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1 Introduction

GNU Astronomy Utilities (Gnuastro) is an official GNU package consisting of separate
programs and libraries for the manipulation and analysis of astronomical data. All the pro-
grams share the same basic command-line user interface for the comfort of both the users
and developers. Gnuastro is written to comply fully with the GNU coding standards so it
integrates finely with the GNU/Linux operating system. This also enables astronomers to
expect a fully familiar experience in the source code, building, installing and command-line
user interaction that they have seen in all the other GNU software that they use. The official
and always up to date version of this book (or manual) is freely available under Appendix B
[GNU Free Doc. License], page 963, in various formats (PDF, HTML, plain text, info, and
as its Texinfo source) at http://www.gnu.org/software/gnuastro/manual/.

For users who are new to the GNU/Linux environment, unless otherwise specified most of
the topics in Chapter 3 [Installation], page 211, and Chapter 4 [Common program behavior],
page 247, are common to all GNU software, for example, installation, managing command-
line options or getting help (also see Section 1.8 [New to GNU/Linux?], page 12). So if you
are new to this empowering environment, we encourage you to go through these chapters
carefully. They can be a starting point from which you can continue to learn more from
each program’s own manual and fully benefit from and enjoy this wonderful environment.
Gnuastro also comes with a large set of libraries, so you can write your own programs using
Gnuastro’s building blocks, see Section 12.1 [Review of library fundamentals], page 724, for
an introduction.

In Gnuastro, no change to any program or library will be committed to its history, before
it has been fully documented here first. As discussed in Section 1.3 [Gnuastro manifesto:
Science and its tools], page 6, this is a founding principle of the Gnuastro.

1.1 Quick start

The latest official release tarball is always available as gnuastro-latest.tar.lz (http://
ftp.gnu.org/gnu/gnuastro/gnuastro-latest.tar.lz). The Lzip (http://www.
nongnu.org/lzip/lzip.html) format is used for better compression (smaller output size,
thus faster download), and robust archival features and standards. For historical reasons
(those users that do not yet have Lzip), the Gzip’d tarball1 is available at the same URL
(just change the .lz suffix above to .gz; however, the Lzip’d file is recommended). See
Section 3.2.1 [Release tarball], page 225, for more details on the tarball release.

Let’s assume the downloaded tarball is in the TOPGNUASTRO directory. You can follow the
commands below to download and un-compress the Gnuastro source. You need to have the
lzip program for the decompression (see Section 3.1.4 [Dependencies from package man-
agers], page 220) If your Tar implementation does not recognize Lzip (the third command
fails), run the fourth command. Note that lines starting with ## do not need to be typed
(they are only a description of the following command):

## Go into the download directory.

$ cd TOPGNUASTRO

1 The Gzip library and program are commonly available on most systems. However, Gnuastro recommends
Lzip as described above and the beta-releases are also only distributed in tar.lz.

http://www.gnu.org/software/gnuastro/manual/
http://ftp.gnu.org/gnu/gnuastro/gnuastro-latest.tar.lz
http://ftp.gnu.org/gnu/gnuastro/gnuastro-latest.tar.lz
http://www.nongnu.org/lzip/lzip.html
http://www.nongnu.org/lzip/lzip.html
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## If you do not already have the tarball, you can download it:

$ wget http://ftp.gnu.org/gnu/gnuastro/gnuastro-latest.tar.lz

## If this fails, run the next command.

$ tar -xf gnuastro-latest.tar.lz

## Only when the previous command fails.

$ lzip -cd gnuastro-latest.tar.lz | tar -xf -

Gnuastro has three mandatory dependencies and some optional dependencies for extra
functionality, see Section 3.1 [Dependencies], page 211, for the full list. In Section 3.1.4
[Dependencies from package managers], page 220, we have prepared the command to easily
install Gnuastro’s dependencies using the package manager of some operating systems.
When the mandatory dependencies are ready, you can configure, compile, check and install
Gnuastro on your system with the following commands. See Section 3.3.5 [Known issues],
page 244, if you confront any complications.

$ cd gnuastro-X.X # Replace X.X with version number.

$ ./configure

$ make -j8 # Replace 8 with no. CPU threads.

$ make check -j8 # Replace 8 with no. CPU threads.

$ sudo make install

For each program there is an ‘Invoke ProgramName’ sub-section in this book which ex-
plains how the programs should be run on the command-line (for example, see Section 5.3.5
[Invoking Table], page 359).

In Chapter 2 [Tutorials], page 22, we have prepared some complete tutorials with com-
mon Gnuastro usage scenarios in astronomical research. They even contain links to down-
load the necessary data, and thoroughly describe every step of the process (the science,
statistics and optimal usage of the command-line). We therefore recommend to read (an
run the commands in) the tutorials before starting to use Gnuastro.

1.2 Gnuastro programs list

One of the most common ways to operate Gnuastro is through its command-line programs.
For some tutorials on several real-world usage scenarios, see Chapter 2 [Tutorials], page 22.
The list here is just provided as a general summary for those who are new to Gnuastro.

GNU Astronomy Utilities 0.22.24-f3e8, contains the following programs. They are sorted
in alphabetical order and a short description is provided for each program. The description
starts with the executable names in thisfont followed by a pointer to the respective section
in parenthesis. Throughout this book, they are ordered based on their context, please see
the top-level contents for contextual ordering (based on what they do).

Arithmetic
(astarithmetic, see Section 6.2 [Arithmetic], page 399) For arithmetic opera-
tions on multiple (theoretically unlimited) number of datasets (images). It has
a large and growing set of arithmetic, mathematical, and even statistical opera-
tors (for example, +, -, *, /, sqrt, log, min, average, median, see Section 6.2.4
[Arithmetic operators], page 408).
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BuildProgram
(astbuildprog, see Section 12.2 [BuildProgram], page 732) Compile, link and
run custom C programs that depend on the Gnuastro library (see Section 12.3
[Gnuastro library], page 736). This program will automatically link with the
libraries that Gnuastro depends on, so there is no need to explicitly mention
them every time you are compiling a Gnuastro library dependent program.

ConvertType
(astconvertt, see Section 5.2 [ConvertType], page 314) Convert astronomical
data files (FITS or IMH) to and from several other standard image and data
formats, for example, TXT, JPEG, EPS or PDF. Optionally, it is also possible
to add vector graphics markers over the output image (for example, circles from
catalogs containing RA or Dec).

Convolve (astconvolve, see Section 6.3 [Convolve], page 469) Convolve (blur or smooth)
data with a given kernel in spatial and frequency domain on multiple threads.
Convolve can also do deconvolution to find the appropriate kernel to PSF-match
two images.

CosmicCalculator
(astcosmiccal, see Section 9.1 [CosmicCalculator], page 654) Do cosmological
calculations, for example, the luminosity distance, distance modulus, comoving
volume and many more.

Crop (astcrop, see Section 6.1 [Crop], page 385) Crop region(s) from one or many
image(s) and stitch several images if necessary. Input coordinates can be in
pixel coordinates or world coordinates.

Fits (astfits, see Section 5.1 [Fits], page 295) View and manipulate FITS file
extensions and header keywords.

MakeCatalog
(astmkcatalog, see Section 7.4 [MakeCatalog], page 572) Make catalog of la-
beled image (output of NoiseChisel). The catalogs are highly customizable and
adding new calculations/columns is very straightforward.

MakeProfiles
(astmkprof, see Section 8.1 [MakeProfiles], page 629) Make mock 2D profiles
in an image. The central regions of radial profiles are made with a configurable
2D Monte Carlo integration. It can also build the profiles on an over-sampled
image.

Match (astmatch, see Section 7.5 [Match], page 618) Given two input catalogs, find
the rows that match with each other within a given aperture (may be an ellipse).

NoiseChisel
(astnoisechisel, see Section 7.2 [NoiseChisel], page 541) Detect signal in
noise. It uses a technique to detect very faint and diffuse, irregularly shaped
signal in noise (galaxies in the sky), using thresholds that are below the Sky
value, see Akhlaghi and Ichikawa 2015 (http://arxiv.org/abs/1505.01664).

http://arxiv.org/abs/1505.01664
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Query (astquery, see Section 5.4 [Query], page 375) High-level interface to query
pre-defined remote, or external databases, and directly download the required
sub-tables on the command-line.

Segment (astsegment, see Section 7.3 [Segment], page 561) Segment detected regions
based on the structure of signal and the input dataset’s noise properties.

Statistics (aststatistics, see Section 7.1 [Statistics], page 508) Statistical calculations
on the input dataset (column in a table, image or datacube). This includes
man operations such as generating histogram, sigma clipping, and least squares
fitting.

Table (asttable, Section 5.3 [Table], page 340) Convert FITS binary and ASCII
tables into other such tables, print them on the command-line, save them in a
plain text file, do arithmetic on the columns or get the FITS table information.
For a full list of operations, see Section 5.3.4 [Operation precedence in Table],
page 354.

Warp (astwarp, see Section 6.4 [Warp], page 492) Warp image to new pixel grid. By
default it will align the pixel and WCS coordinates, removing any non-linear
WCS distortions. Any linear warp (projective transformation or Homography)
can also be applied to the input images by explicitly calling the respective
operation.

The programs listed above are designed to be highly modular and generic. Hence, they
are naturally for lower-level operations. In Gnuastro, higher-level operations (combining
multiple programs, or running a program in a special way), are done with installed Bash
scripts (all prefixed with astscript-). They can be run just like a program and behave
very similarly (with minor differences, see Chapter 10 [Installed scripts], page 666).

astscript-ds9-region

(See Section 10.3 [SAO DS9 region files from table], page 678) Given a table
(either as a file or from standard input), create an SAO DS9 region file from
the requested positional columns (WCS or image coordinates).

astscript-fits-view

(see Section 10.4 [Viewing FITS file contents with DS9 or TOPCAT], page 680)
Given any number of FITS files, this script will either open SAO DS9 (for images
or cubes) or TOPCAT (for tables) to view them in a graphic user interface
(GUI).

astscript-pointing-simulate

(See Section 10.6 [Pointing pattern simulation], page 689) Given a table of
pointings on the sky, create and a reference image that contains your camera’s
distortions and properties, generate a stacked exposure map. This is very useful
in testing the coverage of dither patterns when designing your observing strat-
egy and it is highly customizable. See Akhlaghi 2023 (https://arxiv.org/
abs/2310.15006), or the dedicated tutorial in Section 2.8 [Pointing pattern
design], page 176.

astscript-radial-profile

(See Section 10.2 [Generate radial profile], page 670) Calculate the radial profile
of an object within an image. The object can be at any location in the image,

https://arxiv.org/abs/2310.15006
https://arxiv.org/abs/2310.15006
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using various measures (median, sigma-clipped mean, etc.), and the radial dis-
tance can also be measured on any general ellipse. See Infante-Sainz et al. 2024
(https://arxiv.org/abs/2401.05303).

astscript-color-faint-gray

(see Section 10.7 [Color images with gray faint regions], page 694) Given three
images for the Red-Green-Blue (RGB) channels, this script will use the bright
pixels for color and will show the faint/diffuse regions in grayscale. This greatly
helps in visualizing the full dynamic range of astronomical data. See Infante-
Sainz et al. 2024 (https://arxiv.org/abs/2401.03814) or a dedicated tuto-
rial in Section 2.6 [Color images with full dynamic range], page 151.

astscript-sort-by-night

(See Section 10.1 [Sort FITS files by night], page 667) Given a list of FITS files,
and a HDU and keyword name (for a date), this script separates the files in the
same night (possibly over two calendar days).

astscript-zeropoint

(see Section 10.5 [Zero point estimation], page 684) Estimate the zero point
(to calibrate pixel values) of an input image using a reference image or a ref-
erence catalog. This is necessary to produce measurements with physical units
from new images. See Eskandarlou et al. 2023 (https://arxiv.org/abs/
2312.04263), or a dedicated tutorial in Section 2.7 [Zero point of an image],
page 166.

astscript-psf-*

The following scripts are used to estimate the extended PSF estimation and
subtraction as described in the tutorial Section 2.3 [Building the extended PSF],
page 103:

astscript-psf-select-stars

(see Section 10.8.2 [Invoking astscript-psf-select-stars], page 702)
Find all the stars within an image that are suitable for constructing
an extended PSF. If the image has WCS, this script can automat-
ically query Gaia to find the good stars.

astscript-psf-stamp

(see Section 10.8.3 [Invoking astscript-psf-stamp], page 705) build a
crop (stamp) of a certain width around a star at a certain coordinate
in a larger image. This script will do sub-pixel re-positioning to
make sure the star is centered and can optionally mask all other
background sources).

astscript-psf-scale-factor

(see Section 10.8.5 [Invoking astscript-psf-scale-factor], page 711)
Given a PSF model, and the central coordinates of a star in an
image, find the scale factor that has to be multiplied by the PSF
to scale it to that star.

astscript-psf-unite

(see Section 10.8.4 [Invoking astscript-psf-unite], page 709) Unite
the various components of a PSF into one. Because of saturation

https://arxiv.org/abs/2401.05303
https://arxiv.org/abs/2401.05303
https://arxiv.org/abs/2401.03814
https://arxiv.org/abs/2312.04263
https://arxiv.org/abs/2312.04263
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and non-linearity, to get a good estimate of the extended PSF, it
is necessary to construct various parts from different magnitude
ranges.

astscript-psf-subtract

(see Section 10.8.6 [Invoking astscript-psf-subtract], page 714)
Given the model of a PSF and the central coordinates of a star in
the image, do sub-pixel re-positioning of the PSF, scale it to the
star and subtract it from the image.

1.3 Gnuastro manifesto: Science and its tools

History of science indicates that there are always inevitably unseen faults, hidden assump-
tions, simplifications and approximations in all our theoretical models, data acquisition and
analysis techniques. It is precisely these that will ultimately allow future generations to
advance the existing experimental and theoretical knowledge through their new solutions
and corrections.

In the past, scientists would gather data and process them individually to achieve an
analysis thus having a much more intricate knowledge of the data and analysis. The theo-
retical models also required little (if any) simulations to compare with the data. Today both
methods are becoming increasingly more dependent on pre-written software. Scientists are
dissociating themselves from the intricacies of reducing raw observational data in experi-
mentation or from bringing the theoretical models to life in simulations. These ‘intricacies’
are precisely those unseen faults, hidden assumptions, simplifications and approximations
that define scientific progress.

Unfortunately, most persons who have recourse to a computer for statistical
analysis of data are not much interested either in computer programming or in
statistical method, being primarily concerned with their own proper business.
Hence the common use of library programs and various statistical packages. ...
It’s time that was changed.

—F.J. Anscombe. The American Statistician, Vol. 27, No. 1. 1973

Anscombe’s quartet (http://en.wikipedia.org/wiki/Anscombe%27s_quartet)
demonstrates how four data sets with widely different shapes (when plotted) give nearly
identical output from standard regression techniques. Anscombe uses this (now famous)
quartet, which was introduced in the paper quoted above, to argue that “Good statistical
analysis is not a purely routine matter, and generally calls for more than one pass through
the computer”. Echoing Anscombe’s concern after 44 years, some of the highly recognized
statisticians of our time (Leek, McShane, Gelman, Colquhoun, Nuijten and Goodman),
wrote in Nature that:

We need to appreciate that data analysis is not purely computational and al-
gorithmic – it is a human behavior....Researchers who hunt hard enough will
turn up a result that fits statistical criteria – but their discovery will probably
be a false positive.

—Five ways to fix statistics, Nature, 551, Nov 2017.

Users of statistical (scientific) methods (software) are therefore not passive (objective)
agents in their results. It is necessary to actually understand the method, not just use it
as a black box. The subjective experience gained by frequently using a method/software is

http://en.wikipedia.org/wiki/Anscombe%27s_quartet
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not sufficient to claim an understanding of how the tool/method works and how relevant it
is to the data and analysis. This kind of subjective experience is prone to serious misunder-
standings about the data, what the software/statistical-method really does (especially as it
gets more complicated), and thus the scientific interpretation of the result. This attitude
is further encouraged through non-free software2, poorly written (or non-existent) scientific
software manuals, and non-reproducible papers3. This approach to scientific software and
methods only helps in producing dogmas and an “obscurantist faith in the expert’s special
skill, and in his personal knowledge and authority”4.

Program or be programmed. Choose the former, and you gain access to the
control panel of civilization. Choose the latter, and it could be the last real
choice you get to make.

—Douglas Rushkoff. Program or be programmed, O/R Books (2010).

It is obviously impractical for any one human being to gain the intricate knowledge
explained above for every step of an analysis. On the other hand, scientific data can
be large and numerous, for example, images produced by telescopes in astronomy. This
requires efficient algorithms. To make things worse, natural scientists have generally not
been trained in the advanced software techniques, paradigms and architecture that are
taught in computer science or engineering courses and thus used in most software. The
GNU Astronomy Utilities are an effort to tackle this issue.

Gnuastro is not just a software, this book is as important to the idea behind Gnuastro as
the source code (software). This book has tried to learn from the success of the “Numerical
Recipes” book in educating those who are not software engineers and computer scientists
but still heavy users of computational algorithms, like astronomers. There are two major
differences.

The first difference is that Gnuastro’s code and the background information are segre-
gated: the code is moved within the actual Gnuastro software source code and the under-
lying explanations are given here in this book. In the source code, every non-trivial step is
heavily commented and correlated with this book, it follows the same logic of this book, and
all the programs follow a similar internal data, function and file structure, see Section 13.4
[Program source], page 935. Complementing the code, this book focuses on thoroughly
explaining the concepts behind those codes (history, mathematics, science, software and
usage advice when necessary) along with detailed instructions on how to run the programs.
At the expense of frustrating “professionals” or “experts”, this book and the comments in
the code also intentionally avoid jargon and abbreviations. The source code and this book
are thus intimately linked, and when considered as a single entity can be thought of as a
real (an actual software accompanying the algorithms) “Numerical Recipes” for astronomy.

The second major, and arguably more important, difference is that “Numerical Recipes”
does not allow you to distribute any code that you have learned from it. In other words, it

2 https://www.gnu.org/philosophy/free-sw.html
3 Where the authors omit many of the analysis/processing “details” from the paper by arguing that they

would make the paper too long/unreadable. However, software engineers have been dealing with such
issues for a long time. There are thus software management solutions that allow us to supplement papers
with all the details necessary to exactly reproduce the result. For example, see Akhlaghi et al. 2021
(https://arxiv.org/abs/2006.03018).

4 Karl Popper. The logic of scientific discovery. 1959. Larger quote is given at the start of the PDF (for
print) version of this book.

https://www.gnu.org/philosophy/free-sw.html
https://arxiv.org/abs/2006.03018
https://arxiv.org/abs/2006.03018
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does not allow you to release your software’s source code if you have used their codes, you can
only publicly release binaries (a black box) to the community. Therefore, while it empowers
the privileged individual who has access to it, it exacerbates social ignorance. Exactly at
the opposite end of the spectrum, Gnuastro’s source code is released under the GNU general
public license (GPL) and this book is released under the GNU free documentation license.
You are therefore free to distribute any software you create using parts of Gnuastro’s source
code or text, or figures from this book, see Section 1.4 [Your rights], page 10.

With these principles in mind, Gnuastro’s developers aim to impose the minimum re-
quirements on you (in computer science, engineering and even the mathematics behind the
tools) to understand and modify any step of Gnuastro if you feel the need to do so, see
Section 13.1 [Why C programming language?], page 928, and Section 13.2 [Program design
philosophy], page 930.

Without prior familiarity and experience with optics, it is hard to imagine how, Galileo
could have come up with the idea of modifying the Dutch military telescope optics to use in
astronomy. Astronomical objects could not be seen with the Dutch military design of the
telescope. In other words, it is unlikely that Galileo could have asked a random optician
to make modifications (not understood by Galileo) to the Dutch design, to do something
no astronomer of the time took seriously. In the paradigm of the day, what could be the
purpose of enlarging geometric spheres (planets) or points (stars)? In that paradigm only
the position and movement of the heavenly bodies was important, and that had already
been accurately studied (recently by Tycho Brahe).

In the beginning of his “The Sidereal Messenger” (published in 1610) he cautions the
readers on this issue and before describing his results/observations, Galileo instructs us on
how to build a suitable instrument. Without a detailed description of how he made his tools
and done his observations, no reasonable person would believe his results. Before he actually
saw the moons of Jupiter, the mountains on the Moon or the crescent of Venus, Galileo was
“evasive”5 to Kepler. Science is defined by its tools/methods, not its raw results6.

The same is true today: science cannot progress with a black box, or poorly released
code. The source code of a research is the new (abstractified) communication language
in science, understandable by humans and computers. Source code (in any programming
language) is a language/notation designed to express all the details that would be too
tedious/long/frustrating to report in spoken languages like English, similar to mathematic
notation.

An article about computational science [almost all sciences today] ... is not
the scholarship itself, it is merely advertising of the scholarship. The Actual
Scholarship is the complete software development environment and the complete
set of instructions which generated the figures.

—Buckheit & Donoho, Lecture Notes in Statistics, Vol 103, 1996

5 Galileo G. (Translated by Maurice A. Finocchiaro). The essential Galileo.Hackett publishing company,
first edition, 2008.

6 For example, take the following two results on the age of the universe: roughly 14 billion years (suggested
by the current consensus of the standard model of cosmology) and less than 10,000 years (suggested from
some interpretations of the Bible). Both these numbers are results. What distinguishes these two results,
is the tools/methods that were used to derive them. Therefore, as the term “Scientific method” also
signifies, a scientific statement it defined by its method, not its result.
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Today, the quality of the source code that goes into a scientific result (and the distri-
bution of that code) is as critical to scientific vitality and integrity, as the quality of its
written language/English used in publishing/distributing its paper. A scientific paper will
not even be reviewed by any respectable journal if its written in a poor language/English.
A similar level of quality assessment is thus increasingly becoming necessary regarding the
codes/methods used to derive the results of a scientific paper. For more on this, please see
Akhlaghi et al. 2021 (https://arxiv.org/abs/2006.03018)).

Bjarne Stroustrup (creator of the C++ language) says: “Without understanding software,
you are reduced to believing in magic”. Ken Thomson (the designer or the Unix operating
system) says “I abhor a system designed for the ‘user’ if that word is a coded pejorative
meaning ‘stupid and unsophisticated’.” Certainly no scientist (user of a scientific software)
would want to be considered a believer in magic, or stupid and unsophisticated.

This can happen when scientists get too distant from the raw data and methods, and are
mainly discussing results. In other words, when they feel they have tamed Nature into their
own high-level (abstract) models (creations), and are mainly concerned with scaling up, or
industrializing those results. Roughly five years before special relativity, and about two
decades before quantum mechanics fundamentally changed Physics, Lord Kelvin is quoted
as saying:

There is nothing new to be discovered in physics now. All that remains is more
and more precise measurement.

—William Thomson (Lord Kelvin), 1900

A few years earlier Albert. A. Michelson made the following statement:

The more important fundamental laws and facts of physical science have all been
discovered, and these are now so firmly established that the possibility of their
ever being supplanted in consequence of new discoveries is exceedingly remote....
Our future discoveries must be looked for in the sixth place of decimals.

—Albert. A. Michelson, dedication of Ryerson Physics Lab, U. Chicago 1894

If scientists are considered to be more than mere puzzle solvers7 (simply adding to the
decimals of existing values or observing a feature in 10, 100, or 100000 more galaxies or
stars, as Kelvin and Michelson clearly believed), they cannot just passively sit back and
uncritically repeat the previous (observational or theoretical) methods/tools on new data.
Today there is a wealth of raw telescope images ready (mostly for free) at the finger tips
of anyone who is interested with a fast enough internet connection to download them. The
only thing lacking is new ways to analyze this data and dig out the treasure that is lying
hidden in them to existing methods and techniques.

New data that we insist on analyzing in terms of old ideas (that is, old models
which are not questioned) cannot lead us out of the old ideas. However many
data we record and analyze, we may just keep repeating the same old errors,
missing the same crucially important things that the experiment was competent
to find.

—Jaynes, Probability theory, the logic of science. Cambridge U. Press (2003).

7 Thomas S. Kuhn. The Structure of Scientific Revolutions, University of Chicago Press, 1962.

https://arxiv.org/abs/2006.03018
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1.4 Your rights

The paragraphs below, in this section, belong to the GNU Texinfo8 manual and are not
written by us! The name “Texinfo” is just changed to “GNU Astronomy Utilities” or
“Gnuastro” because they are released under the same licenses and it is beautifully written
to inform you of your rights.

GNU Astronomy Utilities is “free software”; this means that everyone is free to use it
and free to redistribute it on certain conditions. Gnuastro is not in the public domain; it is
copyrighted and there are restrictions on its distribution, but these restrictions are designed
to permit everything that a good cooperating citizen would want to do. What is not allowed
is to try to prevent others from further sharing any version of Gnuastro that they might
get from you.

Specifically, we want to make sure that you have the right to give away copies of the
programs that relate to Gnuastro, that you receive the source code or else can get it if you
want it, that you can change these programs or use pieces of them in new free programs,
and that you know you can do these things.

To make sure that everyone has such rights, we have to forbid you to deprive anyone
else of these rights. For example, if you distribute copies of the Gnuastro related programs,
you must give the recipients all the rights that you have. You must make sure that they,
too, receive or can get the source code. And you must tell them their rights.

Also, for our own protection, we must make certain that everyone finds out that there
is no warranty for the programs that relate to Gnuastro. If these programs are modified
by someone else and passed on, we want their recipients to know that what they have is
not what we distributed, so that any problems introduced by others will not reflect on our
reputation.

The full text of the licenses for the Gnuastro book and software can be respectively
found in Appendix C [GNU Gen. Pub. License v3], page 9719 and Appendix B [GNU Free
Doc. License], page 96310.

1.5 Logo of Gnuastro

Gnuastro’s logo is an abstract image of a barred spiral galaxy (https://en.wikipedia.
org/wiki/Barred_spiral_galaxy). The galaxy is vertically cut in half: on the left side,
the beauty of a contiguous galaxy image is visible. But on the right, the image gets pixe-
lated, and we only see the parts that are within the pixels. The pixels that are more near
to the center of the galaxy (which is brighter) are also larger. But as we follow the spiral
arms (and get more distant from the center), the pixels get smaller (signifying less signal).

This sharp distinction between the contiguous and pixelated view of the galaxy signifies
the main struggle in science: in the “real” world, objects are not pixelated or discrete and
have no noise. However, when we observe nature, we are confined and constrained by the
resolution of our data collection (CCD imager in this case).

