg=0.01 \
--output=inner/67510-12-13.fits

$ astscript-ds9-region inner/67510-12-13.fits -cra,dec \
--namecol=phot_g_mean_mag \
--command="ds9 flat/67510.fits -zoom to fit -zscale"

We have 41 stars, but if you zoom into their centers, you will see that they do not have
any major bleeding-vertical saturation any more. Only the very central core of some of the
stars is saturated. We can therefore use these stars to fill the strong bleeding footprints
that were present in the outer coadd of outer/coadd.fits. Similar to before, let’s build
ready-to-coadd crops of these stars. To get a better feeling of the normalization radii, follow
the same steps of Section 2.3.4 [Building outer part of PSF], page 110, (setting —-tmpdir
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and --keeptmp). In this case, since the stars are fainter, we can set a smaller size for the
individual stamps, ——widthinpix=500,500, to speed up the calculations:

$ counter=1
$ mkdir inner/stamps
$ asttable inner/67510-12-13.fits \
| while read -r ra dec mag; do
astscript-psf-stamp label/67510-seg.fits \
--mode=wcs \
--normradii=5,10 \
-—-center=$ra,$dec \
--widthinpix=500,500 \
--segment=label/67510-seg.fits \
--output=inner/stamps/67510-$counter.fits; \
counter=$((counter+1)); \
done

$ numimgs=$(echo inner/stamps/*.fits | wc -w)

$ astarithmetic inner/stamps/*.fits $numimgs 3 0.2 sigclip-mean \
-gl --output=inner/coadd.fits --wcsfile=none \
--writeall

$ astscript-fits-view inner/coadd.fits inner/stamps/*.fits

We are now ready to unite the two coadds we have constructed: the outer and the inner
parts.

2.3.6 Uniting the different PSF components

In Section 2.3.4 [Building outer part of PSF], page 110, we built the outer part of the
extended PSF and the inner part was built in Section 2.3.5 [Inner part of the PSF], page 113.
The outer part was built with very bright stars, and the inner part using fainter stars to
not have saturation in the core of the PSF. The next step is to join these two parts in order
to have a single PSF. First of all, let’s have a look at the two coadds and also to their radial
profiles to have a good feeling of the task. Note that you will need to have TOPCAT to
run the last command and plot the radial profile (see Section A.2 [TOPCAT], page 990).

$ astscript-fits-view outer/coadd.fits inner/coadd.fits

$ astscript-radial-profile outer/coadd.fits -o outer/profile.fits
$ astscript-radial-profile inner/coadd.fits -o inner/profile.fits
$ astscript-fits-view outer/profile.fits inner/profile.fits

From the visual inspection of the images and the radial profiles, it is clear that we have
saturation in the center for the outer part. Note that the absolute flux values of the PSFs
are meaningless since they depend on the normalization radii we used to obtain them. The
uniting step consists in scaling up (or down) the inner part of the PSF to have the same
flux at the junction radius, and then, use that flux-scaled inner part to fill the center of the
outer PSF. To get a feeling of the process, first, let’s open the two radial profiles and find
the factor manually first:

1. Run this command to open the two tables in Section A.2 [TOPCAT], page 990:

$ astscript-fits-view outer/profile.fits inner/profile.fits
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10.

11.

12.

13.

14.

On the left side of the screen, under “Table List”, you will see the two imported tables.
Click on the first one (profile of the outer part) so it is shown first.

Under the “Graphics” menu item, click on “Plane plot”. A new window will open
with the plot of the first two columns: RADIUS on the horizontal axis and MEAN on the
vertical. The rest of the steps are done in this window.

In the bottom settings, within the left panel, click on the “Axes” item. This will allow
customization of the plot axes.

In the bottom-right panel, click on the box in front of “Y Log” to make the vertical
axis logarithmic-scaled.

On the “Layers” menu, select “Add Position Control” to allow adding the profile of
the inner region. After it, you will see that a new red-blue scatter plot icon opened on
the bottom-left menu (with a title of <no table>).

On the bottom-right panel, in the drop-down menu in front of Table:, select 2:
profile.fits. Afterwards, you will see the radial profile of the inner coadd as the
newly added blue plot. Our goal here is to find the factor that is necessary to multiply
with the inner profile so it matches the outer one.

On the bottom-right panel, in front of Y:, you will see MEAN. Click in the white-space
after it, and type this: *100. This will display the MEAN column of the inner profile, after
multiplying it by 100. Afterwards, you will see that the inner profile (blue) matches
more cleanly with the outer (red); especially in the smaller radii. At larger radii, it
does not drop like the red plot. This is because of the extremely low signal-to-noise
ratio at those regions in the fainter stars used to make this coadd.

Take your mouse cursor over the profile, in particular over the bump around a radius
of 100 pixels. Scroll your mouse down-ward to zoom-in to the profile and up-ward to
zoom-out. You can click-and-hold any part of the profile and if you move your cursor
(while still holding the mouse-button) to look at different parts of the profile. This is
particular helpful when you have zoomed-in to the profile.

Zoom-in to the bump around a radius of 100 pixels until the horizontal axis range
becomes around 50 to 130 pixels.

You clearly see that the inner coadd (blue) is much more noisy than the outer (red)
coadd. By “noisy”, we mean that the scatter of the points is much larger. If you
further zoom-out, you will see that the shallow slope at the larger radii of the inner
(blue) profile has also affected the height of this bump in the inner profile. This is
a very important point: this clearly shows that the inner profile is too noisy at these
radii.

Click-and-hold your mouse to see the inner parts of the two profiles (in the range 0 to
80). You will see that for radii less than 40 pixels, the inner profile (blue) points loose
their scatter (and thus have a good signal-to-noise ratio).

Zoom-in to the plot and follow the profiles until smaller radii (for example, 10 pixels).
You see that for each radius, the inner (blue) points are consistently above the outer
(red) points. This shows that the x100 factor we selected above was too much.

In the bottom-right panel, change the 100 to 80 and zoom-in to the same region. At
each radius, the blue points are now below the red points, so the scale-factor 80 is not
enough. So let’s increase it and try 90. After zooming-in, you will notice that in the
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inner-radii (less than 30 pixels), they are now very similar. The ultimate aim of the
steps below is to find this factor automatically.

15. But before continuing, let’s focus on another important point about the central regions:
non-linearity and saturation. While you are zoomed-in (from the step above), follow
(click-and-drag) the profile towards smaller radii. You will see that smaller than a
radius of 10, they start to diverge. But this time, the outer (red) profile is getting a
shallower slope and diverges significantly from about the radius of 8. We had masked all
saturated pixels before, so this divergence for radii smaller than 10 shows the effect of
the CCD’s non-linearity (where the number of electrons will not be linearly correlated
with the number of incident photons). This is present in all CCDs and pixels beyond
this level should not be used in measurements (or properly corrected).

The items above were only listed so you get a good mental/visual understanding of the
logic behind the operation of the next script (and to learn how to tune its parameters where
necessary): astscript-psf-scale-factor. This script is more general than this particular
problem, but can be used for this special case also. Its job is to take a model of an object
(PSF, or inner coadd in this case) and the position of an instance of that model (a star, or
the outer coadd in this case) in a larger image.

Instead of dealing with radial profiles (that enforce a certain shape), this script will put
the centers of the inner and outer PSFs over each other and divide the outer by the inner.
Let’s have a look with the command below. Just note that we are running it with --keeptmp
so the temporary directory with all the intermediate files remain for further clarification:

$ astscript-psf-scale-factor outer/coadd.fits \
—--psf=inner/coadd.fits --center=501,501 \
--mode=img --normradii=10,15 --keeptmp
$ astscript-fits-view coadd_psfmodelscalefactor/cropped-*.fits \
coadd_psfmodelscalefactor/for-factor-*.fits

With the second command, you see the four steps of the process: the first two images
show the cropped outer and inner coadds (to same width image). The third shows the radial
position of each pixel (which is used to only keep the pixels within the desired radial range).
The fourth shows the per-pixel division of the outer by the inner within the requested radii.
The sigma-clipped median and standard deviation of these pixels is finally reported. The
standard deviation is useful, for example, if you consider different center positions (with
small offsets) and consider that one that provides the lowest standard deviation value.
Unlike the radial profile method (which averages over a circular/elliptical annulus for each
radius), this method imposes no a-priori shape on the PSF. This makes it very useful for
complex PSFs (like the case here).

To continue, let’s remove the temporary directory and re-run the script but with --quiet
mode so we can put the outputs in a shell variable.

$ rm -r coadd_psfmodelscalefactor

$ values=$(astscript-psf-scale-factor outer/coadd.fits \
--psf=inner/coadd.fits --center=501,501 \
--mode=img --normradii=10,15 --quiet)

$ scale=$(echo $values | awk '{print $1}')
$ stdval=$(echo $values | awk '{print $2}')
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$ echo "$scale $stdval"

Now that we know the scaling factor, we are ready to unite the outer and the inner part
of the PSF. To do that, we will use the script astscript-psf-unite with the command
below (for more on this script, see Section 10.8.4 [Invoking astscript-psf-unite|, page 734).
The basic parameters are the inner part of the PSF (given to --inner), the inner part’s
scale factor (--scale), and the junction radius (--radius). The inner part is first scaled,
and all the pixels of the outer image within the given radius are replaced with the pixels of
the inner image. Since the flux factor was computed for a ring of pixels between 10 and 15
pixels, let’s set the junction radius to be 12 pixels (roughly in between 10 and 15):

$ astscript-psf-unite outer/coadd.fits \
--inner=inner/coadd.fits --radius=12 \
--scale=$scale --output=psf.fits

Let’s have a look at the outer coadd and the final PSF with the command below. Since
we want several other DS9 settings to help you directly see the main point, we are using
--ds9extra. After DS9 is opened, you can see that the center of the PSF has now been
nicely filled. You can click on the “Edit” button and then the “Colorbar” and hold your
cursor over the image and move it. You can see that besides filling the inner regions nicely,
there is also no major discontinuity in the 2D image around the union radius of 12 pixels
around the center.

$ astscript-fits-view outer/coadd.fits psf.fits --ds9scale=minmax \
--ds9extra="-scale limits 0 22000 -match scale" \
--dsQ9extra="-lock scale yes -zoom 4 -scale log"

Nothing demonstrates the effect of a bad analysis than actually seeing a bad result! So
let’s choose a bad normalization radial range (50 to 60 pixels) and unite the inner and outer
parts based on that. The last command will open the two PSF's together in DS9, you should
be able to immediately see the discontinuity in the union radius.

$ values=$(astscript-psf-scale-factor outer/coadd.fits \
--psf=inner/coadd.fits --center=501,501 \
--mode=img --normradii=50,60 --quiet)

$ scale=$(echo $values | awk '{print $1}')

$ astscript-psf-unite outer/coadd.fits \
--inner=inner/coadd.fits --radius=55 \
--scale=$scale --output=psf-bad.fits

$ astscript-fits-view psf-bad.fits psf.fits --ds9scale=minmax \
--ds9extra="-scale limits O 50 -match scale" \
--ds9extra="-lock scale yes -zoom 4 -scale log"

As you see, the selection of the normalization radii and the unite radius are very impor-
tant. The first time you are trying to build the PSF of a new dataset, it has to be explored
with a visual inspection of the images and radial profiles. Once you have found a good
normalization radius for a certain part of the PSF in a survey, you can generally use it
comfortably without change. But for a new survey, or a different part of the PSF, be sure
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to repeat the visual checks above to choose the best radii. As a summary, a good junction
radius is one that:

e Is large enough to not let saturation and non-linearity (from the outer profile) into the
inner region.

e Is small enough to have a sufficiently high signal to noise ratio (from the inner profile)
to avoid adding noise in the union radius.

Now that the complete PSF has been obtained, let’s remove that bad-looking PSF, and
stick with the nice and clean PSF for the next step in Section 2.3.7 [Subtracting the PSF],
page 118.

$ rm -rf psf-bad.fits

2.3.7 Subtracting the PSF

Previously (in Section 2.3.6 [Uniting the different PSF components], page 114) we con-
structed a full PSF, from the central pixel to a radius of 500 pixels. Now, let’s use the PSF
to subtract the scattered light from each individual star in the image.

By construction, the pixel values of the PSF came from the normalization of the indi-
vidual stamps (that were created for stars of different magnitudes). As a consequence, it is
necessary to compute a scale factor to fit that PSF image to each star. This is done with
the same astscript-psf-scale-factor command that we used previously in Section 2.3.6
[Uniting the different PSF components|, page 114. The difference is that now we are not
aiming to join two different PSF parts but looking for the necessary scale factor to match
the star with the PSF. Afterwards, we will use astscript-psf-subtract for placing the
PSF image at the desired coordinates within the same pixel grid as the image. Finally, once
the stars have been modeled by the PSF, we will subtract it.

First, let’s start with a single star. Later, when the basic idea has been explained, we
will generalize the method for any number of stars. With the following command we obtain
the coordinates (RA and DEC) and magnitude of the brightest star in the image (which is
on the top edge of the image):

$ mkdir single-star

$ center=$(asttable flat/67510-bright.fits --sort phot_g_mean_mag \
--column=ra,dec --head 1 \
| awk '{printf "¥%s,%s", $1, $2}')

$ echo $center

With the center position of that star, let’s obtain the flux factor using the same normal-
ization ring we used for the creation of the outer part of the PSF. Remember that two values
are computed: the median and the standard deviation values, see Section 10.8.5 [Invoking
astscript-pst-scale-factor]|, page 736.

$ values=$(astscript-psf-scale-factor label/67510-seg.fits \
--mode=wcs --quiet \
—-psf=psf.fits \
--center=$center \
--normradii=10,15 \
--segment=label/67510-seg.fits)
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$ scale=$(echo $values | awk '{print $1}')

Now we have all the information necessary to model the star using the PSF': the position
on the sky and the flux factor. Let’s use this data with the script astscript-psf-subtract
for modeling this star and have a look with DS9.

$ astscript-psf-subtract label/67510-seg.fits \
—--mode=wcs \
--psf=psf.fits \
--scale=$scale \
--center=$center \
--output=single-star/subtracted.fits

$ astscript-fits-view label/67510-seg.fits single-star/subtracted.fits \
--ds9center=$center —-ds9mode=wcs --ds9extra="-zoom 4"

You will notice that there is something wrong with this “subtraction”! The box of the
extended PSF is clearly visible! The sky noise under the box is clearly larger than the rest
of the noise in the image. Before reading on, please try to think about the cause of this
yourself.

To understand the cause, let’s look at the scale factor, the number of stamps used to
build the outer part (and its square root):

$ echo $scale
$ 1s outer/stamps/*.fits | wc -1
$ 1s outer/stamps/*.fits | wc -1 | awk '{print sqrt($1)}'

You see that the scale is almost 19! As a result, the PSF has been multiplied by 19 before
being subtracted. However, the outer part of the PSF was created with only a handful of
star stamps. When you coadd N images, the coadd’s signal-to-noise ratio (S/N) improves
by v/ N. We had 8 images for the outer part, so the S/N has only improved by a factor
of just under 3! When we multiply the final coadded PSF with 19, we are also scaling up
the noise by that same factor (most importantly: in the outer most regions where there is
almost no signal). So the coadded image’s noise-level is 19/3 = 6.3 times larger than the
noise of the input image. This terrible noise-level is what you clearly see as the footprint
of the PSF.

To confirm this, let’s use the commands below to subtract the faintest of the bright-stars
catalog (note the use of ——tail when finding the central position). You will notice that the
scale factor (~ 1.3) is now smaller than 3. So when we multiply the PSF with this factor,
the PSF’s noise level is lower than our input image and we should not see any footprint like
before. Note also that we are using a larger zoom factor, because this star is smaller in the
image.

$ center=$(asttable flat/67510-bright.fits --sort phot_g_mean_mag \
--column=ra,dec --tail 1 \
| awk '{printf "%s,%s", $1, $2}')

$ values=$(astscript-psf-scale-factor label/67510-seg.fits \
--mode=wcs --quiet \
—--psf=psf.fits \
--center=$center \
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—-normradii=10,15 \
--segment=label/67510-seg.fits)

$ scale=$(echo $values | awk '{print $1}')
$ echo $scale

$ astscript-psf-subtract label/67510-seg.fits \
--mode=wcs \
—-psf=psf.fits \
--scale=$scale \
--center=$center \
--output=single-star/subtracted.fits

$ astscript-fits-view label/67510-seg.fits single-star/subtracted.fits \
--ds9center=$center --ds9mode=wcs --ds9extra="-zoom 10"

In a large survey like J-PLUS, it is easy to use more and more bright stars from different
pointings (ideally with similar FWHM and similar telescope properties*') to improve the
S/N of the PSF. As explained before, we designed the output files of this tutorial with the
67510 (which is this image’s pointing label in J-PLUS) where necessary so you see how easy
it is to add more pointings to use in the creation of the PSF.

Let’s consider now more than one single star. We should have two things in mind:

e The brightest (subtract-able, see the point below) star should be the first star to be
subtracted. This is because of its extended wings which may affect the scale factor of
nearby stars. So we should sort the catalog by magnitude and come down from the
brightest.

e We should only subtract stars where the scale factor is less than the S/N of the PSF
(in relation to the data).

Since it can get a little complex, it is easier to implement this step as a script (that is
heavily commented for you to easily understand every step; especially if you put it in a
good text editor with color-coding!). You will notice that script also creates a .log file,
which shows which star was subtracted and which one was not (this is important, and will
be used below!).

#!/bin/bash

# Abort the script on first error.
set -e

# ID of image to subtract stars from.
imageid=67510

# Get S/N level of the final PSF in relation to the actual data:
snlevel=$(1ls outer/stamps/*.fits | wc -1 | awk '{print sqrt($1)}')

41 For example, in J-PLUS; the baffle of the secondary mirror was adjusted in 2017 because it produced
extra spikes in the PSF. So all images after that date have a PSF with 4 spikes (like this one), while
those before it have many more spikes.
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# Put a copy of the image we want to subtract the PSF from in the
# final file (this will be over-written after each subtraction).
subtracted=subtracted/$imageid.fits

cp label/$imageid-seg.fits $subtracted

# Name of log-file to keep status of the subtraction of each star.
logname=subtracted/$imageid.log

echo "# Column 1: RA  [deg, f64] Right ascension of star." > $logname
echo "# Column 2: Dec [deg, f64] Declination of star." >> $logname
echo "# Column 3: Stat [deg, f64] Status (1: subtracted)" >> $logname

# Go over each item in the bright star catalog:
asttable flat/67510-bright.fits -cra,dec --sort phot_g_mean _mag \
| while read -r ra dec; do

# Put a comma between the RA/Dec to pass to options.
center=$(echo $ra $dec | awk '{printf "Ys,%s", $1, $2}')

# Calculate the scale value

values=$ (astscript-psf-scale-factor label/67510-seg.fits \
--mode=wcs --quiet\
—-psf=psf.fits \
--center=$center \
—-normradii=10,15 \
--segment=1label/67510-seg.fits)

scale=$(echo $values | awk '{print $1}')

# Subtract this star if the scale factor is less than the S/N
# level calculated above.
check=$(echo $snlevel $scale \
| awk '{if($1>$2) c="good"; else c="bad"; print c}')
if [ $check = good ]; then

# A temporary file to subtract this star.
subtmp=subtracted/$imageid-tmp.fits

# Subtract this star from the image where all previous stars
# were subtracted.
astscript-psf-subtract $subtracted \

--mode=wcs \

—--psf=psf.fits \

--scale=$scale \

--center=$center \

—--output=$subtmp
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# Rename the temporary subtracted file to the final one:
mv $subtmp $subtracted

# Keep the status for this star.
status=1
else
# Let the user know this star did not work, and keep the status
# for this star.
echo "$center: $scale is larger than $snlevel"
status=0
fi

# Keep the status in a log file.
echo "$ra $dec $status" >> $logname
done

Copy the contents above into a file called subtract-psf-from-cat.sh and run the
following commands. Just note that in the script above, we assumed the output is written
in the subtracted/, directory, so we will first make that.

$ mkdir subtracted
$ chmod +x subtract-psf-from-cat.sh
$ ./subtract-psf-from-cat.sh

$ astscript-fits-view label/67510-seg.fits subtracted/67510.fits

Can you visually find the stars that have been subtracted? Its a little hard, is not it?
This shows that you done a good job this time (the sky-noise is not significantly affected)!
So let’s subtract the actual image from the PSF-subtracted image to see the scattered
light field of the subtracted stars. With the second command below we will zoom into the
brightest subtracted star, but of course feel free to zoom-out and inspect the others also.

$ astarithmetic label/67510-seg.fits subtracted/67510.fits - \
-—output=scattered-light.fits -gil

$ center=$(asttable subtracted/67510.log --equal=Stat,l --head=1 \
-cra,dec | awk '{printf "%s,%s", $1, $2}')

$ astscript-fits-view label/67510-seg.fits subtracted/67510.fits \
scattered-light.fits \
--ds9center=$center --ds9mode=wcs \
--ds9extra="-scale limits -0.5 1.5 -match scale" \
--ds9extra="-lock scale yes -zoom 10" \
--ds9extra="-tile mode column"

## We can always make it easily, so let's remove this.
$ rm scattered-light.fits
You will probably have noticed that in the scattered light field there are some patches
that correspond to the saturation of the stars. Since we obtained the scattered light field
by subtracting PSF-subtracted image from the original image, it is natural that we have
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such saturated regions. To solve such inconvenience, this script also has an option to not
make the subtraction of the PSF but to give as output the modeled star. For doing that,
it is necessary to run the script with the option --modelonly. We encourage the reader to
obtain such scattered light field model. In some scenarios it could be interesting having such
way of correcting the PSF. For example, if there are many faint stars that can be modeled
at the same time because their flux do not affect each other. In such situation, the task
could be easily parallelized without having to wait to model the brighter stars before the
fainter ones. At the end, once all stars have been modeled, a simple Arithmetic command
could be used to sum the different modeled-PSF stamps to obtain the entire scattered light
field.