On the other hand, we read English text from the left and progress towards the right.
This defines the positioning of the “real” and observed halves of the galaxy: the no-noised

8 Texinfo is the GNU documentation system. It is used to create this book in all the various formats.
9 Also available in http://www.gnu.org/copyleft/gpl.html

10 Also available in http://www.gnu.org/copyleft/fdl.html

https://en.wikipedia.org/wiki/Barred_spiral_galaxy
https://en.wikipedia.org/wiki/Barred_spiral_galaxy
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/fdl.html
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and contiguous half (on the left) passes through our observing tools and becomes pixelated
and noisy half (on the right). It is the job of scientific software like Gnuastro to help
interpret the underlying mechanisms of the “real” universe from the pixelated and noisy
data.

Gnuastro’s logo was designed by Marjan Akbari. The concept behind it was created
after several design iterations with Mohammad Akhlaghi.

1.6 Naming convention

Gnuastro is a package of independent programs and a collection of libraries, here we are
mainly concerned with the programs. Each program has an official name which consists
of one or two words, describing what they do. The latter are printed with no space, for
example, NoiseChisel or Crop. On the command-line, you can run them with their exe-
cutable names which start with an ast and might be an abbreviation of the official name,
for example, astnoisechisel or astcrop, see Section 3.3.1.3 [Executable names], page 238.

We will use “ProgramName” for a generic official program name and astprogname for
a generic executable name. In this book, the programs are classified based on what they
do and thoroughly explained. An alphabetical list of the programs that are installed on
your system with this installation are given in Section 1.2 [Gnuastro programs list], page 2.
That list also contains the executable names and version numbers along with a one line
description.

1.7 Version numbering

Gnuastro can have two formats of version numbers, for official and unofficial releases. Official
Gnuastro releases are announced on the info-gnuastro mailing list, they have a version
control tag in Gnuastro’s development history, and their version numbers are formatted
like “A.B”. A is a major version number, marking a significant planned achievement (for
example, see Section 1.7.1 [GNU Astronomy Utilities 1.0], page 12), while B is a minor
version number, see below for more on the distinction. Note that the numbers are not
decimals, so version 2.34 is much more recent than version 2.5, which is not equal to 2.50.

Gnuastro also allows a unique version number for unofficial releases. Unofficial releases
can mark any point in Gnuastro’s development history. This is done to allow astronomers
to easily use any point in the version controlled history for their data-analysis and research
publication. See Section 3.2.2 [Version controlled source], page 226, for a complete introduc-
tion. This section is not just for developers and is intended to straightforward and easy to
read, so please have a look if you are interested in the cutting-edge. This unofficial version
number is a meaningful and easy to read string of characters, unique to that particular
point of history. With this feature, users can easily stay up to date with the most recent
bug fixes and additions that are committed between official releases.

The unofficial version number is formatted like: A.B.C-D. A and B are the most recent
official version number. C is the number of commits that have been made after version A.B.
D is the first 4 or 5 characters of the commit hash number11. Therefore, the unofficial version

11 Each point in Gnuastro’s history is uniquely identified with a 40 character long hash which is created
from its contents and previous history for example: 5b17501d8f29ba3cd610673261e6e2229c846d35. So
the string D in the version for this commit could be 5b17, or 5b175.
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number ‘3.92.8-29c8’, corresponds to the 8th commit after the official version 3.92 and
its commit hash begins with 29c8. The unofficial version number is sort-able (unlike the
raw hash) and as shown above is descriptive of the state of the unofficial release. Of course
an official release is preferred for publication (since its tarballs are easily available and it
has gone through more tests, making it more stable), so if an official release is announced
prior to your publication’s final review, please consider updating to the official release.

The major version number is set by a major goal which is defined by the developers
and user community before hand, for example, see Section 1.7.1 [GNU Astronomy Utilities
1.0], page 12. The incremental work done in minor releases are commonly small steps in
achieving the major goal. Therefore, there is no limit on the number of minor releases and
the difference between the (hypothetical) versions 2.927 and 3.0 can be a small (negligible
to the user) improvement that finalizes the defined goals.

1.7.1 GNU Astronomy Utilities 1.0

Currently (prior to Gnuastro 1.0), the aim of Gnuastro is to have a complete system for
data manipulation and analysis at least similar to IRAF12. So an astronomer can take all
the standard data analysis steps (starting from raw data to the final reduced product and
standard post-reduction tools) with the various programs in Gnuastro.

The maintainers of each camera or detector on a telescope can provide a completely
transparent shell script or Makefile to the observer for data analysis. This script can set
configuration files for all the required programs to work with that particular camera. The
script can then run the proper programs in the proper sequence. The user/observer can
easily follow the standard shell script to understand (and modify) each step and the param-
eters used easily. Bash (or other modern GNU/Linux shell scripts) is powerful and made
for this gluing job. This will simultaneously improve performance and transparency. Shell
scripting (or Makefiles) are also basic constructs that are easy to learn and readily available
as part of the Unix-like operating systems. If there is no program to do a desired step,
Gnuastro’s libraries can be used to build specific programs.

The main factor is that all observatories or projects can freely contribute to Gnuastro and
all simultaneously benefit from it (since it does not belong to any particular one of them),
much like how for-profit organizations (for example, RedHat, or Intel and many others) are
major contributors to free and open source software for their shared benefit. Gnuastro’s
copyright has been fully awarded to GNU, so it does not belong to any particular astronomer
or astronomical facility or project.

1.8 New to GNU/Linux?

Some astronomers initially install and use a GNU/Linux operating system because their
necessary tools can only be installed in this environment. However, the transition is not
necessarily easy. To encourage you in investing the patience and time to make this transition,
and actually enjoy it, we will first start with a basic introduction to GNU/Linux operating
systems. Afterwards, in Section 1.8.1 [Command-line interface], page 14, we will discuss
the wonderful benefits of the command-line interface, how it beautifully complements the
graphic user interface, and why it is worth the (apparently steep) learning curve. Finally
a complete chapter (Chapter 2 [Tutorials], page 22) is devoted to real world scenarios of

12 http://iraf.noao.edu/

http://iraf.noao.edu/
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using Gnuastro (on the command-line). Therefore if you do not yet feel comfortable with
the command-line we strongly recommend going through that chapter after finishing this
section.

You might have already noticed that we are not using the name “Linux”, but
“GNU/Linux”. Please take the time to have a look at the following essays and FAQs for a
complete understanding of this very important distinction.

• https://gnu.org/philosophy

• https://www.gnu.org/gnu/the-gnu-project.html

• https://www.gnu.org/gnu/gnu-users-never-heard-of-gnu.html

• https://www.gnu.org/gnu/linux-and-gnu.html

• https://www.gnu.org/gnu/why-gnu-linux.html

• https://www.gnu.org/gnu/gnu-linux-faq.html

• Recorded talk: https://peertube.stream/w/ddeSSm33R1eFWKJVqpcthN (first 20 min
is about the history of Unix-like operating systems).

In short, the Linux kernel13 is built using the GNU C library (glibc) and GNU compiler
collection (gcc). The Linux kernel software alone is just a means for other software to access
the hardware resources, it is useless alone! A normal astronomer (or scientist) will never
interact with the kernel directly! For example, the command-line environment that you
interact with is usually GNU Bash. It is GNU Bash that then talks to kernel.

To better clarify, let’s use this analogy inspired from one of the links above14: saying
that you are “running Linux” is like saying you are “driving your engine”. The car’s engine
is the main source of power in the car, no one doubts that. But you do not “drive” the
engine, you drive the “car”. The engine alone is useless for transportation without the
radiator, battery, transmission, wheels, chassis, seats, wind-shield, etc.

To have an operating system, you need lower-level tools (to build the kernel), and higher-
level (to use it) software packages. For the Linux kernel, both the lower-level and higher-level
tools are GNU. In other words,“the whole system is basically GNU with Linux loaded”.

You can replace the Linux kernel and still have the GNU shell and higher-level utili-
ties. For example, using the “Windows Subsystem for Linux”, you can use almost all GNU
tools without the original Linux kernel, but using the host Windows operating system, as
in https://ubuntu.com/wsl. Alternatively, you can build a fully functional GNU-based
working environment on a macOS or BSD-based operating system (using the host’s kernel
and C compiler), for example, through projects like Maneage, see Akhlaghi et al. 2021
(https://arxiv.org/abs/2006.03018), in particular Appendix C with all the GNU soft-
ware tools that is exactly reproducible on a macOS also.

Therefore to acknowledge GNU’s instrumental role in the creation and usage of the
Linux kernel and the operating systems that use it, we should call these operating systems
“GNU/Linux”.

13 In Unix-like operating systems, the kernel connects software and hardware worlds.
14 https://www.gnu.org/gnu/gnu-users-never-heard-of-gnu.html

https://gnu.org/philosophy
https://www.gnu.org/gnu/the-gnu-project.html
https://www.gnu.org/gnu/gnu-users-never-heard-of-gnu.html
https://www.gnu.org/gnu/linux-and-gnu.html
https://www.gnu.org/gnu/why-gnu-linux.html
https://www.gnu.org/gnu/gnu-linux-faq.html
https://peertube.stream/w/ddeSSm33R1eFWKJVqpcthN
https://ubuntu.com/wsl
https://arxiv.org/abs/2006.03018
https://arxiv.org/abs/2006.03018
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1.8.1 Command-line interface

One aspect of Gnuastro that might be a little troubling to new GNU/Linux users is that
(at least for the time being) it only has a command-line user interface (CLI). This might be
contrary to the mostly graphical user interface (GUI) experience with proprietary operating
systems. Since the various actions available are not always on the screen, the command-
line interface can be complicated, intimidating, and frustrating for a first-time user. This
is understandable and also experienced by anyone who started using the computer (from
childhood) in a graphical user interface (this includes most of Gnuastro’s authors). Here
we hope to convince you of the unique benefits of this interface which can greatly enhance
your productivity while complementing your GUI experience.

Through GNOME 315, most GNU/Linux based operating systems now have an advanced
and useful GUI. Since the GUI was created long after the command-line, some wrongly
consider the command-line to be obsolete. Both interfaces are useful for different tasks. For
example, you cannot view an image, video, PDF document or web page on the command-
line. On the other hand you cannot reproduce your results easily in the GUI. Therefore
they should not be regarded as rivals but as complementary user interfaces, here we will
outline how the CLI can be useful in scientific programs.

You can think of the GUI as a veneer over the CLI to facilitate a small subset of all
the possible CLI operations. Each click you do on the GUI, can be thought of as internally
running a different CLI command. So asymptotically (if a good designer can design a GUI
which is able to show you all the possibilities to click on) the GUI is only as powerful as
the command-line. In practice, such graphical designers are very hard to find for every
program, so the GUI operations are always a subset of the internal CLI commands. For
programs that are only made for the GUI, this results in not including lots of potentially
useful operations. It also results in ‘interface design’ to be a crucially important part of any
GUI program. Scientists do not usually have enough resources to hire a graphical designer,
also the complexity of the GUI code is far more than CLI code, which is harmful for a
scientific software, see Section 1.3 [Gnuastro manifesto: Science and its tools], page 6.

For programs that have a GUI, one action on the GUI (moving and clicking a mouse, or
tapping a touchscreen) might be more efficient and easier than its CLI counterpart (typing
the program name and your desired configuration). However, if you have to repeat that same
action more than once, the GUI will soon become frustrating and prone to errors. Unless
the designers of a particular program decided to design such a system for a particular GUI
action, there is no general way to run any possible series of actions automatically on the
GUI.

On the command-line, you can run any series of actions which can come from various
CLI capable programs you have decided yourself in any possible permutation with one com-
mand16. This allows for much more creativity and exact reproducibility that is not possible
to a GUI user. For technical and scientific operations, where the same operation (using var-
ious programs) has to be done on a large set of data files, this is crucially important. It also
allows exact reproducibility which is a foundation principle for scientific results. The most
common CLI (which is also known as a shell) in GNU/Linux is GNU Bash, we strongly
encourage you to put aside several hours and go through this beautifully explained web

15 http://www.gnome.org/
16 By writing a shell script and running it, for example, see the tutorials in Chapter 2 [Tutorials], page 22.

http://www.gnome.org/
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page: https://flossmanuals.net/command-line/. You do not need to read or even fully
understand the whole thing, only a general knowledge of the first few chapters are enough
to get you going.

Since the operations in the GUI are limited and they are visible, reading a manual is
not that important in the GUI (most programs do not even have any!). However, to give
you the creative power explained above, with a CLI program, it is best if you first read the
manual of any program you are using. You do not need to memorize any details, only an
understanding of the generalities is needed. Once you start working, there are more easier
ways to remember a particular option or operation detail, see Section 4.3 [Getting help],
page 271.

To experience the command-line in its full glory and not in the GUI terminal emulator,
press the following keys together: CTRL+ALT+F417 to access the virtual console. To return
back to your GUI, press the same keys above replacing F4 with F7 (or F1, or F2, depending
on your GNU/Linux distribution). In the virtual console, the GUI, with all its distracting
colors and information, is gone. Enabling you to focus entirely on your actual work.

For operations that use a lot of your system’s resources (processing a large number of
large astronomical images for example), the virtual console is the place to run them. This
is because the GUI is not competing with your research work for your system’s RAM and
CPU. Since the virtual consoles are completely independent, you can even log out of your
GUI environment to give even more of your hardware resources to the programs you are
running and thus reduce the operating time.

Since it uses far less system resources, the CLI is also convenient for remote access to
your computer. Using secure shell (SSH) you can log in securely to your system (similar to
the virtual console) from anywhere even if the connection speeds are low. There are apps
for smart phones and tablets which allow you to do this.

1.9 Report a bug

According to Wikipedia “a software bug is an error, flaw, failure, or fault in a computer
program or system that causes it to produce an incorrect or unexpected result, or to behave
in unintended ways”. So when you see that a program is crashing, not reading your input
correctly, giving the wrong results, or not writing your output correctly, you have found
a bug. In such cases, it is best if you report the bug to the developers. The programs
will also inform you if known impossible situations occur (which are caused by something
unexpected) and will ask the users to report the bug issue.

Prior to actually filing a bug report, it is best to search previous reports. The issue
might have already been found and even solved. The best place to check if your bug
has already been discussed is the bugs tracker on Section 13.10 [Gnuastro project webpage],
page 949, at https://savannah.gnu.org/bugs/?group=gnuastro. In the top search fields
(under “Display Criteria”) set the “Open/Closed” drop-down menu to “Any” and choose
the respective program or general category of the bug in “Category” and click the “Apply”
button. The results colored green have already been solved and the status of those colored
in red is shown in the table.

17 Instead of F4, you can use any of the keys from F1 to F6 for different virtual consoles depending on your
GNU/Linux distribution, try them all out. You can also run a separate GUI from within this console if
you want to.

https://flossmanuals.net/command-line/
https://savannah.gnu.org/bugs/?group=gnuastro
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Recently corrected bugs are probably not yet publicly released because they are scheduled
for the next Gnuastro stable release. If the bug is solved but not yet released and it is
an urgent issue for you, you can get the version controlled source and compile that, see
Section 3.2.2 [Version controlled source], page 226.

To solve the issue as readily as possible, please follow the following to guidelines in your
bug report. The How to Report Bugs Effectively (http://www.chiark.greenend.org.uk/
~sgtatham/bugs.html) and How To Ask Questions The Smart Way (http://catb.org/
~esr/faqs/smart-questions.html) essays also provide some good generic advice for all
software (do not contact their authors for Gnuastro’s problems). Mastering the art of giv-
ing good bug reports (like asking good questions) can greatly enhance your experience with
any free and open source software. So investing the time to read through these essays will
greatly reduce your frustration after you see something does not work the way you feel it
is supposed to for a large range of software, not just Gnuastro.

Be descriptive
Please provide as many details as possible and be very descriptive. Explain
what you expected and what the output was: it might be that your expectation
was wrong. Also please clearly state which sections of the Gnuastro book (this
book), or other references you have studied to understand the problem. This
can be useful in correcting the book (adding links to likely places where users
will check). But more importantly, it will be encouraging for the developers,
since you are showing how serious you are about the problem and that you
have actually put some thought into it. “To be able to ask a question clearly
is two-thirds of the way to getting it answered.” – John Ruskin (1819-1900).

Individual and independent bug reports
If you have found multiple bugs, please send them as separate (and independent)
bugs (as much as possible). This will significantly help us in managing and
resolving them sooner.

Reproducible bug reports
If we cannot exactly reproduce your bug, then it is very hard to resolve it. So
please send us a Minimal working example18 along with the description. For
example, in running a program, please send us the full command-line text and
the output with the -P option, see Section 4.1.2.3 [Operating mode options],
page 257. If it is caused only for a certain input, also send us that input file.
In case the input FITS is large, please use Crop to only crop the problematic
section and make it as small as possible so it can easily be uploaded and down-
loaded and not waste the archive’s storage, see Section 6.1 [Crop], page 385.

There are generally two ways to inform us of bugs:

• Send a mail to bug-gnuastro@gnu.org. Any mail you send to this address will be
distributed through the bug-gnuastro mailing list19. This is the simplest way to send
us bug reports. The developers will then register the bug into the project web page
(next choice) for you.

18 http://en.wikipedia.org/wiki/Minimal_Working_Example
19 https://lists.gnu.org/mailman/listinfo/bug-gnuastro

http://www.chiark.greenend.org.uk/~sgtatham/bugs.html
http://www.chiark.greenend.org.uk/~sgtatham/bugs.html
http://catb.org/~esr/faqs/smart-questions.html
http://catb.org/~esr/faqs/smart-questions.html
http://en.wikipedia.org/wiki/Minimal_Working_Example
https://lists.gnu.org/mailman/listinfo/bug-gnuastro
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• Use the Gnuastro project web page at https://savannah.gnu.org/projects/

gnuastro/: There are two ways to get to the submission page as listed below. Fill
in the form as described below and submit it (see Section 13.10 [Gnuastro project
webpage], page 949, for more on the project web page).

• Using the top horizontal menu items, immediately under the top page title. Hov-
ering your mouse on “Support” will open a drop-down list. Select “Submit new”.
Also if you have an account in Savannah, you can choose “Bugs” in the menu items
and then select “Submit new”.

• In the main body of the page, under the “Communication tools” section, click on
“Submit new item”.

Once the items have been registered in the mailing list or web page, the developers will
add it to either the “Bug Tracker” or “Task Manager” trackers of the Gnuastro project
web page. These two trackers can only be edited by the Gnuastro project developers, but
they can be browsed by anyone, so you can follow the progress on your bug. You are most
welcome to join us in developing Gnuastro and fixing the bug you have found maybe a
good starting point. Gnuastro is designed to be easy for anyone to develop (see Section 1.3
[Gnuastro manifesto: Science and its tools], page 6) and there is a full chapter devoted to
developing it: Chapter 13 [Developing], page 928.� �
Savannah’s Markup: When posting to Savannah, it helps to have the code displayed in
mono-space font and a different background, you may also want to make a list of items or
make some words bold. For features like these, you should use Savannah’s “Markup” guide
at https://savannah.gnu.org/markup-test.php. You can access this page by clicking
on the “Full Markup” link that is just beside the “Preview” button, near the box that you
write your comments. As you see there, for example when you want to high-light code,
you should put it within a “+verbatim+” and “-verbatim-” environment like below:

+verbatim+

astarithmetic image.fits image_arith.fits -h1 isblank nan where

-verbatim-

Unfortunately, Savannah doesn’t have a way to edit submitted comments. Therefore be
sure to press the “Preview” button and check your report’s final format before the final
submission.
 	
1.10 Suggest new feature

We would always be happy to hear of suggested new features. For every program, there are
already lists of features that we are planning to add. You can see the current list of plans
from the Gnuastro project web page at https://savannah.gnu.org/projects/gnuastro/
and following “Tasks”→“Browse” on the horizontal menu at the top of the page immedi-
ately under the title, see Section 13.10 [Gnuastro project webpage], page 949. If you want
to request a feature to an existing program, click on the “Display Criteria” above the list
and under “Category”, choose that particular program. Under “Category” you can also see
the existing suggestions for new programs or other cases like installation, documentation or
libraries. Also, be sure to set the “Open/Closed” value to “Any”.

https://savannah.gnu.org/projects/gnuastro/
https://savannah.gnu.org/projects/gnuastro/
https://savannah.gnu.org/markup-test.php
https://savannah.gnu.org/projects/gnuastro/
https://savannah.gnu.org/projects/gnuastro/
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If the feature you want to suggest is not already listed in the task manager, then follow
the steps that are fully described in Section 1.9 [Report a bug], page 15. Please have in mind
that the developers are all busy with their own astronomical research, and implementing
existing “task”s to add or resolve bugs. Gnuastro is a volunteer effort and none of the
developers are paid for their hard work. So, although we will try our best, please do
not expect for your suggested feature to be immediately included (for the next release of
Gnuastro).

The best person to apply the exciting new feature you have in mind is you, since you
have the motivation and need. In fact, Gnuastro is designed for making it as easy as possible
for you to hack into it (add new features, change existing ones and so on), see Section 1.3
[Gnuastro manifesto: Science and its tools], page 6. Please have a look at the chapter
devoted to developing (Chapter 13 [Developing], page 928) and start applying your desired
feature. Once you have added it, you can use it for your own work and if you feel you
want others to benefit from your work, you can request for it to become part of Gnuastro.
You can then join the developers and start maintaining your own part of Gnuastro. If you
choose to take this path of action please contact us beforehand (Section 1.9 [Report a bug],
page 15) so we can avoid possible duplicate activities and get interested people in contact.� �
Gnuastro is a collection of low level programs: As described in Section 13.2 [Program
design philosophy], page 930, a founding principle of Gnuastro is that each library or
program should be basic and low-level. High level jobs should be done by running the
separate programs or using separate functions in succession through a shell script or calling
the libraries by higher level functions, see the examples in Chapter 2 [Tutorials], page 22.
So when making the suggestions please consider how your desired job can best be broken
into separate steps and modularized.
 	
1.11 Announcements

Gnuastro has a dedicated mailing list for making announcements (info-gnuastro). Anyone
can subscribe to this mailing list. Anytime there is a new stable or test release, an email
will be circulated there. The email contains a summary of the overall changes along with
a detailed list (from the NEWS file). This mailing list is thus the best way to stay up to
date with new releases, easily learn about the updated/new features, or dependencies (see
Section 3.1 [Dependencies], page 211).

To subscribe to this list, please visit https://lists.gnu.org/mailman/listinfo/

info-gnuastro. Traffic (number of mails per unit time) in this list is designed to be low:
only a handful of mails per year. Previous announcements are available on its archive
(http://lists.gnu.org/archive/html/info-gnuastro/).

1.12 Conventions

In this book we have the following conventions:

• All commands that are to be run on the shell (command-line) prompt as the user start
with a $. In case they must be run as a superuser or system administrator, they will
start with a single #. If the command is in a separate line and next line is also in

the code type face, but does not have any of the $ or # signs, then it is the output

https://lists.gnu.org/mailman/listinfo/info-gnuastro
https://lists.gnu.org/mailman/listinfo/info-gnuastro
http://lists.gnu.org/archive/html/info-gnuastro/
http://lists.gnu.org/archive/html/info-gnuastro/
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of the command after it is run. As a user, you do not need to type those lines. A line
that starts with ## is just a comment for explaining the command to a human reader
and must not be typed.

• If the command becomes larger than the page width a \ is inserted in the code. If you
are typing the code by hand on the command-line, you do not need to use multiple
lines or add the extra space characters, so you can omit them. If you want to copy and
paste these examples (highly discouraged!) then the \ should stay.

The \ character is a shell escape character which is used commonly to make characters
which have special meaning for the shell, lose that special meaning (the shell will not
treat them especially if there is a \ behind them). When \ is the last visible character
in a line (the next character is a new-line character) the new-line character loses its
meaning. Therefore, the shell sees it as a simple white-space character not the end of
a command! This enables you to use multiple lines to write your commands.

This is not a convention, but a bi-product of the PDF building process of the manual: In
the PDF version of this manual, a single quote (or apostrophe) character in the commands
or codes is shown like this: '. Single quotes are sometimes necessary in combination with
commands like awk or sed, or when using Column arithmetic in Gnuastro’s own Table
(see Section 5.3.3 [Column arithmetic], page 346). Therefore when typing (recommended)
or copy-pasting (not recommended) the commands that have a ', please correct it to the
single-quote (or apostrophe) character, otherwise the command will fail.

1.13 Acknowledgments

Gnuastro would not have been possible without scholarships and grants from several funding
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$ astnoisechisel --cite
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Romero, Zohre Ghaffari, Thérèse Godefroy, Giulia Golini, Craig Gordon, Martin Guerrero
Roncel, Madusha Gunawardhana, Bruno Haible, Stephen Hamer, Siyang He, Zahra Hos-
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2 Tutorials

To help new users have a smooth and easy start with Gnuastro, in this chapter several
thoroughly elaborated tutorials, or cookbooks, are provided. These tutorials demonstrate
the capabilities of different Gnuastro programs and libraries, along with tips and guidelines
for the best practices of using them in various realistic situations.

We strongly recommend going through these tutorials to get a good feeling of how
the programs are related (built in a modular design to be used together in a pipeline),
very similar to the core Unix-based programs that they were modeled on. Therefore these
tutorials will help in optimally using Gnuastro’s programs (and generally, the Unix-like
command-line environment) effectively for your research.

The first three tutorials (Section 2.1 [General program usage tutorial], page 23, and Sec-
tion 2.2 [Detecting large extended targets], page 81, and Section 2.3 [Building the extended
PSF], page 103) use real input datasets from some of the deep Hubble Space Telescope
(HST) images, the Sloan Digital Sky Survey (SDSS) and the Javalambre Photometric Lo-
cal Universe Survey (J-PLUS) respectively. Their aim is to demonstrate some real-world
problems that many astronomers often face and how they can be solved with Gnuastro’s
programs. The fourth tutorial (Section 2.4 [Sufi simulates a detection], page 124) focuses
on simulating astronomical images, which is another critical aspect of any analysis!

The ultimate aim of Section 2.1 [General program usage tutorial], page 23, is to detect
galaxies in a deep HST image, measure their positions, magnitude and select those with
the strongest colors. In the process, it takes many detours to introduce you to the useful
capabilities of many of the programs. So please be patient in reading it. If you do not have
much time and can only try one of the tutorials, we recommend this one.

Section 2.2 [Detecting large extended targets], page 81, deals with a major problem in
astronomy: effectively detecting the faint outer wings of bright (and large) nearby galaxies
to extremely low surface brightness levels (roughly one quarter of the local noise level in the
example discussed). Besides the interesting scientific questions in these low-surface bright-
ness features, failure to properly detect them will bias the measurements of the background
objects and the survey’s noise estimates. This is an important issue, especially in wide
surveys. Because bright/large galaxies and stars1, cover a significant fraction of the survey
area.

Section 2.3 [Building the extended PSF], page 103, tackles an important problem in
astronomy: how the extract the PSF of an image, to the largest possible extent, without
assuming any functional form. In Gnuastro we have multiple installed scripts for this job.
Their usage and logic behind best tuning them for the particular step, is fully described
in this tutorial, on a real dataset. The tutorial concludes with subtracting that extended
PSF from the science image; thus giving you a cleaner image (with no scattered light of the
brighter stars) for your higher-level analysis.

Section 2.4 [Sufi simulates a detection], page 124, has a fictional2 setting! Showing how
Abd al-rahman Sufi (903 – 986 A.D., the first recorded description of “nebulous” objects

1 Stars also have similarly large and extended wings due to the point spread function, see Section 8.1.1.2
[Point spread function], page 631.

2 The two historically motivated tutorials (Section 2.4 [Sufi simulates a detection], page 124, is not intended
to be a historical reference (the historical facts of this fictional tutorial used Wikipedia as a reference).)
This form of presenting a tutorial was influenced by the PGF/TikZ and Beamer manuals. They are both
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in the heavens is attributed to him) could have used some of Gnuastro’s programs for a
realistic simulation of his observations and see if his detection of nebulous objects was trust-
able. Because all conditions are under control in a simulated/mock environment/dataset,
mock datasets can be a valuable tool to inspect the limitations of your data analysis and
processing. But they need to be as realistic as possible, so this tutorial is dedicated to this
important step of an analysis (simulations).

There are other tutorials also, on things that are commonly necessary in astronomi-
cal research: In Section 2.5 [Detecting lines and extracting spectra in 3D data], page 135,
we use MUSE cubes (an IFU dataset) to show how you can subtract the continuum, de-
tect emission-line features, extract spectra and build pseudo narrow-band images. In Sec-
tion 2.6.1 [Color channels in same pixel grid], page 152, we demonstrate how you can warp
multiple images into a single pixel grid (often necessary with multi-wavelength data), and
build a single color image. In Section 2.9 [Moiré pattern in stacking and its correction],
page 191, we show how you can avoid the unwanted Moiré pattern which happens when
warping separate exposures to build a stacked/co-add deeper image. In Section 2.7 [Zero
point of an image], page 166, we review the process of estimating the zero point of an
image using a reference image or catalog. Finally, in Section 2.8 [Pointing pattern design],
page 176, we show the process by which you can simulate a dither pattern to find the best
observing strategy for your next exciting scientific project.

In these tutorials, we have intentionally avoided too many cross references to make it
more easy to read. For more information about a particular program, you can visit the
section with the same name as the program in this book. Each program section in the
subsequent chapters starts by explaining the general concepts behind what it does, for ex-
ample, see Section 6.3 [Convolve], page 469. If you only want practical information on
running a program, for example, its options/configuration, input(s) and output(s), please
consult the subsection titled “Invoking ProgramName”, for example, see Section 7.2.2 [In-
voking NoiseChisel], page 544. For an explanation of the conventions we use in the example
codes through the book, please see Section 1.12 [Conventions], page 18.

2.1 General program usage tutorial

Measuring colors of astronomical objects in broad-band or narrow-band images is one of
the most basic and common steps in astronomical analysis. Here, we will use Gnuastro’s
programs to get a physical scale (area at certain redshifts) of the field we are studying,
detect objects in a Hubble Space Telescope (HST) image, measure their colors and identify
the ones with the strongest colors, do a visual inspection of these objects and inspect spatial
position in the image. After this tutorial, you can also try the Section 2.2 [Detecting large
extended targets], page 81, tutorial which goes into a little more detail on detecting very
low surface brightness signal.

During the tutorial, we will take many detours to explain, and practically demonstrate,
the many capabilities of Gnuastro’s programs. In the end you will see that the things you
learned during this tutorial are much more generic than this particular problem and can be

packages in TEX and LATEX, the first is a high-level vector graphic programming environment, while
with the second you can make presentation slides. On a similar topic, there are also some nice words
of wisdom for Unix-like systems called Rootless Root (http://catb.org/esr/writings/unix-koans).
These also have a similar style but they use a mythical figure named Master Foo. If you already have
some experience in Unix-like systems, you will definitely find these Unix Koans entertaining/educative.

http://catb.org/esr/writings/unix-koans
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used in solving a wide variety of problems involving the analysis of data (images or tables).
So please do not rush, and go through the steps patiently to optimally master Gnuastro.

In this tutorial, we will use the HSTeXtreme Deep Field (https://archive.stsci.edu/
prepds/xdf) dataset. Like almost all astronomical surveys, this dataset is free for download
and usable by the public. You will need the following tools in this tutorial: Gnuastro, SAO
DS93, GNU Wget4, and AWK (most common implementation is GNU AWK5).

This tutorial was first prepared for the “Exploring the Ultra-Low Surface Brightness
Universe” workshop (November 2017) at the ISSI in Bern, Switzerland. It was further ex-
tended in the “4th Indo-French Astronomy School” (July 2018) organized by LIO, CRAL
CNRS UMR5574, UCBL, and IUCAA in Lyon, France. We are very grateful to the orga-
nizers of these workshops and the attendees for the very fruitful discussions and suggestions
that made this tutorial possible.� �
Write the example commands manually: Try to type the example commands on your
terminal manually and use the history feature of your command-line (by pressing the
“up” button to retrieve previous commands). Do not simply copy and paste the commands
shown here. This will help simulate future situations when you are processing your own
datasets.
 	
2.1.1 Calling Gnuastro’s programs

A handy feature of Gnuastro is that all program names start with ast. This will allow your
command-line processor to easily list and auto-complete Gnuastro’s programs for you. Try
typing the following command (press TAB key when you see <TAB>) to see the list:

$ ast<TAB><TAB>

Any program that starts with ast (including all Gnuastro programs) will be shown. By
choosing the subsequent characters of your desired program and pressing <TAB><TAB> again,
the list will narrow down and the program name will auto-complete once your input charac-
ters are unambiguous. In short, you often do not need to type the full name of the program
you want to run.

2.1.2 Accessing documentation

Gnuastro contains a large number of programs and it is natural to forget the details of each
program’s options or inputs and outputs. Therefore, before starting the analysis steps of
this tutorial, let’s review how you can access this book to refresh your memory any time
you want, without having to take your hands off the keyboard.

When you install Gnuastro, this book is also installed on your system along with all
the programs and libraries, so you do not need an internet connection to access/read it.
Also, by accessing this book as described below, you can be sure that it corresponds to your
installed version of Gnuastro.

3 See Section A.1 [SAO DS9], page 959, available at http://ds9.si.edu/site/Home.html
4 https://www.gnu.org/software/wget
5 https://www.gnu.org/software/gawk

https://archive.stsci.edu/prepds/xdf
https://archive.stsci.edu/prepds/xdf
http://ds9.si.edu/site/Home.html
https://www.gnu.org/software/wget
https://www.gnu.org/software/gawk
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GNU Info6 is the program in charge of displaying the manual on the command-line
(for more, see Section 4.3.4 [Info], page 273). To see this whole book on your command-
line, please run the following command and press subsequent keys. Info has its own mini-
environment, therefore we will show the keys that must be pressed in the mini-environment
after a -> sign. You can also ignore anything after the # sign in the middle of the line, they
are only for your information.

$ info gnuastro # Open the top of the manual.

-> <SPACE> # All the book chapters.

-> <SPACE> # Continue down: show sections.

-> <SPACE> ... # Keep pressing space to go down.

-> q # Quit Info, return to the command-line.

The thing that greatly simplifies navigation in Info is the links (regions with an under-
line). You can immediately go to the next link in the page with the <TAB> key and press
<ENTER> on it to go into that part of the manual. Try the commands above again, but this
time also use <TAB> to go to the links and press <ENTER> on them to go to the respective
section of the book. Then follow a few more links and go deeper into the book. To return to
the previous page, press l (small L). If you are searching for a specific phrase in the whole
book (for example, an option name), press s and type your search phrase and end it with
an <ENTER>. Finally, you can return to the command line and quit Info by pressing the q

key.

You do not need to start from the top of the manual every time. For example, to get to
Section 7.2.2 [Invoking NoiseChisel], page 544, run the following command. In general, all
programs have such an “Invoking ProgramName” section in this book. These sections are
specifically for the description of inputs, outputs and configuration options of each program.
You can access them directly for each program by giving its executable name to Info.

$ info astnoisechisel

The other sections do not have such shortcuts. To directly access them from the
command-line, you need to tell Info to look into Gnuastro’s manual, then look for the
specific section (an unambiguous title is necessary). For example, if you only want to re-
view/remember NoiseChisel’s Section 7.2.2.2 [Detection options], page 549), just run the
following command. Note how case is irrelevant for Info when calling a title in this manner.

$ info gnuastro "Detection options"

In general, Info is a powerful and convenient way to access this whole book with detailed
information about the programs you are running. If you are not already familiar with it,
please run the following command and just read along and do what it says to learn it. Do
not stop until you feel sufficiently fluent in it. Please invest the half an hour’s time necessary
to start using Info comfortably. It will greatly improve your productivity and you will start
reaping the rewards of this investment very soon.

$ info info

As a good scientist you need to feel comfortable to play with the features/options and
avoid (be critical to) using default values as much as possible. On the other hand, our
human memory is limited, so it is important to be able to easily access any part of this
book fast and remember the option names, what they do and their acceptable values.

6 GNU Info is already available on almost all Unix-like operating systems.
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If you just want the option names and a short description, calling the program with the
--help option might also be a good solution like the first example below. If you know a
few characters of the option name, you can feed the printed output to grep like the second
or third example commands.

$ astnoisechisel --help

$ astnoisechisel --help | grep quant

$ astnoisechisel --help | grep check

2.1.3 Setup and data download

The first step in the analysis of the tutorial is to download the necessary input datasets.
First, to keep things clean, let’s create a gnuastro-tutorial directory and continue all
future steps in it:

$ mkdir gnuastro-tutorial

$ cd gnuastro-tutorial

We will be using the near infra-red Wide Field Camera (http://www.stsci.edu/hst/
wfc3) dataset. If you already have them in another directory (for example, XDFDIR, with
the same FITS file names), you can set the download directory to be a symbolic link to
XDFDIR with a command like this:

$ ln -s XDFDIR download

Otherwise, when the following images are not already present on your system, you can make
a download directory and download them there.

$ mkdir download

$ cd download

$ xdfurl=http://archive.stsci.edu/pub/hlsp/xdf

$ wget $xdfurl/hlsp_xdf_hst_wfc3ir-60mas_hudf_f105w_v1_sci.fits

$ wget $xdfurl/hlsp_xdf_hst_wfc3ir-60mas_hudf_f125w_v1_sci.fits

$ wget $xdfurl/hlsp_xdf_hst_wfc3ir-60mas_hudf_f160w_v1_sci.fits

$ cd ..

In this tutorial, we will just use these three filters. Later, you may need to download more
filters. To do that, you can use the shell’s for loop to download them all in series (one after
the other7) with one command like the one below for the WFC3 filters. Put this command
instead of the three wget commands above. Recall that all the extra spaces, backslashes
(\), and new lines can be ignored if you are typing on the lines on the terminal.

$ for f in f105w f125w f140w f160w; do \

wget $xdfurl/hlsp_xdf_hst_wfc3ir-60mas_hudf_"$f"_v1_sci.fits; \

done

2.1.4 Dataset inspection and cropping

First, let’s visually inspect the datasets we downloaded in Section 2.1.3 [Setup and data
download], page 26. Let’s take F160W image as an example. One of the most common
programs for viewing FITS images is SAO DS9, which is usually called through the ds9

7 Note that you only have one port to the internet, so downloading in parallel will actually be slower than
downloading in series.

http://www.stsci.edu/hst/wfc3
http://www.stsci.edu/hst/wfc3
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command-line program, like the command below. If you do not already have DS9 on your
computer and the command below fails, please see Section A.1 [SAO DS9], page 959.

$ ds9 download/hlsp_xdf_hst_wfc3ir-60mas_hudf_f160w_v1_sci.fits

By default, DS9 open a relatively small window (for modern browsers) and its default
scale and color bar make it very hard to see any structure in the image: everything will
look black. Also, by default, it zooms into the center of the image and you need to scroll to
zoom-out and see the whole thing. To avoid these problems, Gnuastro has the astscript-
fits-view script:

$ astscript-fits-view \

download/hlsp_xdf_hst_wfc3ir-60mas_hudf_f160w_v1_sci.fits

After running this command, you will see that the DS9 window fully covers the height
of your monitor, it is showing the whole image, using a more clear color-map, and many
more useful things. In fact, you see the DS9 command that is used in your terminal8. On
GNU/Linux operating systems (like Ubuntu, and Fedora), you can also set your graphics
user interface to use this script for opening FITS files when you click on them. For more, see
the instructions in the checklist at the start of Section 10.4.1 [Invoking astscript-fits-view],
page 681.

As you hover your mouse over the image, notice how the “Value” and positional fields
on the top of the ds9 window get updated. The first thing you might notice is that when
you hover the mouse over the regions with no data, they have a value of zero. The next
thing might be that the dataset has a shallower and deeper component (see Section 7.4.3
[Quantifying measurement limits], page 578). Recall that this is a combined/reduced image
of many exposures, and the parts that have more exposures are deeper. In particular, the
exposure time of the deep inner region is more than 4 times the exposure time of the outer
(more shallower) parts.

To simplify the analysis in this tutorial, we will only be working on the deep field, so let’s
crop it out of the full dataset. Fortunately the XDF survey web page (above) contains the
vertices of the deep flat WFC3-IR field9. With Gnuastro’s Crop program, you can use those
vertices to cutout this deep region from the larger image (to learn more about the Crop
program see Section 6.1 [Crop], page 385). But before that, to keep things organized, let’s
make a directory called flat-ir and keep the flat (single-depth) regions in that directory
(with a ‘xdf-’ prefix for a shorter and easier filename).

$ mkdir flat-ir

$ astcrop --mode=wcs -h0 --output=flat-ir/xdf-f105w.fits \

--polygon="53.187414,-27.779152 : 53.159507,-27.759633 : \

53.134517,-27.787144 : 53.161906,-27.807208" \

download/hlsp_xdf_hst_wfc3ir-60mas_hudf_f105w_v1_sci.fits

$ astcrop --mode=wcs -h0 --output=flat-ir/xdf-f125w.fits \

--polygon="53.187414,-27.779152 : 53.159507,-27.759633 : \

53.134517,-27.787144 : 53.161906,-27.807208" \

8 When comparing DS9’s command-line options to Gnuastro’s, you will notice how SAO DS9 does not
follow the GNU style of options where “long” and “short” options are preceded by -- and - respectively
(for example, --width and -w, see Section 4.1.1.2 [Options], page 249).

9 https://archive.stsci.edu/prepds/xdf/#dataproducts

https://archive.stsci.edu/prepds/xdf/#dataproducts


Chapter 2: Tutorials 28

download/hlsp_xdf_hst_wfc3ir-60mas_hudf_f125w_v1_sci.fits

$ astcrop --mode=wcs -h0 --output=flat-ir/xdf-f160w.fits \

--polygon="53.187414,-27.779152 : 53.159507,-27.759633 : \

53.134517,-27.787144 : 53.161906,-27.807208" \

download/hlsp_xdf_hst_wfc3ir-60mas_hudf_f160w_v1_sci.fits

Run the command below to have a look at the cropped images:

$ astscript-fits-view flat-ir/*.fits

You only see the deep region now, does not the noise look much cleaner? An important
result of this crop is that regions with no data now have a NaN (Not-a-Number, or a blank
value) value. Any self-respecting statistical program will ignore NaN values, so they will
not affect your outputs. For example, notice how changing the DS9 color bar will not affect
the NaN pixels (their colors will not change).

However, do you remember that in the downloaded files, such regions had a value of
zero? That is a big problem! Because zero is a number, and is thus meaningful, especially
when you later want to NoiseChisel to detect10 all the signal from the deep universe in this
image. Generally, when you want to ignore some pixels in a dataset, and avoid higher-level
ambiguities or complications, it is always best to give them blank values (not zero, or some
other absurdly large or small number). Gnuastro has the Arithmetic program for such cases,
and we will introduce it later in this tutorial.

In the example above, the polygon vertices are in degrees, but you can also replace
them with sexagesimal11 coordinates (for example, using 03h32m44.9794 or 03:32:44.9794
instead of 53.187414, the first RA, and -27d46m44.9472 or -27:46:44.9472 instead of
-27.779152, the first Dec). To further simplify things, you can even define your polygon
visually as a DS9 “region”, save it as a “region file” and give that file to crop. But we need
to continue, so if you are interested to learn more, see Section 6.1 [Crop], page 385.

Before closing this section, let’s just take a look at the three cropping commands we ran
above. The only thing varying in the three commands the filter name! Note how everything
else is the same! In such cases, you should generally avoid repeating a command manually,
it is prone to many bugs, and as you see, it is very hard to read (did not you suddenly write
a 7 as an 8?).

To simplify the command, and allow you to work on more filters, we can use the shell’s
for loop as shown below. Notice how the place where the filter names (f105w, f125w and
f160w) are used above, have been replaced with $f (the shell variable that for will update
in every loop) below.

$ rm flat-ir/*.fits

$ for f in f105w f125w f160w; do \

astcrop --mode=wcs -h0 --output=flat-ir/xdf-$f.fits \

--polygon="53.187414,-27.779152 : 53.159507,-27.759633 : \

10 As you will see below, unlike most other detection algorithms, NoiseChisel detects the objects from their
faintest parts, it does not start with their high signal-to-noise ratio peaks. Since the Sky is already
subtracted in many images and noise fluctuates around zero, zero is commonly higher than the initial
threshold applied. Therefore keeping zero-valued pixels in this image will cause them to identified as
part of the detections!

11 https://en.wikipedia.org/wiki/Sexagesimal

https://en.wikipedia.org/wiki/Sexagesimal
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53.134517,-27.787144 : 53.161906,-27.807208" \

download/hlsp_xdf_hst_wfc3ir-60mas_hudf_"$f"_v1_sci.fits; \

done

2.1.5 Angular coverage on the sky

The cropped images in Section 2.1.4 [Dataset inspection and cropping], page 26, are the
deepest images we currently have of the sky. The first thing that comes to mind may be
this: “How large is this field on the sky?”.� �
More accurate method: the steps mentioned in this section are primarily designed to help
you get familiar with the FITS WCS standard and some shells scripting. The accuracy of
this method will decrease as your image becomes large (on the scale of degrees). For an
accurate method, see Section 2.8.2 [Area of non-blank pixels on sky], page 180.
 	
You can get a fast and crude answer with Gnuastro’s Fits program, using this command:

$ astfits flat-ir/xdf-f160w.fits --skycoverage

It will print the sky coverage in two formats (all numbers are in units of degrees for this
image): 1) the image’s central RA and Dec and full width around that center, 2) the range
of RA and Dec covered by this image. You can use these values in various online query
systems. You can also use this option to automatically calculate the area covered by this
image. With the --quiet option, the printed output of --skycoverage will not contain
human-readable text, making it easier for automatic (computer) processing:

$ astfits flat-ir/xdf-f160w.fits --skycoverage --quiet

The second row is the coverage range along RA and Dec (compare with the outputs
before using --quiet). We can thus simply subtract the second from the first column and
multiply it with the difference of the fourth and third columns to calculate the image area.
We will also multiply each by 60 to have the area in arc-minutes squared.

$ astfits flat-ir/xdf-f160w.fits --skycoverage --quiet \

| awk 'NR==2{print ($2-$1)*60*($4-$3)*60}'

The returned value is 9.06711 arcmin2. However, this method ignores the fact that many
of the image pixels are blank! In other words, the image does cover this area, but there is
no data in more than half of the pixels. So let’s calculate the area coverage over-which we
actually have data.

The FITS world coordinate system (WCS) metadata standard contains the key to an-
swering this question. Run the following command to see all the FITS keywords (metadata)
for one of the images (almost identical with the other images because they are scaled to the
same region of Sky):

$ astfits flat-ir/xdf-f160w.fits -h1

Look into the keywords grouped under the ‘World Coordinate System (WCS)’ title.
These keywords define how the image relates to the outside world. In particular, the CDELT*
keywords (or CDELT1 and CDELT2 in this 2D image) contain the “Coordinate DELTa” (or
change in coordinate units) with a change in one pixel. But what is the units of each “world”
coordinate? The CUNIT* keywords (for “Coordinate UNIT”) have the answer. In this case,
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both CUNIT1 and CUNIT1 have a value of deg, so both “world” coordinates are in units of
degrees. We can thus conclude that the value of CDELT* is in units of degrees-per-pixel12.

With the commands below, we will use CDELT (along with the number of non-blank
pixels) to find the answer of our initial question: “how much of the sky does this image
cover?”. The lines starting with ## are just comments for you to read and understand
each command. Do not type them on the terminal (no problem if you do, they will just
not have any effect). The commands are intentionally repetitive in some places to better
understand each step and also to demonstrate the beauty of command-line features like
history, variables, pipes and loops (which you will commonly use as you become more
proficient on the command-line).� �
Use shell history: Do not forget to make effective use of your shell’s history: you do not
have to re-type previous command to add something to them (like the examples below).
This is especially convenient when you just want to make a small change to your previous
command. Press the “up” key on your keyboard (possibly multiple times) to see your
previous command(s) and modify them accordingly.
 	� �
Your locale does not use ‘.’ as decimal separator: on systems that do not use an English
language environment, the dates, numbers, etc., can be printed in different formats (for
example, ‘0.5’ can be written as ‘0,5’: with a comma). With the LC_NUMERIC line at the
start of the script below, we are ensuring a unified format in the output of seq. For more,
please see Section 4.11 [Numeric locale], page 293.
 	

## Make sure that the decimal separator is a point in any environment.

$ export LC_NUMERIC=C

## See the general statistics of non-blank pixel values.

$ aststatistics flat-ir/xdf-f160w.fits

## We only want the number of non-blank pixels (add '--number').

$ aststatistics flat-ir/xdf-f160w.fits --number

## Keep the result of the command above in the shell variable `n'.

$ n=$(aststatistics flat-ir/xdf-f160w.fits --number)

## See what is stored the shell variable `n'.

$ echo $n

12 With the FITS CDELT convention, rotation (PC or CD keywords) and scales (CDELT) are separated. In the
FITS standard the CDELT keywords are optional. When CDELT keywords are not present, the PC matrix
is assumed to contain both the coordinate rotation and scales. Note that not all FITS writers use the
CDELT convention. So you might not find the CDELT keywords in the WCS metadata of some FITS files.
However, all Gnuastro programs (which use the default FITS keyword writing format of WCSLIB) write
their output WCS with the CDELT convention, even if the input does not have it. If your dataset does not
use the CDELT convention, you can feed it to any (simple) Gnuastro program (for example, Arithmetic)
and the output will have the CDELT keyword. See Section 8 of the FITS standard (https://fits.gsfc.
nasa.gov/standard40/fits_standard40aa-le.pdf) for more

https://fits.gsfc.nasa.gov/standard40/fits_standard40aa-le.pdf
https://fits.gsfc.nasa.gov/standard40/fits_standard40aa-le.pdf


Chapter 2: Tutorials 31

## Show all the FITS keywords of this image.

$ astfits flat-ir/xdf-f160w.fits -h1

## The resolution (in degrees/pixel) is in the `CDELT' keywords.

## Only show lines that contain these characters, by feeding

## the output of the previous command to the `grep' program.

$ astfits flat-ir/xdf-f160w.fits -h1 | grep CDELT

## Since the resolution of both dimensions is (approximately) equal,

## we will only read the value of one (CDELT1) with '--keyvalue'.

$ astfits flat-ir/xdf-f160w.fits -h1 --keyvalue=CDELT1

## We do not need the file name in the output (add '--quiet').

$ astfits flat-ir/xdf-f160w.fits -h1 --keyvalue=CDELT1 --quiet

## Save it as the shell variable `r'.

$ r=$(astfits flat-ir/xdf-f160w.fits -h1 --keyvalue=CDELT1 --quiet)

## Print the values of `n' and `r'.

$ echo $n $r

## Use the number of pixels (first number passed to AWK) and

## length of each pixel's edge (second number passed to AWK)

## to estimate the area of the field in arc-minutes squared.

$ echo $n $r | awk '{print $1 * ($2*60)^2}'

The output of the last command (area of this field) is 4.03817 (or approximately 4.04)
arc-minutes squared. Just for comparison, this is roughly 175 times smaller than the average
moon’s angular area (with a diameter of 30 arc-minutes or half a degree).

Some FITS writers do not use the CDELT convention, making it hard to use the steps
above. In such cases, you can extract the pixel scale with the --pixelscale option of
Gnuastro’s Fits program like the command below. Similar to the --skycoverage option
above, you can also use the --quiet option to allow easy usage of the values in scripts.

$ astfits flat-ir/xdf-f160w.fits --pixelscale� �
AWK for table/value processing: As you saw above AWK is a powerful and simple tool for
text processing. You will see it often in shell scripts. GNU AWK (the most common im-
plementation) comes with a free and wonderful book (https://www.gnu.org/software/
gawk/manual/) in the same format as this book which will allow you to master it nicely.
Just like this manual, you can also access GNU AWK’s manual on the command-line
whenever necessary without taking your hands off the keyboard. Just run info awk.
 	
2.1.6 Cosmological coverage and visualizing tables

Having found the angular coverage of the dataset in Section 2.1.5 [Angular coverage on the
sky], page 29, we can now use Gnuastro to answer a more physically motivated question:

https://www.gnu.org/software/gawk/manual/
https://www.gnu.org/software/gawk/manual/
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“How large is this area at different redshifts?”. To get a feeling of the tangential area that
this field covers at redshift 2, you can use Gnuastro’s CosmicCalcular program (Section 9.1
[CosmicCalculator], page 654). In particular, you need the tangential distance covered by
1 arc-second as raw output. Combined with the field’s area that was measured before, we
can calculate the tangential distance in Mega Parsecs squared (Mpc2).