In general you see that the subtraction has been done nicely and almost all the extended
wings of the PSF have been subtracted. The central regions of the stars are not perfectly
subtracted:

e Some may get too dark at the center. This may be due to the non-linearity of the
CCD counting (as discussed previously in Section 2.3.6 [Uniting the different PSF
components|, page 114).

e Others may have a strong gradient: one side is too positive and one side is too negative
(only in the very central few pixels). This is due to the non-accurate positioning: most
probably this happens because of imperfect astrometry.

Note also that during this process we assumed that the PSF does not vary with the CCD
position or any other parameter. In other words, we are obtaining an averaged PSF model
from a few star stamps that are naturally different, and this also explains the residuals on
each subtracted star.

We let as an interesting exercise the modeling and subtraction of other stars, for example,
the non saturated stars of the image. By doing this, you will notice that in the core region
the residuals are different compared to the residuals of brighter stars that we have obtained.

In general, in this tutorial we have showed how to deal with the most important chal-
lenges for constructing an extended PSF. Each image or dataset will have its own particu-
larities that you will have to take into account when constructing the PSF.

2.4 Sufi simulates a detection

It is the year 953 A.D. and Abd al-rahman Sufi (903 — 986 A.D.)*? is in Shiraz as a guest
astronomer. He had come there to use the advanced 123 centimeter astrolabe for his studies
on the ecliptic. However, something was bothering him for a long time. While mapping
the constellations, there were several non-stellar objects that he had detected in the sky,
one of them was in the Andromeda constellation. During a trip he had to Yemen, Sufi had
seen another such object in the southern skies looking over the Indian ocean. He was not
sure if such cloud-like non-stellar objects (which he was the first to call ‘Sahabi’ in Arabic
or ‘nebulous’) were real astronomical objects or if they were only the result of some bias in
his observations. Could such diffuse objects actually be detected at all with his detection
technique?

42 Tn Latin Sufi is known as Azophi. He was an Iranian astronomer. His manuscript “Book of fixed stars”
contains the first recorded observations of the Andromeda galaxy, the Large Magellanic Cloud and seven
other non-stellar or ‘nebulous’ objects.
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He still had a few hours left until nightfall (when he would continue his studies on
the ecliptic) so he decided to find an answer to this question. He had thoroughly studied
Claudius Ptolemy’s (90 — 168 A.D) Almagest and had made lots of corrections to it, in
particular in measuring the brightness. Using his same experience, he was able to measure
a magnitude for the objects and wanted to simulate his observation to see if a simulated
object with the same brightness and size could be detected in simulated noise with the same
detection technique. The general outline of the steps he wants to take are:

1. Make some mock profiles in an over-sampled image. The initial mock image has to
be over-sampled prior to convolution or other forms of transformation in the image.
Through his experiences, Sufi knew that this is because the image of heavenly bodies
is actually transformed by the atmosphere or other sources outside the atmosphere
(for example, gravitational lenses) prior to being sampled on an image. Since that
transformation occurs on a continuous grid, to best approximate it, he should do all
the work on a finer pixel grid. In the end he can resample the result to the initially
desired grid size.

2. Convolve the image with a point spread function (PSF, see Section 8.1.1.2 [Point spread
function], page 654) that is over-sampled to the same resolution as the mock image.
Since he wants to finish in a reasonable time and the PSF kernel will be very large due
to oversampling, he has to use frequency domain convolution which has the side effect
of dimming the edges of the image. So in the first step above he also has to build the
image to be larger by at least half the width of the PSF convolution kernel on each
edge.

3. With all the transformations complete, the image should be resampled to the same size
of the pixels in his detector.

4. He should remove those extra pixels on all edges to remove frequency domain convolu-
tion artifacts in the final product.

5. He should add noise to the (until now, noise-less) mock image. After all, all observations
have noise associated with them.

Fortunately Sufi had heard of GNU Astronomy Utilities from a colleague in Isfahan
(where he worked) and had installed it on his computer a year before. It had tools to do all
the steps above. He had used MakeProfiles before, but was not sure which columns he had
chosen in his user or system-wide configuration files for which parameters, see Section 4.2
[Configuration files|, page 270. So to start his simulation, Sufi runs MakeProfiles with the
-P option to make sure what columns in a catalog MakeProfiles currently recognizes, and
confirm the output image parameters. In particular, Sufi is interested in the recognized
columns (shown below).

$ astmkprof -P

[[[ ... Truncated lines ... 1]]
# Output:
type float32 # Type of output: e.g., intl6, float32, etc.

mergedsize  1000,1000 # Number of pixels along first FITS axis.
oversample 5 # Scale of oversampling (>0 and odd).
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[[[ ... Truncated lines ... 1]1]

# Columns, by info (see “--searchin'), or number (starting from 1):
ccol 2 # Coord. columns (one call for each dim.).

ccol 3 # Coord. columns (one call for each dim.).

fcol 4 # sersic (1), moffat (2), gaussian (3), point
# (4), flat (5), circumference (6), distance
# (7), custom-prof (8), azimuth (9),
# custom-img (10).

rcol 5 # Effective radius or FWHM in pixels.

ncol 6 # Sersic index or Moffat beta.

pcol 7 # Position angle.

qcol 8 # Axis ratio.

mcol 9 # Magnitude.

tcol 10 # Truncation in units of radius or pixels.

[L[ ... Truncated lines ... 111

In Gnuastro, column counting starts from 1, so the columns are ordered such that the first
column (number 1) can be an ID he specifies for each object (and MakeProfiles ignores),
each subsequent column is used for another property of the profile. It is also possible to use
column names for the values of these options and change these defaults, but Sufi preferred
to stick to the defaults. Fortunately MakeProfiles has the capability to also make the PSF
which is to be used on the mock image and using the —--prepforconv option, he can also
make the mock image to be larger by the correct amount and all the sources to be shifted
by the correct amount.

For his initial check he decides to simulate the nebula in the Andromeda constellation.
The night he was observing, the PSF had roughly a FWHM of about 5 pixels, so as the first
row (profile) in the table below, he defines the PSF parameters. Sufi sets the radius column
(rcol above, fifth column) to 5.000, he also chooses a Moffat function for its functional
form. Remembering how diffuse the nebula in the Andromeda constellation was, he decides
to simulate it with a mock Sérsic index 1.0 profile. He wants the output to be 499 pixels
by 499 pixels, so he can put the center of the mock profile in the central pixel of the image
which is the 250th pixel along both dimensions (note that an even number does not have a
“central” pixel).

Looking at his drawings of it, he decides a reasonable effective radius for it would be 40
pixels on this image pixel scale (second row, 5th column below). He also sets the axis ratio
(0.4) and position angle (-25 degrees) to approximately correct values too, and finally he
sets the total magnitude of the profile to 3.44 which he had measured. Sufi also decides to
truncate both the mock profile and PSF at 5 times the respective radius parameters. In the
end he decides to put four stars on the four corners of the image at very low magnitudes
as a visual scale. While he was preparing the catalog, one of his students approached him
and was also following the steps.

As described above, the catalog of profiles to build will be a table (multiple columns of
numbers) like below:

0 0.000 0.000 2 5 4.7 0.0 1.0 30.0 5.0
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1 2560.0 250.0 1 40 1.0 -25 0.4 3.44 5.0
2 50.00 50.00 4 0 0.0 0.0 0.0 6.00 0.0
3 450.0 50.00 4 0 0.0 0.0 0.0 6.50 0.0
4 50.00 450.0 4 0 0.0 0.0 0.0 T7.00 0.0
5 450.0 450.0 4 O O. 0. 0.0 7.50 O.

This contains all the “data” to build the profile, and you can easily pass it to Gnuastro’s
MakeProfiles: since Sufi already knows the columns and expected values very good, he has
placed the information in the proper columns. However, when the student sees this, he just
sees a mumble-jumble of numbers! Generally, Sufi explains to the student that even if you
know the number positions and values very nicely today, in a couple of months you will
forget! It will then be very hard for you to interpret the numbers properly. So you should
never use naked data (or data without any extra information).

77'

Data (or information) that describes other data is called “metadata”! One common
example is column names (the name of a column is itself a data element, but data that
describes the lower-level data within that column: how to interpret the numbers within it).
Sufi explains to his student that Gnuastro has a convention for adding metadata within
a plain-text file; and guides him to Section 4.7.2 [Gnuastro text table format|, page 287.
Because we do not want metadata to be confused with the actual data, in a plain-text file,
we start lines containing metadata with a ‘#’. For example, see the same data above, but
this time with metadata for every column:

# Column 1: 1ID [counter, u8] Identifier

# Column 2: X [pix, £32] Horizontal position

# Column 3: Y [pix, £32] Vertical position

# Column 4: PROFILE [name, u8] Radial profile function
# Column 5: R [pix, £32] Effective radius

# Column 6: N [n/a, £32] Sersic index

# Column 7: PA [deg, £32] Position angle

# Column 8: Q [n/a, £32] Axis ratio

# Column 9: MAG [1log, £32] Magnitude

# Column 10: TRUNC [n/a, £32] Truncation (multiple of R)
0 0.000 0.000 2 5 4.7 0.0 1.0 30.0 5.0

1 250.0 260.0 1 40 1.0 -25 0.4 3.44 5.0

2 50.00 50.00 4 O 0.0 0.0 0.0 6.00 0.0

3 450.0 50.00 4 O 0.0 0.0 0.0 6.50 0.0

4 50.00 450.0 4 O 0.0 0.0 0.0 7.00 0.0

5 450.0 450.0 4 O 0.0 0.0 0.0 7.50 0.0

The numbers now make much more sense for the student! Before continuing, Sufi reminded
the student that even though metadata may not be strictly /technically necessary (for the
computer programs), metadata are critical for human readers! Therefore, a good scientist
should never forget to keep metadata with any data that they create, use or archive.

To start simulating the nebula, Sufi creates a directory named simulationtest in his
home directory. Note that the pwd command will print the “parent working directory” of
the current directory (its a good way to confirm/check your current location in the full file
system: it always starts from the root, or ‘/’).

$ mkdir ~/simulationtest
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$ cd “/simulationtest

$ pwd

/home/rahman/simulationtest

It is possible to use a plain-text editor to manually put the catalog contents above into

a plain-text file. But to easily automate catalog production (in later trials), Sufi decides
to fill the input catalog with the redirection features of the command-line (or shell). Sufi’s
student was not familiar with this feature of the shell! So Sufi decided to do a fast demo;
giving the following explanations while running the commands:

Shell redirection allows you to “re-direct” the “standard output” of a program (which is
usually printed by the program on the command-line during its execution; like the output
of pwd above) into a file. For example, let’s simply “echo” (or print to standard output) the
line “This is a test.”:

$ echo "This is a test."
This is a test.

As you see, our statement was simply “echo”-ed to the standard output! To redirect this
sentence into a file (instead of simply printing it on the standard output), we can simply
use the > character, followed by the name of the file we want it to be dumped in.

$ echo "This is a test." > test.txt

This time, the echo command did not print anything in the terminal. Instead, the
shell (command-line environment) took the output, and “re-directed” it into a file called
test.txt. Let’s confirm this with the 1s command (1s is short for “list” and will list all
the files in the current directory):

$ 1s
test.txt

Now that you confirm the existence of test.txt, you can see its contents with the cat
command (short for “concatenation”; because it can also merge multiple files together):

$ cat test.txt
This is a test.

Now that we have written our first line in test.txt, let’s try adding a second line (do not
forget that our final catalog of objects to simulate will have multiple lines):

$ echo "This is my second line." > test.txt
$ cat test.txt
This is my second line.

As you see, the first line that you put in the file is no longer present! This happens
because ‘>’ always starts dumping content to a file from the start of the file. In effect,
this means that any possibly pre-existing content is over-written by the new content! To
append new lines (or dumping new content at the end of existing content), you can use
>>’. for example, with the commands below, first we will write the first sentence (using
‘>, then use ‘>>’ to add the second and third sentences. Finally, we will print the contents
of test.txt to confirm that all three lines are preserved.

$ echo "My first sentence." > test.txt
$ echo "My second sentence." >> test.txt
$ echo "My third sentence." >> test.txt
$ cat test.txt
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My first sentence.
My second sentence.
My third sentence.

The student thanked Sufi for this explanation and now feels more comfortable with
redirection. Therefore Sufi continues with the main project. But before that, he deletes the
temporary test file:

$ rm test.txt

To put the catalog of profile data and their metadata (that was described above) into a
file, Sufi uses the commands below. While Sufi was writing these commands, the student
complained that “I could have done in this in a text editor”. Sufi reminded the student
that it is indeed possible; but it requires manual intervention. The advantage of a solution
like below is that it can be automated (for example, adding more rows; for more profiles in
the final image).

$ echo "# Column 1: 1ID [counter, u8] Identifier" > cat.txt
$ echo "# Column 2: X [pix, £32] Horizontal position" >> cat.txt
$ echo "# Column 3: Y [pix, £32] Vertical position" >> cat.txt
$ echo "# Column 4: PROF [name, u8] Radial profile function" \
>> cat.txt
$ echo "# Column 5: R [pix, £32] Effective radius" >> cat.txt
$ echo "# Column 6: N [n/a, £32] Sersic index" >> cat.txt
$ echo "# Column 7: PA [deg, £32] Position angle" >> cat.txt
$ echo "# Column 8: Q [n/a, £32] Axis ratio" >> cat.txt
$ echo "# Column 9: MAG [log, £32] Magnitude" >> cat.txt
$ echo "# Column 10: TRUNC [n/a, £32] Truncation (multiple of R)" \
>> cat.txt
$ echo "O 0.000 0.000 2 5 4.7 0.0 1.0 30.0 5.0" > cat.txt
$ echo "1 250.0 250.0 1 40 1.0 -25 0.4 3.44 5.0" >> cat.txt
$ echo "2 50.00 50.00 4 0 0.0 0.0 0.0 6.00 0.0" > cat.txt
$ echo "3 450.0 50.00 4 0 0.0 0.0 0.0 6.50 0.0" > cat.txt
$ echo "4 50.00 450.0 4 0 0.0 0.0 0.0 7.00 O0.0" > cat.txt
$ echo "5 450.0 450.0 4 O 0.0 0.0 0.0 7.50 0.0" >> cat.txt

To make sure if the catalog’s content is correct (and there was no typo for example!), Sufi
runs ‘cat cat.txt’, and confirms that it is correct.

Now that the catalog is created, Sufi is ready to call MakeProfiles to build the image
containing these objects. He looks into his records and finds that the zero point magnitude
for that night, and that particular detector, was 18 magnitudes. The student was a little
confused on the concept of zero point, so Sufi pointed him to Section 7.4.2 [Brightness,
Flux, Magnitude and Surface brightness], page 585, which the student can study in detail
later. Sufi therefore runs MakeProfiles with the command below:

$ astmkprof --prepforconv --mergedsize=499,499 --zeropoint=18.0 cat.txt
MakeProfiles 0.23.84-726fd started on Sat Oct 6 16:26:56 953

- 6 profiles read from cat.txt

- Random number generator (RNG) type: ranlxsl

- Basic RNG seed: 1652884540

- Using 12 threads.



Chapter 2: Tutorials 129

---— row 3 complete, 5 left to go
--—— row 4 complete, 4 left to go
---- row 6 complete, 3 left to go
-—-—— row 5 complete, 2 left to go
---- ./O_cat_profiles.fits created.
-——— row 1 complete, 1 left to go
---— row 2 complete, O left to go
- ./cat_profiles.fits created. 0.092573 seconds
-- QOutput: ./cat_profiles.fits
MakeProfiles finished in 0.293644 seconds

Sufi encourages the student to read through the printed output. As the statements say,
two FITS files should have been created in the running directory. So Sufi ran the command
below to confirm:

$ 1s
O_cat_profiles.fits cat_profiles.fits cat.txt

The file O_cat_profiles.fits is the PSF Sufi had asked for, and cat_profiles.fits is
the image containing the main objects in the catalog. Sufi opened the main image with the
command below (using SAO DS9):

$ astscript-fits-view cat_profiles.fits --ds9scale=95

The student could clearly see the main elliptical structure in the center. However, the
size of cat_profiles.fits was surprising for the student, instead of 499 by 499 (as we had
requested), it was 2615 by 2615 pixels (from the command below):

$ astfits cat_profiles.fits
Fits (GNU Astronomy Utilities) 0.23.84-726fd
Run on Sat Oct 6 16:26:58 953
HDU (extension) information: 'cat_profiles.fits'.
Column 1: Index (counting from O, usable with '--hdu').

Column 2: Name ('EXTNAME' in FITS standard, usable with '--hdu').
Column 3: Image data type or 'table' format (ASCII or binary).
Column 4: Size of data in HDU.

0 MKPROF-CONFIG no-data 0

1 Mock profiles float32 2615x2615

So Sufi explained why oversampling is important in modeling, especially for parts of the
image where the flux change is significant over a pixel. Recall that when you oversample
the model (for example, by 5 times), for every desired pixel, you get 25 pixels (5 x 5). Sufi
then explained that after convolving (next step below) we will down-sample the image to
get our originally desired size/resolution.

After seeing the image, the student complained that only the large elliptical model for
the Andromeda nebula can be seen in the center. He could not see the four stars that we had
also requested in the catalog. So Sufi had to explain that the stars are there in the image,
but the reason that they are not visible when looking at the whole image at once, is that
they only cover a single pixell To prove it, he centered the image around the coordinates
2308 and 2308, where one of the stars is located in the over-sampled image [you can do this
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in ds9 by selecting “Pan” in the “Edit” menu, then clicking around that position]. Sufi
then zoomed in to that region and soon, the star’s non-zero pixel could be clearly seen.

Sufi explained that the stars will take the shape of the PSF (cover an area of more than
one pixel) after convolution. If we did not have an atmosphere and we did not need an
aperture, then stars would only cover a single pixel with normal CCD resolutions. So Sufi
convolved the image with this command:

$ astconvolve --kernel=0_cat_profiles.fits cat_profiles.fits \
—--output=cat_convolved.fits
Convolve started on Sat Oct 6 16:35:32 953
- Using 8 CPU threads.
- Input: cat_profiles.fits (hdu: 1)
- Kernel: O_cat_profiles.fits (hdu: 1)

- Input and Kernel images padded. 0.075541 seconds
- Images converted to frequency domain. 6.728407 seconds
- Multiplied in the frequency domain. 0.040659 seconds
- Converted back to the spatial domain. 3.465344 seconds
- Padded parts removed. 0.016767 seconds

- Output: cat_convolved.fits
Convolve finished in: 10.422161 seconds

When convolution finished, Sufi opened cat_convolved.fits and the four stars could be
easily seen now:

$ astscript-fits-view cat_convolved.fits --ds9scale=95

It was interesting for the student that all the flux in that single pixel is now distributed
over so many pixels (the sum of all the pixels in each convolved star is actually equal to
the value of the single pixel before convolution). Sufi explained how a PSF with a larger
FWHM would make the points even wider than this (distributing their flux in a larger area).
With the convolved image ready, they were prepared to resample it to the original pixel
scale Sufi had planned [from the $ astmkprof -P command above, recall that MakeProfiles
had over-sampled the image by 5 times|. Sufi explained the basic concepts of warping the
image to his student and ran Warp with the following command:

$ astwarp --scale=1/5 --centeroncorner cat_convolved.fits

Warp started on Sat Oct 6 16:51:59 953

Using 8 CPU threads.

Input: cat_convolved.fits (hdu: 1)

matrix:
0.2000 0.0000  0.4000
0.0000 0.2000 0.4000
0.0000 0.0000 1.0000

$ astfits cat_convolved_scaled.fits --quiet
0 WARP-CONFIG no-data 0
1 Warped float32 523x523

cat_convolved_scaled.fits now has the correct pixel scale. However, the image is still
larger than what we had wanted, it is 523 x 523 pixels (not our desired 499 x 499). The
student is slightly confused, so Sufi also resamples the PSF with the same scale by running
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$ astwarp --scale=1/5 --centeroncorner O_cat_profiles.fits
$ astfits O_cat_profiles_scaled.fits --quiet

0 WARP-CONFIG no-data 0

1 Warped float32 2bx25

Sufi notes that 25 = 12 + 12 4+ 1 and that 523 = 499 + 12 + 12. He goes on to explain that
frequency space convolution will dim the edges and that is why he added the -—-prepforconv
option to MakeProfiles above. Now that convolution is done, Sufi can remove those extra
pixels using Crop with the command below. Crop’s —-section option accepts coordinates
inclusively and counting from 1 (according to the FITS standard), so the crop region’s first
pixel has to be 13, not 12.

$ astcrop cat_convolved_scaled.fits --section=13:%-12,13:%-12 \
--mode=img --zeroisnotblank
Crop started on Sat Oct 6 17:03:24 953
- Read metadata of 1 image. 0.001304 seconds
-—-—- ...nvolved_scaled_cropped.fits created: 1 input.
Crop finished in: 0.027204 seconds

To fully convince the student, Sufi checks the size of the output of the crop command above:

$ astfits cat_convolved_scaled_cropped.fits --quiet
0 n/a no-data 0
1 n/a float32 499x499

Finally, cat_convolved_scaled_cropped.fits is 499 x 499 pixels and the mock
Andromeda galaxy is centered on the central pixel. This is the same dimensions as Sufi
had desired in the beginning. All this trouble was certainly worth it because now there is
no dimming on the edges of the image and the profile centers are more accurately sampled.

The final step to simulate a real observation would be to add noise to the image. Sufi
set the zero point magnitude to the same value that he set when making the mock profiles
and looking again at his observation log, he had measured the background flux near the
nebula had a per-pizel magnitude of 7 that night. For more on how the background value
determines the noise, see Section 6.2.3 [Noise basics], page 407. So using these values
he ran Arithmetic’s mknoise-sigma-from-mean operator, and with the second command,
he visually inspected the image. The mknoise-sigma-from-mean operator takes the noise
standard deviation in linear units, not magnitudes (which are logarithmic). Therefore within
the same Arithmetic command, he has converted the sky background magnitude to counts
using Arithmetic’s counts-to-mag operator.