## If your system language uses ',' (not '.') as decimal separator.

$ export LC_NUMERIC=C

## Print general cosmological properties at redshift 2 (for example).

$ astcosmiccal -z2

## When given a "Specific calculation" option, CosmicCalculator

## will just print that particular calculation. To see all such

## calculations, add a `--help' token to the previous command

## (under the same title). Note that with `--help', no processing

## is done, so you can always simply append it to remember

## something without modifying the command you want to run.

$ astcosmiccal -z2 --help

## Only print the "Tangential dist. for 1arcsec at z (physical kpc)".

## in units of kpc/arc-seconds.

$ astcosmiccal -z2 --arcsectandist

## It is easier to use the short (single character) version of

## this option when typing (but this is hard to read, so use

## the long version in scripts or notes you plan to archive).

$ astcosmiccal -z2 -s

## Short options can be merged (they are only a single character!)

$ astcosmiccal -sz2

## Convert this distance to kpc^2/arcmin^2 and save in `k'.

$ k=$(astcosmiccal -sz2 | awk '{print ($1*60)^2}')

## Calculate the area of the dataset in arcmin^2.

$ n=$(aststatistics flat-ir/xdf-f160w.fits --number)

$ r=$(astfits flat-ir/xdf-f160w.fits -h1 --keyvalue=CDELT1 -q)

$ a=$(echo $n $r | awk '{print $1 * ($2*60)^2 }')

## Multiply `k' and `a' and divide by 10^6 for value in Mpc^2.

$ echo $k $a | awk '{print $1 * $2 / 1e6}'

At redshift 2, this field therefore covers approximately 1.07 Mpc2. If you would like to see
how this tangential area changes with redshift, you can use a shell loop like below.

$ for z in 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0; do \

k=$(astcosmiccal -sz$z); \

echo $z $k $a | awk '{print $1, ($2*60)^2 * $3 / 1e6}'; \
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done

Fortunately, the shell has a useful tool/program to print a sequence of numbers that is nicely
called seq (short for “sequence”). You can use it instead of typing all the different redshifts
in the loop above. For example, the loop below will calculate and print the tangential
coverage of this field across a larger range of redshifts (0.1 to 5) and with finer increments
of 0.1. For more on the LC_NUMERIC command, see Section 4.11 [Numeric locale], page 293.

## If your system language uses ',' (not '.') as decimal separator.

$ export LC_NUMERIC=C

## The loop over the redshifts

$ for z in $(seq 0.1 0.1 5); do \

k=$(astcosmiccal -z$z --arcsectandist); \

echo $z $k $a | awk '{print $1, ($2*60)^2 * $3 / 1e6}'; \

done

Have a look at the two printed columns. The first is the redshift, and the second is
the area of this image at that redshift (in Megaparsecs squared). Redshift (https://en.
wikipedia.org/wiki/Redshift) (z) is often used as a proxy for distance in galaxy evolu-
tion and cosmology: a higher redshift corresponds to larger line-of-sight comoving distance.

Now, have a look at the first few values. At z = 0.1 and z = 0.5, this image covers
0.05Mpc2 and 0.57Mpc2 respectively. This increase of coverage with redshift is expected
because a fixed angle will cover a larger tangential area at larger distances. However,
as you come down the list (to higher redshifts) you will notice that this relation does
not hold! The largest coverage is at z = 1.6: at higher redshifts, the area decreases,
and continues decreasing!!! In flat FLRW cosmology (including ΛCDM), the only fac-
tor contributing to this is the (1 + z)$ factor from the expansion of the universe, see
the Wikipedia page (https://en.wikipedia.org/wiki/Angular_diameter_distance#
Angular_diameter_turnover_point), with no curvature effect.

In case you have TOPCAT, you can visualize this as a plot (if you do not have TOPCAT,
see Section A.2 [TOPCAT], page 960). To do so, first you need to save the output of the
loop above into a FITS table by piping the output to Gnuastro’s Table program and giving
an output name:

$ for z in $(seq 0.1 0.1 5); do \

k=$(astcosmiccal -z$z --arcsectandist); \

echo $z $k $a | awk '{print $1, ($2*60)^2 * $3 / 1e6}'; \

done | asttable --output=z-vs-tandist.fits

You can now use Gnuastro’s astscript-fits-view to open this table in TOPCAT with
the command below. Do you remember this script from Section 2.1.4 [Dataset inspection
and cropping], page 26? There, we used it to view a FITS image with DS9! This script will
see if the first dataset in the image is a table or an image and will call TOPCAT or DS9
accordingly: making it a very convenient tool to inspect the contents of all types of FITS
data.

$ astscript-fits-view z-vs-tandist.fits

After TOPCAT opens, you will see the name of the table z-vs-tandist.fits in the
left panel. On the top menu bar, select the “Graphics” menu, then select “Plain plot” to

https://en.wikipedia.org/wiki/Redshift
https://en.wikipedia.org/wiki/Redshift
https://en.wikipedia.org/wiki/Angular_diameter_distance#Angular_diameter_turnover_point
https://en.wikipedia.org/wiki/Angular_diameter_distance#Angular_diameter_turnover_point


Chapter 2: Tutorials 34

visualize the two columns printed above as a plot and get a better impression of the turn
over point of the image cosmological coverage.

2.1.7 Building custom programs with the library

In Section 2.1.6 [Cosmological coverage and visualizing tables], page 31, we repeated a
certain calculation/output of a program multiple times using the shell’s for loop. This
simple way of repeating a calculation is great when it is only necessary once. However, if
you commonly need this calculation and possibly for a larger number of redshifts at higher
precision, the command above can be slow. Please try it out by changing the sequence
command in the previous section to ‘seq 0.1 0.01 10’. It will take about 11 seconds13!
This can be improved by hundreds of times! This section will show you how.

Generally, repeated calls to a generic program (like CosmicCalculator) are slow, because
a generic program can have a lot of overhead on each call. To be generic and easy to
operate, CosmicCalculator has to parse the command-line and all configuration files (see
Section 2.1.8 [Option management and configuration files], page 36) which contain human-
readable characters and need a lot of pre-processing to be ready for processing by the
computer. Afterwards, CosmicCalculator has to check the sanity of its inputs and check
which of its many options you have asked for. All the this pre-processing takes as much
time as the high-level calculation you are requesting, and it has to re-do all of these for
every redshift in your loop.

To greatly speed up the processing, you can directly access the core work-horse of Cos-
micCalculator without all that overhead by designing your custom program for this job.
Using Gnuastro’s library, you can write your own tiny program particularly designed for
this exact calculation (and nothing else!). To do that, copy and paste the following C
program in a file called myprogram.c.

#include <math.h>

#include <stdio.h>

#include <stdlib.h>

#include <gnuastro/cosmology.h>

int

main(void)

{

double area=4.03817; /* Area of field (arcmin^2). */

double z, adist, tandist; /* Temporary variables. */

/* Constants from Plank 2018 (arXiv:1807.06209, Table 2) */

double H0=67.66, olambda=0.6889, omatter=0.3111, oradiation=0;

/* Do the same thing for all redshifts (z) between 0.1 and 5. */

for(z=0.1; z<10; z+=0.01)

{

13 To measure how much time the loop of Section 2.1.6 [Cosmological coverage and visualizing tables],
page 31, takes on your system, you can use the time command. First put the whole loop (and pipe) into
a plain-text file (to be loaded as a shell script) called z-vs-tandist.sh. Then run this command: time
-p bash z-vs-tandist.sh. The relevant time (in seconds) is shown after real.
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/* Calculate the angular diameter distance. */

adist=gal_cosmology_angular_distance(z, H0, olambda,

omatter, oradiation);

/* Calculate the tangential distance of one arcsecond. */

tandist = adist * 1000 * M_PI / 3600 / 180;

/* Print the redshift and area. */

printf("%-5.2f %g\n", z, pow(tandist * 60,2) * area / 1e6);

}

/* Tell the system that everything finished successfully. */

return EXIT_SUCCESS;

}

Then run the following command to compile your program and run it.

$ astbuildprog myprogram.c

In the command above, you used Gnuastro’s BuildProgram program. Its job is to simplify
the compilation, linking and running of simple C programs that use Gnuastro’s library (like
this one). BuildProgram is designed to manage Gnuastro’s dependencies, compile and link
your custom program and then run it.

Did you notice how your custom program created the table almost instantaneously?
Technically, it only took about 0.03 seconds! Recall that the for loop of Section 2.1.6
[Cosmological coverage and visualizing tables], page 31, took more than 11 seconds (or
∼ 367 times slower!).

Please run the ls command to see a listing of the files in the current directory. You will
notice that a new file called myprogram has been created. This is the compiled program
that was created and run by the command above (its in binary machine code format, not
human-readable any more). You can run it again to get the same results by executing it:

$ ./myprogram

The efficiency of your custom myprogram compared to repeated calls to CosmicCalculator
is because in the latter, the requested processing is comparable to the necessary overheads.
For other programs that take large input datasets and do complicated processing on them,
the overhead is usually negligible compared to the processing. In such cases, the libraries
are only useful if you want a different/new processing compared to the functionalities in
Gnuastro’s existing programs.

Gnuastro has a large library which is used extensively by all the programs. In other
words, the library is like the skeleton of Gnuastro. For the full list of available functions
classified by context, please see Section 12.3 [Gnuastro library], page 736. Gnuastro’s library
and BuildProgram are created to make it easy for you to use these powerful features as you
like. This gives you a high level of creativity, while also providing efficiency and robust-
ness. Several other complete working examples (involving images and tables) of Gnuastro’s
libraries can be see in Section 12.4 [Library demo programs], page 910.

But for this tutorial, let’s stop discussing the libraries here and get back to Gnuastro’s
already built programs (which do not need C programming). But before continuing, let’s
clean up the files we do not need any more:
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$ rm myprogram* z-vs-tandist*

2.1.8 Option management and configuration files

In the previous section (Section 2.1.6 [Cosmological coverage and visualizing tables],
page 31), when you ran CosmicCalculator, you only specified the redshfit with -z2 option.
You did not specify the cosmological parameters that are necessary for the calculations!
Parameters like the Hubble constant (H0) and the matter density. In spite of this,
CosmicCalculator done its processing and printed results.

None of Gnuastro’s programs keep a default value internally within their code (they are
all set by the user)! So where did the necessary cosmological parameters that are necessary
for its calculations come from? What were the values to those parameters? In short, they
come from a configuration file (see Section 4.2.2 [Configuration file precedence], page 269),
and the final used values can be checked/edited on the command-line. In this section we
will review this important aspect of all the programs in Gnuastro.

Configuration files are an important part of all Gnuastro’s programs, especially the ones
with a large number of options, so it is important to understand this part well. Once you
get comfortable with configuration files, you can make good use of them in all Gnuastro
programs (for example, NoiseChisel). For example, to do optimal detection on various
datasets, you can have configuration files for different noise properties. The configuration
of each program (besides its version) is vital for the reproducibility of your results, so it is
important to manage them properly.

As we saw above, the full list of the options in all Gnuastro programs can be seen with the
--help option. Try calling it with CosmicCalculator as shown below. Note how options are
grouped by context to make it easier to find your desired option. However, in each group,
options are ordered alphabetically.

$ astcosmiccal --help

After running the command above, please scroll to the line that you ran this command
and read through the output (its the same format for all the programs). All options have
a long format (starting with -- and a multi-character name) and some have a short format
(starting with - and a single character), for more see Section 4.1.1.2 [Options], page 249.
The options that expect a value, have an = sign after their long version. The format of
their expected value is also shown as FLT, INT or STR for floating point numbers, integer
numbers, and strings (filenames for example) respectively.

You can see the values of all options that need one with the --printparams option (or
its short format: -P). --printparams is common to all programs (see Section 4.1.2 [Com-
mon options], page 251). You can see the default cosmological parameters, from the Plank
collaboration 2020 (https://arxiv.org/abs/1807.06209), under the # Input: title:

$ astcosmiccal -P

# Input:

H0 67.66 # Current expansion rate (Hubble constant).

olambda 0.6889 # Current cosmological cst. dens. per crit. dens.

omatter 0.3111 # Current matter density per critical density.

oradiation 0 # Current radiation density per critical density.

https://arxiv.org/abs/1807.06209
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Let’s say you want to do the calculation in the previous section usingH0 = 70 km/s/Mpc.
To do this, just add --H0=70 after the command above (while keeping the -P). In the output,
you can see that the used Hubble constant has also changed.

$ astcosmiccal -P --H0=70

Afterwards, delete the -P and add a -z2 to see the calculations with the new cosmology (or
configuration).

$ astcosmiccal --H0=70 -z2

From the output of the --help option, note how the option for Hubble constant has
both short (-H) and long (--H0) formats. One final note is that the equal (=) sign is
not mandatory. In the short format, the value can stick to the actual option (the short
option name is just one character after-all, thus easily identifiable) and in the long format,
a white-space character is also enough.

$ astcosmiccal -H70 -z2

$ astcosmiccal --H0 70 -z2 --arcsectandist

When an option does not need a value, and has a short format (like --arcsectandist),
you can easily append it before other short options. So the last command above can also
be written as:

$ astcosmiccal --H0 70 -sz2

Let’s assume that in one project, you want to only use rounded cosmological parameters
(H0 of 70km/s/Mpc and matter density of 0.3). You should therefore run CosmicCalculator
like this:

$ astcosmiccal --H0=70 --olambda=0.7 --omatter=0.3 -z2

But having to type these extra options every time you run CosmicCalculator will be
prone to errors (typos in particular), frustrating and slow. Therefore in Gnuastro, you can
put all the options and their values in a “Configuration file” and tell the programs to read
the option values from there.

Let’s create a configuration file... With your favorite text editor, make a file named
my-cosmology.conf (or my-cosmology.txt, the suffix does not matter for Gnuastro, but a
more descriptive suffix like .conf is recommended for humans reading your code and seeing
your files: this includes you, looking into your own project, in a couple of months that you
have forgot the details!). Then put the following lines inside of the plain-text file. One
space between the option value and name is enough, the values are just under each other to
help in readability. Also note that you should only use long option names in configuration
files.

H0 70

olambda 0.7

omatter 0.3

You can now tell CosmicCalculator to read this file for option values immediately using the
--config option as shown below. Do you see how the output of the following command
corresponds to the option values in my-cosmology.conf, and is therefore identical to the
previous command?

$ astcosmiccal --config=my-cosmology.conf -z2
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But still, having to type --config=my-cosmology.conf every time is annoying, is not
it? If you need this cosmology every time you are working in a specific directory, you can
use Gnuastro’s default configuration file names and avoid having to type it manually.

The default configuration files (that are checked if they exist) must be placed in the
hidden .gnuastro sub-directory (in the same directory you are running the program).
Their file name (within .gnuastro) must also be the same as the program’s executable
name. So in the case of CosmicCalculator, the default configuration file in a given directory
is .gnuastro/astcosmiccal.conf.

Let’s do this. We will first make a directory for our custom cosmology, then build a
.gnuastro within it. Finally, we will copy the custom configuration file there:

$ mkdir my-cosmology

$ mkdir my-cosmology/.gnuastro

$ mv my-cosmology.conf my-cosmology/.gnuastro/astcosmiccal.conf

Once you run CosmicCalculator within my-cosmology (as shown below), you will see
how your custom cosmology has been implemented without having to type anything extra
on the command-line.

$ cd my-cosmology

$ astcosmiccal -P # Your custom cosmology is printed.

$ cd ..

$ astcosmiccal -P # The default cosmology is printed.

To further simplify the process, you can use the --setdirconf option. If you are already
in your desired working directory, calling this option with the others will automatically write
the final values (along with descriptions) in .gnuastro/astcosmiccal.conf. For example,
try the commands below:

$ mkdir my-cosmology2

$ cd my-cosmology2

$ astcosmiccal -P

$ astcosmiccal --H0 70 --olambda=0.7 --omatter=0.3 --setdirconf

$ astcosmiccal -P

$ cd ..

Gnuastro’s programs also have default configuration files for a specific user (when run in
any directory). This allows you to set a special behavior every time a program is run by a
specific user. Only the directory and filename differ from the above, the rest of the process
is similar to before. Finally, there are also system-wide configuration files that can be used
to define the option values for all users on a system. See Section 4.2.2 [Configuration file
precedence], page 269, for a more detailed discussion.

We will stop the discussion on configuration files here, but you can always read about
them in Section 4.2 [Configuration files], page 268. Before continuing the tutorial, let’s
delete the two extra directories that we do not need any more:

$ rm -rf my-cosmology*

2.1.9 Warping to a new pixel grid

We are now ready to start processing the deep HST images that were prepared in Sec-
tion 2.1.4 [Dataset inspection and cropping], page 26. One of the most important points



Chapter 2: Tutorials 39

while using several images for data processing is that those images must have the same pixel
grid. The process of changing the pixel grid is named ‘warp’. Fortunately, Gnuastro has
Warp program for warping the pixel grid (see Section 6.4 [Warp], page 492).

Warping to a different/matched pixel grid is commonly needed before higher-level anal-
ysis especially when you are using datasets from different instruments. The XDF datasets
we are using here are already aligned to the same pixel grid. But let’s have a look at some
of Gnuastro’s linear warping features here. For example, try rotating one of the images by
20 degrees with the first command below. With the second command, open the output and
input to see how it is rotated.

$ astwarp flat-ir/xdf-f160w.fits --rotate=20

$ astscript-fits-view flat-ir/xdf-f160w.fits xdf-f160w_rotated.fits

Warp can generally be used for many kinds of pixel grid manipulation (warping), not
just rotations. For example, the outputs of the commands below will have larger pixels
respectively (new resolution being one quarter the original resolution), get shifted by 2.8
(by sub-pixel), get a shear of 2, and be tilted (projected). Run each of them and open the
output file to see the effect, they will become handy for you in the future.

$ astwarp flat-ir/xdf-f160w.fits --scale=0.25

$ astwarp flat-ir/xdf-f160w.fits --translate=2.8

$ astwarp flat-ir/xdf-f160w.fits --shear=0.2

$ astwarp flat-ir/xdf-f160w.fits --project=0.001,0.0005

$ astscript-fits-view flat-ir/xdf-f160w.fits *.fits

If you need to do multiple warps, you can combine them in one call to Warp. For example,
to first rotate the image, then scale it, run this command:

$ astwarp flat-ir/xdf-f160w.fits --rotate=20 --scale=0.25

If you have multiple warps, do them all in one command. Do not warp them in separate
commands because the correlated noise will become too strong. As you see in the matrix
that is printed when you run Warp, it merges all the warps into a single warping matrix
(see Section 6.4.2 [Merging multiple warpings], page 495) and simply applies that (mixes the
pixel values) just once. However, if you run Warp multiple times, the pixels will be mixed
multiple times, creating a strong artificial blur/smoothing, or stronger correlated noise.

Recall that the merging of multiple warps is done through matrix multiplication, there-
fore order matters in the separate operations. At a lower level, through Warp’s --matrix
option, you can directly request your desired final warp and do not have to break it up into
different warps like above (see Section 6.4.4 [Invoking Warp], page 497).

Fortunately these datasets are already aligned to the same pixel grid, so you do not
actually need the files that were just generated. You can safely delete them all with the
following command. Here, you see why we put the processed outputs that we need later
into a separate directory. In this way, the top directory can be used for temporary files for
testing that you can simply delete with a generic command like below.

$ rm *.fits

2.1.10 NoiseChisel and Multi-Extension FITS files

In the previous sections, we completed a review of the basics of Gnuastro’s programs.
We are now ready to do some more serious analysis on the downloaded images: extract
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the pixels containing signal from the image, find sub-structure of the extracted signal,
do measurements over the extracted objects and analyze them (finding certain objects of
interest in the image).

The first step is to separate the signal (galaxies or stars) from the background noise in
the image. We will be using the results of Section 2.1.4 [Dataset inspection and cropping],
page 26, so be sure you already have them. Gnuastro has NoiseChisel for this job. But
NoiseChisel’s output is a multi-extension FITS file, therefore to better understand how to
use NoiseChisel, let’s take a look at multi-extension FITS files and how you can interact
with them.

In the FITS format, each extension contains a separate dataset (image in this case). You
can get basic information about the extensions in a FITS file with Gnuastro’s Fits program
(see Section 5.1 [Fits], page 295). To start with, let’s run NoiseChisel without any options,
then use Gnuastro’s Fits program to inspect the number of extensions in this file.

$ astnoisechisel flat-ir/xdf-f160w.fits

$ astfits xdf-f160w_detected.fits

From the output list, we see that NoiseChisel’s output contains 5 extensions. The zero-
th (counting from zero, with name NOISECHISEL-CONFIG) is empty: it has value of 0 in
the fourth column (which shows its size in pixels). Like NoiseChisel, in all of Gnuastro’s
programs, the first (or zero-th) extension of the output only contains meta-data: data
about/describing the datasets within (all) the output’s extensions. This is recommended
by the FITS standard, see Section 5.1 [Fits], page 295, for more. In the case of Gnuastro’s
programs, this generic zero-th/meta-data extension (for the whole file) contains all the
configuration options of the program that created the file.

Metadata regarding how the analysis was done (or a dataset was created) is very impor-
tant for higher-level analysis and reproducibility. Therefore, Let’s first take a closer look
at the NOISECHISEL-CONFIG extension. If you specify a special header in the FITS file,
Gnuastro’s Fits program will print the header keywords (metadata) of that extension. You
can either specify the HDU/extension counter (starting from 0), or name. Therefore, the
two commands below are identical for this file. We are usually tempted to use the first
(shorter format), but when putting your commands into a script, please use the second
format which is more human-friendly and understandable for readers of your code who may
not know what is in the 0-th extension (this includes yourself in a few months!):

$ astfits xdf-f160w_detected.fits -h0

$ astfits xdf-f160w_detected.fits -hNOISECHISEL-CONFIG

The first group of FITS header keywords you see (containing the SIMPLE and BITPIX

keywords; before the first empty line) are standard keywords. They are required by the FITS
standard and must be present in any FITS extension. The second group starts with the
input file name (value to the INPUT keyword). The rest of the keywords you see afterwards
have the same name as NoiseChisel’s options, and the value used by NoiseChisel in this run
is shown after the = sign. Finally, the last group (starting with DATE) contains the date and
version information of Gnuastro and its dependencies that were used to generate this file.
Besides the option values, these are also critical for future reproducibility of the result (you
may update Gnuastro or its dependencies, and they may behave differently afterwards).
The “versions and date” group of keywords are present in all Gnuastro’s FITS extension
outputs, for more see Section 4.10 [Output FITS files], page 291.
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Note that if a keyword name is larger than 8 characters, it is preceded by a HIERARCH

keyword and that all keyword names are in capital letters. These are all part of the FITS
standard and originate from its history. But in short, both can be ignored! For example,
with the commands below, let’s see at first what the default values are, and then just check
the value of --detgrowquant option (using the -P option described in Section 2.1.8 [Option
management and configuration files], page 36).

$ astnoisechisle -P

$ astnoisechisel -P | grep detgrowquant

To confirm that NoiseChisel used this value when we ran it above, let’s use grep to
extract the keyword line with detgrowquant from the metadata extension. However, as
you saw above, keyword names in the header is in all caps. So we need to ask grep to
ignore case with the -i option.

$ astfits xdf-f160w_detected.fits -h0 | grep -i detgrowquant

In the output of the above command, you see HIERARCH at the start of the line. According
to the FITS standard, HIERARCH is placed at the start of all keywords that have a name
that is more than 8 characters long. Both the all-caps and the HIERARCH keyword can be
annoying when you want to read/check the value. Therefore, the best solution is to use
the --keyvalue option of Gnuastro’s astfits program as shown below. With it, you do
not have to worry about HIERARCH or the case of the name (FITS keyword names are not
case-sensitive).

$ astfits xdf-f160w_detected.fits -h0 --keyvalue=detgrowquant -q

The metadata (that is stored in the output) can later be used to exactly repro-
duce/understand your result, even if you have lost/forgot the command you used to create
the file. This feature is present in all of Gnuastro’s programs, not just NoiseChisel.

The rest of the HDUs in NoiseChisel have data. So let’s open them in a DS9 window
and then describe each:

$ astscript-fits-view xdf-f160w_detected.fits

A “cube” window opens along with DS9’s main window. The buttons and horizontal
scroll bar in this small new window can be used to navigate between the extensions. In
this mode, all DS9’s settings (for example, zoom or color-bar) will be identical between
the extensions. Try zooming into one part and flipping through the extensions to see how
the galaxies were detected along with the Sky and Sky standard deviation values for that
region. Just have in mind that NoiseChisel’s job is only detection (separating signal from
noise). We will do segmentation on this result later to find the individual galaxies/peaks
over the detected pixels.

The second extension of NoiseChisel’s output (numbered 1, named INPUT-NO-SKY) is
the Sky-subtracted input that you provided. The third (DETECTIONS) is NoiseChisel’s main
output which is a binary image with only two possible values for all pixels: 0 for noise and
1 for signal. Since it only has two values, to avoid taking too much space on your computer,
its numeric datatype an unsigned 8-bit integer (or uint8)14. The fourth and fifth (SKY and
SKY_STD) extensions, have the Sky and its standard deviation values for the input on a tile
grid and were calculated over the undetected regions (for more on the importance of the
Sky value, see Section 7.1.4 [Sky value], page 519).

14 To learn more about numeric data types see Section 4.5 [Numeric data types], page 277.
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Each HDU/extension in a FITS file is an independent dataset (image or table) which you
can delete from the FITS file, or copy/cut to another file. For example, with the command
below, you can copy NoiseChisel’s DETECTIONS HDU/extension to another file:

$ astfits xdf-f160w_detected.fits --copy=DETECTIONS -odetections.fits

There are similar options to conveniently cut (--cut, copy, then remove from the input)
or delete (--remove) HDUs from a FITS file also. See Section 5.1.1.1 [HDU information
and manipulation], page 299, for more.

2.1.11 NoiseChisel optimization for detection

In Section 2.1.10 [NoiseChisel and Multi-Extension FITS files], page 39, we ran NoiseChisel
and reviewed NoiseChisel’s output format. Now that you have a better feeling for multi-
extension FITS files, let’s optimize NoiseChisel for this particular dataset.

One good way to see if you have missed any signal (small galaxies, or the wings of
brighter galaxies) is to mask all the detected pixels and inspect the noise pixels. For this, you
can use Gnuastro’s Arithmetic program (in particular its where operator, see Section 6.2.4
[Arithmetic operators], page 408). The command below will produce mask-det.fits. In it,
all the pixels in the INPUT-NO-SKY extension that are flagged 1 in the DETECTIONS extension
(dominated by signal, not noise) will be set to NaN.

Since the various extensions are in the same file, for each dataset we need the file and
extension name. To make the command easier to read/write/understand, let’s use shell
variables: ‘in’ will be used for the Sky-subtracted input image and ‘det’ will be used for
the detection map. Recall that a shell variable’s value can be retrieved by adding a $ before
its name, also note that the double quotations are necessary when we have white-space
characters in a variable value (like this case).

$ in="xdf-f160w_detected.fits -hINPUT-NO-SKY"

$ det="xdf-f160w_detected.fits -hDETECTIONS"

$ astarithmetic $in $det nan where --output=mask-det.fits

To invert the result (only keep the detected pixels), you can flip the detection map (from 0
to 1 and vice-versa) by adding a ‘not’ after the second $det:

$ astarithmetic $in $det not nan where --output=mask-sky.fits

Look again at the DETECTIONS extension, in particular the long worm-like structure
around15 pixel 1650 (X) and 1470 (Y). These types of long wiggly structures show that we
have dug too deep into the noise, and are a signature of correlated noise. Correlated noise
is created when we warp (for example, rotate) individual exposures (that are each slightly
offset compared to each other) into the same pixel grid before adding them into one deeper
image. During the warping, nearby pixels are mixed and the effect of this mixing on the
noise (which is in every pixel) is called “correlated noise”. Correlated noise is a form of
convolution and it slightly smooths the image.

15 To find a particular coordiante easily in DS9, you can do this: Click on the “Edit” menu, and select
“Region”. Then click on any random part of the image to see a circle show up in that location (this is
the “region”). Double-click on the region and a “Circle” window will open. If you have celestial coordi-
nates, keep the default “fk5” in the scroll-down menu after the “Center”. But if you have pixel/image
coordinates, click on the “fk5” and select “Image”. Now you can set the “Center” coordinates of the
region (1650 and 1470 in this case) by manually typing them in the two boxes in front of “Center”. Fi-
nally, when everything is ready, click on the “Apply” button and your region will go over your requested
coordinates. You can zoom out (to see the whole image) and visually find it.
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In terms of the number of exposures (and thus correlated noise), the XDF dataset is
by no means an ordinary dataset. Therefore the default parameters need to be slightly
customized. It is the result of warping and adding roughly 80 separate exposures which can
create strong correlated noise/smoothing. In common surveys the number of exposures is
usually 10 or less. See Figure 2 of Akhlaghi 2019 (https://arxiv.org/abs/1909.11230)
and the discussion on --detgrowquant there for more on how NoiseChisel “grow”s the
detected objects and the patterns caused by correlated noise.

Let’s tweak NoiseChisel’s configuration a little to get a better result on this dataset. Do
not forget that “Good statistical analysis is not a purely routine matter, and generally calls
for more than one pass through the computer” (Anscombe 1973, see Section 1.3 [Gnuastro
manifesto: Science and its tools], page 6). A good scientist must have a good understanding
of her tools to make a meaningful analysis. So do not hesitate in playing with the default
configuration and reviewing the manual when you have a new dataset (from a new instru-
ment) in front of you. Robust data analysis is an art, therefore a good scientist must first be
a good artist. Once you have found the good configuration for that particular noise pattern
(instrument) you can safely use it for all new data that have a similar noise pattern.

NoiseChisel can produce “Check images” to help you visualize and inspect how each step
is done. You can see all the check images it can produce with this command.

$ astnoisechisel --help | grep check

Let’s check the overall detection process to get a better feeling of what NoiseChisel is
doing with the following command. To learn the details of NoiseChisel in more detail, please
see Section 7.2 [NoiseChisel], page 541, Akhlaghi and Ichikawa 2015 (https://arxiv.org/
abs/1505.01664) and Akhlaghi 2019 (https://arxiv.org/abs/1909.11230).

$ astnoisechisel flat-ir/xdf-f160w.fits --checkdetection

The check images/tables are also multi-extension FITS files. As you saw from the
command above, when check datasets are requested, NoiseChisel will not go to the end.
It will abort as soon as all the extensions of the check image are ready. Please list the
extensions of the output with astfits and then opening it with ds9 as we done above. If
you have read the paper, you will see why there are so many extensions in the check image.

$ astfits xdf-f160w_detcheck.fits

$ astscript-fits-view xdf-f160w_detcheck.fits

In order to understand the parameters and their biases (especially as you are starting
to use Gnuastro, or running it a new dataset), it is strongly encouraged to play with the
different parameters and use the respective check images to see which step is affected by your
changes and how, for example, see Section 2.2 [Detecting large extended targets], page 81.

Let’s focus on one step: the OPENED_AND_LABELED extension shows the initial detection
step of NoiseChisel. We see the seeds of that correlated noise structure with many small
detections (a relatively early stage in the processing). Such connections at the lowest surface
brightness limits usually occur when the dataset is too smoothed, the threshold is too low,
or the final “growth” is too much.

As you see from the 2nd (CONVOLVED) extension, the first operation that NoiseChisel
does on the data is to slightly smooth it. However, the natural correlated noise of this
dataset is already one level of artificial smoothing, so further smoothing it with the default
kernel may be the culprit. To see the effect, let’s use a sharper kernel as a first step to
convolve/smooth the input.

https://arxiv.org/abs/1909.11230
https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1909.11230
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By default NoiseChisel uses a Gaussian with full-width-half-maximum (FWHM) of 2
pixels. We can use Gnuastro’s MakeProfiles to build a kernel with FWHM of 1.5 pixel (trun-
cated at 5 times the FWHM, like the default) using the following command. MakeProfiles
is a powerful tool to build any number of mock profiles on one image or independently, to
learn more of its features and capabilities, see Section 8.1 [MakeProfiles], page 629.

$ astmkprof --kernel=gaussian,1.5,5 --oversample=1

Please open the output kernel.fits and have a look (it is very small and sharp). We can
now tell NoiseChisel to use this instead of the default kernel with the following command
(we will keep the --checkdetection to continue checking the detection steps)

$ astnoisechisel flat-ir/xdf-f160w.fits --kernel=kernel.fits \

--checkdetection

Open the output xdf-f160w_detcheck.fits as a multi-extension FITS file and go to
the last extension (DETECTIONS-FINAL, it is the same pixels as the final NoiseChisel output
without --checkdetections). Look again at that position mentioned above (1650,1470),
you see that the long wiggly structure is gone. This shows we are making progress :-).

Looking at the new OPENED_AND_LABELED extension, we see that the thin connections
between smaller peaks has now significantly decreased. Going two extensions/steps ahead
(in the first HOLES-FILLED), you can see that during the process of finding false pseudo-
detections, too many holes have been filled: do you see how the many of the brighter galaxies
are connected? At this stage all holes are filled, irrespective of their size.

Try looking two extensions ahead (in the first PSEUDOS-FOR-SN), you can see that there
are not too many pseudo-detections because of all those extended filled holes. If you look
closely, you can see the number of pseudo-detections in the printed outputs of NoiseChisel
(around 6400). This is another side-effect of correlated noise. To address it, we should
slightly increase the pseudo-detection threshold (before changing --dthresh, run with -P

to see the default value):

$ astnoisechisel flat-ir/xdf-f160w.fits --kernel=kernel.fits \

--dthresh=0.1 --checkdetection

Before visually inspecting the check image, you can already see the effect of this small
change in NoiseChisel’s command-line output: notice how the number of pseudo-detections
has increased to more than 7100! Open the check image now and have a look, you can see
how the pseudo-detections are distributed much more evenly in the blank sky regions of the
PSEUDOS-FOR-SN extension.� �
Maximize the number of pseudo-detections: When using NoiseChisel on datasets with a
new noise-pattern (for example, going to a Radio astronomy image, or a shallow ground-
based image), play with --dthresh until you get a maximal number of pseudo-detections:
the total number of pseudo-detections is printed on the command-line when you run
NoiseChisel, you do not even need to open a FITS viewer.

In this particular case, try --dthresh=0.2 and you will see that the total printed
number decreases to around 6700 (recall that with --dthresh=0.1, it was roughly 7100).
So for this type of very deep HST images, we should set --dthresh=0.1.
 	

As discussed in Section 3.1.5 of Akhlaghi and Ichikawa 2015 (https://arxiv.org/
abs/1505.01664), the signal-to-noise ratio of pseudo-detections are critical to identify-

https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1505.01664
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ing/removing false detections. For an optimal detection they are very important to get
right (where you want to detect the faintest and smallest objects in the image successfully).
Let’s have a look at their signal-to-noise distribution with --checksn.

$ astnoisechisel flat-ir/xdf-f160w.fits --kernel=kernel.fits \

--dthresh=0.1 --checkdetection --checksn

The output (xdf-f160w_detsn.fits) contains two extensions for the pseudo-detections
containing two-column tables over the undetected (SKY_PSEUDODET_SN) regions and those
over detections (DET_PSEUDODET_SN). With the first command below you can see the HDUs
of this file, and with the second you can see the information of the table in the first HDU
(which is the default when you do not use --hdu):

$ astfits xdf-f160w_detsn.fits

$ asttable xdf-f160w_detsn.fits -i

You can see the table columns with the first command below and get a feeling of the signal-
to-noise value distribution with the second command (the two Table and Statistics programs
will be discussed later in the tutorial):

$ asttable xdf-f160w_detsn.fits -hSKY_PSEUDODET_SN

$ aststatistics xdf-f160w_detsn.fits -hSKY_PSEUDODET_SN -c2

... [output truncated] ...

Histogram:

| *

| ***

| ******

| *********

| **********

| *************

| *****************

| ********************

| **************************

| ********************************

|******************************************************* * ** *

|----------------------------------------------------------------------

The correlated noise is again visible in the signal-to-noise distribution of sky pseudo-
detections! Do you see how skewed this distribution is? In an image with less correlated
noise, this distribution would be much more symmetric. A small change in the quantile will
translate into a big change in the S/N value. For example, see the difference between the
three 0.99, 0.95 and 0.90 quantiles with this command:

$ aststatistics xdf-f160w_detsn.fits -hSKY_PSEUDODET_SN -c2 \

--quantile=0.99 --quantile=0.95 --quantile=0.90

We get a change of almost 2 units (which is very significant). If you run NoiseChisel
with -P, you’ll see the default signal-to-noise quantile --snquant is 0.99. In effect with
this option you specify the purity level you want (contamination by false detections). With
the aststatistics command above, you see that a small number of extra false detections
(impurity) in the final result causes a big change in completeness (you can detect more
lower signal-to-noise true detections). So let’s loosen-up our desired purity level, remove
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the check-image options, and then mask the detected pixels like before to see if we have
missed anything.

$ astnoisechisel flat-ir/xdf-f160w.fits --kernel=kernel.fits \

--dthresh=0.1 --snquant=0.95

$ in="xdf-f160w_detected.fits -hINPUT-NO-SKY"

$ det="xdf-f160w_detected.fits -hDETECTIONS"

$ astarithmetic $in $det nan where --output=mask-det.fits

Overall it seems good, but if you play a little with the color-bar and look closer in the
noise, you’ll see a few very sharp, but faint, objects that have not been detected. For
example, the object around pixel (456, 1662). Despite its high valued pixels, this object
was lost because erosion ignores the precise pixel values. Losing small/sharp objects like
this only happens for under-sampled datasets like HST (where the pixel size is larger than
the point spread function FWHM). So this will not happen on ground-based images.

To address this problem of sharp objects, we can use NoiseChisel’s --noerodequant

option. All pixels above this quantile will not be eroded, thus allowing us to preserve
small/sharp objects (that cover a small area, but have a lot of signal in it). Check its
default value, then run NoiseChisel like below and make the mask again.

$ astnoisechisel flat-ir/xdf-f160w.fits --kernel=kernel.fits \

--noerodequant=0.95 --dthresh=0.1 --snquant=0.95

This seems to be fine and the object above is now detected. We will stop editing the
configuration of NoiseChisel here, but please feel free to keep looking into the data to see if
you can improve it even more.

Once you have found the proper configuration for the type of images you will be using
you do not need to change them any more. The same configuration can be used for any
dataset that has been similarly produced (and has a similar noise pattern). But entering
all these options on every call to NoiseChisel is annoying and prone to bugs (mistakenly
typing the wrong value for example). To simplify things, we will make a configuration
file in a visible config directory. Then we will define the hidden .gnuastro directory
(that all Gnuastro’s programs will look into for configuration files) as a symbolic link to the
config directory. Finally, we will write the finalized values of the options into NoiseChisel’s
standard configuration file within that directory. We will also put the kernel in a separate
directory to keep the top directory clean of any files we later need.

$ mkdir kernel config

$ ln -s config/ .gnuastro

$ mv kernel.fits kernel/noisechisel.fits

$ echo "kernel kernel/noisechisel.fits" > config/astnoisechisel.conf

$ echo "noerodequant 0.95" >> config/astnoisechisel.conf

$ echo "dthresh 0.1" >> config/astnoisechisel.conf

$ echo "snquant 0.95" >> config/astnoisechisel.conf

We are now ready to finally run NoiseChisel on the three filters and keep the output in a
dedicated directory (which we will call nc for simplicity).

$ rm *.fits

$ mkdir nc

$ for f in f105w f125w f160w; do \

astnoisechisel flat-ir/xdf-$f.fits --output=nc/xdf-$f.fits; \
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done

2.1.12 NoiseChisel optimization for storage

As we showed before (in Section 2.1.10 [NoiseChisel and Multi-Extension FITS files],
page 39), NoiseChisel’s output is a multi-extension FITS file with several images the same
size as the input. As the input datasets get larger this output can become hard to manage
and waste a lot of storage space. Fortunately there is a solution to this problem (which is
also useful for Segment’s outputs).

In this small section we will take a short detour to show this feature. Please note that the
outputs generated here are not needed for the rest of the tutorial. But first, let’s have a look
at the contents/HDUs and volume of NoiseChisel’s output from Section 2.1.11 [NoiseChisel
optimization for detection], page 42, (fast answer, it is larger than 100 mega-bytes):

$ astfits nc/xdf-f160w.fits

$ ls -lh nc/xdf-f160w.fits

Two options can drastically decrease NoiseChisel’s output file size: 1) With the
--rawoutput option, NoiseChisel will not create a Sky-subtracted output. After all, it is
redundant: you can always generate it by subtracting the SKY extension from the input
image (which you have in your database) using the Arithmetic program. 2) With the
--oneelempertile, you can tell NoiseChisel to store its Sky and Sky standard deviation
results with one pixel per tile (instead of many pixels per tile). So let’s run NoiseChisel
with these options, then have another look at the HDUs and the over-all file size:

$ astnoisechisel flat-ir/xdf-f160w.fits --oneelempertile --rawoutput \

--output=nc-for-storage.fits

$ astfits nc-for-storage.fits

$ ls -lh nc-for-storage.fits

See how nc-for-storage.fits has four HDUs, while nc/xdf-f160w.fits had five HDUs?
As explained above, the missing extension is INPUT-NO-SKY. Also, look at the sizes of the
SKY and SKY_STD HDUs, unlike before, they are not the same size as DETECTIONS, they
only have one pixel for each tile (group of pixels in raw input). Finally, you see that nc-
for-storage.fits is just under 8 mega bytes (while nc/xdf-f160w.fits was 100 mega
bytes)!

But we are not yet finished! You can even be more efficient in storage, archival or
transferring NoiseChisel’s output by compressing this file. Try the command below to see
how NoiseChisel’s output has now shrunk to about 250 kilo-byes while keeping all the
necessary information as the original 100 mega-byte output.

$ gzip --best nc-for-storage.fits

$ ls -lh nc-for-storage.fits.gz

We can get this wonderful level of compression because NoiseChisel’s output is binary
with only two values: 0 and 1. Compression algorithms are highly optimized in such
scenarios.

You can open nc-for-storage.fits.gz directly in SAO DS9 or feed it to any of
Gnuastro’s programs without having to decompress it. Higher-level programs that take
NoiseChisel’s output (for example, Segment or MakeCatalog) can also deal with this com-
pressed image where the Sky and its Standard deviation are one pixel-per-tile. You just
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have to give the “values” image as a separate option, for more, see Section 7.3 [Segment],
page 561, and Section 7.4 [MakeCatalog], page 572.

Segment (the program we will introduce in the next section for identifying sub-structure),
also has similar features to optimize its output for storage. Since this file was only created
for a fast detour demonstration, let’s keep our top directory clean and move to the next
step:

rm nc-for-storage.fits.gz

2.1.13 Segmentation and making a catalog

The main output of NoiseChisel is the binary detection map (DETECTIONS extension, see
Section 2.1.11 [NoiseChisel optimization for detection], page 42). It only has two values: 1
or 0. This is useful when studying the noise or background properties, but hardly of any
use when you actually want to study the targets/galaxies in the image, especially in such a
deep field where almost everything is connected. To find the galaxies over the detections,
we will use Gnuastro’s Section 7.3 [Segment], page 561, program:

$ mkdir seg

$ astsegment nc/xdf-f160w.fits -oseg/xdf-f160w.fits

$ astsegment nc/xdf-f125w.fits -oseg/xdf-f125w.fits

$ astsegment nc/xdf-f105w.fits -oseg/xdf-f105w.fits

Segment’s operation is very much like NoiseChisel (in fact, prior to version 0.6, it was
part of NoiseChisel). For example, the output is a multi-extension FITS file (previously dis-
cussed in Section 2.1.10 [NoiseChisel and Multi-Extension FITS files], page 39), it has check
images and uses the undetected regions as a reference (previously discussed in Section 2.1.11
[NoiseChisel optimization for detection], page 42). Please have a look at Segment’s multi-
extension output to get a good feeling of what it has done. Do not forget to flip through
the extensions in the “Cube” window.

$ astscript-fits-view seg/xdf-f160w.fits

Like NoiseChisel, the first extension is the input. The CLUMPS extension shows the true
“clumps” with values that are ≥ 1, and the diffuse regions labeled as −1. Please flip
between the first extension and the clumps extension and zoom-in on some of the clumps
to get a feeling of what they are. In the OBJECTS extension, we see that the large detections
of NoiseChisel (that may have contained many galaxies) are now broken up into separate
labels. Play with the color-bar and hover your mouse of the various detections to see their
different labels.

The clumps are not affected by the hard-to-deblend and low signal-to-noise diffuse re-
gions, they are more robust for calculating the colors (compared to objects). From this step
onward, we will continue with clumps.

Having localized the regions of interest in the dataset, we are ready to do measurements
on them with Section 7.4 [MakeCatalog], page 572. MakeCatalog is specialized and opti-
mized for doing measurements over labeled regions of an image. In other words, through
MakeCatalog, you can “reduce” an image to a table (catalog of certain properties of objects
in the image). Each requested measurement (over each label) will be given a column in the
output table. To see the full set of available measurements run it with --help like below
(and scroll up), note that measurements are classified by context.

$ astmkcatalog --help



Chapter 2: Tutorials 49

So let’s select the properties we want to measure in this tutorial. First of all, we need
to know which measurement belongs to which object or clump, so we will start with the
--ids (read as: IDs16). We also want to measure (in this order) the Right Ascension (with
--ra), Declination (--dec), magnitude (--magnitude), and signal-to-noise ratio (--sn) of
the objects and clumps. Furthermore, as mentioned above, we also want measurements
on clumps, so we also need to call --clumpscat. The following command will make these
measurements on Segment’s F160W output and write them in a catalog for each object and
clump in a FITS table. For more on the zero point, see Section 7.4.2 [Brightness, Flux,
Magnitude and Surface brightness], page 574.

$ mkdir cat

$ astmkcatalog seg/xdf-f160w.fits --ids --ra --dec --magnitude --sn \

--zeropoint=25.94 --clumpscat --output=cat/xdf-f160w.fits

From the printed statements on the command-line, you see that MakeCatalog read all the
extensions in Segment’s output for the various measurements it needed. Let’s look at the
output of the command above:

$ astfits cat/xdf-f160w.fits

You will see that the output of the MakeCatalog has two extensions. The first extension
shows the measurements over the OBJECTS, and the second extension shows the measure-
ments over the clumps CLUMPS.

To calculate colors, we also need magnitude measurements on the other filters. So let’s
repeat the command above on them, just changing the file names and zero point (which we
got from the XDF survey web page):

$ astmkcatalog seg/xdf-f125w.fits --ids --ra --dec --magnitude --sn \

--zeropoint=26.23 --clumpscat --output=cat/xdf-f125w.fits

$ astmkcatalog seg/xdf-f105w.fits --ids --ra --dec --magnitude --sn \

--zeropoint=26.27 --clumpscat --output=cat/xdf-f105w.fits

However, the galaxy properties might differ between the filters (which is the whole
purpose behind observing in different filters!). Also, the noise properties and depth of the
datasets differ. You can see the effect of these factors in the resulting clump catalogs, with
Gnuastro’s Table program. We will go deep into working with tables in the next section,
but in summary: the -i option will print information about the columns and number of
rows. To see the column values, just remove the -i option. In the output of each command
below, look at the Number of rows:, and note that they are different.

$ asttable cat/xdf-f105w.fits -hCLUMPS -i

$ asttable cat/xdf-f125w.fits -hCLUMPS -i

$ asttable cat/xdf-f160w.fits -hCLUMPS -i

Matching the catalogs is possible (for example, with Section 7.5 [Match], page 618).
However, the measurements of each column are also done on different pixels: the clump
labels can/will differ from one filter to another for one object. Please open them and focus
on one object to see for yourself. This can bias the result, if you match catalogs.

16 This option is plural because we need two ID columns for identifying “clumps” in the clumps cata-
log/table: the first column will be the ID of the host “object”, and the second one will be the ID of the
clump within that object. In the “objects” catalog/table, only a single column will be returned for this
option.



Chapter 2: Tutorials 50

An accurate color calculation can only be done when magnitudes are measured from
the same pixels on all images and this can be done easily with MakeCatalog. In fact this
is one of the reasons that NoiseChisel or Segment do not generate a catalog like most
other detection/segmentation software. This gives you the freedom of selecting the pixels
for measurement in any way you like (from other filters, other software, manually, etc.).
Fortunately in these images, the Point spread function (PSF) is very similar, allowing us to
use a single labeled image output for all filters17.

The F160W image is deeper, thus providing better detection/segmentation, and redder,
thus observing smaller/older stars and representing more of the mass in the galaxies. We will
thus use the F160W filter as a reference and use its segment labels to identify which pixels
to use for which objects/clumps. But we will do the measurements on the sky-subtracted
F105W and F125W images (using MakeCatalog’s --valuesfile option) as shown below:
Notice that the only difference between these calls and the call to generate the raw F160W
catalog (excluding the zero point and the output name) is the --valuesfile.

$ astmkcatalog seg/xdf-f160w.fits --ids --ra --dec --magnitude --sn \

--valuesfile=nc/xdf-f125w.fits --zeropoint=26.23 \

--clumpscat --output=cat/xdf-f125w-on-f160w-lab.fits

$ astmkcatalog seg/xdf-f160w.fits --ids --ra --dec --magnitude --sn \

--valuesfile=nc/xdf-f105w.fits --zeropoint=26.27 \

--clumpscat --output=cat/xdf-f105w-on-f160w-lab.fits

After running the commands above, look into what MakeCatalog printed on the
command-line. You can see that (as requested) the object and clump pixel labels in both
were taken from the respective extensions in seg/xdf-f160w.fits. However, the pixel
values and pixel Sky standard deviation were respectively taken from nc/xdf-f105w.fits

and nc/xdf-f125w.fits. Since we used the same labeled image on all filters, the number
of rows in both catalogs are now identical. Let’s have a look:

$ asttable cat/xdf-f105w-on-f160w-lab.fits -hCLUMPS -i

$ asttable cat/xdf-f125w-on-f160w-lab.fits -hCLUMPS -i

$ asttable cat/xdf-f160w.fits -hCLUMPS -i

Finally, MakeCatalog also does basic calculations on the full dataset (independent of
each labeled region but related to whole data), for example, pixel area or per-pixel surface
brightness limit. They are stored as keywords in the FITS headers (or lines starting with
# in plain text). This (and other ways to measure the limits of your dataset) are discussed
in the next section: Section 2.1.14 [Measuring the dataset limits], page 50.

2.1.14 Measuring the dataset limits

In Section 2.1.13 [Segmentation and making a catalog], page 48, we created a catalog of the
different objects with the image. Before measuring colors, or doing any other kind of analysis
on the catalogs (and detected objects), it is very important to understand the limitations
of the dataset. Without understanding the limitations of your dataset, you cannot make
any physical interpretation of your results. The theory behind the calculations discussed
here is thoroughly introduced in Section 7.4.3 [Quantifying measurement limits], page 578.

17 When the PSFs between two images differ largely, you would have to PSF-match the images before using
the same pixels for measurements.
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For example, with the command below, let’s sort all the detected clumps in the image
by magnitude (with --sort=magnitude) and and print the magnitude and signal-to-noise
ratio (S/N; with -cmagnitude,sn):

$ asttable cat/xdf-f160w.fits -hclumps -cmagnitude,sn \

--sort=magnitude --noblank=magnitude

As you see, we have clumps with a total magnitude of almost 32! This is extremely
faint ! Are these things trustable? Let’s have a look at all of those with a magnitude
between 31 and 32 with the command below. We are first using Table to only keep the
relevant columns rows, and using Gnuastro’s DS9 region file creation script (astscript-
ds9-region) to generate DS9 region files, and open DS9:

$ asttable cat/xdf-f160w.fits -hclumps -cra,dec \

--range=magnitude,31:32 \

| astscript-ds9-region -c1,2 --radius=0.5 \

--command="ds9 -mecube seg/xdf-f160w.fits -zscale"

Zoom-out a little and you will see some green circles (DS9 region files) in some regions
of the image. There actually does seem to be a true peak under the selected regions, but as
you see, they are very small, diffuse and noisy. How reliable are the measured magnitudes?
Using the S/N column from the first command above, you can see that such objects only
have a signal to noise of about 2.6 (which is indeed too low for most analysis purposes)

$ asttable cat/xdf-f160w.fits -hclumps -csn \

--range=magnitude,31:32 | aststatistics

This brings us to the first method of quantifying your dataset’s magnitude limit, which
is also sometimes called detection limit (see Section 7.4.3.6 [Magnitude limit of image],
page 585). To estimate the 5σ detection limit of your dataset, you simply report the
median magnitude of the objects that have a signal to noise of (approximately) five. This
is very easy to calculate with the command below:

$ asttable cat/xdf-f160w.fits -hclumps --range=sn,4.8:5.2 -cmagnitude \

| aststatistics --median

29.9949

Let’s have a look at these objects, to get a feeling of what these clump looks like:

$ asttable cat/xdf-f160w.fits -hclumps --range=sn,4.8:5.2 \

-cra,dec,magnitude \

| astscript-ds9-region -c1,2 --namecol=3 \

--width=2 --radius=0.5 \

--command="ds9 -mecube seg/xdf-f160w.fits -zscale"

The number you see on top of each region is the clump’s magnitude. Please go over the
objects and have a close look at them! It is very important to have a feeling of what your
dataset looks like, and how to interpret the numbers to associate an image with them.