$ astarithmetic cat_convolved_scaled_cropped.fits \
7 18 mag-to-counts mknoise-sigma-from-mean \
--output=out.fits

$ astscript-fits-view out.fits

The out.fits file now contains the noised image of the mock catalog Sufi had asked for.
The student had not observed the nebula in the sky, so when he saw the mock image in
SAO DS9 (with the second command above), he understood why Sufi was dubious: it was
very diffuse!

Seeing how the -—output option allows the user to specify the name of the output file,
the student was confused and wanted to know why Sufi had not used it more regularly
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before? Sufi explained that for intermediate steps, you can rely on the automatic output
of the programs (see Section 4.9 [Automatic output]|, page 292). Doing so will give all the
intermediate files a similar basic name structure, so in the end you can simply remove them
all with the Shell’s capabilities, and it will be familiar for other users. So Sufi decided to
show this to the student by making a shell script from the commands he had used before.

The command-line shell has the capability to read all the separate input commands from
a file. This is useful when you want to do the same thing multiple times, with only the
names of the files or minor parameters changing between the different instances. Using the
shell’s history (by pressing the up keyboard key) Sufi reviewed all the commands and then
he retrieved the last 5 commands with the $ history 5 command. He selected all those
lines he had input and put them in a text file named mymock.sh. Then he defined the
edge and base shell variables for easier customization later, and before every command, he
added some comments (lines starting with #) for future readability. Finally, Sufi pointed
the student to Gnuastro’s Section 2.1 [General program usage tutorial], page 22, which has
a full section on Section 2.1.22 [Writing scripts to automate the steps|, page 73.

#!/bin/bash

edge=12
base=cat

# Stop running next commands if one fails.
set -e

# Remove any (possibly) existing output (from previous runs)
# before starting.
rm -f out.fits

# Run MakeProfiles to create an oversampled FITS image.
astmkprof --prepforconv --mergedsize=499,499 --zeropoint=18.0 \
"$base" . txt

# Convolve the created image with the kernel.

astconvolve "$base"_profiles.fits \
--kernel=0_"$base" profiles.fits \
—--output="8$base"_convolved.fits

# Scale the image back to the intended resolution.
astwarp --scale=1/5 --centeroncorner "$base"_convolved.fits

# Crop the edges out (dimmed during convolution). '--section'

# accepts inclusive coordinates, so the start of the section

# must be one pixel larger than its end.

st_edge=$(( edge + 1))

astcrop "$base"_convolved_scaled.fits --zeroisnotblank \
--mode=img --section=$st_edge:*-$edge,$st_edge:*-$edge
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# Add noise to the image.

astarithmetic "$base"_convolved_scaled_cropped.fits \
7 18 mag-to-counts mknoise-sigma-from-mean \
--output=out.fits

# Remove all the temporary files.
rm Ox.fits "$base"*.fits

He used this chance to remind the student of the importance of comments in code or
shell scripts! Just like metadata in a dataset, when writing the code, you have a good
mental picture of what you are doing, so writing comments might seem superfluous and
excessive. However, in one month when you want to re-use the script, you have lost that
mental picture and remembering it can be time-consuming and frustrating. The importance
of comments is further amplified when you want to share the script with a friend /colleague.
So it is good to accompany any step of a script, or code, with useful comments while you
are writing it (create a good mental picture of why you are doing something: do not just
describe the command, but its purpose).

Sufi then explained to the eager student that you define a variable by giving it a name,
followed by an = sign and the value you want. Then you can reference that variable from
anywhere in the script by calling its name with a $ prefix. So in the script whenever you
see $base, the value we defined for it above is used. If you use advanced editors like GNU
Emacs or even simpler ones like Gedit (part of the GNOME graphical user interface) the
variables will become a different color which can really help in understanding the script.
We have put all the $base variables in double quotation marks (") so the variable name
and the following text do not get mixed, the shell is going to ignore the " after replacing
the variable value. To make the script executable, Sufi ran the following command:

$ chmod +x mymock.sh
Then finally, Sufi ran the script, simply by calling its file name:
$ ./mymock.sh

After the script finished, the only file remaining is the out.fits file that Sufi had wanted
in the beginning. Sufi then explained to the student how he could run this script anywhere
that he has a catalog if the script is in the same directory. The only thing the student had
to modify in the script was the name of the catalog (the value of the base variable in the
start of the script) and the value to the edge variable if he changed the PSF size. The
student was also happy to hear that he will not need to make it executable again when he
makes changes later, it will remain executable unless he explicitly changes the executable
flag with chmod.

The student was really excited, since now, through simple shell scripting, he could really
speed up his work and run any command in any fashion he likes allowing him to be much
more creative in his works. Until now he was using the graphical user interface which does
not have such a facility and doing repetitive things on it was really frustrating and some
times he would make mistakes. So he left to go and try scripting on his own computer.
He later reminded Sufi that the second tutorial in the Gnuastro book as more complex
commands in data analysis, and a more advanced introduction to scripting (see Section 2.1
[General program usage tutorial], page 22).
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Sufi could now get back to his own work and see if the simulated nebula which re-
sembled the one in the Andromeda constellation could be detected or not. Although
it was extremely faint®®. Therefore, Sufi ran Gnuastro’s detection software (Section 7.2
[NoiseChisel], page 552) to see if this object is detectable or not. NoiseChisel’s output
(out_detected.fits) is a multi-extension FITS file, so he used Gnuastro’s astscript-
fits-view program in the second command to see the output:

$ astnoisechisel out.fits

$ astscript-fits-view out_detected.fits

In the “Cube” window (that was opened with DS9), if Sufi clicked on the “Next” button
to see the pixels that were detected to contain significant signal. Fortunately the nebula’s
shape was detectable and he could finally confirm that the nebula he kept in his notebook
was actually observable. He wrote this result in the draft manuscript that would later
become “Book of fixed stars”4.

He still had to check the other nebula he saw from Yemen and several other such objects,
but they could wait until tomorrow (thanks to the shell script, he only has to define a new
catalog). It was nearly sunset and they had to begin preparing for the night’s measurements
on the ecliptic.

2.5 Detecting lines and extracting spectra in 3D data

3D data cubes are an increasingly common format of data products in observational as-
tronomy. As opposed to 2D images (where each 2D “picture element” or “pixel” covers an
infinitesimal area on the surface of the sky), 3D data cubes contain “volume elements” or
“voxels” that are also connected in a third dimension.

The most common case of 3D data in observational astrophysics is when the first two
dimensions are spatial (RA and Dec on the sky), and the third dimension is wavelength. This
type of data is generically (also outside of astronomy) known as Hyperspectral imaging?®.
For example high-level data products of Integral Field Units (IFUs) like MUSE* in the
optical, ACIS*" in the X-ray, or in the radio where most data are 3D cubes.

In this tutorial, we’ll use a small crop of a reduced deep MUSE cube centered on the
Abell 370 (https://en.wikipedia.org/wiki/Abell_370) galaxy cluster from the Pilot-
WINGS survey; see Lagattuta et al. 2022 (https://arxiv.org/abs/2202.04663). Abell
370 has a spiral galaxy in its background that is stretched due to the cluster’s gravitational
potential to create a beautiful arch. If you haven’t seen it yet, have a look at some of its
images in the Wikipedia link above before continuing.

43 The brightness of a diffuse object is added over all its pixels to give its final magnitude, see Section 7.4.2

[Brightness, Flux, Magnitude and Surface brightness|, page 585. So although the magnitude 3.44 (of the
mock nebula) is orders of magnitude brighter than 6 (of the stars), the central galaxy is much fainter.

Put another way, the brightness is distributed over a large area in the case of a nebula.
44

45
46
47

https://en.wikipedia.org/wiki/Book_of_Fixed_Stars
https://en.wikipedia.org/wiki/Hyperspectral_imaging
https://en.wikipedia.org/wiki/Multi-unit_spectroscopic_explorer
https://en.wikipedia.org/wiki/Advanced_CCD_Imaging_Spectrometer
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https://en.wikipedia.org/wiki/Multi-unit_spectroscopic_explorer
https://en.wikipedia.org/wiki/Advanced_CCD_Imaging_Spectrometer
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The Pilot-WINGS survey data are available in its webpage®®. The cube of the core
region is 10.2GBs. This can be prohibitively large to download (and later process) on
many networks and smaller computers. Therefore, in this demonstration we won’t be using
the full cube. We have prepared a small crop?® of the full cube that you can download
with the first command below. The randomly selected crop is centered on (RA,Dec) of
(39.96769,-1.58930), with a width of about 27 arcseconds.

$ mkdir tutorial-3d
$ cd tutorial-3d
$ wget http://akhlaghi.org/data/a370-crop.fits # Downloads 287 MB

In the sections below, we will first review how you can visually inspect a 3D data cube
in DS9 and interactively see the spectra of any region. We will then subtract the continuum
emission, detect the emission-lines within this cube and extract their spectra. We will finish
with creating synthetic narrow-band images optimized for some of the emission lines.

2.5.1 Viewing spectra and redshifted lines

In Section 2.5 [Detecting lines and extracting spectra in 3D data], page 134, we downloaded
a small crop from the Pilot-WINGS survey of Abell 370 cluster; observed with MUSE. In
this section, we will review how you can visualize/inspect a data cube using that example.
With the first command below, we’ll open DS9 such that each 2D slice of the cube (at a
fixed wavelength) is seen as a single image. If you move the slider in the “Cube” window
(that also opens), you can view the same field at different wavelengths. We are ending the
first command with a ‘&’ so you can continue viewing DS9 while using the command-line
(press one extra ENTER to see the prompt). With the second command, you can see that
the spacing between each slice is 1.25 x 107! meters (or 1.25 Angstroms).

$ astscript-fits-view a370-crop.fits -hl --ds9scale="limits -5 20" &

$ astfits a370-crop.fits --pixelscale
Basic info. for --pixelscale (remove info with '--quiet' or '-q')
Input: a370-crop.fits (hdu 1) has 3 dimensions.
Pixel scale in each FITS dimension:
1: 5.55556e-05 (deg/pixel) = 0.2 (arcsec/pixel)
2: 5.55556e-05 (deg/pixel) = 0.2 (arcsec/pixel)
3: 1.25e-10 (m/slice)
Pixel area (on each 2D slice)
3.08642e-09 (deg™2) = 0.04 (arcsec”2)
Voxel volume:

48 https://astro.dur.ac.uk/ hbpn39/pilot-wings.html

49 You can download the full cube and create the crop your self with the commands below. Due to the
decompression of the +10GB file that is necessary for the compressed downloaded file (note that its suffix
is .fits.gz), the Crop command will take a little long.

$ wget https://astro.dur.ac.uk/ hbpn39/pilotWINGS/A370_PilotWINGS_CORE.fits.gz

$ astcrop A370_PilotWINGS_CORE.fits.gz -hDATA --mode=img \
--section=200:300,100:200 -0a370-crop.fits --metaname=DATA

$ astcrop A370_PilotWINGS_CORE.fits.gz -hSTAT --mode=img --append \
--section=200:300,100:200 -0a370-crop.fits --metaname=STAT


https://astro.dur.ac.uk/~hbpn39/pilot-wings.html
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3.85802e-19 (deg~2*m) = Bbe-12 (arcsec”2*m) = 0.05 (arcsec”2xA)

In the DS9 “Cube” window, you will see two numbers on the two sides of the scroller.
The left number is the wavelength in meters (WCS coordinate in 3rd dimension) and the
right number is the slice number (slice number or array coordinates in 3rd dimension).
You can manually edit any of these numbers and press ENTER to go to that slice in any
coordinate system. If you want to go one-by-one, simply press the “Next” button. The first
few slides are very noisy, but in the rest the noise level decreases and the galaxies are more
obvious.

As you slide between the different wavelengths, you see that the noise-level is not constant
and in some slices, the sky noise is very strong (for example, go to slice 3201 and press the
“Next” button). We will discuss these issues below (in Section 2.5.2 [Sky lines in optical
IFUs], page 138). To view the spectra of a region in DS9 take the following steps:

1. Click somewhere on the image (to make sure DS9 receives your keyboard inputs),
then press Ctrl+R to activate regions and click on the brightest galaxy of this cube
(center-right, at RA, Dec of 39.9659175 and -1.5893075).

A thin green circle will show up; this is called a

‘region” in DS9.
Double-click on the region, and you will see a “Circle” window.
Within the “Circle” window, click on the “Analysis” menu and select “Plot 3D”.

A second “Circle” window will open that shows the spectra within your selected region.
This is just the sum of values on each slice within the region.

ANl

6. Don’t close the second “circle” window (that shows the spectrum). Click and hold the
region in DS9, and move it to other objects within the cube. You will see that the
spectrum changes as you move the region, and you can see that different objects have
very different spectra. You can even see the spectra of only one part of a galaxy, not
the whole galaxy.

7. Take the region back to the first (brightest) galaxy that we originally started with.

8. Slide over different wavelengths in the “Cube” window, you will see the light-blue line
moving through the spectrum as you slide to different wavelengths. This line shows
the wavelength of the displayed image in the main window over the spectra.

9. The strongest emission line in this galaxy appears to be around 8500 Angstroms or
8.5 X 1077 meters. From the position of the Balmer break (https://en.wikipedia.
org/wiki/Balmer_jump) (blue-ward of 5000 Angstroms for this galaxy), the strong
seems to be H-alpha.

10. To confirm that this is H-alpha, you can select the “Edit” menu in the spectrum window
and select “Zoom”.

11. Double-click and hold (for next step also) somewhere before the strongest line
and slightly above the continuum (for example at 8E-07 in the horizontal and
50 x 10~*°erg/Angstrom/cm?/s on the vertical). As you move your cursor (while
holding), you will see a rectangular box getting created.

12. Move the bottom-left corner of the box to somewhere after the strongest line and below
the continuum. For example at 9E-07 and 20 x 10~ *°erg/Angstrom/cm?/s.

13. Once you remove your finger from the mouse/touchpad, it will zoom-in to that part of
the spectrum.


https://en.wikipedia.org/wiki/Balmer_jump
https://en.wikipedia.org/wiki/Balmer_jump
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14. To zoom out to the full spectrum, just press the right mouse button over the spectra
(or tap with two fingers on a touchpad).

15. Select that zoom-box again to see the brightest line much more clearly. You can also
see the two lines of the Nitrogen II doublet that sandwich H-alpha. Beside its relative
position to the Balmer break, this is further evidence that the strongest line is H-alpha.

16. Let’s have a look at the galaxy in its best glory: right over the H-alpha line: Move
the wavelength slider accurately (by pressing the “Previous” or “Next” buttons) such
that the blue line falls in the middle of the H-alpha line. We see that the wavelength
at this slice is 8.56593e-07 meters or 8565.93 Angstroms. Please compare the image
of the galaxy at this wavelength with the wavelengths before (by pressing “Next” or
“Previous”). You will also see that it is much more extended and brighter than other
wavelengths! H-alpha shows the un-obscured star formation of the galaxy!

Automaticly going to next slice: When you want to get a general feeling of the cube,
pressing the “Next” button many times is annoying and slow. To automatically shift
between the slices, you can press the “Play” button in the DS9 “Cube” window. You can
adjust the time it stays on each slice by clicking on the “Interval” menu and selecting
lower values.

Knowing that this is H-alpha at 8565.93 Angstroms, you can get the redshift of the galaxy
with the first command below and the location of all other expected lines in Gnuastro’s
spectral line database with the second command. Because there are many lines in the
second command (more than 200!), with the third command, we’ll only limit it to the
Balmer series (that start with H-) using grep. The output of the second command prints
the metadata on the top (that is not shown any more in the third command due to the
grep call). To be complete, the first column is the observed wavelength of the given line in
the given redshift and the second column is the name of the line.

# Redshift where H-alpha falls on 8565.93.

$ astcosmiccal --obsline=H-alpha,8565.93 --usedredshift
0.305221

# Wavelength of all lines in Gnuastro's database at this redshift
$ astcosmiccal --obsline=H-alpha,8565.93 --listlinesatz

# Only the Balmer series (Lines starting with 'H-'; given to Grep).
$ astcosmiccal --obsline=H-alpha,8565.93 --listlinesatz | grep H-
4812.13 H-19

4818.29 H-18

4825.61 H-17

4834 .36 H-16

4844 .95 H-15

4857.96 H-14

4874.18 H-13

4894.79 H-12

4921.52 H-11

4957.1 H-10
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5006.03 H-9
5076.09 H-8
5181.83 H-epsilon
5353.68 H-delta
5665.27 H-gamma
6345.11 H-beta
8565.93 H-alpha
4758.84 H-1imit

Zoom-out to the full spectrum and move the displayed slice to the location of the
first emission line that is blue-ward (at shorter wavelengths) of H-alpha (at around 6300
Angstroms) and follow the previous steps to confirm that you are on its center. You will
see that it falls exactly on 6.34468 x 10~7 m or 6344.68 Angstroms. Now, have a look at
the Balmer lines above. You have found the H-beta line!

The rest of the Balmer series (https://en.wikipedia.org/wiki/Balmer_series) that
you see in the list above (like H-gamma, H-delta and H-epsilon) are visible only as absorp-
tion lines. Please check their location by moving the blue line on the wavelengths above
and confirm the spectral absorption lines with the ones above. The Balmer break is caused
by the fact that these stronger Balmer absorption lines become too close to each other.

Looking back at the full spectrum, you can also confirm that the only other relatively
strong emission line in this galaxy, that is on the blue side of the spectrum is the weakest
OII line that is approximately located at 4864 Angstroms in the observed spectra of this
galaxy. The numbers after the various OII emission lines show their rest-frame wavelengths
(“OII” can correspond to many electron transitions, so we should be clear about which one
we are talking about).

$ astcosmiccal --obsline=H-alpha,8565.93 --listlinesatz | grep 0-II-

4863.3 0-II-3726
4866 .93 0-II-3728
5634.82 0-II-4317
5762.42 0-II-4414
9564 .21 0-II-7319
9568.22 0-II-7330

Please stop here and spend some time on doing the exercise above on other galaxies in
the this cube to get a feeling of types of galaxy spectral features (and later on the full/large
cube). You will notice that only star-forming galaxies have such strong emission lines! If
you enjoy it, go get the full non-cropped cube and investigate the spectra, redshifts and
emission/absorption lines of many more galaxies.

But going into those higher-level details of the physical meaning of the spectra (as
intriguing as they are!) is beyond the scope of this tutorial. So we have to stop at this
stage unfortunately. Now that you have a relatively good feeling of this small cube, let’s
start doing some analysis to extract the spectra of the objects in this cube.

2.5.2 Sky lines in optical IFUs

As we were visually inspecting the cube in Section 2.5.1 [Viewing spectra and redshifted
lines], page 135, we noticed some slices with very bad noise. They will later affect our
detection within the cube, so in this section let’s have a fast look at them here. We’ll start
by looking at the two cubes within the downloaded FITS file:


https://en.wikipedia.org/wiki/Balmer_series
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$ astscript-fits-view a370-crop.fits

The cube on the left is the same cube we studied before. The cube on the right (which
is called STAT) shows the variance of each voxel. Go to slice 3195 and press “Next” to view
the subsequent slices. Initially (for the first 5 or 6 slices), the noise looks reasonable. But
as you pass slice 3206, you will see that the noise becomes very bad in both cubes. It stays
like this until about slice 3238! As you go through the whole cube, you will notice that
these slices are much more frequent in the reddest wavelengths.

These slices are affected by the emission lines from our own atmosphere! The atmo-
sphere’s emission in these wavelengths significantly raises the background level in these
slices. As a result, the Poisson noise also increases significantly (see Section 6.2.3.1 [Photon
counting noise|, page 408). During the data reduction, the excess background flux of each
slice is removed as the Sky (or the mean of undetected pixels, see Section 7.1.4 [Sky value],
page 528). However, the increased Poisson noise (scatter of pixel values) remains!

To see spectrum of the sky emission lines, simply put a region somewhere in the STAT
cube and generate its spectrum (as we did in Section 2.5.1 [Viewing spectra and redshifted
lines|, page 135). You will clearly see the comb-like shape of atmospheric emission lines and
can use this to know where to expect them.

2.5.3 Continuum subtraction

In Section 2.5.1 [Viewing spectra and redshifted lines|, page 135, we visually inspected some
of the most prominent emission lines of the brightest galaxy of the demo MUSE cube (see
Section 2.5 [Detecting lines and extracting spectra in 3D data], page 134). Here, we will
remove the “continuum” flux from under the emission lines to see them more distinctly.

Within a spectra, the continuum is the local “background” flux in the third /wavelength
dimension. In other words, it is the flux that would be present at that wavelength if the
emission line didn’t exist. Therefore, to accurately measure the flux of the emission line, we
first need to subtract the continuum. One crude way of estimating the continuum flux at
every slice is to use the sigma-clipped median value of that same pixel in the +N/2 slides
around it (for more on sigma-clipping, see Section 2.10.2 [Sigma clipping], page 200).

In this case, N = 100 should be a good first approximate (since it is much larger than any
of the absorption or emission lines). With the first command below, let’s use Arithmetic’s
filtering operators for estimating the sigma-clipped median only along the third dimension
for every pixel in every slice (see Section 6.2.4.8 [Filtering (smoothing) operators|, page 432).
With the second command, have a look at the filtered cube and spectra. Note that the first
command is computationally expensive and may take a minute or so.

$ astarithmetic a370-crop.fits set-i --output=filtered.fits \
3 0.211 100 i filter-sigclip-median

$ astscript-fits-view filtered.fits -hl --ds9scale="limits -5 20"

Looking at the filtered cube above, and sliding through the different wavelengths, you
will see the noise in each slice has been significantly reduced! This is expected because each
pixel’s value is now calculated from 100 others (along the third dimension)! Using the same
steps as Section 2.5.1 [Viewing spectra and redshifted lines], page 135, plot the spectra of
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the brightest galaxy. Then, have a look at its spectra. You see that the emission lines have
been significantly smoothed out to become almost® invisible.

You can now subtract this “continuum” cube from the input cube to create the emission-
line cube. In fact, as you see below, we can do it in a single Arithmetic command (blending
the filtering and subtraction in one command). Note how the only difference with the
previous Arithmetic command is that we added an i before the 3 and a - after filter-
sigclip-median. For more on Arithmetic’s powerful notation, see Section 6.2.1 [Reverse
polish notation], page 404. With the second command below, let’s view the input and
continuum-subtracted cubes together:

$ astarithmetic a370-crop.fits set-i --output=no-continuum.fits \
130.211 100 i filter-sigclip-median -

$ astscript-fits-view a370-crop.fits no-continuum.fits -gi \
--ds9scale="1limits -5 20"

Once the cubes are open, slide through the different wavelengths. Comparing the
left (input) and right (continuum-subtracted) slices, you will rarely see any galaxy in the
continuum-subtracted one! As its name suggests, the continuum flux is continuously present
in all the wavelengths (with gradual change)! But the continuum has been subtracted now;
so in the right-side image, you don’t see anything on wavelengths that don’t contain a spec-
tral emission line. Some dark regions also appear; these are absorption lines! Please spend
a few minutes sliding through the wavelengths and seeing how the emission lines pop-up
and disappear again. It is almost like scuba diving, with fish appearing out of nowhere and
passing by you.

Let’s go to slice 3046 (corresponding to 8555.93 Angstroms; just before the H-alpha line
for the brightest galaxy in Section 2.5.1 [Viewing spectra and redshifted lines|, page 135).
Now press the “Next” button to change slices one by one until there is no more emission
in the brightest galaxy. As you go to redder slices, you will see that not only does the
brightness increase, but the position of the emission also changes. This is the Doppler
effect (https://en.wikipedia.org/wiki/Doppler_effect) caused by the rotation of the
galaxy: the side that rotating towards us gets blue-shifted to bluer slices and the one that
is going away from us gets redshifted to redder slices. If you go to the emission lines of the
other galaxies, you will see that they move with a different angle! We can use this to derive
the galaxy’s rotational properties and kinematics (Gnuastro doesn’t have this feature yet).

To see the Doppler shift in the spectrum, plot the spectrum over the top-side of the
galaxy (which is visible in slice 3047). Then Zoom-in to the H-alpha line (as we did in
Section 2.5.1 [Viewing spectra and redshifted lines|, page 135) and press “Next” until you
reach the end of the H-alpha emission-line. You see that by the time H-alpha disappears in
the spectrum, within the cube, the emission shifts in the vertical axis by about 15 pixels!
Then, move the region across the same path that the emission passed. You will clearly see
that the H-alpha and Nitrogen II lines also move with you, in the zoomed-in spectra. Again,
try this for several other emission lines, and several other galaxies to get a good feeling of
this important concept when using hyper-spectral 3D data.

50 For more on why Sigma-clipping is only a crude solution to background removal, see Akhlaghi and
Ichikawa 2015 (https://arxiv.org/abs/1505.01664).
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2.5.4 3D detection with NoiseChisel

In Section 2.5.3 [Continuum subtraction], page 139, we subtracted the continuum emission,
leaving us with only noise and the absorption and emission lines. The absorption lines are
negative and will be missed by detection methods that look for a positive skewness® (like
Section 7.2 [NoiseChisel], page 552). So we will focus on the detection and extraction of
emission lines here.

The first step is to extract the voxels that contain emission signal. To do that, we
will be using Section 7.2 [NoiseChisel], page 552. NoiseChisel and Section 7.3 [Segment],
page 571, operate on 2D images or 3D cubes. But by default, they are configured for
2D images (some parameters like tile size take a different number of values based on the
dimensionality). Therefore, to do 3D detection, the first necessary step is to run NoiseChisel
with the default 3D configuration file.

To see where Gnuastro’s programs are installed, you can run the following command
(the printed output is the default location when you install Gnuastro from source, but if
you used another installation method or manually set a different location, you will see a
different output, just use that):

$ which astnoisechisel
/usr/local/bin/astnoisechisel

As you see, the compiled binary programs (like NoiseChisel) are installed in the bin/
sub-directory of the install path (/usr/local in the example above, may be different on
your system). The configuration files are in the etc/gnuastro/ sub-directory of the install
path (here only showing NoiseChisel’s configuration files):

$ 1s /usr/local/etc/gnuastro/astnoisechisel*.conf

/usr/local/etc/gnuastro/astnoisechisel-3d.conf

/usr/local/etc/gnuastro/astnoisechisel.conf
We should therefore call NoiseChisel with the 3D configuration file like below (please change
/usr/local to any directory that you find from the which command above):

$ astnoisechisel no-continuum.fits --output=det.fits \

--config=/usr/local/etc/gnuastro/astnoisechisel-3d.conf
But having to add this long —-config option is annoying and makes the command hard

to read! To simplify the calling of NoiseChisel in 3D, let’s first make a shell alias called
astnoisechisel-3d using the alias command. Afterwards, we can just use the alias.
Afterwards (in the second command below), we are calling the alias, producing the same
output as above. Finally (with the last command), let’s have a look at NoiseChisel’s output:

$ alias astnoisechisel-3d="astnoisechisel \
--config=/usr/local/etc/gnuastro/astnoisechisel-3d.conf"

$ astnoisechisel-3d no-continuum.fits --output=det.fits

$ astscript-fits-view det.fits

Similar to its 2D outputs, NoiseChisel’s output contains four extensions/HDUs (see
Section 7.2.2.3 [NoiseChisel output], page 569). For a multi-extension file with 3D data,

5L But if you want to detect the absorption lines, just multiply the cube by —1 and repeat the same steps
here (the noise is symmetric around 0).
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astscript-fits-view shows each cube as a separate DS9 “Frame”. In this way, as you
slide through the wavelengths, you see the same slice in all the cubes. The third and fourth
extensions are the Sky and Sky standard deviation, which are not relevant here, so you can
close them. To do that, press on the “Frame” button (in the top row of buttons), then
press “delete” two times in the second row of buttons.

As a final preparation, manually set the scale of INPUT-NO-SKY cube to a fixed range so
the changing flux/noise in each slice doesn’t interfere with visually comparing the data in
the slices as you move around:

1. Click on the INPUT-NO-SKY cube, so it is selected.

2. Click on the “Scale” menu, then the “Scale Parameters”.
3. For the “Low” value set -2 and for the “High” value set 5.
4

. In the “Cube” window, slide between the slices to confirm that the noise level is visually
fixed.

5. Go back to the first slice for the next steps. Note that the first and last couple of slices
have much higher noise, don’t worry about those.

As you press the “Next” button in the first few slides, you will notice that the DETECTION
cube is fully black: showing that nothing has been detected. The first detection pops up
in the 55th slice for the galaxy on the top of this cube. As you press “Next” you will see
that the detection fades away and other detections pop up. Spend a few minutes shifting
between the different slices and comparing the detected voxels with the emission lines in
the continuum-subtracted cube (the INPUT-NO-SKY extension).

Go ahead to slice 2933 and press “Next” a few times. You will notice that the detections
suddenly start covering the whole slice and until slice 2943 where the detection map becomes
normal (no extra detections!). This is the effect of the sky lines we mentioned before in
Section 2.5.2 [Sky lines in optical IFUs]|, page 138. The increased noise makes the reduction
very hard and as a result, a lot of artifacts appear. To reduce the effect of sky lines, we can
divide the cube by its standard deviation (the square root of the variance or STAT extension;
see Section 2.5.2 [Sky lines in optical IFUs], page 138) and run NoiseChisel afterwards.

$ astarithmetic no-continuum.fits -hl a370-crop.fits -hSTAT sqrt / \
--output=sn.fits

$ astnoisechisel-3d sn.fits --output=det.fits

$ astscript-fits-view det.fits

After the new detection map opens have another look at the specific slices mentioned
above (from slice 2933 to 2943). You will see that there are no more detection maps that
cover the whole field of view. Scroll the slide counter across the whole cube, you will rarely
see such effects by Sky lines any more. But this is just a crude solution and doesn’t remove
all sky line artifacts. For example go to slide 650 and press “Next”. You will see that the
artifacts caused by this sky line are so strong that the solution above wasn’t successful. For
these very strong emission lines, we need to improve the reduction. But generally, since the
number of sky-line affected slices has significantly decreased, we can go ahead.
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2.5.5 3D measurements and spectra

In the context of optical IFUs or radio IFUs in astronomy, a “Spectrum” is defined as
separate measurements on each 2D slice of the 3D cube. Each 2D slice is defined by
the first two FITS dimensions: the first FITS dimension is the horizontal axis and the
second is the vertical axis. As with the tutorial on 2D image analysis (in Section 2.1.13
[Segmentation and making a catalog], page 47), let’s run Segment to see how it works in
3D. Like NoiseChisel above, to simplify the commands, let’s make an alias (Section 2.5.4
[3D detection with NoiseChisel], page 141):

$ alias astsegment-3d="astsegment \
--config=/usr/local/etc/gnuastro/astsegment-3d.conf"

$ astsegment-3d det.fits --output=seg.fits

$ astscript-fits-view seg.fits

You see that we now have 3D clumps and 3D objects. So we can go ahead to do
measurements. MakeCatalog can do single-valued measurements (as in 2D) on 3D datasets
also. For example, with the command below, let’s get the flux-weighted center (in the three
dimensions) and sum of pixel values. There isn’t usually a standard name for the third
WCS dimension (unlike Ra/Dec). So in Gnuastro, we just call it —-w3. With the second
command, we are having a look at the first 5 rows. Note that we are not using -Y with
asttable anymore because the wavelength column would only be shown as zero (since it is
in meters!).

$ astmkcatalog seg.fits --ids --ra --dec --w3 --sum --output=cat.fits

$ asttable cat.fits -hl -0 --txtf64p=5 --head=5

# Column 1: OBJ_ID [counter ,132,] Object identifier.

# Column 2: RA [deg ,£64,] Flux weighted center (WCS axis 1).
# Column 3: DEC [deg ,£64,] Flux weighted center (WCS axis 2).
# Column 4: AWAV [m ,£64,] Flux weighted center (WCS axis 3).
# Column 5: SUM [input-units,f32,] Sum of sky subtracted values.

1 3.99677e+01 -1.58660e+00  4.82994e-07 7.311189e+02

2 3.99660e+01 -1.58927e+00 4.86411e-07 7.872681e+03

3 3.99682e+01 -1.59141e+00 4.90609e-07 1.314548e+03

4 3.99677e+01 -1.58666e+00 4.90816e-07 7.798024e+02

5 3.99659e+01 -1.58930e+00 4.93657e-07  3.255210e+03

Besides the single-valued measurements above (that are shared with 2D inputs), on 3D
cubes, MakeCatalog can also do per-slice measurements. The options for these measure-
ments are formatted as ——*in-slice. With the command below, you can check their list:

$ astmkcatalog --help | grep in-slice

--area-in-slice [3D input] Number of labeled in each slice.
--area-other-in-slice [3D input] Area of other lab. in projected area.
--area-proj-in-slice [3D input] Num. voxels in '--sum-proj-in-slice'.
—--sum-err—in-slice [3D input] Error in '--sum-in-slice'.

--sum-in-slice [3D input] Sum of values in each slice.
--sum-other-err-in-slice [3D input] Area in '--sum-other-in-slice'.
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--sum-other-in-slice [3D input] Sum of other lab. in projected area.
—--sum-proj-err-in-slice [3D input] Error of '--sum-proj-in-slice'.
--sum-proj-in-slice [3D input] Sum of projected area in each slice.
For every label and measurement, these options will give many values in a vector column
(see Section 5.3.2 [Vector columns], page 346). Let’s have a look by asking for the sum of
values and area of each label in each slice associated to each label with the command
below. There is just one important point: in Section 2.5.4 [3D detection with NoiseChisel],
page 141, we ran NoiseChisel on the signal-to-noise image, not the continuum-subtracted
image! So the values to use for the measurement of each label should come from the no-
continuum.fits file (not seg.fits).

$ astmkcatalog seg.fits --ids --ra --dec --w3 --sum \
--area-in-slice --sum-in-slice --output=cat.fits \
--valuesfile=no-continuum.fits --valueshdu=1

$ asttable -i cat.fits

cat.fits (hdu: 1)

No.Name Units Type Comment

1 0BJ_ID counter int32 Object identifier.

2 RA deg float64 Flux wht center (WCS 1).

3 DEC deg float64 Flux wht center (WCS 2).

4  AWAV m float64 Flux wht center (WCS 3).

5 SUM input-units float32 Sum of sky-subed values.

6 AREA-IN-SLICE counter int32(3681)  Number of pix. in each slice.
7 SUM-IN-SLICE input-units float32(3681) Sum of values in each slice.

Number of rows: 194

You can see that the new AREA-IN-SLICE and SUM-IN-SLICE columns have a (3681) in
their types. This shows that unlike the single-valued columns before them, in these columns,
each row has 3681 values (a “vector” column). If you are not already familiar with vector
columns, please take a few minutes to read Section 5.3.2 [Vector columns]|, page 346. Since
a MUSE data cube has 3681 slices, this is effectively the spectrum of each object.

Let’s find the object that corresponds to the H-alpha emission of the brightest galaxy
(that we found in Section 2.5.1 [Viewing spectra and redshifted lines|, page 135). That emis-
sion line was around 8565.93 Angstroms, so let’s look for the objects within £5 Angstroms
of that value (between 8560 to 8570 Angstroms):

$ asttable cat.fits --range=AWAV,8.560e-7,8.570e-7 -cobj_id,ra,dec -Y
181 39.965897 -1.589279

From the command above, we see that at this wavelength, there was only one object.
Let’s extract its spectrum by asking for the sum-in-slice column:

$ asttable cat.fits --range=AWAV,8.560e-7,8.570e-7 \
—carea-in-slice,sum-in-slice
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If you look into the outputs, you will see that it is a single line! It contains a long list
of 0 values at the start and nan values in the end. If you scroll slowly, in the middle of
each you will see some non-zero and non-NaN numbers. To help interpret this more easily,
let’s transpose these vector columns (so each value of the vector column becomes a row in
the output). We will use the --transpose option of Table for this (just note that since
transposition changes the number of rows, it can only be used when your table only has
vector columns and they all have the same number of elements (as in this case, for more):

$ asttable cat.fits --range=AWAV,8.560e-7,8.570e-7 \
-carea-in-slice,sum-in-slice --transpose

We now see the measurements on each slice printed in a separate line (making it much
more easier to visually read). However, without a counter, it is very hard to interpret
them. Let’s pipe the output to a new Table command and use column arithmetic’s counter
operator for displaying the slice number (see Section 6.2.4.19 [Size and position operators],
page 466). Note that since we are piping the output, we also added -0 so the column
metadata are also passed to the new instance of Table:

$ asttable cat.fits --range=AWAV,8.560e-7,8.570e-7 -0 \
-carea-in-slice,sum-in-slice --transpose \
| asttable -c'arith $1 counter swap',2

...[[truncated]]...
3040 0 nan
3041 0 nan
3042 0 nan
3043 0 nan
3044 1 4.311140e-01
3045 18 3.936019e+00
3046 161 -5.800080e+00
3047 360 2.967184e+02
3048 625 1.912855e+03
3049 823 5.140487e+03
3050 945 7.174101e+03
3051 999 6.967604e+03
3052 1046 6.468591e+03
3053 1025 6.457354e+03
3054 996 6.599119e+03
3055 966 6.762280e+03
3056 873 5.014052e+03
3057 649 2.003334e+03
3058 335 3.167579e+02
3059 131 1.670975e+01
3060 25 -2.953789e+00
3061 0 nan
3062 0 nan
3063 0 nan
3064 0 nan

...[[truncatedl]...
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$ astscript-fits-view seg.fits

After DS9 opens with the last command above, go to slice 3044 (which is the first non-
NaN slice in the spectrum above). In the 0BJECTS extension of this slice, you see several
non-zero pixels. The few non-zero pixels on the bottom have a label of 180 and the single
non-zero pixel at a higher Y axis position has a label of 181 (which as we saw above, was
the label of the H-alpha emission of this galaxy). The few 197 labeled pixels in this slice
are the last voxels of the NII emission that is just blue-ward of H-alpha.

The single pixel you see in slice 3044 is why you see a value of 1 in the AREA-IN-SLICE
column. As you go to the next slices, if you count the pixels, you will see they add up to
the same number you see in that column. The values in the SUM-IN-SLICE are the sum of
values in the continuum-subtracted cube for those same voxels. You should now be able to
understand why the --sum-in-slice column has NaN values in all other slices: because
this label doesn’t exist in any other slice! Also, within slices that contain label 181, this
column only uses the voxels that have the label. So as you see in the second column above,
the area that is used in each changes.

Therefore ——sum-in-slice or area-in-slice are the raw 3D spectrum of each 3D
emission-line. This is a different concept from the traditional “spectrum” where the same
area is used over all the slices. To get that you should use the --sumprojinslice column
of MakeCatalog. All the --*in-slice options that contain a proj in their name are
measurements over the fixed “projection” of the 3D volume on the 2D surface of each slice.
To see the effect, let’s also ask MakeCatalog to measure this projected sum column:

$ astmkcatalog seg.fits --ids --ra --dec --w3 --sum \
--area-in-slice --sum-in-slice --sum-proj-in-slice \
--output=cat.fits --valuesfile=no-continuum.fits \
--valueshdu=1
$ asttable cat.fits --range=AWAV,8.560e-7,8.570e-7 -0 \
-carea-in-slice,sum-in-slice,sum-proj-in-slice \
--transpose \
| asttable -c'arith $1 counter swap',2,3

...[[truncated]]...

3040 0 nan 8.686357e+02
3041 0 nan 4.,384907e+02
3042 0 nan 4.,994813e+00
3043 0 nan -1.595918e+02
3044 1 4.311140e-01 -2.793141e+02
3045 18 3.936019e+00 -3.251023e+02
3046 161 -5.800080e+00 -2.709914e+02
3047 360 2.967184e+02 1.049625e+02
3048 625 1.912855e+03 1.841315e+03
3049 823 5.140487e+03 5.108451e+03
3050 945 7.174101e+03 7.149740e+03
3051 999 6.967604e+03 6.913166e+03
3052 1046 6.468591e+03 6.442184e+03
3053 1025 6.457354e+03 6.393185e+03
3054 996 6.599119e+03 6.572642e+03
3055 966 6.762280e+03 6.716916e+03
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3056 873 5.014052e+03 4.974084e+03
3057 649 2.003334e+03 1.870787e+03
3058 335 3.167579e+02 1.057906e+02
3059 131 1.670975e+01 -2.415764e+02
3060 25 -2.953789e+00 -3.534623e+02
3061 0 nan -3.745465e+02
3062 0 nan -2.532008e+02
3063 0 nan -2.372232e+02
3064 0 nan -2.153670e+02
...[[truncated]]...

As you see, in the new SUM-PROJ-IN-SLICE column, we have a measurement in each slice:
including slices that do not have the label of 181 at all. Also, the area used to measure this
sum is the same in all slices (similar to a classical spectrometer’s output).

However, there is a big problem: have a look at the sums in slices 3040 and 3041:
the values are increasing! This is because of the emission in the NII line that also falls
over the projected area of H-alpha. This shows the power of IFUs as opposed to classical
spectrometers: we can distinguish between individual lines based on spatial position and
do measurements in 3D!

Finally, in case you want the spectrum with the continuum, you just have to change the
file given to --valuesfile:

$ astmkcatalog seg.fits --ids --ra --dec --w3 --sum \
--area-in-slice --sum-in-slice --sum-proj-in-slice \
--valuesfile=a370-crop.fits --valueshdu=1 \
--output=cat-with-continuum.fits

2.5.6 Extracting a single spectrum and plotting it

In Section 2.5.5 [3D measurements and spectral, page 143, we measured the spectra of all
the objects with the MUSE data cube of this demonstration tutorial. Let’s now write the
resulting spectra for our object 181 into a file to view our measured spectra in TOPCAT for
a more visual inspection. But we don’t want slice numbers (which are specific to MUSE), we
want the horizontal axis to be in Angstroms. To do that, we can use the WCS information:

CRPIX3 The “Coordinate Reference PIXel” in the 3rd dimension (or slice number of
reference) Let’s call this s,.

CRVAL3 The “Coordinate Reference VALue” in the 3rd dimension (the WCS coordinate
of the slice in CRPIX3. Let’s call this A,

CDELT3 The “Coordinate DELTa” in the 3rd dimension, or how much the WCS changes
with every slice. Let’s call this é.

To find the A (wavelength) of any slice with number s, we can simply use this equation:

A=\ +0(s—s,)

Let’s extract these three values from the FITS WCS keywords as shell variables to
automatically do this within Table’s column arithmetic. Here we are using the technique
that is described in Section 4.1.5.1 [Separate shell variables for multiple outputs], page 267.
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$ eval $(astfits seg.fits --keyvalue=CRPIX3,CRVAL3,CDELT3 -q \
| xargs printf "sr=Ys; lr=Ys; d=¥s;")

## Just for a check:
echo $sr
.000000e+00

echo $1r
.749679687500000e-07
echo $d
.250000000000000e-10

= & D B

Now that we have the necessary constants, we can simply convert the equation above
into Section 6.2.1 [Reverse polish notation], page 404, and use column arithmetic to convert
the slice counter into wavelength in the command of Section 2.5.5 [3D measurements and
spectral], page 143.

$ asttable cat.fits --range=AWAV,8.560e-7,8.570e-7 -0 \
-carea-in-slice,sum-in-slice,sum-proj-in-slice \
--transpose \
| asttable -c'arith $1 counter '$sr' - '$d' x '$lr' + £32 swap' \
-c2,3 --output=spectrum-obj-181.fits \
--colmetadata=1,WAVELENGTH,m, "Wavelength of slice." \
—-colmetadata=2,"AREA-IN-SLICE" ,voxel,"No. of voxels."

$ astscript-fits-view spectrum-obj-181.fits
Once TOPCAT opens, take the following steps:
In the “Graphics” menu, select “Plane plot”.
Change AREA-IN-SLICE to SUM-PROJ-IN-SLICE.
Select the “Form” tab.
Click on the button with the large green “+” button and select “Add line”.

AN R .

Un-select the “Mark” item that was originally selected.