Generally, they look very small with different levels of diffuse-ness! Those that are
sharper make more visual sense (to be 5σ detections), but the more diffuse ones extend
over a larger area. Furthermore, the noise is measured on individual pixel measurements.
However, during the reduction many exposures are co-added and stacked, mixing the pixels
like a small convolution (creating “correlated noise”). Therefore you clearly see two main
issues with the detection limit as defined above: it depends on the morphology, and it does
not take into account the correlated noise.
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A more realistic way to estimate the significance of the detection is to take its footprint,
randomly place it in thousands of undetected regions of the image and use that distribution
as a reference. This is technically known as upper-limit measurements. For a full discussion,
see Section 7.4.3.5 [Upper limit magnitude of each detection], page 584).

Since it is for each separate object, the upper-limit measurements should be requested
as extra columns in MakeCatalog’s output. For example, with the command below, let’s
generate a new catalog of the F160W filter, but with two extra columns compared to the
one in cat/: the upper-limit magnitude and the upper-limit multiple of sigma.

$ astmkcatalog seg/xdf-f160w.fits --ids --ra --dec --magnitude --sn \

--zeropoint=25.94 --clumpscat --upnsigma=3 \

--upperlimit-mag --upperlimit-sigma \

--output=xdf-f160w.fits

Let’s compare the upper-limit magnitude with the measured magnitude of each clump:

$ asttable xdf-f160w.fits -hclumps -cmagnitude,upperlimit_mag

As you see, in almost all of the cases, the measured magnitude is sufficiently higher than
the upper-limit magnitude. Let’s subtract the latter from the former to better see this
difference in a third column:

$ asttable xdf-f160w.fits -hclumps -cmagnitude,upperlimit_mag \

-c'arith upperlimit_mag magnitude -'

The ones with a positive third column (difference) show that the clump has sufficiently
higher brightness than the noisy background to be usable. Let’s use Table’s Section 5.3.3
[Column arithmetic], page 346, to find only those that have a negative difference:

$ asttable xdf-f160w.fits -hclumps -cra,dec --noblankend=3 \

-c'arith upperlimit_mag magnitude - set-d d d 0 gt nan where'

From more than 3500 clumps, this command only gave ∼ 150 rows (this number may
slightly change on different runs due to the random nature of the upper-limit sampling18)!
Let’s have a look at them:

$ asttable xdf-f160w.fits -hclumps -cra,dec --noblankend=3 \

-c'arith upperlimit_mag magnitude - set-d d d 0 gt nan where' \

| astscript-ds9-region -c1,2 --namecol=3 --width=2 \

--radius=0.5 \

--command="ds9 -mecube seg/xdf-f160w.fits -zscale"

You see that they are all extremely faint and diffuse/small peaks. Therefore, if an object’s
magnitude is fainter than its upper-limit magnitude, you should not use the magnitude: it
is not accurate! You should use the upper-limit magnitude instead (with an arrow in your
plots to mark which ones are upper-limits).

But the main point (in relation to the magnitude limit) with the upper-limit, is
the UPPERLIMIT_SIGMA column. you can think of this as a realistic S/N for extremely
faint/diffuse/small objects). The raw S/N column is simply calculated on a pixel-by-pixel
basis, however, the upper-limit sigma is produced by actually taking the label’s footprint,
and randomly placing it thousands of time over un-detected parts of the image and
measuring the brightness of the sky. The clump’s brightness is then divided by the

18 You can fix the random number generator seed, so you always get the same sampling, see Section 6.2.3.4
[Generating random numbers], page 406.
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standard deviation of the resulting distribution to give you exactly how significant it is
(accounting for inter-pixel issues like correlated noise, which are strong in this dataset).
You can actually compare the two values with the command below:

$ asttable xdf-f160w.fits -hclumps -csn,upperlimit_sigma

As you see, the second column (upper-limit sigma) is almost always less than the S/N.
This clearly shows the effect of correlated noise! If you now use this column as the reference
for deriving the magnitude limit, you will see that it will shift by almost 0.5 magnitudes
brighter and is now more reasonable:

$ asttable xdf-f160w.fits -hclumps --range=upperlimit_sigma,4.8:5.2 \

-cmagnitude | aststatistics --median

29.6257

We see that the 5σ detection limit is ∼ 29.6! This is extremely deep! For example,
in the Legacy Survey19, the 5σ detection limit for point sources is approximately 24.5 (5
magnitudes, or 100 times, shallower than this image).

As mentioned above, an important caveat in this simple calculation is that we should
only be looking at point-like objects, not simply everything. This is because the shape
or radial slope of the profile has an important effect on this measurement: at the same
total magnitude, a sharper object will have a higher S/N. To be more precise, we should
first perform star-galaxy separation, then do this only for the objects that are classified as
stars. A crude, first-order, method is to use the --axis-ratio option so MakeCatalog also
measures the axis ratio, then call Table with --range=upperlimit_sigma,,4.8:5.2 and
--range=axis_ratio,0.95:1 (in one command). Please do this for yourself as an exercise
to see the difference with the result above.

Before continuing, let’s remove this temporarily produced catalog:

$ rm xdf-f160w.fits

Another measure of the dataset’s limit is the completeness limit (Section 7.4.3.4 [Com-
pleteness limit of each detection], page 583). This is necessary when you are looking at
populations of objects over the image. You want to know until what magnitude you can be
sure that you have detected an object (if it was present). As described in Section 7.4.3.4
[Completeness limit of each detection], page 583, the best way to do this is with mock
images. But a crude, first order result can be obtained from the actual image: by simply
plotting the histogram of the magnitudes:

$ aststatistics cat/xdf-f160w.fits -hclumps -cmagnitude

...

Histogram:

| *

| ** ****

| ***********

| *************

| ****************

| *******************

| **********************

| **************************

19 https://www.legacysurvey.org/dr9/description

https://www.legacysurvey.org/dr9/description
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| *********************************

| *********************************************

|* * ** ** **********************************************************

|----------------------------------------------------------------------

This plot (the histogram of magnitudes; where fainter magnitudes are towards the right)
is technically called the dataset’s number count plot. You see that the number of objects
increases with magnitude as the magnitudes get fainter (to the right). However, beyond
a certain magnitude, you see it becomes flat, and soon afterwards, the numbers suddenly
drop.

Once you have your catalog, you can easily find this point with the two commands below.
First we generate a histogram with fewer bins (to have more numbers in each bin). We
then use AWK to find the magnitude bin where the number of points decrease compared
to the previous bin. But we only do this for bins that have more than 50 items (to avoid
scatter in the bright end). Finally, in Statistics, we have manually set the magnitude range
and number of bins so each bin is roughly 0.5 magnitudes thick (with --greaterequal=20,
--lessthan=32 and --numbins=24)

$ aststatistics cat/xdf-f160w.fits -hclumps -cmagnitude --histogram \

--greaterequal=20 --lessthan=32 --numbins=24 \

--output=f160w-hist.txt

$ asttable f160w-hist.txt \

| awk '$2>50 && $2<prev{print prevbin; exit} \

{prev=$2; prevbin=$1}'

28.932122667631

Therefore, to first order (and very crudely!) we can say that if an object is in our field
of view and has a magnitude of ∼ 29 or brighter, we can be highly confident that we have
detected it. But before continuing, let’s clean up behind ourselves:

$ rm f160w-hist.txt

Another important limiting parameter in a processed dataset is the surface brightness
limit (Section 7.4.3.7 [Surface brightness limit of image], page 586). The surface brightness
limit of a dataset is an important measure for extended structures (for example, when you
want to look at the outskirts of galaxies). In the next tutorial, we have thoroughly described
the derivation of the surface brightness limit of a dataset. So we will just show the final
result here, and encourage you to follow up with that tutorial after finishing this tutorial
(see Section 2.2.4 [Image surface brightness limit], page 93)

By default, MakeCatalog will estimate the surface brightness limit of a given dataset,
and put it in the keywords of the output (all keywords starting with SBL, which is short for
surface brightness limit):

$ astfits cat/xdf-f160w.fits -h1 | grep SBL

As you see, the only one with a unit of mag/arcsec^2 is SBLMAG. It contains the surface
brightness limit of the input dataset over SBLAREA arcsec2 with SBLNSIG multiples of σ.
In the current version of Gnuastro, SBLAREA=100 and SBLNSIG=3, so the surface brightness
limit of this image is 32.66 mag/arcsec2 (3σ, over 100 arcsec2). Therefore, if this default area
and multiple of sigma are fine for you20 (these are the most commonly used values), you can

20 You can change these values with the --sfmagarea and --sfmagnsigma
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simply read the image surface brightness limit from the catalogs produced by MakeCatalog
with this command:

$ astfits cat/*.fits -h1 --keyvalue=SBLMAG

2.1.15 Working with catalogs (estimating colors)

In the previous step we generated catalogs of objects and clumps over our dataset (see
Section 2.1.13 [Segmentation and making a catalog], page 48). The catalogs are available
in the two extensions of the single FITS file21. Let’s see the extensions and their basic
properties with the Fits program:

$ astfits cat/xdf-f160w.fits # Extension information

Let’s inspect the table in each extension with Gnuastro’s Table program (see Section 5.3
[Table], page 340). We should have used -hOBJECTS and -hCLUMPS instead of -h1 and -h2

respectively. The numbers are just used here to convey that both names or numbers are
possible, in the next commands, we will just use names.

$ asttable cat/xdf-f160w.fits -h1 --info # Objects catalog info.

$ asttable cat/xdf-f160w.fits -h1 # Objects catalog columns.

$ asttable cat/xdf-f160w.fits -h2 -i # Clumps catalog info.

$ asttable cat/xdf-f160w.fits -h2 # Clumps catalog columns.

As you see above, when given a specific table (file name and extension), Table will print the
full contents of all the columns. To see the basic metadata about each column (for example,
name, units and comments), simply append a --info (or -i) to the command.

To print the contents of special column(s), just give the column number(s) (counting
from 1) or the column name(s) (if they have one) to the --column (or -c) option. For
example, if you just want the magnitude and signal-to-noise ratio of the clumps (in the
clumps catalog), you can get it with any of the following commands

$ asttable cat/xdf-f160w.fits -hCLUMPS --column=5,6

$ asttable cat/xdf-f160w.fits -hCLUMPS -c5,SN

$ asttable cat/xdf-f160w.fits -hCLUMPS -c5 -c6

$ asttable cat/xdf-f160w.fits -hCLUMPS -cMAGNITUDE -cSN

Similar to HDUs, when the columns have names, always use the name: it is so common to
mis-write numbers or forget the order later! Using column names instead of numbers has
many advantages:

1. You do not have to worry about the order of columns in the table.

2. It acts as a documentation in the script.

3. Column meta-data (including a name) are not just limited to FITS tables and can also
be used in plain text tables, see Section 4.7.2 [Gnuastro text table format], page 285.

Table also has tools to limit the displayed rows. For example, with the first command
below only rows with a magnitude in the range of 29 to 30 will be shown. With the second
command, you can further limit the displayed rows to rows with an S/N larger than 10 (a

21 MakeCatalog can also output plain text tables. However, in the plain text format you can only have
one table per file. Therefore, if you also request measurements on clumps, two plain text tables will be
created (suffixed with _o.txt and _c.txt).
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range between 10 to infinity). You can further sort the output rows, only show the top (or
bottom) N rows, etc., see Section 5.3 [Table], page 340, for more.

$ asttable cat/xdf-f160w.fits -hCLUMPS --range=MAGNITUDE,28:29

$ asttable cat/xdf-f160w.fits -hCLUMPS \

--range=MAGNITUDE,28:29 --range=SN,10:inf

Now that you are comfortable in viewing table columns and rows, let’s look into merging
columns of multiple tables into one table (which is necessary for measuring the color of
the clumps). Since cat/xdf-f160w.fits and cat/xdf-f105w-on-f160w-lab.fits have
exactly the same number of rows and the rows correspond to the same clump, let’s merge
them to have one table with magnitudes in both filters.

We can merge columns with the --catcolumnfile option like below. You give this
option a file name (which is assumed to be a table that has the same number of rows as
the main input), and all the table’s columns will be concatenated/appended to the main
table. Now, try it out with the commands below. We will first look at the metadata of the
first table (only the CLUMPS extension). With the second command, we will concatenate the
two tables and write them in, two-in-one.fits and finally, we will check the new catalog’s
metadata.

$ asttable cat/xdf-f160w.fits -i -hCLUMPS

$ asttable cat/xdf-f160w.fits -hCLUMPS --output=two-in-one.fits \

--catcolumnfile=cat/xdf-f125w-on-f160w-lab.fits \

--catcolumnhdu=CLUMPS

$ asttable two-in-one.fits -i

By comparing the two metadata, we see that both tables have the same number of rows.
But what might have attracted your attention more, is that two-in-one.fits has double
the number of columns (as expected, after all, you merged both tables into one file, and did
not ask for any specific column). In fact you can concatenate any number of other tables
in one command, for example:

$ asttable cat/xdf-f160w.fits -hCLUMPS --output=three-in-one.fits \

--catcolumnfile=cat/xdf-f125w-on-f160w-lab.fits \

--catcolumnfile=cat/xdf-f105w-on-f160w-lab.fits \

--catcolumnhdu=CLUMPS --catcolumnhdu=CLUMPS

$ asttable three-in-one.fits -i

As you see, to avoid confusion in column names, Table has intentionally appended a -1

to the column names of the first concatenated table if the column names are already present
in the original table. For example, we have the original RA column, and another one called
RA-1). Similarly a -2 has been added for the columns of the second concatenated table.

However, this example clearly shows a problem with this full concatenation: some
columns are identical (for example, HOST_OBJ_ID and HOST_OBJ_ID-1), or not needed
(for example, RA-1 and DEC-1 which are not necessary here). In such cases, you can use
--catcolumns to only concatenate certain columns, not the whole table. For example, this
command:

$ asttable cat/xdf-f160w.fits -hCLUMPS --output=two-in-one-2.fits \

--catcolumnfile=cat/xdf-f125w-on-f160w-lab.fits \

--catcolumnhdu=CLUMPS --catcolumns=MAGNITUDE

$ asttable two-in-one-2.fits -i
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You see that we have now only appended the MAGNITUDE column of cat/xdf-f125w-
on-f160w-lab.fits. This is what we needed to be able to later subtract the magnitudes.
Let’s go ahead and add the F105W magnitudes also with the command below. Note how
we need to call --catcolumnhdu once for every table that should be appended, but we only
call --catcolumn once (assuming all the tables that should be appended have this column).

$ asttable cat/xdf-f160w.fits -hCLUMPS --output=three-in-one-2.fits \

--catcolumnfile=cat/xdf-f125w-on-f160w-lab.fits \

--catcolumnfile=cat/xdf-f105w-on-f160w-lab.fits \

--catcolumnhdu=CLUMPS --catcolumnhdu=CLUMPS \

--catcolumns=MAGNITUDE

$ asttable three-in-one-2.fits -i

But we are not finished yet! There is a very big problem: it is not immediately clear
which one of MAGNITUDE, MAGNITUDE-1 or MAGNITUDE-2 columns belong to which filter!
Right now, you know this because you just ran this command. But in one hour, you’ll start
doubting yourself and will be forced to go through your command history, trying to figure
out if you added F105W first, or F125W. You should never torture your future-self (or your
colleagues) like this! So, let’s rename these confusing columns in the matched catalog.

Fortunately, with the --colmetadata option, you can correct the column metadata of
the final table (just before it is written). It takes four values: 1) the original column name
or number, 2) the new column name, 3) the column unit and 4) the column comments.
Since the comments are usually human-friendly sentences and contain space characters,
you should put them in double quotations like below. For example, by adding three calls
of this option to the previous command, we write the filter name in the magnitude column
name and description.

$ asttable cat/xdf-f160w.fits -hCLUMPS --output=three-in-one-3.fits \

--catcolumnfile=cat/xdf-f125w-on-f160w-lab.fits \

--catcolumnfile=cat/xdf-f105w-on-f160w-lab.fits \

--catcolumnhdu=CLUMPS --catcolumnhdu=CLUMPS \

--catcolumns=MAGNITUDE \

--colmetadata=MAGNITUDE,MAG-F160W,log,"Magnitude in F160W." \

--colmetadata=MAGNITUDE-1,MAG-F125W,log,"Magnitude in F125W." \

--colmetadata=MAGNITUDE-2,MAG-F105W,log,"Magnitude in F105W."

$ asttable three-in-one-3.fits -i

We now have all three magnitudes in one table and can start doing arithmetic on them
(to estimate colors, which are just a subtraction of magnitudes). To use column arith-
metic, simply call the column selection option (--column or -c), put the value in single
quotations and start the value with arith (followed by a space) like the example below.
Column arithmetic uses the same “reverse polish notation” as the Arithmetic program (see
Section 6.2.1 [Reverse polish notation], page 399), with almost all the same operators (see
Section 6.2.4 [Arithmetic operators], page 408), and some column-specific operators (that
are not available for images). In column-arithmetic, you can identify columns by number
(prefixed with a $) or name, for more see Section 5.3.3 [Column arithmetic], page 346.

So let’s estimate one color from three-in-one-3.fits using column arithmetic. All the
commands below will produce the same output, try them each and focus on the differences.
Note that column arithmetic can be mixed with other ways to choose output columns (the
-c option).
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$ asttable three-in-one-3.fits -ocolor-cat.fits \

-c1,2,3,4,'arith $5 $7 -'

$ asttable three-in-one-3.fits -ocolor-cat.fits \

-c1,2,RA,DEC,'arith MAG-F125W MAG-F160W -'

$ asttable three-in-one-3.fits -ocolor-cat.fits -c1,2 \

-cRA,DEC --column='arith MAG-F105W MAG-F160W -'

This example again highlights the important point on using column names: if you do
not know the commands before, you have no way of making sense of the first command:
what is in column 5 and 7? why not subtract columns 3 and 4 from each other? Do
you see how cryptic the first one is? Then look at the last one: even if you have no idea
how this table was created, you immediately understand the desired operation. When you
have column names, please use them. If your table does not have column names, give them
names with the --colmetadata (described above) as you are creating them. But how about
the metadata for the column you just created with column arithmetic? Have a look at the
column metadata of the table produced above:

$ asttable color-cat.fits -i

The name of the column produced by arithmetic column is ARITH_1! This is natural:
Arithmetic has no idea what the modified column is! You could have multiplied two columns,
or done much more complex transformations with many columns. Metadata cannot be
set automatically, your (the human) input is necessary. To add metadata, you can use
--colmetadata like before:

$ asttable three-in-one-3.fits -ocolor-cat.fits -c1,2,RA,DEC \

--column='arith MAG-F105W MAG-F160W -' \

--colmetadata=ARITH_1,F105W-F160W,log,"Magnitude difference"

$ asttable color-cat.fits -i

Sometimes, because of a particular way of storing data, you might need to take all input
columns. If there are many columns (for example hundreds!), listing them (like above) will
become annoying, buggy and time-consuming. In such cases, you can give -c_all. Upon
execution, _all will be replaced with a comma-separated list of all the input columns. This
allows you to add new columns easily, without having to worry about the number of input
columns that you want anyway. A lower-level but more customizable method is to use the
seq (sequence) command with the -s (separator) option set to ','). For example, if you
have 216 columns and only want to return columns 1 and 2 as well as all the columns
between 12 to 58 (inclusive), you can use the command below:

$ asttable table.fits -c1,2,$(seq -s',' 12 58)

We are now ready to make our final table. We want it to have the magnitudes in all
three filters, as well as the three possible colors. Recall that by convention in astronomy
colors are defined by subtracting the bluer magnitude from the redder magnitude. In this
way a larger color value corresponds to a redder object. So from the three magnitudes,
we can produce three colors (as shown below). Also, because this is the final table we are
creating here and want to use it later, we will store it in cat/ and we will also give it a
clear name and use the --range option to only print columns with a signal-to-noise ratio
(SN column, from the F160W filter) above 5.
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$ asttable three-in-one-3.fits --range=SN,5,inf -c1,2,RA,DEC,SN \

-cMAG-F160W,MAG-F125W,MAG-F105W \

-c'arith MAG-F125W MAG-F160W -' \

-c'arith MAG-F105W MAG-F125W -' \

-c'arith MAG-F105W MAG-F160W -' \

--colmetadata=SN,SN-F160W,ratio,"F160W signal to noise ratio" \

--colmetadata=ARITH_1,F125W-F160W,log,"Color F125W-F160W." \

--colmetadata=ARITH_2,F105W-F125W,log,"Color F105W-F125W." \

--colmetadata=ARITH_3,F105W-F160W,log,"Color F105W-F160W." \

--output=cat/mags-with-color.fits

$ asttable cat/mags-with-color.fits -i

The table now has all the columns we need and it has the proper metadata to let us
safely use it later (without frustrating over column orders!) or passing it to colleagues.

Let’s finish this section of the tutorial with a useful tip on modifying column metadata.
Above, updating/changing column metadata was done with the --colmetadata in the same
command that produced the newly created Table file. But in many situations, the table
is already made and you just want to update the metadata of one column. In such cases
using --colmetadata is over-kill (wasting CPU/RAM energy or time if the table is large)
because it will load the full table data and metadata into memory, just change the metadata
and write it back into a file.

In scenarios when the table’s data does not need to be changed and you just want to set
or update the metadata, it is much more efficient to use basic FITS keyword editing. For
example, in the FITS standard, column names are stored in the TTYPE header keywords, so
let’s have a look:

$ asttable two-in-one.fits -i

$ astfits two-in-one.fits -h1 | grep TTYPE

Changing/updating the column names is as easy as updating the values to these key-
words. You do not need to touch the actual data! With the command below, we will
just update the MAGNITUDE and MAGNITUDE-1 columns (which are respectively stored in the
TTYPE5 and TTYPE11 keywords) by modifying the keyword values and checking the effect
by listing the column metadata again:

$ astfits two-in-one.fits -h1 \

--update=TTYPE5,MAG-F160W \

--update=TTYPE11,MAG-F125W

$ asttable two-in-one.fits -i

You can see that the column names have indeed been changed without touching any
of the data. You can do the same for the column units or comments by modifying the
keywords starting with TUNIT or TCOMM.

Generally, Gnuastro’s table is a very useful program in data analysis and what you have
seen so far is just the tip of the iceberg. But to avoid making the tutorial even longer,
we will stop reviewing the features here, for more, please see Section 5.3 [Table], page 340.
Before continuing, let’s just delete all the temporary FITS tables we placed in the top
project directory:

rm *.fits
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2.1.16 Column statistics (color-magnitude diagram)

In Section 2.1.15 [Working with catalogs (estimating colors)], page 55, we created a single
catalog containing the magnitudes of our desired clumps in all three filters, and their colors.
To start with, let’s inspect the distribution of three colors with the Statistics program.

$ aststatistics cat/mags-with-color.fits -cF105W-F125W

$ aststatistics cat/mags-with-color.fits -cF105W-F160W

$ aststatistics cat/mags-with-color.fits -cF125W-F160W

This tiny and cute ASCII histogram (and the general information printed above it)
gives you a crude (but very useful and fast) feeling on the distribution. You can later use
Gnuastro’s Statistics program with the --histogram option to build a much more fine-
grained histogram as a table to feed into your favorite plotting program for a much more
accurate/appealing plot (for example, with PGFPlots in LATEX). If you just want a specific
measure, for example, the mean, median and standard deviation, you can ask for them
specifically, like below:

$ aststatistics cat/mags-with-color.fits -cF105W-F160W \

--mean --median --std

The basic statistics we measured above were just on one column. In many scenarios this
is fine, but things get much more exciting if you look at the correlation of two columns
with each other. For example, let’s create the color-magnitude diagram for our measured
targets.

In many papers, the color-magnitude diagram is usually plotted as a scatter plot. How-
ever, scatter plots have a major limitation when there are a lot of points and they cluster
together in one region of the plot: the possible correlation in that dense region is lost (be-
cause the points fall over each other). In such cases, it is much better to use a 2D histogram.
In a 2D histogram, the full range in both columns is divided into discrete 2D bins (or pixels!)
and we count how many objects fall in that 2D bin.

Since a 2D histogram is a pixelated space, we can simply save it as a FITS image and
view it in a FITS viewer. Let’s do this in the command below. As is common with color-
magnitude plots, we will put the redder magnitude on the horizontal axis and the color on
the vertical axis. We will set both dimensions to have 100 bins (with --numbins for the
horizontal and --numbins2 for the vertical). Also, to avoid strong outliers in any of the
dimensions, we will manually set the range of each dimension with the --greaterequal,
--greaterequal2, --lessthan and --lessthan2 options.

$ aststatistics cat/mags-with-color.fits -cMAG-F160W,F105W-F160W \

--histogram2d=image --manualbinrange \

--numbins=100 --greaterequal=22 --lessthan=30 \

--numbins2=100 --greaterequal2=-1 --lessthan2=3 \

--manualbinrange --output=cmd.fits

You can now open this FITS file as a normal FITS image, for example, with the command
below. Try hovering/zooming over the pixels: not only will you see the number of objects
in catalog that fall in each bin/pixel, but you also see the F160W magnitude and color of
that pixel also (in the same place you usually see RA and Dec when hovering over an
astronomical image).

$ astscript-fits-view cmd.fits --ds9scale=minmax
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Having a 2D histogram as a FITS image with WCS has many great advantages. For
example, just like FITS images of the night sky, you can “match” many 2D histograms that
were created independently. You can add two histograms with each other, or you can use
advanced features of FITS viewers to find structure in the correlation of your columns.