Of course, the table in spectrum-obj-181.fits can be plotted using any other plotting
tool you prefer to use in your scientific papers. In the next section (Section 2.5.7 [Cubes
with logarithmic third dimension], page 148), we’ll review the necessary modifications to
the recipes in this section for cubes where the third dimension is logarithmic, not linear
(as in MUSE cubes). Finally, in Section 2.5.7 [Cubes with logarithmic third dimension],
page 148, you’ll see how you can make narrow-band images of your desired target around
your desired emission line.

2.5.7 Cubes with logarithmic third dimension

In Section 2.5.6 [Extracting a single spectrum and plotting it], page 147, a single object’s
spectrum was extracted from the catalog and plotted. Extracting the wavelength of each
slice was easy there because MUSE data cubes provide a linear third dimension. However,
it can happen that the third axis of a cube is logarithmic not linear (as in the MUSE cube
used in this tutorial). An example in the optical regime is the data cubes of the MaNGA


https://www.sdss4.org/surveys/manga/
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survey (https://www.sdss4.org/surveys/manga/)°2. To identify if an axis is logarithmic
or linear, the FITS WCS standard (https://ui.adsabs.harvard.edu/abs/2006A&A. ..
446. .747G) (Section 3.2) says that you should look at the CTYPE keywords and check if any
have a -L0OG suffix. For example, here is the output on a MaNGA data cube:

$ astfits manga.fits -hl | grep CTYPE

CTYPE1 = 'RA---TAN'
CTYPE2 = 'DEC--TAN'
CTYPE3 = 'WAVE-LOG'

In the same section, the FITS standard describes how the “world coordinate” (wavelengh
in this case) can be calculated in such cases. The column arithmetic command to add the
wavelength to each slice’s measurement looks is shown below (just for the first object in the
catalog; replace —-head=1 as you wish). For the d, 1r and sr shell variables that are used
in this command, see Section 2.5.6 [Extracting a single spectrum and plotting it], page 147.

$ asttable cat.fits --head=1 -csum-in-slice --transpose \
| asttable -c'arith $1 index '$d' x '$1lr' / set-p set-s \
e p pow '$lr' x s'

2.5.8 Synthetic narrow-band images

In Section 2.5.3 [Continuum subtraction], page 139, we subtracted /separated the continuum
from the emission/absorption lines of our galaxy in the MUSE cube. Let’s visualize the
morphology of the galaxy at some of the spectral lines to see how it looks. To do this, we will
create synthetic narrow-band 2D images by collapsing the cube along the third dimension
within a certain wavelength range that is optimized for that flux.

Let’s find the wavelength range that corresponds to H-alpha emission we studied in Sec-
tion 2.5.6 [Extracting a single spectrum and plotting it], page 147. Fortunately MakeCatalog
can calculate the minimum and maximum position of each label along each dimension like
the command below. If you always need these values, you can include these columns in the
same MakeCatalog with ——sum-proj-in-slice. Here we are running it separately to help
you follow the discussion there.

$ astmkcatalog seg.fits --output=cat-ranges.fits \
--ids --min-x --max-x --min-y --max-y --min-z --max-z
Let’s extract the minimum and maximum positions of this particular object with the

first command and with the second, we’ll write them into different shell variables. With
the second command, we are writing those six values into a single string in the format of
Crop’s Section 6.1.2 [Crop section syntax], page 392. For more on the eval-based shell trick
we used here, see Section 4.1.5.1 [Separate shell variables for multiple outputs|, page 267.
Finally, we are running Crop and viewing the cropped 3D cube.

$ asttable cat-ranges.fits --equal=0BJ_ID,181 \

-cMIN_X,MAX_X,MIN_Y,MAX_Y,MIN_Z,MAX_Z
56 101 11 61 3044 3060

$ eval $(asttable cat-ranges.fits --equal=0BJ_ID,181 \
-cMIN_X,MAX_X,MIN_Y,MAX_Y,MIN_Z,MAX_Z \

52 An example data cube from the MaNGA survey can be downloaded from here: https://data.sdss.
org/sas/dr17/manga/spectro/redux/v3_1_1/7443/stack/manga-7443-12703-LOGCUBE.fits.gz


https://www.sdss4.org/surveys/manga/
https://www.sdss4.org/surveys/manga/
https://ui.adsabs.harvard.edu/abs/2006A&A...446..747G
https://ui.adsabs.harvard.edu/abs/2006A&A...446..747G
https://data.sdss.org/sas/dr17/manga/spectro/redux/v3_1_1/7443/stack/manga-7443-12703-LOGCUBE.fits.gz
https://data.sdss.org/sas/dr17/manga/spectro/redux/v3_1_1/7443/stack/manga-7443-12703-LOGCUBE.fits.gz
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| xargs printf "section=Ys:%s,%s:%s,%s:%s; ")

$ astcrop no-continuum.fits --mode=img --section=$section \
--output=crop-no-continuum.fits

$ astscript-fits-view crop-no-continuum.fits

Go through the slices and you will only see this particular region of the full cube. We
can now collapse the third dimension of this image into a 2D synthetic-narrow band image
with Arithmetic’s Section 6.2.4.11 [Dimensionality changing operators|, page 439:

$ astarithmetic crop-no-continuum.fits 3 collapse-sum \
--output=collapsed-all.fits

$ astscript-fits-view collapsed-all.fits

During the collapse, used all the pixels in each slice. This is not good for the faint
outskirts in the peak of the emission line: the noise of the slices with less signal decreases
the over-all signal-to-noise ratio in the synthetic-narrow band image. So let’s set all the
pixels that aren’t labeled with this object as NaN, then collapse. To do that, we first need
to crop the OBJECT cube in seg.fits. With the second command, please have a look to
confirm how the labels change as a function of wavelength.

$ astcrop seg.fits -hOBJECTS --mode=img --section=$section \
—--output=crop-obj.fits

$ astscript-fits-view crop-obj.fits
Let’s use Arithmetic to first set all the pixels that are not equal to 198 in collapsed-

obj.fits to be NaN in crop-no-continuum.fits. With the second command, we are
opening the two collapsed images together:

$ astarithmetic crop-no-continuum.fits set-i \
crop-obj.fits set-o \
i o 181 ne nan where 3 collapse-sum \
-gl --output=collapsed-obj.fits

$ astscript-fits-view collapsed-all.fits collapsed-obj.fits \
--ds9extra="-lock scalelimits yes -blink"

Let it blink a few times and focus on the outskirts: you will see that the diffuse flux in
the outskirts has indeed been preserved better in the object-based collapsed narrow-band
image. But this is a little hard to appreciate in the 2D image. To see it better practice,
let’s get the two radial profiles. We will approximately assume a position angle of -80 and
axis ratio of 0.7%3. With the final command below, we are opening both radial profiles in

53 To derive the axis ratio and position angle automatically, you can take the following steps. Note that we
are not using NoiseChisel because this crop has been intentionally selected to contain signal, so there is
no raw noise inside of it.

$ aststatistics collapsed-all.fits --sky --tilesize=3,3

$ astarithmetic collapsed-all.fits -hl collapsed-all_sky.fits -hSKY_STD / 5 gt

$ astmkcatalog collapsed-all_arith.fits -hl --valuesfile=collapsed-all.fits \
--valueshdu=1 --position-angle --axis-ratio
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TOPCAT to visualize them. We are also undersampling the radial profile to have better
signal-to-noise ratio in the outer radii:

$ astscript-radial-profile collapsed-all.fits \
--position-angle=-80 --axis-ratio=0.7 \
--undersample=2 --output=collapsed-all-rad.fits

$ astscript-radial-profile collapsed-obj.fits \
--position-angle=-80 --axis-ratio=0.7 \
--undersample=2 --output=collapsed-obj-rad.fits
To view the difference, let’s merge the two profiles (the MEAN column) into one table

and simply print the two profiles beside each other. We will then pipe the resulting table
containing both columns to a second call to Gnuastro’s Table and use column arithmetic to
subtract the two mean values and divide them by the optimized one (to get the fractional
difference):

$ asttable collapsed-all-rad.fits --catcolumns=MEAN -0 \
--catcolumnfile=collapsed-obj-rad.fits \
| asttable -c1,2,3 -c'arith $3 $2 - $3 /' \
--colmetadata=2,MEAN-ALL \
--colmetadata=3,MEAN-0BJ \
--colmetadata=4,DIFF,frac,"Fractional diff." -YO

# Column 1: RADIUS [pix ,£32,] Radial distance

# Column 2: MEAN-ALL [input-units,f32,] Mean of sky subtracted values.
# Column 3: MEAN-OBJ [input-units,f32,] Mean of sky subtracted values.
# Column 4: DIFF [frac ,£32,] Fractional diff.

0.000 436.737 450.256 0.030

2.000 371.880 384.071 0.032

4.000 313.429 320.138 0.021

6.000 275.744 280.102 0.016

8.000 152.214 154.470 0.015

10.000 59.311 62.207 0.047

12.000 18.466 20.396 0.095

14.000 6.940 8.671 0.200

16.000 3.052 4.256 0.283

18.000 1.590 2.848 0.442

20.000 1.430 2.550 0.439

22.000 0.838 1.975 0.576

As you see, beyond a radius of 10, the last fractional difference column becomes very large,
showing that a lot of signal is missing in the MEAN-ALL column. For a more visual comparison
of the two profiles, you can use the command below to open both tables in TOPCAT:
$ astscript-fits-view collapsed-all-rad.fits \
collapsed-obj-rad.fits

Once TOPCAT has opened take the following steps:

$ asttable collapsed-all_arith_cat.fits -Y
-79.100 0.700
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1. Select collapsed-all-rad.fits
2. In the “Graphics” menu, select “Plane Plot”.

3. Click on the “Axes” side-bar (by default, at the bottom half of the window), and click
on “Y Log” to view the vertical axis in logarithmic scale.

4. In the “Layers” menu, select “Add Position Control”. You will see that at the bottom
half, a new scatter plot information is displayed.

5. Click on the scroll-down menu in front of “Table” and select 2: collapsed-obj-
rad.fits. Afterwards, you will see the optimized synthetic-narrow-band image radial
profile as blue points.

2.6 Color images with full dynamic range

Color images are fundamental tools to visualize astronomical datasets, allowing to visualize
valuable physical information within them. A color image is a composite representation
derived from different channels. Each channel usually corresponding to different filters
(each showing wavelength intervals of the object’s spectrum). In general, most common
color image formats (like JPEG, PNG or PDF) are defined from a combination of Red-
Green-Blue (RGB) channels (to cover the optical range with normal cameras). These three
filters are hard-wired in your monitor and in most normal camera (for example smartphone
or DSLR) pixels. For more on the concept and usage of colors, see Section 5.2.3 [Color],
page 320, and Section 5.2.3.2 [Colormaps for single-channel pixels|, page 321.

However, normal images (that you take with your smartphone during the day for ex-
ample) have a very limited dynamic range (difference between brightest and fainest part
of an image). For example in an image you take from a farm, the brightness pixel (the
sky) cannot be more than 255 times the faintest/darkest shadow in the image (because
normal cameras produce unsigned 8 bit integers; containing 2® = 256 levels; see Section 4.5
[Numeric data types|, page 279).

However, astronomical sources span a much wider dynamic range such that their central
parts can be tens of millions of times brighter than their larger outer regions. Our astro-
nomical images in the FITS format are therefore usually 32-bit floating points to preserve
this information. Therefore a simple linear scaling of 32-bit astronomical data to the 8-bit
range will put most of the pixels on the darkest level and barely show anything! This
presents a major challenge in visualizing our astronomical images on a monitor, in print or
for a projector when showing slides.

In this tutorial, we review how to prepare your images and create informative RGB im-
ages for your PDF reports. We start with aligning the images to the same pixel grid (which
is usually necessary!) and using the low-level engine (Gnuastro’s Section 5.2 [ConvertType],
page 316, program) directly to create an RGB image. Afterwards, we will use a higher-level
installed script (Section 10.7 [Color images with gray faint regions], page 720). This is a
high-level wrapper over ConvertType that does some pre-processing and stretches the pixel
values to enhance their 8-bit representation before calling ConvertType.

2.6.1 Color channels in same pixel grid

In order to use different images as color channels, it is important that the images be properly
aligned and on the same pixel grid. When your inputs are high-level products of the same
survey, this is usually the case. However, in many other situations the images you plan to
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use as different color channels lie on different sky positions, even if they may have the same
number of pixels. In this section we will show how to solve this problem.

For an example dataset, let’s use the same SDSS field that we used in Section 2.2
[Detecting large extended targets|, page 80: the field covering the outer parts of the M51
group. With the commands below, we’ll make an inputs directory and download and
prepare the three g, r and i band images of SDSS over the same field there:

$ mkdir in

$ sdssurl=https://dril2.sdss.org/sas/dr12/boss/photo0bj/frames

$ for f in g r i; do \
wget $sdssurl/301/3716/6/frame-$£-003716-6-0117.fits.bz2 \

-0$f.fits.bz2; \
bunzip2 $f.fits.bz2; \
astfits $f.fits --copy=0 -oin/$f-sdss.fits; \
rm $f.fits; \
done

Let’s have a look at the three three images with the first command, and get their number
of pixels with the second:

## Open the images locked by image coordinates
$ astscript-fits-view in/#*-sdss.fits

## Check the number of pixels along each axis of all images.
$ astfits in/*-sdss.fits --keyvalue=NAXIS1,NAXIS2
in/g-sdss.fits 2048 1489

in/i-sdss.fits 2048 1489

in/r-sdss.fits 2048 1489

From the first command, the images look like they cover the same astronomical object
(M51) in the same region of the sky, and with the second, we see that they have the
same number of pixels. But this general visual inspection does not guarantee that the
astronomical objects within the pixel grid cover exactly the same positions (within a pixel!)
on the sky. Let’s open the images again, but this time asking DS9 to only show one at a
time, and to “blink” between them:

$ astscript-fits-view in/*-sdss.fits \
--ds9extra="-single -zoom to fit -blink"

If you pay attention, you will see that the objects within each image are at slightly
different locations. If you don’t immediately see it, try zooming in to any star within the
image and let DS9 continue blinking. You will see that the star jumps a few pixels between
each blink.

In essence, the images are not aligned on the same pixel grid, therefore, the same source
does not share identical image coordinates across these three images. As a consequence, it
is necessary to align the images before making the color image, otherwise this misalignment
will generate multiply-peaked point-sources (stars and centers of galaxies) and artificial
color gradients in the more diffuse parts. To align the images to the same pixel grid, we
will employ Gnuastro’s Section 6.4 [Warp|, page 501, program. In particular, its features
to Section 6.4.4.1 [Align pixels with WCS considering distortions], page 508.
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Let’s take the middle (r band) filter as the reference to define our grid. With the
first command after building the aligned/ directory, let’s align the r filter to the celestial
coordinates (so the M51 group’s position angle doesn’t depend on the orientation of the
telescope when it took this image). With for the other two filters, we will use Warp’s
—--gridfile option to ensure that ensure that their pixel grid and WCS exactly match the
r band image, but the pixel values come from the other two filters. Finally, in the last
command, we’ll visualize the three aligned images.

## Put all three channels in the same pixel grid.

$ mkdir aligned

$ astwarp in/r-sdss.fits --output=aligned/r-sdss.fits

$ astwarp in/g-sdss.fits --output=aligned/g-sdss.fits \
--gridfile=aligned/r-sdss.fits

$ astwarp in/i-sdss.fits --output=aligned/i-sdss.fits \
--gridfile=aligned/r-sdss.fits

## Open the images locked by image coordinates
$ astscript-fits-view aligned/*-sdss.fits \
--ds9extra="-single -zoom to fit -blink"

As the images blink between each other, zoom in to some of the smaller stars and you
will see that they no longer jump from one blink to the next. These images are now precisely
pixel-aligned. We are now equipped with the essential data to proceed with the color image
generation in Section 2.6.2 [Color image using linear transformation|, page 154.

2.6.2 Color image using linear transformation

Previously (in Section 2.6.1 [Color channels in same pixel grid], page 152), we downloaded
three SDSS filters of M51 and described how you can put them all in the same pixel grid. In
this section, we will explore the raw and low-level process of generating color images using
the input images (without modifying the pixel value distributions). We will use Gnuastro’s
ConvertType program (with executable name astconvertt).

Let’s create our first color image using the aligned SDSS images mentioned in the pre-
vious section. The order in which you provide the images matters, so ensure that you sort
the filters from redder to bluer (iISDSS and gSDSS are respectively the reddest and bluest
of the three filters used here).

$ astconvertt aligned/i-sdss.fits aligned/r-sdss.fits \
aligned/g-sdss.fits -gl --output=mb51.pdf

Other color formats: In the example above, we are using PDF because this is usually the
best format to later also insert marks that are commonly necessary in scientific publications
(see Section 2.1.21 [Marking objects for publication], page 69. But you can also generate
JPEG and TIFF outputs simply by using a different suffix for your output file (for example
--output=m51. jpg or —-output=m51.tiff).

Open the image with your PDF viewer and have a look. Do you see something? Initially,
it appears predominantly black. However, upon closer inspection, you will discern very tiny
points where some color is visible. These points correspond to the brightest part of the
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brightest sources in this field! The reason you saw much more structure when looking at
the image in DS9 previously in Section 2.6.1 [Color channels in same pixel grid], page 152,
was that astscript-fits-view used DS9’s -zscale option to scale the values in a non-
linear way! Let’s have another look at the images with the linear minmax scaling of DSO:

$ astscript-fits-view aligned/*-sdss.fits \
--ds9extra="-scale minmax -lock scalelimits"

You see that it looks very similar to the PDF we generated above: almost fully black!
This phenomenon exemplifies the challenge discussed at the start of this tutorial in Sec-
tion 2.6 [Color images with full dynamic range], page 152). Given the vast number of
pixels close to the sky background level compared to the relatively few very bright pixels,
visualizing the entire dynamic range simultaneously is tricky.

To address this challenge, the low-level ConvertType program allows you to selectively
choose the pixel value ranges to be displayed in the color image. This can be accom-
plished using the --fluxlow and --fluxhigh options of ConvertType. Pixel values below
--fluxlow are mapped to the minimum value (displayed as black in the default colormap),
and pixel values above --f1luxhigh are mapped to the maximum value (displayed as white))
The choice of these values depends on the pixel value distribution of the images.

But before that, we have to account for an important differences between the filters:
the brightness of the background also has different values in different filters (the sky has
colors!) So before making more progress, generally, first you have to subtract the sky from
all three images you want to feed to the color channels. In a previous tutorial (Section 2.2
[Detecting large extended targets|, page 80) we used these same images as a basis to show
how you can do perfect sky subtraction in the presence of large extended objects like M51.
Here we are just doing a visualization and bringing pixels to 8-bit, so we don’t need that
level of precision reached there (we won’t be doing photometry!). Therefore, let’s just keep
the ——tilesize=100, 100 of NoiseChisel.

$ mkdir no-sky
$ for £ in i r g; do \
astnoisechisel aligned/$f-sdss.fits --tilesize=100,100 \
--output=no-sky/$f-sdss.fits; \
done

( 0
Accounting for zero points: An important step that we have not implemented in this

section is to unify the zero points of the three filters. In the case of SDSS (and some other
surveys), the images have already been brought to the same zero point, but that is not
generally the case. So before subtracting sky (and estimating the standard deviation) you
should also unify the zero points of your images (for example through Arithmetic’s counts-
to-customzp, counts-to-nanomaggy or counts-to-jy described in Section 6.2.4.5 [Unit
conversion operators|, page 420). If you don’t already have the zero point of your images,

see the dedicated tutorial to measure it: Section 2.7 [Zero point of an image], page 166.
N J

Now that we know the noise fluctuates around zero in all three images, we can start
to define the values for the --fluxlow and --fluxhigh. But the sky standard deviation
comes from the sky brightness in different filters and is therefore different! Let’s have a look
by taking the median value of the SKY_STD extension of NoiseChisel’s output:
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$ aststatistics no-sky/i-sdss.fits -hSKY_STD --median
2.748338e-02

$ aststatistics no-sky/r-sdss.fits -hSKY_STD --median
1.678463e-02

$ aststatistics no-sky/g-sdss.fits -hSKY_STD --median
9.687680e-03

You see that the sky standard deviation of the reddest filter (i) is almost three times the
bluest filter (g)! This is usually the case in any scenario (redder emission usually requires
much less energy and gets absorbed less, so the background is usually brighter in the reddest
filters). As a result, we should define our limits based on the noise of the reddest filter.
Let’s set the minimum flux to 0 and the maximum flux to “50 times the noise of the i-band
image (0.027 x 50 = 1.35).

$ astconvertt no-sky/i-sdss.fits no-sky/r-sdss.fits no-sky/g-sdss.fits \
-gl ——fluxlow=0.0 --fluxhigh=1.35 --output=mb1.pdf

After opening the new color image, you will observe that a spiral arm of M51 and M51B
(or NGC5195, which is interacting with M51), become visible. However, the majority of
the image remains black. Feel free to experiment with different values for --fluxhigh to
set the maximum value closer to the noise-level and see the more diffuse structures. For
instance, try with ——fluxhigh=0.27 the brightest pixels will have a signal-to-noise ratio of
10, or even —-fluxhigh=0.135 for a signal-to-noise ratio of 5. But you will notice that, the
brighter areas of the galaxy become "saturated": you don’t see the structure of brighter
parts of the galaxy any more. As you bring down the maximum threshold, the saturated
areas also increase in size: loosing some useful information on the bright side!

Let’s go to the extreme and decrease the threshold to close the noise-level (for example
--fluxhigh=0.027 to have a signal-to-noise ratio of 1)! You will see that the noise now
becomes colored! You generally don’t want this because the difference in filter values of one
pixel are only physically meaningful when they have a high signal-to-noise ratio. For lower
signal-to-noise ratios, we should avoid color.

Ideally, we want to see both the brighter parts of the central galaxy, as well as the
fainter diffuse parts together! But with the simple linear transformation here, that is not
possible! You need some pre-processing (before calling ConvertType) to scale the images.
For example, you can experiment with taking the logarithm or the square root of the images
(using Section 6.2 [Arithmetic], page 403) before creating the color image.