With the first command below, you can activate the grid feature of DS9 to actually see the
coordinate grid, as well as values on each line. With the second command, DS9 will even
read the labels of the axes and use them to generate an almost publication-ready plot.

$ astscript-fits-view cmd.fits --ds9scale=minmax --ds9extra="-grid yes"

$ astscript-fits-view cmd.fits --ds9scale=minmax \

--ds9extra="-grid yes -grid type publication"

If you are happy with the grid and coloring and the rest, you can also use ds9 to save
this as a JPEG image to directly use in your documents/slides with these extra DS9 options
(DS9 will write the image to cmd-2d.jpeg and quit immediately afterwards):

$ astscript-fits-view cmd.fits --ds9scale=minmax \

--ds9extra="-grid yes -grid type publication" \

--ds9extra="-saveimage cmd-2d.jpeg -quit"

This is good for a fast progress update. But for your paper or more official report,
you want to show something with higher quality. For that, you can use the PGFPlots
package in LATEX to add axes in the same font as your text, sharp grids and many other
elegant/powerful features (like over-plotting interesting points and lines). But to load the
2D histogram into PGFPlots first you need to convert the FITS image into a more standard
format, for example, PDF. We will use Gnuastro’s Section 5.2 [ConvertType], page 314, for
this, and use the sls-inverse color map (which will map the pixels with a value of zero to
white):

$ astconvertt cmd.fits --colormap=sls-inverse --borderwidth=0 -ocmd.pdf

Open the resulting cmd.pdf and see the PDF. Below you can see a minimally working
example of how to add axis numbers, labels and a grid to the PDF generated above. First,
let’s create a new report directory to keep the LATEX outputs, then put the minimal report’s
source in a file called report.tex. Notice the xmin, xmax, ymin, ymax values and how they
are the same as the range specified above.

$ mkdir report-cmd

$ mv cmd.pdf report-cmd/

$ cat report-cmd/report.tex

\documentclass{article}

\usepackage{pgfplots}

\dimendef\prevdepth=0

\begin{document}

You can write all you want here...

\begin{tikzpicture}

\begin{axis}[

enlargelimits=false,

grid,

axis on top,
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width=\linewidth,

height=\linewidth,

xlabel={Magnitude (F160W)},

ylabel={Color (F105W-F160W)}]

\addplot graphics[xmin=22, xmax=30, ymin=-1, ymax=3] {cmd.pdf};

\end{axis}

\end{tikzpicture}

\end{document}

Run this command to build your PDF (assuming you have LATEX and PGFPlots).

$ cd report-cmd

$ pdflatex report.tex

Open the newly created report.pdf and enjoy the exquisite quality. The improved
quality, blending in with the text, vector-graphics resolution and other features make this
plot pleasing to the eye, and let your readers focus on the main point of your scientific
argument. PGFPlots can also built the PDF of the plot separately from the rest of the
paper/report, see Section 7.1.2.1 [2D histogram as a table for plotting], page 510, for the
necessary changes in the preamble.

We will not go much deeper into the Statistics program here, but there is so much more
you can do with it. After finishing the tutorial, see Section 7.1 [Statistics], page 508.

2.1.17 Aperture photometry

The colors we calculated in Section 2.1.15 [Working with catalogs (estimating colors)],
page 55, used a different segmentation map for each object. This might not satisfy some
science cases that need the flux within a fixed area/aperture. Fortunately Gnuastro’s mod-
ular programs make it very easy do this type of measurement (photometry). To do this, we
can ignore the labeled images of NoiseChisel of Segment, we can just built our own labeled
image! That labeled image can then be given to MakeCatalog

To generate the apertures catalog we will use Gnuastro’s MakeProfiles (see Section 8.1
[MakeProfiles], page 629). But first we need a list of positions (aperture photometry needs
a-priori knowledge of your target positions). So we will first read the clump positions from
the F160W catalog, then use AWK to set the other parameters of each profile to be a fixed
circle of radius 5 pixels (recall that we want all apertures to have an identical size/area in
this scenario).

$ rm *.fits *.txt

$ asttable cat/xdf-f160w.fits -hCLUMPS -cRA,DEC \

| awk '!/^#/{print NR, $1, $2, 5, 5, 0, 0, 1, NR, 1}' \

> apertures.txt

$ cat apertures.txt

We can now feed this catalog into MakeProfiles using the command below to build
the apertures over the image. The most important option for this particular job is
--mforflatpix, it tells MakeProfiles that the values in the magnitude column should be
used for each pixel of a flat profile. Without it, MakeProfiles would build the profiles such
that the sum of the pixels of each profile would have a magnitude (in log-scale) of the value
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given in that column (what you would expect when simulating a galaxy for example). See
Section 8.1.4 [Invoking MakeProfiles], page 636, for details on the options.

$ astmkprof apertures.txt --background=flat-ir/xdf-f160w.fits \

--clearcanvas --replace --type=int16 --mforflatpix \

--mode=wcs --output=apertures.fits

Open apertures.fits with a FITS image viewer (like SAO DS9) and look around at
the circles placed over the targets. Also open the input image and Segment’s clumps image
and compare them with the positions of these circles. Where the apertures overlap, you
will notice that one label has replaced the other (because of the --replace option). In the
future, MakeCatalog will be able to work with overlapping labels, but currently it does not.
If you are interested, please join us in completing Gnuastro with added improvements like
this (see task 1475022).

We can now feed the apertures.fits labeled image into MakeCatalog instead of Seg-
ment’s output as shown below. In comparison with the previous MakeCatalog call, you will
notice that there is no more --clumpscat option, since there is no more separate “clump”
image now, each aperture is treated as a separate “object”.

$ astmkcatalog apertures.fits -h1 --zeropoint=26.27 \

--valuesfile=nc/xdf-f105w.fits \

--ids --ra --dec --magnitude --sn \

--output=cat/xdf-f105w-aper.fits

This catalog has the same number of rows as the catalog produced from clumps in
Section 2.1.15 [Working with catalogs (estimating colors)], page 55. Therefore similar to
how we found colors, you can compare the aperture and clump magnitudes for example.

You can also change the filter name and zero point magnitudes and run this command
again to have the fixed aperture magnitude in the F160W filter and measure colors on
apertures.

2.1.18 Matching catalogs

In the example above, we had the luxury to generate the catalogs ourselves, and where thus
able to generate them in a way that the rows match. But this is not generally the case.
In many situations, you need to use catalogs from many different telescopes, or catalogs
with high-level calculations that you cannot simply regenerate with the same pixels without
spending a lot of time or using heavy computation. In such cases, when each catalog has
the coordinates of its own objects, you can use the coordinates to match the rows with
Gnuastro’s Match program (see Section 7.5 [Match], page 618).

As the name suggests, Gnuastro’s Match program will match rows based on distance (or
aperture in 2D) in one, two, or three columns. For this tutorial, let’s try matching the two
catalogs that were not created from the same labeled images, recall how each has a different
number of rows:

$ asttable cat/xdf-f105w.fits -hCLUMPS -i

$ asttable cat/xdf-f160w.fits -hCLUMPS -i

You give Match two catalogs (from the two different filters we derived above) as argu-
ment, and the HDUs containing them (if they are FITS files) with the --hdu and --hdu2

22 https://savannah.gnu.org/task/index.php?14750

https://savannah.gnu.org/task/index.php?14750
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options. The --ccol1 and --ccol2 options specify the coordinate-columns which should
be matched with which in the two catalogs. With --aperture you specify the acceptable
error (radius in 2D), in the same units as the columns.

$ astmatch cat/xdf-f160w.fits cat/xdf-f105w.fits \

--hdu=CLUMPS --hdu2=CLUMPS \

--ccol1=RA,DEC --ccol2=RA,DEC \

--aperture=0.5/3600 \

--output=matched.fits

$ astfits matched.fits

From the second command, you see that the output has two extensions and that both
have the same number of rows. The rows in each extension are the matched rows of the
respective input table: those in the first HDU come from the first input and those in the
second HDU come from the second. However, their order may be different from the input
tables because the rows match: the first row in the first HDU matches with the first row in
the second HDU, etc. You can also see which objects did not match with the --notmatched,
like below. Note how each extension of now has a different number of rows.

$ astmatch cat/xdf-f160w.fits cat/xdf-f105w.fits \

--hdu=CLUMPS --hdu2=CLUMPS \

--ccol1=RA,DEC --ccol2=RA,DEC \

--aperture=0.5/3600 \

--output=not-matched.fits --notmatched

$ astfits not-matched.fits

The --outcols of Match is a very convenient feature: you can use it to specify which
columns from the two catalogs you want in the output (merge two input catalogs into one).
If the first character is an ‘a’, the respective matched column (number or name, similar to
Table above) in the first catalog will be written in the output table. When the first character
is a ‘b’, the respective column from the second catalog will be written in the output. Also,
if the first character is followed by _all, then all the columns from the respective catalog
will be put in the output.

$ astmatch cat/xdf-f160w.fits cat/xdf-f105w.fits \

--hdu=CLUMPS --hdu2=CLUMPS \

--ccol1=RA,DEC --ccol2=RA,DEC \

--aperture=0.35/3600 \

--outcols=a_all,bMAGNITUDE,bSN \

--output=matched.fits

$ astfits matched.fits

2.1.19 Reddest clumps, cutouts and parallelization

As a final step, let’s go back to the original clumps-based color measurement we generated
in Section 2.1.15 [Working with catalogs (estimating colors)], page 55. We will find the
objects with the strongest color and make a cutout to inspect them visually and finally, we
will see how they are located on the image. With the command below, we will select the
reddest objects (those with a color larger than 1.5):

$ asttable cat/mags-with-color.fits --range=F105W-F160W,1.5,inf

You can see how many they are by piping it to wc -l:
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$ asttable cat/mags-with-color.fits --range=F105W-F160W,1.5,inf | wc -l

Let’s crop the F160W image around each of these objects, but we first need a unique
identifier for them. We will define this identifier using the object and clump labels (with an
underscore between them) and feed the output of the command above to AWK to generate
a catalog. Note that since we are making a plain text table, we will define the necessary
(for the string-type first column) metadata manually (see Section 4.7.2 [Gnuastro text table
format], page 285).

$ echo "# Column 1: ID [name, str10] Object ID" > cat/reddest.txt

$ asttable cat/mags-with-color.fits --range=F105W-F160W,1.5,inf \

| awk '{printf("%d_%-10d %f %f\n", $1, $2, $3, $4)}' \

>> cat/reddest.txt

Let’s see how these objects are positioned over the dataset. DS9 has the “Region”s
concept for this purpose. And you build such regions easily from a table using Gnuastro’s
astscript-ds9-region installed script, using the command below:

$ astscript-ds9-region cat/reddest.txt -c2,3 --mode=wcs \

--command="ds9 flat-ir/xdf-f160w.fits -zscale"

We can now feed cat/reddest.txt into Gnuastro’s Crop program to get separate
postage stamps for each object. To keep things clean, we will make a directory called
crop-red and ask Crop to save the crops in this directory. We will also add a -f160w.fits

suffix to the crops (to remind us which filter they came from). The width of the crops will
be 15 arc-seconds (or 15/3600 degrees, which is the units of the WCS).

$ mkdir crop-red

$ astcrop flat-ir/xdf-f160w.fits --mode=wcs --namecol=ID \

--catalog=cat/reddest.txt --width=15/3600,15/3600 \

--suffix=-f160w.fits --output=crop-red

Like the MakeProfiles command in Section 2.1.17 [Aperture photometry], page 62, if
you look at the order of the crops, you will notice that the crops are not made in order!
This is because each crop is independent of the rest, therefore crops are done in parallel,
and parallel operations are asynchronous. So the order can differ in each run, but the final
output is the same! In the command above, you can change f160w to f105w to make the
crops in both filters. You can see all the cropped FITS files in the crop-red directory with
this command:

$ astscript-fits-view crop-red/*.fits

To view the crops more easily (not having to open ds9 for each image), you can convert
the FITS crops into the JPEG format with a shell loop like below.

$ cd crop-red

$ for f in *.fits; do \

astconvertt $f --fluxlow=-0.001 --fluxhigh=0.005 --invert -ojpg; \

done

$ cd ..

$ ls crop-red/

You can now use your general graphic user interface image viewer to flip through the
images more easily, or import them into your papers/reports.

The for loop above to convert the images will do the job in series: each file is con-
verted only after the previous one is complete. But like the crops, each JPEG image is
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independent, so let’s parallelize it. In other words, we want to run more than one instance
of the command at any moment. To do that, we will use Make (https://en.wikipedia.
org/wiki/Make_(software)). Make is a very wonderful pipeline management system, and
the most common and powerful implementation is GNU Make (https://www.gnu.org/
software/make), which has a complete manual just like this one. We cannot go into the
details of Make here, for a hands-on video tutorial, see this video introduction (https://
peertube.stream/w/iJitjS3r232Z8UPMxKo6jq). To do the process above in Make, please
copy the contents below into a plain-text file called Makefile. Just replace the __[TAB]__
part at the start of the line with a single ‘TAB’ button on your keyboard.

jpgs=$(subst .fits,.jpg,$(wildcard *.fits))

all: $(jpgs)

$(jpgs): %.jpg: %.fits

__[TAB]__astconvertt $< --fluxlow=-0.001 --fluxhigh=0.005 \

__[TAB]__ --invert -o$

Now that the Makefile is ready, you can run Make on 12 threads using the commands
below. Feel free to replace the 12 with any number of threads you have on your system
(you can find out by running the nproc command on GNU/Linux operating systems):

$ make -j12

Did you notice how much faster this one was? When possible, it is always very helpful to do
your analysis in parallel. You can build very complex workflows with Make, for example,
see Akhlaghi 2021 (https://arxiv.org/abs/2006.03018) so it is worth spending some
time to master.

2.1.20 FITS images in a publication

In the previous section (Section 2.1.19 [Reddest clumps, cutouts and parallelization],
page 64), we visually inspected the positions of the reddest objects using DS9. That is
very good for an interactive inspection of the objects: you can zoom-in and out, you can
do measurements, etc. Once the experimentation phase of your project is complete, you
want to show these objects over the whole image in a report, paper or slides.

One solution is to use DS9 itself! For example, run the astscript-fits-view command
of the previous section to open DS9 with the regions over-plotted. Click on the “File” menu
and select “Save Image”. In the side-menu that opens, you have multiple formats to select
from. Usually for publications, we want to show the regions and text (in the colorbar) in
vector graphics, so it is best to export to EPS. Once you have made the EPS, you can then
convert it to PDF with the epspdf command.

Another solution is to use Gnuastro’s ConvertType program. The main difference is that
DS9 is a Graphic User Interface (GUI) program, so it takes relatively long (about a second)
to load, and it requires many dependencies. This will slow-down automatic conversion
of many files, and will make your code hard to move to another operating system. DS9
does have a command-line interface that you can use to automate the creation of each file,
however, it has a very peculiar command-line interface and formats (like the “region” files).
However, in ConvertType, there is no graphic interface, so it has very few dependencies, it is
fast, and finally, it takes normal tables (in plain-text or FITS) as input. So in this concluding
step of the analysis, let’s build a nice publication-ready plot, showing the positions of the
reddest objects in the image for our paper.

https://en.wikipedia.org/wiki/Make_(software)
https://en.wikipedia.org/wiki/Make_(software)
https://www.gnu.org/software/make
https://www.gnu.org/software/make
https://peertube.stream/w/iJitjS3r232Z8UPMxKo6jq
https://peertube.stream/w/iJitjS3r232Z8UPMxKo6jq
https://arxiv.org/abs/2006.03018


Chapter 2: Tutorials 67

In Section 2.1.19 [Reddest clumps, cutouts and parallelization], page 64, we already used
ConvertType to make JPEG postage stamps. Here, we will use it to make a PDF image of
the whole deep region. To start, let’s simply run ConvertType on the F160W image:

$ astconvertt flat-ir/xdf-f160w.fits -oxdf.pdf

Open the output in a PDF viewer. You see that it is almost fully black! Let’s see why
this happens! First, with the two commands below, let’s calculate the maximum value, and
the standard deviation of the sky in this image (using NoiseChisel’s output, which we found
at the end of Section 2.1.11 [NoiseChisel optimization for detection], page 42). Note that
NoiseChisel writes the median sky standard deviation before interpolation in the MEDSTD

keyword of the SKY_STD HDU. This is more robust than the median of the Sky standard
deviation image (which has gone through interpolation).

$ max=$(aststatistics nc/xdf-f160w.fits -hINPUT-NO-SKY --maximum)

$ skystd=$(astfits nc/xdf-f160w.fits -hSKY_STD --keyvalue=MEDSTD -q)

$ echo $max $skystd

58.8292 0.000410282

$ echo $max $skystd | awk '{print $1/$2}'

143387

In the last command above, we divided the maximum by the sky standard deviation. You
see that the maximum value is more than 140000 times larger than the noise level! On the
other hand common monitors or printers, usually have a maximum dynamic range of 8-bits,
only allowing for 28 = 256 layers. This is therefore the maximum number of “layers” you
can have in a common display formats like JPEG, PDF or PNG! Dividing the result above
by 256, we get a layer spacing of

$ echo $max $skystd | awk '{print $1/$2/256}'

560.106

In other words, the first layer (which is black) will contain all the pixel values below
∼ 560! So all pixels with a signal-to-noise ratio lower than ∼ 560 will have a black color
since they fall in the first layer of an 8-bit PDF (or JPEG) image. This happens because
by default we are assuming a linear mapping from floating point to 8-bit integers.

To fix this, we should move to a different mapping. A good, physically motivated,
mapping is Surface Brightness (which is in log-scale, see Section 7.4.2 [Brightness, Flux,
Magnitude and Surface brightness], page 574). Fortunately this is very easy to do with
Gnuastro’s Arithmetic program, as shown in the commands below (using the known zero
point23, and after calculating the pixel area in units of arcsec2):

$ zeropoint=25.94

$ pixarcsec2=$(astfits nc/xdf-f160w.fits --pixelareaarcsec2)

$ astarithmetic nc/xdf-f160w.fits $zeropoint $pixarcsec2 counts-to-sb \

--output=xdf-f160w-sb.fits

With the two commands below, first, let’s look at the dynamic range of the image now
(dividing the maximum by the minimum), and then let’s open the image and have a look
at it:

23 https://archive.stsci.edu/prepds/xdf/#science-images

https://archive.stsci.edu/prepds/xdf/#science-images
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$ aststatistics xdf-f160w-sb.fits --minimum --maximum

$ astscript-fits-view xdf-f160w-sb.fits

The good news is that the dynamic range has now decreased to about 2! In other words,
we can distribute the 256 layers of an 8-bit display over a much smaller range of values, and
therefore better visualize the data. However, there are two important points to consider
from the output of the first command and a visual inspection of the second.

• The largest pixel value (faintest surface brightness level) in the image is ∼ 43! This
is far too low to be realistic, and is just due to noise. As discussed in Section 2.1.14
[Measuring the dataset limits], page 50, the 3σ surface brightness limit of this image,
over 100 arcsec2 is roughly 32.66 mag/arcsec2.

• You see many NaN pixels in between the galaxies! These are due to the fact that the
magnitude is defined on a logarithmic scale and the logarithm of a negative number is
not defined.

In other words, we should replace all NaN pixels, and pixels with a surface brightness
value fainter than the image surface brightness limit to this limit. With the first command
below, we will first extract the surface brightness limit from the catalog headers that we
calculated before, and then call Arithmetic to use this limit.

$ sblimit=$(astfits cat/xdf-f160w.fits --keyvalue=SBLMAG -q)

$ astarithmetic nc/xdf-f160w.fits $zeropoint $pixarcsec2 \

counts-to-sb set-sb \

sb sb $sblimit gt sb isblank or $sblimit where \

--output=xdf-f160w-sb.fits

Let’s convert this image into a PDF with the command below:

$ astconvertt xdf-f160w-sb.fits --output=xdf-f160w-sb.pdf

It is much better now and we can visualize many features of the FITS file (from the
central structures of the galaxies and stars, to a little into the noise and their low surface
brightness features. However, the image generally looks a little too gray! This is because
of that bright star in the bottom half of the image! Stars are very sharp! So let’s manually
tell ConvertType to set any pixel with a value less than (brighter than) 20 to black (and
not use the minimum). We do this with the --fluxlow option:

$ astconvertt xdf-f160w-sb.fits --output=xdf-f160w-sb.pdf --fluxlow=20

We are still missing some of the diffuse flux in this PDF. This is because of those negative
pixels that were set to NaN. To better show these structures, we should warp the image to
larger pixels. So let’s warp it to a pixel grid where the new pixels are 4× 4 larger than the
original pixels. But be careful that warping should be done on the original image, not on
the surface brightness image. We should re-calculate the surface brightness image after the
warping is one. This is because log(a+ b) 6= log(a) + log(b). Recall that surface brightness
calculation involves a logarithm, and warping involves addition of pixel values.

$ astwarp nc/xdf-f160w.fits --scale=1/4 --centeroncorner \

--output=xdf-f160w-warped.fits

$ pixarcsec2=$(astfits xdf-f160w-warped.fits --pixelareaarcsec2)

$ astarithmetic xdf-f160w-warped.fits $zeropoint $pixarcsec2 \
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counts-to-sb set-sb \

sb sb $sblimit gt sb isblank or $sblimit where \

--output=xdf-f160w-sb.fits

$ astconvertt xdf-f160w-sb.fits --output=xdf-f160w-sb.pdf --fluxlow=20

Above, we needed to re-calculate the pixel area of the warpped image, but we did not
need to re-calculate the surface brightness limit! The reason is that the surface brightness
limit is independent of the pixel area (in its derivation, the pixel area has been accounted
for). As a side-effect of the warping, the number of pixels in the image also dramatically
decreased, therefore the volume of the output PDF (in bytes) is also smaller, making your
paper/report easier to upload/download or send by email. This visual resolution is still
more than enough for including on top of a column in your paper!� �
I do not have the zero point of my image: The absolute value of the zero point is irrelevant
for the finally produced PDF. We used it here because it was available and makes the
numbers physically understandable. If you do not have the zero point, just set it to zero
(which is also the default zero point used by MakeCatalog when it estimates the surface
brightness limit). For the value to --fluxlow above, you can simply subtract ∼ 10 from
the surface brightness limit.
 	
To summarize, and to keep the image for the next section in a separate directory, here are
the necessary commands:

$ zeropoint=25.94

$ mkdir report-image

$ cd report-image

$ sblimit=$(astfits cat/xdf-f160w.fits --keyvalue=SBLMAG -q)

$ astwarp nc/xdf-f160w.fits --scale=1/4 --centeroncorner \

--output=warped.fits

$ pixarcsec2=$(astfits warped.fits --pixelareaarcsec2)

$ astarithmetic warped.fits $zeropoint $pixarcsec2 \

counts-to-sb set-sb \

sb sb $sblimit gt sb isblank or $sblimit where \

--output=sb.fits

$ astconvertt sb.fits --output=sb.pdf --fluxlow=20

Finally, let’s remove all the temporary files we built in the top-level tutorial directory:

$ rm *.fits *.pdf� �
Color images: In this tutorial we just used one of the filters and showed the surface
brightness image of that single filter as a grayscale image. But the image can also be
in color (using three filters) to better convey the physical properties of the objects in
your image. To create an image that shows the full dynamic range of your data, see this
dedicated tutorial Section 2.6 [Color images with full dynamic range], page 151.
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2.1.21 Marking objects for publication

In Section 2.1.20 [FITS images in a publication], page 66, we created a ready-to-print
visualization of the FITS image used in this tutorial. However, you rarely want to show
a naked image like that! You usually want to highlight some objects (that are the target
of your science) over the image and show different marks for the various types of objects
you are studying. In this tutorial, we will do just that: select a sub-set of the full catalog
of clumps, and show them with different marks shapes and colors, while also adding some
text under each mark. To add coordinates on the edges of the figure in your paper, see
Section 5.2.4 [Annotations for figure in paper], page 320.

To start with, let’s put a red plus sign over the sub-sample of reddest clumps similar to
Section 2.1.19 [Reddest clumps, cutouts and parallelization], page 64. First, we will need to
make the table of marks. We will choose those with a color stronger than 1.5 magnitudes
and a signal-to-noise ratio (in F160W) larger than 5. We also only need the RA, Dec, color
and magnitude (in F160W) columns (recall that at the end of the previous section we were
already in the report-image/ directory):

$ asttable cat/mags-with-color.fits --range=F105W-F160W,1.5:inf \

--range=sn-f160w,5:inf -cRA,DEC,MAG-F160w,F105W-F160W \

--output=reddest-cat.fits

Gnuastro’s ConvertType program also has features to add marks over the finally pro-
duced PDF. Below, we will start with the same astconvertt command of the previous
section. The positions of the marks should be given as a table to the --marks option.
Two other options are also mandatory: --markcoords identifies the columns that contain
the coordinates of each mark and --mode specifies if the coordinates are in image or WCS
coordinates.

$ astconvertt sb.fits --output=reddest.pdf --fluxlow=20 \

--marks=reddest-cat.fits --mode=wcs \

--markcoords=RA,DEC

Open the output reddest.pdf and see the result. You will see relatively thick red circles
placed over the given coordinates. In your PDF browser, zoom-in to one of the regions,
you will see that while the pixels of the background image become larger, the lines of these
regions do not degrade! This is the concept/power of Vector Graphics: ideal for publication!
For more on raster (pixelated) and vector (infinite-resolution) graphics, see Section 5.2.1
[Raster and Vector graphics], page 314.

We had planned to put a plus-sign on each object. However, because we did not explicitly
ask for a certain shape, ConvertType put a circle. Each mark can have its own separate
shape. Shapes can be given by a name or a code. The full list of available shapes names
and codes is given in the description of --markshape option of Section 5.2.5.3 [Drawing
with vector graphics], page 334.

To use a different shape, we need to add a new column to the base table, containing
the identifier of the desired shape for each mark. For example, the code for the plus sign
is 2. With the commands below, we will add a new column with this fixed value. With
the first AWK command we will make a single-column file, where all the rows have the
same value. We pipe our base table into AWK, so it has the same number of rows. With
the second command, we concatenate (or append) the new column with Table, and give
this new column the name SHAPE (to easily refer to it later and not have to count). With
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the third command, we clean-up behind our selves (deleting the extra params.txt file).
Finally, we use the --markshape option to tell ConvertType which column to use for the
shape identifier.