These non-linear functions transform pixel values, mapping them to a new range.
After applying such transformations, you can use the transformed images as inputs to
astconvertt to generate color images (similar to how we subtracted the sky; which is a
linear operation). In addition to that, it is possible to use a different color schema for
showing the different brightness ranges as it is explained in the next section. In the next
section (Section 2.6.3 [Color for bright regions and grayscale for faint|, page 157), we’ll
review one high-level installed script which will simplify all these pre-processings and help
you produce images with more information in them.
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2.6.3 Color for bright regions and grayscale for faint

In the previous sections we aligned three SDSS images of M51 group Section 2.6.1 [Color
channels in same pixel grid], page 152, and created a linearly-scaled color image (only using
astconvertt program) in Section 2.6.2 [Color image using linear transformation], page 154.
But we saw that showing the brighter and fainter parts of the galaxy in a single image is
impossible in the linear scale! In this section, we will use Gnuastro’s astscript-color-
faint-gray installed script to address this problem and create images which visualize a
major fraction of the contents of our astronomical data.

This script aims to solve the problems mentioned in the previous section. See Infante-
Sainz et al. 2024 (https://arxiv.org/abs/2401.03814), which first introduced this script,
for examples of the final images we will be producing in this tutorial. This script uses a non-
linear transformation to modify the bright input values before combining them to produce
the color image. Furthermore, for the faint regions of the image, it will use grayscale and
avoid color over all (as we saw, colored noised is not too nice to look at!). The faint regions
are also inverted: so the brightest pixel in the faint (black-and-white or grayscale) region is
black and the faintest pixels will be white. Black therefore creates a smooth transition from
the colored bright pixels: the faintest colored pixel is also black. Since the background is
white and the diffuse parts are black, the final product will also show nice in print or show
on a projector (the background is not black, but white!).

The SDSS image we used in the previous sections doesn’t show the full glory of the M51
group! Therefore, in this section, we will use the wider images from the J-PLUS survey
(https://www.j-plus.es). Fortunately J-PLUS includes the SDSS filters, so we can use
the same iSDSS, rSDSSS, and gSDSS filters of J-PLUS. As a consequence, similar to the
previous section, the R, G, and B channels are respectively mapped to the iSDSS, rSDSS
and gSDSS filters of J-PLUS.

The J-PLUS identification numbers for the images containing the M51 galaxy group are
in these three filters are respectively: 92797, 92801, 92803. The J-PLUS images are already
sky subtracted and aligned into the same pixel grid (so we will not need the astwarp and
astnoisechisel steps before). However, zero point magnitudes of the J-PLUS images are
different: 23.43, 23.74, 23.74. Also, the field of view of the J-PLUS Camera is very large
and we only need a small region to see the M51 galaxy group. Therefore, we will crop the
regions around the M51 group with a width of 0.35 degree wide (or 21 arcmin) and put the
crops in the same aligned/ directory we made before (which contains the inputs to the
colored images). With all the above information, let’s download, crop, and have a look at
the images to check that everything is fine. Finally, let’s run astscript-color-faint-gray
on the three cropped images.

## Download

$ url=https://archive.cefca.es/catalogues/vo/siap/jplus-dr3/get_fits?id=
$ wget "$url"92797 -0in/i-jplus.fits.fz

$ wget "$url"92801 -0in/r-jplus.fits.fz

$ wget "$url"92803 -0in/g-jplus.fits.fz

## Crop

$ widthdeg=0.35
$ ra=202.4741207
$ dec=47.2171879
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$ for £ in i r g; do \
astcrop in/$f-jplus.fits.fz --center=$ra,$dec \
--width=$widthdeg --output=aligned/$f-jplus.fits; \
done

## Visual inspection of the images used for the color image
$ astscript-fits-view aligned/*-jplus.fits

## Create colored image.
$ R=aligned/i-jplus.fits
$ G=aligned/r-jplus.fits
$ B=aligned/g-jplus.fits
$ astscript-color-faint-gray $R $G $B -gl --output=m51.pdf

After opening the PDF, you will notice that it is a color image with a gray background,
making the M51 group and background galaxies visible together. However, the images does
not look nice and there is significant room for improvement! You will notice that at the
end of its operation, the script printed some numerical values for four options in a table, to
show automatically estimated parameter values. To enhance the output, let’s go through
and explain these step by step.

( )
Zero as blank value: Some astronomical data analysis software do not put “Not a Number”

(NaN) in pixels that do not have data (for example there was no exposure there); instead
they put a value of zero (or any other arbitrary number)! When present, such pixels
usually occur on the outer edges of images (for example the image was taken at a rotated
angle to the equatorial coordinates of the pixel grid). However, zero (or any arbitrary
number) is statistically meaningful and will bias the measurements done in this (or any
other) analysis. The examples here don’t have such regions, but it is important to be
prepared.

If your inputs suffer from this problem, run the command below to convert the zero
(or any other arbitrary value) to a NaN before starting to use this script:

$ astarithmetic img.fits set-i i i 0 eq nan where --output=good.fits
- J

The first important point to take into account is the photometric calibration. If the
images are photometrically calibrated, then it is necessary to use the calibration to put
the images in the same physical units and create “real” colors. The script is able to do it
through the zero point magnitudes with the option --zeropoint (or -z). With this option,
the images are internally transformed to have the same pixel units and then create the color
image. Since the magnitude zero points are 23.43, 23.74, 23.74 for the i, r, and g images,
let’s use them in the definition

$ astscript-color-faint-gray $R $G $B -gl --output=m51.pdf \
-z23.43 -z23.74 -z23.74

Open the image and have a look. This image does not differ too much from the one
generated by default (not using the zero point magnitudes). This is because the zero point
values used here are similar for the three images. But in other datasets the calibration could
make a big difference!
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Let’s consider another vital parameter: the minimum value to be displayed (--minimum
or -m). Pixel values below this number will not be shown on the color image. In general,
if the sky background has been subtracted (see Section 2.6.2 [Color image using linear
transformation|, page 154), you can use the same value (0) for all three. However, it is
possible to consider different minimum values for the inputs (in this case use as many -m as
input images). In this particular case, a minimum value of zero for all images is suitable.
To keep the command simple, we’ll add the zero point, minimum and HDU of each image
in the variable that also had its filename.

$ R="aligned/i-jplus.fits -hl --zeropoint=23.43 --minimum=0.0"
$ G="aligned/r-jplus.fits -hl --zeropoint=23.74 --minimum=0.0"
$ B="aligned/g-jplus.fits -hl --zeropoint=23.74 --minimum=0.0"
$ astscript-color-faint-gray $R $G $B --output=m51.pdf

In contrast to the previous image, the new PDF (with a minimum value of zero) exhibits
a better background visualization because it is avoiding negative pixels to be included in
the scaling (they are white).

Now let’s review briefly how the script modifies the pixel value distribution in order to
show the entire dynamical range in an appropriate way. The script combines the three
images into a single one by using a the mean operator, as a consequence, the combined
image is the average of the three R, G, and B images. This averaged image is used for
performing the asinh transformation of Lupton et al. 2004 (https://ui.adsabs.harvard.
edu/abs/2004PASP. .116..133L) that is controlled by two parameters: --gbright (¢) and
--stretch (s).

The asinh transformation consists in transforming the combined image (/) according to
the expression: f(I) = asinh(q x s x I)/q. When ¢ — 0, the expression becomes linear
with a slope of the “stretch” (s) parameter: f(I) = s x I. In practice, we can use this
characteristic to first set a low value for -—gqbright and see the brighter parts in color,
while changing the parameter --stretch to show linearly the fainter regions (outskirts
of the galaxies for example. The image obtained previously was computed by the default
parameters (--qthresh=1.0 and --stretch=1.0). So, let’s set a lower value for -~-gbright
and check the result.

$ astscript-color-faint-gray $R $G $B --output=mbl-qlow.pdf \
--gbright=0.01

Comparing m51.pdf and m51-qlow.pdf, you will see that a large area of the previously
colored colored pixels have become black. Only the very brightest pixels (core of the galaxies
and stars) are shown in color. Now, let’s bring out the fainter regions around the brightest
pixels linearly by increasing --stretch. This allows you to reveal fainter regions, such
as outer parts of galaxies, spiral arms, stellar streams, and similar structures. Please, try
different values to see the effect of changing this parameter. Here, we will use the value of
--stretch=100.

$ astscript-color-faint-gray $R $G $B --output=m51-qlow-shigh.pdf \
-—gbright=0.01 --stretch=100

Do you see how the spiral arms and the outskirts of the galaxies have become visible
as —-stretch is increased? After some trials, you will have the necessary feeling to see
how it works. Please, play with these two parameters until you obtain the desired results.
Depending on the absolute pixel values of the input images and the photometric calibration,
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these two parameters will be different. So, when using this script on your own data, take
your time to study and analyze which parameters are good for showing the entire dynamical
range. For this tutorial, we will keep it simple and use the previous parameters. Let’s define
a new variable to keep the parameters already discussed so we have short command-line
examples.

$ params="--qbright=0.01 --stretch=100"
$ astscript-color-faint-gray $R $G $B $params --output=m51.pdf
$ rm mbl-qlow.pdf m5l-qlow-shigh.pdf

Having a separate color-map for the fainter parts is generally a good thing, but for some
reason you may not want it! To disable this feature, you can use the --coloronly option:

$ astscript-color-faint-gray $R $G $B $params --coloronly \
—--output=mb1-coloronly.pdf

Open the image and note that now the coloring has gone all the way into the noise
(producing a black background). In contrast with the gray background images before, the
fainter /smaller stars/galaxies and the low surface brightness features are not visible any-
more! These regions show the interaction of two galaxies; as well as all the other background
galaxies and foreground stars. These structures were entirely hidden in the “only-color” im-
ages. Consequently, the gray background color scheme is particularly useful for visualizing
the most features of your data and you will rarely need to use the -—coloronly option. We
will therefore not use this option anymore in this tutorial; and let’s clean the temporary file
made before:

$ rm mbl-coloronly.pdf

Now that we have the basic parameters are set, let’s consider other parameters that
allow to fine tune the three ranges of values: color for the brightest pixel values, black for
intermediate pixel values, and gray for the faintest pixel values:

e --colorval defines the boundary between the color and black regions (the lowest pixel
value that is colored).

e --grayval defines the boundary between the black and gray regions (the highest gray
value).

Looking at the last lines that the script prints, we see that the default value estimated for
--colorval and --grayval are roughly 1.4. What do they mean? To answer this question
it is necessary to have a look at the image that is used to separate those different regions.
By default, this image is computed internally by the script and removed at the end. To
have a look at it, you need to use the option —--keeptmp to keep the temporary files. Let’s
put the temporary files into the tmp directory with the option —-tmpdir=tmp --keeptmp.
The first will use the name tmp for the temporary directory and with the second, we ask
the script to not delete (keep) it after all operations are done.

$ astscript-color-faint-gray $R $G $B $params --output=mb1.pdf \
-—tmpdir=tmp --keeptmp
The image that defines the thresholds is ./tmp/colorgray_threshold.fits. By de-
fault, this image is the asinh-transformed image with the pixel values between 0 (faint) and
100 (bright). If you obtain the statistics of this image, you will see that the median value
is exactly the value that the script is giving as the --colorval.

$ aststatistics ./tmp/colorgray_threshold.fits
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In other words, all pixels between 100 and this value (1.4) on the threshold image will
be shown in color. To see its effect, let’s increase this parameter to --colorval=25. By
doing this, we expect that only bright pixels (those between 100 and 25 in the threshold
image) will be in color.

$ astscript-color-faint-gray $R $G $B $params --colorval=25 \
—--output=mbl-colorval.pdf

Open mb1-colorval.pdf and check that it is true! Only the central part of the objects
(very bright pixels, those between 100 and 25 on the threshold image) are shown in color.
Fainter pixels (below 25 on the threshold image) are shown in black and gray. However,
in many situations it is good to be able to show the outskirts of galaxies and low surface
brightness features in pure black, while showing the background in gray. To do that, we
can use another threshold that separates the black and gray pixels: --grayval.

Similar to --colorval, the ——grayval option defines the separation between the pure
black and the gray pixels from the threshold image. For example, by setting --grayval=5,
those pixels below 5 in the threshold image will be shown in gray, brighter pixels will be
shown in black until the value 25. Pixels brighter than 25 are shown in color.

$ astscript-color-faint-gray $R $G $B $params --output=mbil-check.pdf \
--colorval=25 --grayval=5

Open the image and check that the regions shown in color are smaller (as before), and
that now there is a region around those color pixels that are in pure black. After the black
pixels toward the fainter ones, they are shown in gray. As explained above, in the gray
region, the brightest are black and the faintest are white. It is recommended to experiment
with different values around the estimated one to have a feeling on how it changes the
image. To have even better idea of those regions, please run the following example to keep
temporary files and check the labeled image it has produced:

$ astscript-color-faint-gray $R $G $B $params --output=mb5il-check.pdf \
--colorval=25 --grayval=5 \
-—tmpdir=tmp --keeptmp

$ astscript-fits-view tmp/total_mask-2color-1black-Ogray.fits

In this segmentation image, pixels equal to 2 will be shown in color, pixels equal to 1
will be shown as pure black, and pixels equal to zero are shown in gray. By default, the
script sets the same value for both thresholds. That means that there is not many pure
black pixels. By adjusting the --colorval and --grayval parameters, you can obtain an
optimal result to show the bright and faint parts of your data within one printable image.
The values used here are somewhat extreme to illustrate the logic of the procedure, but
we encourage you to experiment with values close to the estimated by default in order to
have a smooth transition between the three regions (color, black, and gray). The script
can provide additional information about the pixel value distributions used to estimate the
parameters by using the --checkparams option.

To conclude this section of the tutorial, let’s clean up the temporary test files:

$ rm mbl-check.pdf mbl-colorval.pdf
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2.6.4 Manually setting color-black-gray regions

In Section 2.6.3 [Color for bright regions and grayscale for faint], page 157, we created a
non-linear colored image. We used the --—colorval and --grayval options to specify which
regions to show in gray (faintest values), black (intermediate values) and color (brightest
values). We also saw that the script uses a labeled image with three possible values for each
pixel to identify how that pixel should be colored.

A useful feature of this script is the possibility of providing this labeled image as an input
directly. This expands the possibilities of generating color images in a more quantitative
way. In this section, we’ll use this feature to use a more physically motivated criteria to
select these three regions (the surface brightness in the reddest band).

First, let’s generate a surface brightness image from the R channel. That is, the value
of each pixel will be in the units of surface brightness (mag/arcsec?). To do that, we
need obtain the pixel area in arcsec and use the zero point value of the image. Then, the
counts-to-sb operator of astarithmetic is used. For more on the conversion of NaN
surface brightness values and the value to R_sbl (which is roughly the surface brightness
limit of this image), see Section 2.1.20 [FITS images in a publication], page 65.

$ sb_sbl=26

$ sb_zp=23.43

$ sb_img=aligned/i-jplus.fits

$ pixarea=$(astfits $sb_img --pixelareaarcsec2 --quiet)

+*

Compute the SB image (set NaNs to SB of 26!)

astarithmetic $sb_img $sb_zp $pixarea counts-to-sb set-sb \
sb sb isblank sb $sb_sbl gt or $sb_sbl where \
-—output=sb.fits

>

# Have a look at the image
$ astscript-fits-view sb.fits --ds9scale=minmax \
--ds9extra="-invert"

Remember that because sb.fits is a surface brightness image where lower values are
brighter and higher values are fainter. Let’s build the labeled image that defines the regions
(regions.fits) step-by-step with the following criteria in surface brightness (SB)

SB < 23  These are the brightest pixels, we want these in color. In the regions labeled
image, these should get a value of 2.

23 < SB < 25
These are the intermediate pixel values, to see the fainter parts better, we want
these in pure black (no change in color in this range). In the regions labeled
image, these should get a value of 1.

SB > 25  These are the faintest pixel values, we want these in a gray color map (pixels
with an SB of 25 will be black and as they become fainter, they will become
lighter shades of gray). In the regions labeled image, these should get a value
of 0.

# SB thresholds (low and high)
$ sb_faint=25
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$ sb_bright=23

# Select the three ranges of pixels.
$ astarithmetic sb.fits set-sb \
sb $sb_bright 1t set-color \
sb $sb_bright ge sb $sb_faint 1t and set-black \
color 2 u8 x black + \
-—output=regions.fits

# Check the images
$ astscript-fits-view regions.fits

We can now use this labeled image with the --regions option for obtaining the final
image with the desired regions (the R, G, B and params shell variables were set previously
in Section 2.6.3 [Color for bright regions and grayscale for faint], page 157):

$ astscript-color-faint-gray $R $G $B $params --output=m51-sb.pdf \
--regions=regions.fits
Open m51-sb.pdf and have a look. Do you see how the different regions (SB intervals)
have been colored differently? They come from the SB levels we defined, and because it
is using absolute thresholds in physical units of surface brightness, the visualization is not
only a nice looking color image, but can be used in scientific analysis.

This is really interesting because now it is possible to use color images for detecting
low surface brightness features at the same time they provide quantitative measurements.
Of course, here we have defined this region label image just using two surface brightness
values, but it is possible to define any other labeled region image that you may need for
your particular purpose.

2.6.5 Weights, contrast, markers and other customizations

Previously (in Section 2.6.4 [Manually setting color-black-gray regions|, page 162) we used
an absolute (in units of surface brightness) thresholding for selecting which regions to show
by color, black and gray. To keep the previous configurations and avoid long commands,
let’s add the previous options to the params shell variable. To help in readability, we will
repeat the other shell variables from previous sections also:

$ R="aligned/i-jplus.fits -hl --zeropoint=23.43 --minimum=0.0"

$ G="aligned/r-jplus.fits -hl --zeropoint=23.74 --minimum=0.0"

$ B="aligned/g-jplus.fits -hl --zeropoint=23.74 --minimum=0.0"

$ params="--regions=regions.fits --gbright=0.01 --stretch=100"

$ astscript-color-faint-gray $R $G $B $params --output=m51.pdf

To modify the color balance of the output image, you can weigh the three channels
differently with the --weight or -w option. For example, by using -wl -wl -w2, you give
two times more weight to the blue channel than to the red and green channels:

$ astscript-color-faint-gray $R $G $B $params -wl -wl -w2 \
--output=mbl-weighted.pdf

The colored pixels of the output are much bluer now and the distinction between the two
merging galaxies is more clear. However, keep in mind that altering the different filters can
lead to incorrect subsequent analyses by the readers/viewers of this work (for example they
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will falsely think that the galaxy is blue, and not red!). If the reduction and photometric
calibration are correct, and the images represent what you consider as the red, green, and
blue channels, then the output color image should be suitable without weights.

In certain situations, the combination of channels may not have a traditional color inter-
pretation. For instance, combining an X-ray channel with an optical filter and a far-infrared
image can complicate the interpretation in terms of human understanding of color. But the
physical interpretation remains valid as the different channels (colors in the output) repre-
sent different physical phenomena of astronomical sources. Another easier example is the
use of narrow-band filters such as the H-alpha of J-PLUS survey. This is shown in the
Bottom-right panel of Figure 1 by Infante-Sainz et al. 2024 (https://arxiv.org/abs/
2401.03814), in this case the G channel has been substituted by the image corresponding
to the H-alpha filter to show the star formation regions. Therefore, please use the weights
with caution, as it can significantly affect the output and misinform your readers/viewers.

If you do apply weights be sure to report the weights in the caption of the image (beside
the filters that were used for each channel). With great power there must also come great
responsibility!

Two additional transformations are available to modify the appearance of the output
color image. The linear transformation combines bias adjustment and contrast enhancement
through the —-bias and --contrast options. In most cases, only the contrast adjustment
is necessary to improve the quality of the color image. To illustrate the impact of adjusting
image contrast, we will generate an image with higher contrast and compare with the
previous one.

$ astscript-color-faint-gray $R $G $B $params --contrast=2 \
—--output=mbl-contrast.pdf

When you compare this (mb1-contrast.pdf) with the previous output (m51.pdf), you
see that the colored parts are now much more clear! Use this option also with caution
because it may happen that the bright parts become saturated.

Another option available for transforming the image appearance is the gamma correction,
a non-linear transformation that can be useful in specific cases. You can experiment with
different gamma values to observe the impact on the resulting image. Lower gamma values
will enhance faint structures, while higher values will emphasize brighter regions. Let’s have
a look by giving two very different values to it with the simple loop below:

$ for g in 0.4 2.0; do \
astscript-color-faint-gray $R $G $B $params --contrast=2 \
--gamma=$g --output=m51l-gamma-$g.pdf; \
done

Comparing the last three files (mbl-contrast.pdf, mbl-gamma-0.4.pdf and
mb1-gamma-2.0.pdf), you will clearly see the effect of the --gamma.

Instead of using a combination of the three input images for the gray background, you
can introduce a fourth image that will be used for generating the gray background. This
image is referred to as the "K" channel and may be useful when a particular filter is deeper,
has unique characteristics, or you have built by some custom processing to show the diffuse
features better. In this case, this image will be used for defining the --colorval and
-—-grayval thresholds, but the rationale remains the same as explained earlier.
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Two additional options are available to smooth different regions by convolving with a
Gaussian kernel: --colorkernelfwhm for smoothing color regions and --graykernelfwhm
for convolving gray regions. The value specified for these options represents the full width
at half maximum of the Gaussian kernel.

Finally, another commonly useful feature is —~-markoptions: it allows you to mark and
label the final output image with vector graphics over the color image. The arguments
passed through this option are directly passed to ConvertType for the generation of the
output image. This feature was already used in Section 2.1.21 [Marking objects for publi-
cation|, page 69, of the Section 2.1 [General program usage tutorial], page 22; see there for
a more complete introduction.

Let’s create four marks/labels just to illustrate the procedure within astscript-color-
faint-gray. First we need to create a table that contains the parameters for creating the
marks (coordinates, shape, size, colors, etc.). In order to have an example that could be
easily salable to more marks, with elaborated options let’s create it by parts: the header
with the column names, and the parameters. With the following commands, we’ll create
the header that contains the column metadata.

echo "# Column 1: ra [pix, £32] RA coordinate" > markers.txt
echo "# Column 2: dec [pix, £32] Dec coordinate" >> markers.txt
echo "# Column 3: shape [none, u8] Marker shape"  >> markers.txt
echo "# Column 4: size [pix, £32] Marker Size" >> markers.txt
echo "# Column 5: aratio [none, £32] Axis ratio" >> markers.txt
echo "# Column 6: angle [deg, £32] Position angle" >> markers.txt
echo "# Column 7: color [none, u8] Marker color" >> markers.txt

Next is to create the parameters that define the markers. In this case, with the lines
below we create four markers (cross, ellipse, square, and line) at different positions, with
different shapes, and colors. These lines are appended to the header file created previously.

echo "400.00 400.00 3 60.000 0.50 0.000 8" >> markers.txt
echo "1800.0 400.00 4 120.00 0.30 45.00 58" >> markers.txt
echo "400.00 1800.0 6 180.00 1.00 0.000 85" >> markers.txt
echo "1800.0 1800.0 8 240.00 1.00 -45.0 25" >> markers.txt

Now that we have the table containing the definition of the markers, we use the
--markoptions option of this script. This option will pass what ever is given to it directly
to ConvertType, so you can use all the options in Section 5.2.5.3 [Drawing with vector
graphics|, page 338. For this basic example, let’s give it the following options:

markoptions="--mode=img \
--sizeinarcsec \
—--markshape=shape \
--markrotate=angle \
--markcolor=color \
--marks=markers.txt \
—-markcoords=ra,dec \
—--marksize=size,aratio"

The last step consists in executing the script with the option that provides all the markers
options.

$ astscript-color-faint-gray $R $G $B $params --contrast=2 \
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--markoptions="$markoptions" \
—--output=mb1-marked.pdf

Open the mb1-marked.pdf and check that the four markers have been printed on the
image. With this quick example we just show the possibility of drawing markers on images
very easily. This task can be automated, for example by plotting markers from a given
catalog at specific positions, and so on. Note that there are many other options for customize
your markers/drawings over an output of ConvertType, see Section 5.2.5.3 [Drawing with
vector graphics], page 338, and Section 2.1.21 [Marking objects for publication], page 69.

Congratulations! By following the tutorial up to this point, we have been able to re-
produce three images of Infante-Sainz et al. 2024 (https://arxiv.org/abs/2401.
03814). You can see the commands that were used to generate them within the repro-
ducible source of that paper at https://codeberg.org/gnuastro/papers/src/branch/
color-faint-gray. Remember that this paper is exactly reproducible with Maneage, so
you can explore and build the entire paper by yourself. For more on Maneage, see Akhlaghi
et al. 2021 (https://ui.adsabs.harvard.edu/abs/2021CSE. ...23c..824).

This tutorial provided a general overview of the various options to construct a color im-
age from three different FITS images using the astscript-color-faint-gray script. Keep
in mind that the optimal parameters for generating the best color image depend on your
specific goals and the quality of your input images. We encourage you to follow this tutorial
with the provided J-PLUS images and later with your own dataset. See Section 10.7 [Color
images with gray faint regions], page 720, for more information, and please consider citing
Infante-Sainz et al. 2024 (https://arxiv.org/abs/2401.03814) if you use this script in
your work (the full BibTEX entry of this paper will be given to you with the --cite option).

2.7 Zero point of an image

The “zero point” of an image is astronomical jargon for the calibration factor of its pixel
values; allowing us to convert the raw pixel values to physical units. It is therefore a
critical step during data reduction. For more on the definition and importance of the zero
point magnitude, see Section 7.4.2 [Brightness, Flux, Magnitude and Surface brightness],
page 585, and Section 10.5 [Zero point estimation], page 709.

In this tutorial, we will use Gnuastro’s astscript-zeropoint, to estimate the zero point
of a single exposure image from the J-PLUS survey (https://www.j-plus.es), while using
an SDSS (http://www.sdss.org) image as reference (recall that all SDSS images have been
calibrated to have a fixed zero point of 22.5). In this case, both images that we are using
were taken with the SDSS r filter. See Eskandarlou et al. 2023 (https://arxiv.org/abs/
2312.04263).


https://arxiv.org/abs/2401.03814
https://arxiv.org/abs/2401.03814
https://codeberg.org/gnuastro/papers/src/branch/color-faint-gray
https://codeberg.org/gnuastro/papers/src/branch/color-faint-gray
https://ui.adsabs.harvard.edu/abs/2021CSE....23c..82A
https://arxiv.org/abs/2401.03814
https://www.j-plus.es
http://www.sdss.org
https://arxiv.org/abs/2312.04263
https://arxiv.org/abs/2312.04263

Chapter 2: Tutorials 167

( N
Same filters and SVO filter database: It is very important that both your images are taken

with the same filter. When looking at filter names, don’t forget that different filter systems
sometimes have the same names for one filter, such as the name “R”; which is used in
both the Johnson and SDSS filter systems. Hence if you confront an image in the “R” or
“r” filter, double check to see exactly which filter system it corresponds to. If you know
which observatory your data came from, you can use the SVO database (http://svo2.
cab.inta-csic.es/theory/fps) to confirm the similarity of the transmission curves of
the filters of your input and reference images. SVO contains the filter data for many of

the observatories world-wide.
N J

2.7.1 Zero point tutorial with reference image

First, let’s create a directory named tutorial-zeropoint to keep things clean and work
in that. Then, with the commands below, you can download an image from J-PLUS and
SDSS. To speed up the analysis, the image is cropped to have a smaller region around its
center.
$ mkdir tutorial-zeropoint
$ cd tutorial-zeropoint
$ jplusdr2=http://archive.cefca.es/catalogues/vo/siap/jplus-dr2/reduced
$ wget $jplusdr2/get_fits?id=771463 -0 jplus.fits.fz
$ astcrop jplus.fits.fz --center=107.7263,40.1754 \
--width=0.6 --output=jplus-crop.fits
Although we cropped the J-PLUS image, it is still very large in comparison with the
SDSS image (the J-PLUS field of view is almost 1.5 x 1.5 deg?, while the field of view of
SDSS in each filter is almost 0.3 x 0.5 deg?). Therefore, let’s download two SDSS images
(and then decompress them) in the region of the cropped J-PLUS image to have a more
accurate result compared to a single SDSS footprint: generally, your zero point estimation
will have less scatter with more overlap between your reference image(s) and your input
image.
$ sdssbase=https://dr12.sdss.org/sas/dr12/boss/photol0bj/frames
$ wget $sdssbase/301/6509/5/frame-r-006509-5-0115.fits.bz2 \
-0 sdssl.fits.bz2
$ wget $sdssbase/301/6573/5/frame-r-006573-5-0174.fits.bz2 \
-0 sdss2.fits.bz2
$ bunzip2 sdssl.fits.bz2
$ bunzip2 sdss2.fits.bz2
To have a feeling of the data, let’s open the three images with astscript-fits-view
using the command below. Wait a few seconds to see the three images “blinking” one after
another. The largest one is the J-PLUS crop and the two smaller ones that partially cover
it in different regions are from SDSS.
$ astscript-fits-view sdssl.fits sdss2.fits jplus-crop.fits \
--ds9extra="-lock frame wcs -single -zoom to fit -blink yes"
The test above showed that the three images are already astrometrically calibrated (the
coverage of the pixel positions on the sky is correct in both). To confirm, you can zoom-
in to a certain object and confirm it on a pixel level. It is always good to do the visual
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check above when you are confronted with new images (and may not be confident about the
accuracy of the astrometry). Do not forget that the goal here is to find the calibration of
pixel values; and that we assume pixel positions are already calibrated (the image already
has a good astrometry).

The SDSS images are Sky subtracted, while this single-exposure J-PLUS image still
contains the counts related to the Sky emission within them. In the J-PLUS survey, the
sky-level in each pixel is kept in a separate BACKGROUND_MODEL HDU of jplus.fits.fz;
this allows you to use a different sky if you like. The SDSS image FITS files also have
multiple extensions. To understand our inputs, let’s have a fast look at the basic info of
each:

$ astfits sdssi.fits

Fits (GNU Astronomy Utilities) 0.23.84-726fd

Run on Fri Apr 14 11:24:03 2023

HDU (extension) information: 'sdssl.fits'.

Column 1: Index (counting from O, usable with '--hdu').

Column 2: Name ('EXTNAME' in FITS standard, usable with '--hdu').
('n/a': no name in HDU metadata)

Column 3: Image data type or 'table' format (ASCII or binary).

Column 4: Size of data in HDU.

Column 5: Units of data in HDU (only images).
('n/a': no unit in HDU metadata, or HDU is a table)

S w

0 n/a float32 2048x1489 nanomaggy
1 n/a float32 2048 n/a
2 n/a table_binary 1x3 n/a
3 n/a table_binary 1x31 n/a

$ astfits jplus.fits.fz

Fits (GNU Astronomy Utilities) 0.23.84-726fd

Run on Fri Apr 14 11:21:30 2023

HDU (extension) information: 'jplus.fits.fz'.

Column 1: Index (counting from O, usable with '--hdu').

Column 2: Name ('EXTNAME' in FITS standard, usable with '--hdu').
('n/a': no name in HDU metadata)

Column 3: Image data type or 'table' format (ASCII or binary).

Column 4: Size of data in HDU.

Column 5: Units of data in HDU (only images).
('n/a': no unit in HDU metadata, or HDU is a table)

N

0 n/a no-data 0 n/a
1 IMAGE float32 9216x9232 adu
2 MASKED_PIXELS int16 9216x9232 n/a
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3 BACKGROUND_MODEL float32 9216x9232 n/a
4 MASK_MODEL uint8 9216x9232 n/a

Therefore, in order to be able to compare the SDSS and J-PLUS images, we should
first subtract the sky from the J-PLUS image. To do that, we can either subtract the
BACKGROUND_MODEL HDU from the IMAGE HDU using Section 6.2 [Arithmetic], page 403, or
we can use Section 7.2 [NoiseChisel], page 552, to find a good sky ourselves. As scientists
we like to tweak and be creative, so let’s estimate it ourselves with the command below.
Generally, you may not have a pre-estimated Sky estimation like above, so you should be
prepared to subtract the sky yourself.

$ astnoisechisel jplus-crop.fits --output=jplus-nc.fits
$ astscript-fits-view jplus-nc.fits

Notice that there is a relatively bright star in the center-bottom of the image. In the
“Cube” window, click on the “Next” button to see the DETECTIONS HDU. The large footprint
of the bright star is obvious. Press the “Next” button one more time to get to the SKY HDU.
You see that in the center-bottom, the footprint of the large star is clearly visible in the
measured Sky level. This is not good! With Sky values above 54 ADU in the center of the
star (the white pixels). This over-subtracted Sky level in part of the image will affect your
magnitude measurements and thus the zero point!

In Section 2.1 [General program usage tutorial], page 22, we have a section on Sec-
tion 2.1.11 [NoiseChisel optimization for detection]|, page 41, there is also a full tutorial
on this in Section 2.2 [Detecting large extended targets], page 80. Therefore, we will not
go into the details of NoiseChisel optimization here. Given the large images of J-PLUS,
we will increase the tile-size to 100 x 100 pixels and the number of neighbors to identify
outlying tiles to 50 (these are usually the first parameters you should start editing when
you are confronted with a new image). After the second command, check the SKY extension
to confirm that there is no footprint of any bright object there. You will still see a gradient,
but note the minimum and maximum values of the Sky level: their difference is more than
26 times smaller than the noise standard deviation (so statistically speaking, it is pretty
flat!)

$ astnoisechisel jplus-crop.fits --output=jplus-nc.fits \
--tilesize=100,100 --outliernumngb=50
$ astscript-fits-view jplus-nc.fits

## Check that the gradient in the sky is statistically negligible.
$ aststatistics jplus-nc.fits -hSKY --minimum --maximum \
| awk '{print $2-$1}'
0.32809
$ aststatistics jplus-nc.fits -hSKY_STD --median
8.377977e+00

We are now ready to find the zero point! First, let’s run the astscript-zeropoint
with —-help to see the option names (recall that you can see more details of each option
in Section 10.5.1 [Invoking astscript-zeropoint|, page 710). For the first time, let’s use the
script in the most simple state possible. We will keep only the essential options: the names
of the input and reference images (and their HDUs), the name of the output, and also two
apertures with radii of 3 arcsec to start with:
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$ astscript-zeropoint
$ astscript-zeropoint

170

--help

jplus-nc.fits --hdu=INPUT-NO-SKY \
—--refimgs=sdssl.fits,sdss2.fits \
--output=jplus-zeropoint.fits \
--refimgszp=22.5,22.5 \
--refimgshdu=0,0 \

--aperarcsec=3

The output is a FITS table (because generally, you will give more apertures and choose
the best one based on a higher-level analysis). Let’s check the output’s internal structure
with Gnuastro’s astfits program.

$ astfits jplus-zeropoint.fits

0 n/a
1 ZEROPOINTS
2 APER-3

no-data 0 n/a
table_binary 1x3 n/a
table_binary 321x2 n/a

You can see that there are two HDUs in this file. The HDU names give a hint, so let’s
have a look at each extension with Gnuastro’s asttable program:

$ asttable jplus-zeropoint.fits --hdu=1 -i

1 APERTURE arcsec
ZEROPOINT mag
3 ZPSTD mag

Number of rows: 1

Type Comment
float32 n/a
float32 n/a
float32 n/a

As you can see, in the first extension, for each of the apertures you requested (APERTURE),
there is a zero point (ZEROPOINT) and the standard deviation of the measurements on the
apertures (ZPSTD). In this case, we only requested one aperture, so it only has one row.
Now, let’s have a look at the next extension:

$ asttable jplus-zeropoint.fits --hdu=2 -i

No.Name Units Type Comment

1 MAG-REF  £32 float32 Magnitude of reference.
2 MAG-DIFF £32 float32 Magnitude diff with input.

Number of rows: 321
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It contains a table of measurements for the aperture with the least scatter. In this case,
we only gave one aperture, so it is the same. If you give multiple apertures, only the one
with least scatter will be present by default. In the MAG-REF column you see the magnitudes
within each aperture on the reference (SDSS) image(s). The MAG-DIFF column contains the
difference of the input (J-PLUS) and reference (SDSS) magnitudes for each aperture (see
Section 10.5 [Zero point estimation], page 709). The two catalogs, created by the aperture
photometry from the SDSS images, are merged into one so that there are more stars to
compare. Therefore, no matter how many reference images you provide, there will only be
a single table here. If the two SDSS images overlapped, each object in the overlap region
would have two rows (one row for the measurement from one SDSS image, and another
from the measurement from the other).

Now that we have obtained the zero point of the J-PLUS image, let’s go a little deeper
into lower-level details of how this script operates. This will help you better understand
what happened and how to interpret and improve the outputs when you are confronted
with a new image and strange outputs.

To keep intermediate results the astscript-zeropoint script keeps temporary files in
a temporary directory and later deletes it (and all the intermediate products). If you like
to check the temporary files of the intermediate steps, you can use ——keeptmp option to not
remove them.

Let’s take a closer look into the contents of each HDU. First, we’ll use Gnuastro’s
asttable to see the measured zero point for this aperture. We are using -Y to have
human-friendly (non-scientific!) numbers (which are sufficient here) and -0 to also show
the metadata of each column at the start.

$ asttable jplus-zeropoint.fits -Y -0

# Column 1: APERTURE [arcsec,f32,] Aperture used.

# Column 2: ZEROPOINT [mag ,£32,] Zero point (sig-clip median).
# Column 3: ZPSTD [mag ,£32,] Zero point Standard deviation.
3.000 26.435 0.057

Now, let’s have a look at the first 10 rows of the second (APER-3) extension. From the
previous check we did above, we see that it contains 321 rows!

$ asttable jplus-zeropoint.fits -Y -0 --hdu=APER-3 --head=10

# Column 1: MAG-REF [£32,f32,] Magnitude of reference.
# Column 2: MAG-DIFF [£32,f32,] Magnitude diff with input.

16.461 30.035
16.243 28.209
15.427 26.427
20.064 26.459
17.334 26.425
20.518 26.504
17.100 26.400
16.919 26.428
17.654 26.373
15.392 26.429

But the table above is hard to interpret, so let’s plot it. To do this, we’ll use the same
astscript-fits-view command above that we used for images. It detects if the file has
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a image or table HDU and will call DS9 or TOPCAT respectively. You can also use any
other plotter you like (TOPCAT is not part of Gnuastro), this script just calls it.
$ astscript-fits-view jplus-zeropoint.fits --hdu=APER-3
After TOPCAT opens, you can select the “Graphics” menu and then “Plain plot”. This
will show a plot with the SDSS (reference image) magnitude on the horizontal axis and

the difference of magnitudes between the the input and reference (the zero point) on the
vertical axis.

In an ideal world, the zero point should be independent of the magnitude of the different
stars that were used. Therefore, this plot should be a horizontal line (with some scatter
as we go to fainter stars). But as you can see in the plot, in the real world, this expected
behavior is seen only for stars with magnitudes about 16 to 19 in the reference SDSS images.
The stars that are brighter than 16 are saturated in one (or both) surveys®. Therefore,
they do not have the correct magnitude or mag-diff. You can check some of these stars
visually by using the blinking command above and zooming into some of the brighter stars
in the SDSS images.

On the other hand, it is natural that we cannot measure accurate magnitudes for the
fainter stars because the noise level (or “depth”) of each image is limited. As a result, the
horizontal line becomes wider (scattered) as we go to the right (fainter magnitudes on the
horizontal axis). So, let’s limit the range of used magnitudes from the SDSS catalog to
calculate a more accurate zero point for the J-PLUS image. For this reason, we have the
--magnituderange option in astscript-zeropoint.

(" N
Necessity of sky subtraction: To obtain this horizontal line, it is very important that both

your images have been sky subtracted. Please, repeat the last astscript-zeropoint
command above only by changing the input file to jplus-crop.fits. Then use Gnuastro’s
astscript-fits-view again to draw a plot with TOPCAT (also same as above). Instead of
a horizontal line, you will see a sloped line in the magnitude range above! This happens
because the sky level acts as a source of constant signal in all apertures, so the magnitude
difference will not be independent of the star’s magnitude, but dependent on it (the
measurement on a fainter star will be dominated by the sky level).

Remember: if you see a sloped line instead of a horizontal line, the input or reference

image(s) are not sky subtracted.
N J

Another key parameter of this script is the aperture size (-—aperarcsec) for the aperture
photometry of images. On one hand, if the selected aperture is too small, you will be at the
mercy of the differing PSFs between your input and reference image(s): part of the light
of the star will be lost in the image with the worse PSF. On the other hand, with large
aperture size, the light of neighboring objects (stars/galaxies) can affect the photometry.
We should select an aperture radius of the same order than the one used in the reference
image, typically 2 to 3 times the PSF FWHM of the images. For now, let’s assume the
values 2, 3, 4, 5, and 6 arcsec for the aperture sizes parameter. The script will compare
the result for several aperture sizes and choose the one with least standard deviation value,
ZPSTD column of the ZEROPOINTS HDU.

54 Ty learn more about saturated pixels and recognition of the saturated level of the image, please see
Section 2.3.2 [Saturated pixels and Segment’s clumps], page 103
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Let’s re-run the script with the following changes:
e Using --magnituderange to limit the stars used for estimating the zero point.
e Giving more values for aperture size to find the best for these two images as explained
above.
e (Call --keepzpap option to keep the result of matching the catalogs done with the
selected apertures in the different extensions of the output file.
$ astscript-zeropoint jplus-nc.fits --hdu=INPUT-NO-SKY \
--refimgs=sdssl.fits,sdss2.fits \
—-—output=jplus-zeropoint.fits \
--refimgszp=22.5,22.5 \
--aperarcsec=2,3,4,5,6 \
--magnituderange=16,18 \
--refimgshdu=0,0 \
—-—-keepzpap
Now, check number of HDU extensions by astfits.

$ astfits jplus-zeropoint.fits

0 n/a no-data 0 n/a
1 ZEROPOINTS table_binary 5x3 n/a
2 APER-2 table_binary 319x2 n/a
3 APER-3 table_binary 321x2 n/a
4 APER-4 table_binary 323x2 n/a
5 APER-5 table_binary 323x2 n/a
6 APER-6 table_binary 325x2 n/a

You can see that the output file now has a separate HDU for each aperture (thanks to
--keepzpap.) The ZEROPOINTS hdu contains the final zero point values for each aperture
and their error. The best zero point value belongs to the aperture that has the least scatter
(has the lowest standard deviation). The rest of extensions contain the zero point value
computed within each aperture (as discussed above).

Let’s check the different tables by plotting all magnitude tables at the same time with
TOPCAT.

$ astscript-fits-view jplus-zeropoint.fits
After TOPCAT has opened take the following steps:

1. From the “Graphics” menu, select “Plain plot”. You will see the last HDU’s scatter
plot open in a new window (for APER-6, with red points). The Bottom-left panel has
the logo of a red-blue scatter plot that has written 6: jplus-zeropoint.fits in front
of it (showing that this is the 6th HDU of this file). In the bottom-right panel, you see
the names of the columns that are being displayed.

2. In the “Layers” menu, Click on “Add Position Control”. On the bottom-left panel, you
will notice that a new blue-red scatter plot has appeared but it just says <no table>.
In the bottom-right panel, in front of “Table:”, select any other extension. This will
plot the same two columns of that extension as blue points. Zoom-in to the region of
the horizontal line to see/compare the different scatters.
Change the HDU given to “Table:” and see the distribution of zero points for the
different apertures.
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The manual/visual operation above is critical if this is your first time with a new dataset
(it shows all kinds of systematic biases (like the Sky issue above)! But once you know your
data has no systematic biases, choosing between the different apertures is not easy visually!
Let’s have a look at the table the ZEROPOINTS HDU (we don’t need to explicitly call this
HDU since it is the first one):

$ asttable jplus-zeropoint.fits -0 -Y
# Column 1: APERTURE [arcsec,f32,] Aperture used.

# Column 2: ZEROPOINT [mag ,£32,] Zero point (sig-clip median).
# Column 3: ZPSTD [mag ,£32,] Zero point Standard deviation.
2.000 26.405 0.028
3.000 26.436 0.030
4.000 26.448 0.035
5.000 26.458 0.042
6.000 26.466 0.056

The most accurate zero point is the one where ZPSTD is the smallest. In this case,
minimum of ZPSTD is with radii of 2 and 3 arcseconds. Run the astscript-fits-view
command above again to open TOPCAT. Let’s focus on the magnitude plots in these two
apertures and determine a more accurate range of magnitude. The more reliable option is
the range between 16.4 (where we have no saturated stars) and 18.5 mag (fainter than this,
the scatter becomes too strong). Finally, let’s set some more apertures between 2 and 3
arcseconds radius:

$ astscript-zeropoint jplus-nc.fits --hdu=INPUT-NO-SKY \
--refimgs=sdssl.fits,sdss2.fits \
--output=jplus-zeropoint.fits \
--magnituderange=16.4,18.5 \
--refimgszp=22.5,22.5 \
--aperarcsec=2,2.5,3,3.5,4 \
--refimgshdu=0,0 \

—--keepzpap
$ asttable jplus-zeropoint.fits -Y
2.000 26.405 0.037
2.500 26.425 0.033
3.000 26.436 0.034
3.500 26.442 0.039
4.000 26.449 0.044

The aperture with the least scatter is therefore the 2.5 arcsec radius aperture, giving a
zero point of 26.425 magnitudes for this image. However, you can see that the scatter for
the 3 arcsec aperture is also acceptable. Actually, the ZPSTD for of the 2.5 and 3 arcsec
apertures only have a difference of 3% (= (0.034 —0.0333)/0.033 x 100). So simply choosing
the minimum is just a first-order approximation (which is accurate within 26.436 —26.425 =
0.011 magnitudes)

Note that in aperture photometry, the PSF plays an important role (because the aperture
is fixed but the two images can have very different PSFs). The aperture with the least scatter
should also account for the differing PSFs. Overall, please, always check the different and
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intermediate steps to make sure the parameters are the good so the estimation of the zero
point is correct.

If you are happy with the minimum, you don’t have to search for the minimum aperture
or its corresponding zero point yourself. This script has written it in ZPVALUE keyword of
the table. With the first command, we also see the name of the file also, (you can use this
on many files for example). With the second command, we are only printing the number
by adding the -q (or -—quiet) option (this is useful in a script where you want to write the
value in a shell variable to use later).

$ astfits jplus-zeropoint.fits --keyvalue=ZPVALUE
jplus—zeropoint.fits 2.642512e+01

$ astfits jplus-zeropoint.fits --keyvalue=ZPVALUE -q
2.642512e+01

Generally, this script will write the following FITS keywords (all starting with ZP) for
your future reference in its output:
$ astfits jplus-zeropoint.fits -hl | grep "ZP
ZPAPER = 2.5 / Best aperture.

ZPVALUE = 26.42512 / Best zero point.

ZPSTD = 0.03276644 / Best std. dev. of zeropoint.
ZPMAGMIN= 16.4 / Min mag for obtaining zeropoint.
ZPMAGMAX= 18.5 / Max mag for obtaining zeropoint.

Using the --keyvalue option of the Section 5.1 [Fits], page 297, program, you can easily
get multiple of the values in one run (where necessary):

$ astfits jplus-zeropoint.fits --hdu=1 --quiet \
--keyvalue=ZPAPER, ZPVALUE, ZPSTD
2.500000e+00  2.642512e+01  3.276644e-02

2.7.2 Zero point tutorial with reference catalog

In Section 2.7.1 [Zero point tutorial with reference image], page 167, we explained how
to use the astscript-zeropoint for estimating the zero point of one image based on a
reference image. Sometimes there is not a reference image and we need to use a reference
catalog. Fortunately, astscript-zeropoint can also use the catalog instead of the image
to find the zero point.

To show this, let’s download a catalog of SDSS in the area that overlaps with the cropped
J-PLUS image (used in the previous section). For more on Gnuastro’s Query program,
please see Section 5.4 [Query], page 378. The columns of ID, RA, Dec and magnitude in
the SDSS r filter are called by their name in the SDSS catalog.

$ astquery vizier \
--dataset=sdss12 \
--overlapwith=jplus-crop.fits \
--column=o0bjID,RA_ICRS,DE_ICRS,rmag \
--output=sdss-catalog.fits

To visualize the position of the SDSS objects over the J-PLUS image, let’s use
astscript-ds9-region (for more details please see Section 10.3 [SAO DS9 region files
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from table|, page 702) with the command below (it will automatically open DS9 and load
the regions it created):

$ astscript-ds9-region sdss-catalog.fits \
—--column=RA_ICRS,DE_ICRS \
--color=red --width=3 --output=sdss.reg \
--command="ds9 jplus-nc.fits[INPUT-NO-SKY] \
-scale zscale"

Now, we are ready to estimate the zero point of the J-PLUS image based on the SDSS cat-
alog. To download the input image and understand how to use the astscript-zeropoint,
please see Section 2.7.1 [Zero point tutorial with reference image], page 167.

Many of the options (like the aperture size) and magnitude range are the same so we
will not discuss them further. You will notice that the only substantive difference of the
command below with the last command in the previous section is that we are using -—-refcat
instead of ——refimgs. There are also some cosmetic differences for example a new output
name, not using --refimgszp since it is only necessary for images) and the --*column
options which are used to identify the names of the necessary columns of the input catalog:

$ astscript-zeropoint jplus-nc.fits --hdu=INPUT-NO-SKY \
--refcat=sdss-catalog.fits \
--refcatmag=rmag \
--refcatra=RA_ICRS \
—--refcatdec=DE_ICRS \
--output=jplus-zeropoint-cat.fits \
--magnituderange=16.4,18.5 \
--aperarcsec=2,2.5,3,3.5,4 \
—--keepzpap

Let’s inspect the output with the command below.

$ asttable jplus-zeropoint-cat.fits -Y

2.000 26.337 0.034
2.500 26.386 0.036
3.000 26.417 0.041
3.500 26.439 0.043
4.000 26.455 0.050

As you see, the values and standard deviations are very similar to the results we got pre-
viously in Section 2.7.1 [Zero point tutorial with reference image], page 167. The Standard
deviations are generally a little higher here because we didn’t do the photometry ourselves,
but they are statistically similar.

Before we finish, let’s open the two outputs (from a reference image and reference catalog)
with the command below. To confirm how they compare, we are showing the result for
APER-3 extension in both (following the TOPCAT plotting recipe in Section 2.7.1 [Zero
point tutorial with reference image|, page 167).

$ astscript-fits-view jplus-zeropoint.fits jplus-zeropoint-cat.fits \
-hAPER-3
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2.8 Pointing pattern design

A dataset that is ready for scientific analysis is usually composed of many separate exposures
and how they are taken is usually known as “observing strategy”. This tutorial describes
Gnuastro’s tools to simplify the process of deciding the pointing pattern of your observing
strategy.

A “pointing” is the location on the sky that each exposure is aimed at. Each exposure’s
pointing is usually moved (on the sky) compared to the previous exposure. This is done for
reasons like improving calibration, increasing resolution, expending the area of the observa-
tion and etc. Therefore, deciding a suitable pointing pattern is one of the most important
steps when planning your observation strategy.

There are commonly two types of pointings: “dither” and “offset”. These are some-
times used interchangeably with “pointing” (especially when the final coadd is roughly the
same area as the field of view. Alternatively, “dither” and “offset” are used to distinguish
pointings with large or small (on the scale of the field of view) movement compared to a
previous one. When a pointing has a large distance to the previous pointing, it is known as
an “offset”, while pointings with a small displacement are known as a “dither”. This dis-
tinction originates from the mechanics and optics of most modern telescopes: the overhead
(for example the need to re-focus the camera) to make small movements is usually less than
large movements.

In this tutorial, let’s simulate a hypothetical pointing pattern using Gnuastro’s
astscript-pointing-simulate installed script (see Section 10.6 [Pointing pattern
simulation], page 715). Since we will be testing very different displacements between
pointings, we’ll ignore the difference between offset and dither here, and only use the term
pointing.

Let’s assume you want to observe M94 (https://en.wikipedia.org/wiki/
Messier_94) in the H-alpha and rSDSS filters (to study the extended star formation in
the outer rings of this beautiful galaxy!). Including the outer parts of the rings, the galaxy
is half a degree in diameter! This is very large, and you want to design a pointing pat-
tern that will allow you to cover as much area, while not loosing your ability to calibrate
properly.

( N
Do not start with this tutorial: If you are new to Gnuastro and have not already completed
Section 2.1 [General program usage tutorial], page 22, we recommend going through that
tutorial before starting this one. Basic features like access to this book on the command-
line, the configuration files of Gnuastro’s programs, benefiting from the modular nature of
the programs, viewing multi-extension FITS files, and many others are discussed in more

detail there.
K J

2.8.1 Preparing input and generating exposure map

As mentioned in Section 2.8 [Pointing pattern design|, page 177, the assumed goal here is
to plan an observations strategy for M94. Let’s assume that after some searching, you de-
cide to write a proposal for the JAST80 telescope (https://oaj.cefca.es/telescopes/


https://en.wikipedia.org/wiki/Messier_94
https://en.wikipedia.org/wiki/Messier_94
https://oaj.cefca.es/telescopes/jast80
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jast80) at the Observatorio Astrofisico de Javalambre (https://oaj.cefca.es), OAJ®,
in Teruel (Spain). The field of view of this telescope’s camera is almost 1.4 degrees wide,
nicely fitting M94! It also has these two filters that you need?.

Before we start, as described in Section 10.6 [Pointing pattern simulation], page 715, it
is just important to remember that the ideal pointing pattern depends primarily on your
scientific objective, as well as the limitations of the instrument you are observing with.
Therefore, there is no single pointing pattern for all purposes. However, the tools, methods,
criteria or logic to check if your pointing pattern satisfies your scientific requirement are
similar. Therefore, you can use the same methods, tools or logic here to simulate or verify
that your pointing pattern will produce the products you expect after the observation.

To start simulating a pointing pattern for a certain telescope, you just need a single-
exposure image of that telescope with WCS information. In other words, after astrometry,
but before warping into any other pixel grid (to combine into a deeper coadd). The image
will give us the default number of the camera’s pixels, its pixel scale (width of pixel in
arcseconds) and the camera distortion. These are reference parameters that are independent
of the position of the image on the sky.

Because the actual position of the reference image is irrelevant, let’s assume that in a pre-
vious project, presumably on NGC 4395 (https://en.wikipedia.org/wiki/NGC_4395),
you already had the download command of the following single exposure image. With the
last command, please take a look at this image before continuing and explore it.

$ mkdir pointing-tutorial

cd pointing-tutorial

mkdir input

siapurl=https://archive.cefca.es/catalogues/vo/siap

wget $siapurl/jplus-dr3/reduced/get_fits?id=1050345 \
-0 input/jplus-1050345.fits.fz

€ H P P

$ astscript-fits-view input/jplus-1050345.fits.fz

( )
This is the first time I am using an instrument: In case you haven’t already used images

from your desired instrument (to use as reference), you can find such images from their
public archives; or contacting them. A single exposure images is rarely of any scientific
value (post-processing and coadding is necessary to make high-level and science-ready
products). Therefore, they become publicly available very soon after the observation

date; furthermore, calibration images are usually public immediately.
N J

As you see from the image above, the T80Cam images are large (9216 by 9232 pixels).
Therefore, to speed up the pointing testing, let’s down-sample the image by a factor of
10. This step is optional and you can safely use the full resolution, which will give you a
more precise coadd. But it will be much slower (maybe good after you have an almost final
solution on the down-sampled image). We will call the output ref.fits (since it is the

55 For full disclosure, Gnuastro is being developed at CEFCA (Centro de Estudios de Fisica del Cosmos de
Aragén); which also hosts OAJ.

56 For the full list of available filters, see the T80Cam description (https://oaj.cefca.es/telescopes/
t80cam).
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“reference” for our test). We are putting these two “input” files (to the script) in a dedicated
directory to keep the running directory clean (and be able to easily delete temporary/test
files for a fresh start with a ‘rm *.fits’).

$ astwarp input/jplus-1050345.fits.fz --scale=1/10 -oinput/ref.fits

For a first trial, let’s create a cross-shaped pointing pattern with 5 points around M94,
which is centered at its center on the RA and Dec of 192.721250, 41.120556. We’ll center
one exposure on the center of the galaxy, and include 4 more exposures that are each 1
arc-minute away along the RA and Dec axes. To simplify the actual command later®”, let’s
also include the column names in pointing.txt through two lines of metadata. Also note
that the pointing.txt file can be made in any manner you like, for example, by writing
the coordinates manually on your favorite text editor, or through another programming
language or logic, or etc. Here, we are using AWK because it is sufficiently powerful for this
job, and it is a very small program that is available on any Unix-based operating system
(allowing you to easily run your programs on any computer).

$ step_arcmin=1
$ center_ra=192.721250
$ center_dec=41.120556

$ echo "# Column 1: RA [deg, f64] Right Ascension" > pointing.txt
$ echo "# Column 2: Dec [deg, f64] Declination" >> pointing.txt

$ echo $center_ra $center_dec \
| awk '{s='$step_arcmin'/60; fmt="%-10.6f %-10.6f\n"; \
printf fmt, $1, $2; \
printf fmt, $1+s, $2; \
printf fmt, $1, $2+s; \
printf fmt, $1-s, $2; \
printf fmt, $1,  $2-s}' \
>> pointing.txt
With the commands below, let’s have a look at the produced file, first as plain-text,
then with TOPCAT (which needs conversion to FITS). After TOPCAT is opened, in the
“Graphics” menu, select “Plane plot” to see the five points in a flat RA, Dec plot.

$ cat pointing.txt

# Column 1: RA [deg, f64] Right Ascension
# Column 2: Dec [deg, f64] Declination
192.721250 41.120556

192.737917 41.120556

192.721250 41.137223

192.704583 41.120556

192.721250 41.103889

$ asttable pointing.txt -opointing.fits

57 Tnstead of this, later, when you called astscript-pointing-simulate, you could pass the --racol=1
and --deccol=2 options. But having metadata is always preferred (will avoid many bugs/frustrations
in the long-run!).
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$ astscript-fits-view pointing.fits
$ rm pointing.fits

We are now ready to generate the exposure map of the pointing pattern above using
the reference image that we downloaded before. Let’s put the center of our final coadd to
be on the center of the galaxy, and we’ll assume the coadd has a size of 2 degrees. With
the second command, you can see the exposure map of the final coadd. Recall that in this
image, each pixel shows the number of input images that went into it.

$ astscript-pointing-simulate pointing.txt --output=coadd.fits \
—--img=input/ref.fits --center=$center_ra,$center_dec \
--width=2

$ astscript-fits-view coadd.fits

You will see that except for a thin boundary, we have a depth of 5 exposures over the
area of the single exposure. Let’s see what the width of the deepest part of the image is.
First, we’ll use Arithmetic to set all pixels that contain less than 5 exposures (the outer
pixels) to NaN (Not a Number). In the same Arithmetic command, let’s trim all the blank
rows and columns, so the output only contains the pixels that are exposed 5 times. With
the next command, let’s view the deep region and with the last command below, let’s use
the —-skycoverage option of the Fits program to see the coverage of deep part on the sky.

$ deep_thresh=5
$ astarithmetic coadd.fits set-s s s $deep_thresh 1t nan where trim \
--output=deep.fits

$ astscript-fits-view deep.fits

$ astfits deep.fits --skycoverage
Input file: deep.fits (hdu: 1)

Sky coverage by center and (full) width:
Center: 192.72125 41.120556
Width: 1.880835157 1.392461166

Sky coverage by range along dimensions:
RA 191.7808324 193.6616676
DEC 40.42058203 41.81304319

As we see, in declination, the width of this deep field is about 1.4 degrees. Recall that
RA is only defined on the equator and actual coverage in RA depends on the declination
due to the spherical nature of the sky. This area therefore nicely covers the expected outer
parts of M94. On first thought, it may seem that we are now finished, but that is not the
case unfortunately!

There is a problem: with a step size of 1 arc-minute, the brighter central parts of this
large galaxy will always be on very similar pixels; making it hard to calibrate those pixels
properly. If you are interested in the low surface brightness parts of this galaxy, it is even
worse: the outer parts of the galaxy will always cover similar parts of the detector in
all the exposures; and they cover a large area on your image. To be able to accurately
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calibrate the image (in particular to estimate the flat field pattern and subtract the sky),
you do not want this to happen! You want each exposure to cover very different sources of
astrophysical signal, so you can accurately calibrate the artifacts created by the instrument
or environment (for example flat field) or of natural causes (for example the Sky).

For an example of how these calibration issues can ruin low surface brightness sci-
ence, please see the image of M94 in the Legacy Survey interactive viewer (https://www.
legacysurvey.org/viewer). After it is loaded, at the bottom-left corner of the window,
write “M94” in the box of “Jump to object” and press ENTER. At first, M94 looks good
with a black background, but as you increase the “Brightness” (by scrolling it to the right
and seeing what is under the originally black pixels), you will see the calibration artifacts
clearly.

2.8.2 Area of non-blank pixels on sky

In Section 2.8.1 [Preparing input and generating exposure map]|, page 177, we generated a
pointing pattern with very small steps, showing how this can cause calibration problems.
Later (in Section 2.8.4 [Larger steps sizes for better calibration], page 184) using larger
steps is discussed. In this section, let’s see how we can get an accurate measure of the area
that is covered in a certain depth.

A first thought would be to simply multiply the widths along RA and Dec reported
before: 1.8808 x 1.3924 = 2.6189 degrees squared. But there are several problems with this:

e It ignores the fact that RA only has units of degrees on the equator: at different
declinations, differences in RA should be converted to degrees. This is discussed further
in this tutorial: Section 2.8.5 [Pointings that account for sky curvature], page 186.

e It doesn’t take into account the thin rows/columns of blank pixels (NaN) that are on
the four edges of the deep.fits image.

e The differing area of the pixels on the spherical sky in relation to those blank values
can result in wrong estimations of the area.

Let’s get a very accurate estimation of the area that will not be affected by the issues
above. With the first command below, we’ll use the ——pixelareaonwcs option of the Fits
program that will return the area of each pixel (in pixel units of degrees squared). After
running the second command, please have a look at the produced image.

$ astfits deep.fits --pixelareaonwcs --output=deep-pix-area.fits

$ astfits deep.fits --pixelscale
Basic info. for --pixelscale (remove extra info with '--quiet' or '-q')
Input: deep.fits (hdu 1) has 2 dimensions.
Pixel scale in each FITS dimension:
1: 0.00154403 (deg/pixel) = 5.5585 (arcsec/pixel)
2: 0.00154403 (deg/pixel) = 5.5585 (arcsec/pixel)
Pixel area:
2.38402e-06 (deg”2) = 30.8969 (arcsec”2)

$ astscript-fits-view deep-pix-area.fits
You see a donut-like shape in DS9. Move your mouse over the central (white) region of
the region and look at the values. You will see that the pixel area (in degrees squared) is
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exactly the same as we saw in the output of —-pixelscale. As you move your mouse away
to other colors, you will notice that the area covered by each pixel (its value in this image)
deceases very slightly (in the 5th decimal!l). This is the effect of the Gnomonic projec-
tion (https://en.wikipedia.org/wiki/Gnomonic_projection); summarized as TAN (for
“tangential”) in the FITS WCS standard, the most commonly used in optical astronomical
surveys and the default in this script.

Having deep-pix-area.fits, we can now use Arithmetic to set the areas of all the
pixels that were NaN in deep.fits and sum all the values to get an accurate estimate of
the area we get from this pointing pattern:

$ astarithmetic deep-pix-area.fits deep.fits isblank nan where -gl \
sumvalue --quiet
1.93836806631634e+00

Therefore, the actual area that is covered is less than the simple multiplication above.
At these declinations, the dominant cause of this difference is the first point above (that RA
needs correction), this will be discussed in more detail later in this tutorial (see Section 2.8.5
[Pointings that account for sky curvature], page 186). Generally, using this method to
measure the area of your non-NAN pixels in an image is very easy and robust (automatically
takes into account the curvature, coordinate system, projection and blank pixels of the
image).

2.8.3 Script with pointing simulation steps so far

In Section 2.8.1 [Preparing input and generating exposure map|, page 177, and Section 2.8.2
[Area of non-blank pixels on sky|, page 181, the basic steps to simulate a pointing pattern’s
exposure map and measure the final output area on the sky where described in detail. From
this point on in the tutorial, we will be experimenting with the shell variables that were set
above, but the actual commands will not be changed regularly. If a change is necessary in
a command, it is clearly mentioned in the text.

Therefore, it is better to write the steps above (after downloading the reference image)
as a script. In this way, you can simply change those variables and see the final result
fast by running your script. For more on writing scripts, see as described in Section 2.1.22
[Writing scripts to automate the steps]|, page 73.

Here is a summary of some points to remember when transferring the code in the sections
before into a script:
e Where the commands are edited/changed, please also update them in your script.
e Keep all the variables at the top, even if they are used later. This allows to easily view
or changed them without digging into the script.

e You do not need to include visual check commands like the astscript-fits-view or
cat commands above. Those can be run interactively after your script is finished; recall
that a script is for batch (non-interactive) processing.

e Put all your intermediate products inside a “build” directory.
Here is the script that summarizes the steps in Section 2.8.1 [Preparing input and gen-

erating exposure map|, page 177, (after download) and Section 2.8.2 [Area of non-blank
pixels on sky], page 181:

#!/bin/bash
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Copyright (C) 2024-2025 Mohammad Akhlaghi <mohammad@akhlaghi.org>

Copying and distribution of this file, with or without modification,
are permitted in any medium under the GNU GPL v3+, without royalty
provided the copyright notice and this notice are preserved. This
file is offered as-is, without any warranty.

H OHF H H H H H

# Parameters of the script
deep_thresh=5
step_arcmin=1
center_ra=192.721250
center_dec=41.120556

# Input and build directories (can be anywhere in your file system)
indir=input
bdir=build

# Abort the script in case of an error.
set -e

# Make the build directory if it doesn't already exist.
if ' [ -d $bdir ]; then mkdir