$ asttable reddest-cat.fits | awk '{print 2}' > params.txt

$ asttable reddest-cat.fits --catcolumnfile=params.txt \

--colmetadata=5,SHAPE,id,"Shape of mark" \

--output=reddest-marks.fits

$ rm params.txt

$ astconvertt sb.fits --output=reddest.pdf --fluxlow=20 \

--marks=reddest-marks.fits --mode=wcs \

--markcoords=RA,DEC --markshape=SHAPE

Open the PDF and have a look! You do see red signs over the coordinates, but the thick
plus-signs only become visible after you zoom-in multiple times! To make them larger, you
can give another column to specify the size of each mark. Let’s set the full width of the
plus sign to extend 3 arcseconds. The commands are similar to above, try to follow the
difference (in particular, how we use --sizeinarcsec).

$ asttable reddest-cat.fits | awk '{print 2, 3}' > params.txt

$ asttable reddest-cat.fits --catcolumnfile=params.txt \

--colmetadata=5,SHAPE,id,"Shape of mark" \

--colmetadata=6,SIZE,arcsec,"Size in arcseconds" \

--output=reddest-marks.fits

$ rm params.txt

$ astconvertt sb.fits --output=reddest.pdf --fluxlow=20 \

--marks=reddest-marks.fits --mode=wcs \

--markcoords=RA,DEC --markshape=SHAPE \

--marksize=SIZE --sizeinarcsec

The power of this methodology is that each mark can be completely different! For
example, let’s show the objects with a color less than 2 magnitudes with a circle, and those
with a stronger color with a plus (recall that the code for a circle was 1 and that of a plus
was 2). You only need to replace the first command above with the one below. Afterwards,
run the rest of the commands in the last code-block.

$ asttable reddest-cat.fits -cF105W-F160W \

| awk '{if($1<2) shape=1; else shape=2; print shape, 3}' \

> params.txt

Have a look at the resulting reddest.pdf. You see that the circles are much larger than
the plus signs. This is because the “size” of a cross is defined to be its full width, but for a
circle, the value in the size column is the radius. The way each shape interprets the value
of the size column is fully described under --markshape of Section 5.2.5.3 [Drawing with
vector graphics], page 334. To make them more comparable, let’s set the circle sizes to be
half of the cross sizes.

$ asttable reddest-cat.fits -cF105W-F160W \
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| awk '{if($1<2) {shape=1; size=1.5} \

else {shape=2; size=3} \

print shape, size}' \

> params.txt

Let’s make things a little more complex (and show more information in the visualization)
by using color. Gnuastro recognizes the full extended web colors (https://en.wikipedia.
org/wiki/Web_colors#Extended_colors), for their full list (containing names and codes)
see Section 5.2.3.3 [Vector graphics colors], page 320. But like everything else, an even easier
way to view and select the color for your figure is on the command-line! If your terminal
supports 24-bit true-color, you can see all the colors by running this command (supported
on modern GNU/Linux distributions):

$ astconvertt --listcolors

we will give a “Sienna” color for the objects that are fainter than 29th magnitude and a
“deeppink” color to the brighter ones (while keeping the same shapes definition as before)
Since there are many colors, using their codes can make the table hard to read by a human!
So let’s use the color names instead of the color codes in the example below (this is useful
in other columns require strings-only, like the font name).

The only intricacy is in the making of params.txt. Recall that string columns need
column metadata (Section 4.7.2 [Gnuastro text table format], page 285). In this particular
case, since the string column is the last one, we can safely use AWK’s print command.
But if you have multiple string columns, to be safe it is better to use AWK’s printf and
explicitly specify the number of characters in the string columns.

$ asttable reddest-cat.fits -cF105W-F160W,MAG-F160W \

| awk 'BEGIN{print "# Column 3: COLOR [name, str8]"}\

{if($1<2) {shape=1; size=1.5} \

else {shape=2; size=3} \

if($2>29) {color="sienna"} \

else {color="deeppink"} \

print shape, size, color}' \

> params.txt

$ asttable reddest-cat.fits --catcolumnfile=params.txt \

--colmetadata=5,SHAPE,id,"Shape of mark" \

--colmetadata=6,SIZE,arcsec,"Size in arcseconds" \

--output=reddest-marks.fits

$ rm params.txt

$ astconvertt sb.fits --output=reddest.pdf --fluxlow=20 \

--marks=reddest-marks.fits --mode=wcs \

--markcoords=RA,DEC --markshape=SHAPE \

--marksize=SIZE --sizeinarcsec --markcolor=COLOR

As one final example, let’s write the magnitude of each object under it. Since the
magnitude is already in the marks.fits that we produced above, it is very easy to add it
(just add --marktext option to ConvertType):

$ astconvertt sb.fits --output=reddest.pdf --fluxlow=20 \

https://en.wikipedia.org/wiki/Web_colors#Extended_colors
https://en.wikipedia.org/wiki/Web_colors#Extended_colors
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--marks=reddest-marks.fits --mode=wcs \

--markcoords=RA,DEC --markshape=SHAPE \

--marksize=SIZE --sizeinarcsec \

--markcolor=COLOR --marktext=MAG-F160W

Open the final PDF (reddest.pdf) and you will see the magnitudes written under each
mark in the same color. In the case of magnitudes (where the magnitude error is usually
much larger than 0.01 magnitudes, four decimals is not too meaningful. By default, for
printing floating point columns, we use the compiler’s default precision (which is about 4
digits for 32-bit floating point numbers). But you can over-write this (to only show two
digits after the decimal point) with the --marktextprecision=2 option.

You can customize the written text by specifying a different line-width (for the text,
different from the main mark), or even specifying a different font for each mark! You can
see the full list of available fonts for the text under a mark with the first command below
and with the second, you can actually see them in a custom PDF (to only show the fonts).

$ astconvertt --listfonts

$ astconvertt --showfonts

As you see, there are many ways you can customize each mark! The above examples
were just the tip of the iceburg! But this section has already become long so we will stop
it here (see the box at the end of this section for yet another useful example). Like above,
each feature of a mark can be controlled with a column in the table of mark information.
Please see in Section 5.2.5.3 [Drawing with vector graphics], page 334, for the full list of
columns/features that you can use.� �
Drawing ellipses: With the commands below, you can measure the elliptical properties of
the objects and visualized them in a ready-to-publish PDF (we will only show the ellipses
of the largest clumps):

$ astmkcatalog ../seg/xdf-f160w.fits --ra --dec --semi-major \

--axis-ratio --position-angle --clumpscat \

--output=ellipseinfo.fits

$ asttable ellipseinfo.fits -hCLUMPS | awk '{print 4}' > params.txt

$ asttable ellipseinfo.fits -hCLUMPS --catcolumnfile=params.txt \

--range=SEMI_MAJOR,10,inf -oellipse-marks.fits \

--colmetadata=6,SHAPE,id,"Shape of mark"

$ astconvertt sb.fits --output=ellipse.pdf --fluxlow=20 \

--marks=ellipse-marks.fits --mode=wcs \

--markcoords=RA,DEC --markshape=SHAPE \

--marksize=SEMI_MAJOR,AXIS_RATIO --sizeinpix \

--markrotate=POSITION_ANGLE
 	
To conclude this section, let us highlight an important factor to consider in vector graph-

ics. In ConvertType, things like line width or font size are defined in units of points. In
vector graphics standards, 72 points correspond to one inch. Therefore, one way you can
change these factors for all the objects is to assign a larger or smaller print size to the im-
age. The print size is just a meta-data entry, and will not affect the file’s volume in bytes!
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You can do this with the --widthincm option. Try adding this option and giving it very
different values like 5 or 30.

2.1.22 Writing scripts to automate the steps

In the previous sub-sections, we went through a series of steps like downloading the necessary
datasets (in Section 2.1.3 [Setup and data download], page 26), detecting the objects in the
image, and finally selecting a particular subset of them to inspect visually (in Section 2.1.19
[Reddest clumps, cutouts and parallelization], page 64). To benefit most effectively from
this subsection, please go through the previous sub-sections, and if you have not actually
done them, we recommended to do/run them before continuing here.

Each sub-section/step of the sub-sections above involved several commands on the
command-line. Therefore, if you want to reproduce the previous results (for example, to
only change one part, and see its effect), you’ll have to go through all the sections above
and read through them again. If you have ran the commands recently, you may also have
them in the history of your shell (command-line environment). You can see many of your
previous commands on the shell (even if you have closed the terminal) with the history

command, like this:

$ history

Try it in your teminal to see for yourself. By default in GNU Bash, it shows the last
500 commands. You can also save this “history” of previous commands to a file using shell
redirection (to have it after your next 500 commands), with this command

$ history > my-previous-commands.txt

This is a good way to temporarily keep track of every single command you ran. But
in the middle of all the useful commands, you will have many extra commands, like tests
that you did before/after the good output of a step (that you decided to continue working
on), or an unrelated job you had to do in the middle of this project. Because of these
impurities, after a few days (that you have forgot the context: tests you did not end-up
using, or unrelated jobs) reading this full history will be very frustrating.

Keeping the final commands that were used in each step of an analysis is a common
problem for anyone who is doing something serious with the computer. But simply keeping
the most important commands in a text file is not enough, the small steps in the middle
(like making a directory to keep the outputs of one step) are also important. In other words,
the only way you can be sure that you are under control of your processing (and actually
understand how you produced your final result) is to run the commands automatically.

Fortunately, typing commands interactively with your fingers is not the only way to
operate the shell. The shell can also take its orders/commands from a plain-text file, which
is called a script. When given a script, the shell will read it line-by-line as if you have
actually typed it manually.

Let’s continue with an example: try typing the commands below in your shell. With these
commands we are making a text file (a.txt) containing a simple 3 × 3 matrix, converting
it to a FITS image and computing its basic statistics. After the first three commands open
a.txt with a text editor to actually see the values we wrote in it, and after the fourth, open
the FITS file to see the matrix as an image. a.txt is created through the shell’s redirection
feature: ‘>’ overwrites the existing contents of a file, and ‘>>’ appends the new contents
after the old contents.
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$ echo "1 1 1" > a.txt

$ echo "1 2 1" >> a.txt

$ echo "1 1 1" >> a.txt

$ astconvertt a.txt --output=a.fits

$ aststatistics a.fits

To automate these series of commands, you should put them in a text file. But that text
file must have two special features: 1) It should tell the shell what program should interpret
the script. 2) The operating system should know that the file can be directly executed.

For the first, Unix-like operating systems define the shebang concept (also known as
sha-bang or hashbang). In the shebang convention, the first two characters of a file should
be ‘#!’. When confronted with these characters, the script will be interpreted with the
program that follows them. In this case, we want to write a shell script and the most
common shell program is GNU Bash which is installed in /bin/bash. So the first line of
your script should be ‘#!/bin/bash’24.

It may happen (rarely) that GNU Bash is in another location on your system. In other
cases, you may prefer to use a non-standard version of Bash installed in another location
(that has higher priority in your PATH, see Section 3.3.1.2 [Installation directory], page 233).
In such cases, you can use the ‘#!/usr/bin/env bash’ shebang instead. Through the env

program, this shebang will look in your PATH and use the first bash it finds to run your
script. But for simplicity in the rest of the tutorial, we will continue with the ‘#!/bin/bash’
shebang.

Using your favorite text editor, make a new empty file, let’s call it my-first-script.sh.
Write the GNU Bash shebang (above) as its first line. After the shebang, copy the series
of commands we ran above. Just note that the ‘$’ sign at the start of every line above is
the prompt of the interactive shell (you never actually typed it, remember?). Therefore,
commands in a shell script should not start with a ‘$’. Once you add the commands, close
the text editor and run the cat command to confirm its contents. It should look like the
example below. Recall that you should only type the line that starts with a ‘$’, the lines
without a ‘$’, are printed automatically on the command-line (they are the contents of your
script).

$ cat my-first-script.sh

#!/bin/bash

echo "1 1 1" > a.txt

echo "1 2 1" >> a.txt

echo "1 1 1" >> a.txt

astconvertt a.txt --output=a.fits

aststatistics a.fits

The script contents are now ready, but to run it, you should activate the script file’s
executable flag. In Unix-like operating systems, every file has three types of flags: read (or
r), write (or w) and execute (or x). To toggle a file’s flags, you should use the chmod (for
“change mode”) command. To activate a flag, you put a ‘+’ before the flag character (for

24 When the script is to be run by the same shell that is calling it (like this script), the shebang is optional.
But it is still recommended, because it ensures that even if the user is not using GNU Bash, the script will
be run in GNU Bash: given the differences between various shells, writing truly portable shell scripts,
that can be run by many shell programs/implementations, is not easy (sometimes not possible!).
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example, +x). To deactivate it, you put a ‘-’ (for example, -x). In this case, you want to
activate the script’s executable flag, so you should run

$ chmod +x my-first-script.sh

Your script is now ready to run/execute the series of commands. To run it, you should
call it while specifying its location in the file system. Since you are currently in the same
directory as the script, it is easiest to use relative addressing like below (where ‘./’ means
the current directory). But before running your script, first delete the two a.txt and
a.fits files that were created when you interactively ran the commands.

$ rm a.txt a.fits

$ ls

$ ./my-first-script.sh

$ ls

The script immediately prints the statistics while doing all the previous steps in the back-
ground. With the last ls, you see that it automatically re-built the a.txt and a.fits files,
open them and have a look at their contents.

An extremely useful feature of shell scripts is that the shell will ignore anything after a
‘#’ character. You can thus add descriptions/comments to the commands and make them
much more useful for the future. For example, after adding comments, your script might
look like this:

$ cat my-first-script.sh

#!/bin/bash

# This script is my first attempt at learning to write shell scripts.

# As a simple series of commands, I am just building a small FITS

# image, and calculating its basic statistics.

# Write the matrix into a file.

echo "1 1 1" > a.txt

echo "1 2 1" >> a.txt

echo "1 1 1" >> a.txt

# Convert the matrix to a FITS image.

astconvertt a.txt --output=a.fits

# Calculate the statistics of the FITS image.

aststatistics a.fits

Is Not this much more easier to read now? Comments help to provide human-friendly
context to the raw commands. At the time you make a script, comments may seem like an
extra effort and slow you down. But in one year, you will forget almost everything about
your script and you will appreciate the effort so much! Think of the comments as an email
to your future-self and always put a well-written description of the context/purpose (most
importantly, things that are not directly clear by reading the commands) in your scripts.

The example above was very basic and mostly redundant series of commands, to show
the basic concepts behind scripts. You can put any (arbitrarily long and complex) series
of commands in a script by following the two rules: 1) add a shebang, and 2) enable the
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executable flag. In fact, as you continue your own research projects, you will find that any
time you are dealing with more than two or three commands, keeping them in a script (and
modifying that script, and running it) is much more easier, and future-proof, then typing
the commands directly on the command-line and relying on things like history. Here are
some tips that will come in handy when you are writing your scripts:

As a more realistic example, let’s have a look at a script that will do the steps of
Section 2.1.3 [Setup and data download], page 26, and Section 2.1.4 [Dataset inspection and
cropping], page 26. In particular note how often we are using variables to avoid repeating
fixed strings of characters (usually file/directory names). This greatly helps in scaling up
your project, and avoiding hard-to-find bugs that are caused by typos in those fixed strings.

$ cat gnuastro-tutorial-1.sh

#!/bin/bash

# Download the input datasets

# ---------------------------

#

# The default file names have this format (where `FILTER' differs for

# each filter):

# hlsp_xdf_hst_wfc3ir-60mas_hudf_FILTER_v1_sci.fits

# To make the script easier to read, a prefix and suffix variable are

# used to sandwich the filter name into one short line.

dldir=download

xdfsuffix=_v1_sci.fits

xdfprefix=hlsp_xdf_hst_wfc3ir-60mas_hudf_

xdfurl=http://archive.stsci.edu/pub/hlsp/xdf

# The file name and full URLs of the input data.

f105w_in=$xdfprefix"f105w"$xdfsuffix

f160w_in=$xdfprefix"f160w"$xdfsuffix

f105w_url=$xdfurl/$f105w_in

f160w_url=$xdfurl/$f160w_in

# Go into the download directory and download the images there,

# then come back up to the top running directory.

mkdir $dldir

cd $dldir

wget $f105w_url

wget $f160w_url

cd ..

# Only work on the deep region

# ----------------------------

#

# To help in readability, each vertice of the deep/flat field is stored
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# as a separate variable. They are then merged into one variable to

# define the polygon.

flatdir=flat-ir

vertice1="53.187414,-27.779152"

vertice2="53.159507,-27.759633"

vertice3="53.134517,-27.787144"

vertice4="53.161906,-27.807208"

f105w_flat=$flatdir/xdf-f105w.fits

f160w_flat=$flatdir/xdf-f160w.fits

deep_polygon="$vertice1:$vertice2:$vertice3:$vertice4"

mkdir $flatdir

astcrop --mode=wcs -h0 --output=$f105w_flat \

--polygon=$deep_polygon $dldir/$f105w_in

astcrop --mode=wcs -h0 --output=$f160w_flat \

--polygon=$deep_polygon $dldirdir/$f160w_in

The first thing you may notice is that even if you already have the downloaded input
images, this script will always try to re-download them. Also, if you re-run the script, you
will notice that mkdir prints an error message that the download directory already exists.
Therefore, the script above is not too useful and some modifications are necessary to make
it more generally useful. Here are some general tips that are often very useful when writing
scripts:

Stop script if a command crashes
By default, if a command in a script crashes (aborts and fails to do what it was
meant to do), the script will continue onto the next command. In GNU Bash,
you can tell the shell to stop a script in the case of a crash by adding this line
at the start of your script:

set -e

Check if a file/directory exists to avoid re-creating it
Conditionals are a very useful feature in scripts. One common conditional is
to check if a file exists or not. Assuming the file’s name is FILENAME, you can
check its existance (to avoid re-doing the commands that build it) like this:

if [ -f FILENAME ]; then

echo "FILENAME exists"

else

# Some commands to generate the file

echo "done" > FILENAME

fi

To check the existance of a directory instead of a file, use -d instead of -f. To
negate a conditional, use ‘!’ and note that conditionals can be written in one
line also (useful for when it is short).

One common scenario that you’ll need to check the existance of directories
is when you are making them: the default mkdir command will crash if the
desired directory already exists. On some systems (including GNU/Linux dis-
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tributions), mkdir has options to deal with such cases. But if you want your
script to be portable, it is best to check yourself like below:

if ! [ -d DIRNAME ]; then mkdir DIRNAME; fi

Avoid changing directories (with ‘cd’) within the script
You can directly read and write files within other directories. Therefore using
cd to enter a directory (like what we did above, around the wget commands),
running command there and coming out is extra, and not good practice. This
is because the running directory is part of the environment of a command. You
can simply give the directory name before the input and output file names to
use them from anywhere on the file system. See the same wget commands
below for an example.� �

Copyright notice: A very important thing to put at the top of your script is a one-line
description of what it does and its copyright information (see the example below). Here,
we specify who is the author(s) of this script, in which years, and under what license others
are allowed to use this file. Without it, your script does not credibility or identity, and
others cannot trust, use or acknowledge your work on it. Since Gnuastro is itself licensed
under a copyleft (https://en.wikipedia.org/wiki/Copyleft) license (see Section 1.4
[Your rights], page 10, and Appendix C [GNU Gen. Pub. License v3], page 971, or GNU
GPL, the license finishes with a template on how to add it), any script that uses Gnuastro
should also have a copyleft license: we recommend the same GNU GPL v3+ like below.
 	

Taking the above points into consideration, we can write a better version of the script
above. Please compare this script with the previous one carefully to spot the differences.
These are very important points that you will definitely encouter during your own research,
and knowing them can greatly help your productiveity, so pay close attention (even in the
comments).

#!/bin/bash

# Script to download and keep the deep region of the XDF survey.

#

# Copyright (C) 2024 Your Name <yourname@email.company>

# Copyright (C) 2021-2024 Initial Author <incase@there-is.any>

#

# This script is free software: you can redistribute it and/or modify

# it under the terms of the GNU General Public License as published by

# the Free Software Foundation, either version 3 of the License, or

# (at your option) any later version.

#

# This script is distributed in the hope that it will be useful, but

# WITHOUT ANY WARRANTY; without even the implied warranty of

# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

# General Public License for more details.

#

# You should have received a copy of the GNU General Public License

# along with Gnuastro. If not, see <http://www.gnu.org/licenses/>.

https://en.wikipedia.org/wiki/Copyleft
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# Abort the script in case of an error.

set -e

# Download the input datasets

# ---------------------------

#

# The default file names have this format (where `FILTER' differs for

# each filter):

# hlsp_xdf_hst_wfc3ir-60mas_hudf_FILTER_v1_sci.fits

# To make the script easier to read, a prefix and suffix variable are

# used to sandwich the filter name into one short line.

dldir=download

xdfsuffix=_v1_sci.fits

xdfprefix=hlsp_xdf_hst_wfc3ir-60mas_hudf_

xdfurl=http://archive.stsci.edu/pub/hlsp/xdf

# The file name and full URLs of the input data.

f105w_in=$xdfprefix"f105w"$xdfsuffix

f160w_in=$xdfprefix"f160w"$xdfsuffix

f105w_url=$xdfurl/$f105w_in

f160w_url=$xdfurl/$f160w_in

# Make sure the download directory exists, and download the images.

if ! [ -d $dldir ]; then mkdir $dldir; fi

if ! [ -f $f105w_in ]; then wget $f105w_url -O $dldir/$f105w_in; fi

if ! [ -f $f160w_in ]; then wget $f160w_url -O $dldir/$f160w_in; fi

# Crop out the deep region

# ------------------------

#

# To help in readability, each vertice of the deep/flat field is stored

# as a separate variable. They are then merged into one variable to

# define the polygon.

flatdir=flat-ir

vertice1="53.187414,-27.779152"

vertice2="53.159507,-27.759633"

vertice3="53.134517,-27.787144"

vertice4="53.161906,-27.807208"

f105w_flat=$flatdir/xdf-f105w.fits

f160w_flat=$flatdir/xdf-f160w.fits

deep_polygon="$vertice1:$vertice2:$vertice3:$vertice4"

if ! [ -d $flatdir ]; then mkdir $flatdir; fi
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if ! [ -f $f105w_flat ]; then

astcrop --mode=wcs -h0 --output=$f105w_flat \

--polygon=$deep_polygon $dldir/$f105w_in

fi

if ! [ -f $f160w_flat ]; then

astcrop --mode=wcs -h0 --output=$f160w_flat \

--polygon=$deep_polygon $dldir/$f160w_in

fi

2.1.23 Citing and acknowledging Gnuastro

In conclusion, we hope this extended tutorial has been a good starting point to help in your
exciting research. If this book or any of the programs in Gnuastro have been useful for
your research, please cite the respective papers, and acknowledge the funding agencies that
made all of this possible. Without citations, we will not be able to secure future funding
to continue working on Gnuastro or improving it, so please take software citation seriously
(for all the scientific software you use, not just Gnuastro).

To help you in this, all Gnuastro programs have a --cite option to facilitate the citation
and acknowledgment. Just note that it may be necessary to cite additional papers for
different programs, so please try it out on all the programs that you used, for example:

$ astmkcatalog --cite

$ astnoisechisel --cite

2.2 Detecting large extended targets

The outer wings of large and extended objects can sink into the noise very gradually and can
have a large variety of shapes (for example, due to tidal interactions). Therefore separating
the outer boundaries of the galaxies from the noise can be particularly tricky. Besides
causing an under-estimation in the total estimated brightness of the target, failure to detect
such faint wings will also cause a bias in the noise measurements, thereby hampering the
accuracy of any measurement on the dataset. Therefore even if they do not constitute a
significant fraction of the target’s light, or are not your primary target, these regions must
not be ignored. In this tutorial, we will walk you through the strategy of detecting such
targets using Section 7.2 [NoiseChisel], page 541.� �
Do not start with this tutorial: If you have not already completed Section 2.1 [General
program usage tutorial], page 23, we strongly recommend going through that tutorial
before starting this one. Basic features like access to this book on the command-line,
the configuration files of Gnuastro’s programs, benefiting from the modular nature of the
programs, viewing multi-extension FITS files, or using NoiseChisel’s outputs are discussed
in more detail there.
 	

We will try to detect the faint tidal wings of the beautiful M51 group25 in this tutorial.
We will use a dataset/image from the public Sloan Digital Sky Survey (http://www.sdss.
org/), or SDSS. Due to its more peculiar low surface brightness structure/features, we will
focus on the dwarf companion galaxy of the group (or NGC 5195).

25 https://en.wikipedia.org/wiki/M51_Group

http://www.sdss.org/
http://www.sdss.org/
https://en.wikipedia.org/wiki/M51_Group
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2.2.1 Downloading and validating input data

To get the image, you can use the simple field search (https://dr12.sdss.org/fields)
tool of SDSS. As long as it is covered by the SDSS, you can find an image containing your
desired target either by providing a standard name (if it has one), or its coordinates. To
access the dataset we will use here, write NGC5195 in the “Object Name” field and press
“Submit” button.� �
Type the example commands: Try to type the example commands on your terminal and
use the history feature of your command-line (by pressing the “up” button to retrieve
previous commands). Do not simply copy and paste the commands shown here. This will
help simulate future situations when you are processing your own datasets.
 	

You can see the list of available filters under the color image. For this demonstration, we
will use the r-band filter image. By clicking on the “r-band FITS” link, you can download
the image. Alternatively, you can just run the following command to download it with
GNU Wget26. To keep things clean, let’s also put it in a directory called ngc5195. With
the -O option, we are asking Wget to save the downloaded file with a more manageable
name: r.fits.bz2 (this is an r-band image of NGC 5195, which was the directory name).

$ mkdir ngc5195

$ cd ngc5195

$ topurl=https://dr12.sdss.org/sas/dr12/boss/photoObj/frames

$ wget $topurl/301/3716/6/frame-r-003716-6-0117.fits.bz2 -Or.fits.bz2

When you want to reproduce a previous result (a known analysis, on a known dataset,
to get a known result: like the case here!) it is important to verify that the file is correct:
that the input file has not changed (on the remote server, or in your own archive), or there
was no downloading problem. Otherwise, if the data have changed in your server/archive,
and you use the same script, you will get a different result, causing a lot of confusion!

One good way to verify the contents of a file is to store its Checksum in your analysis
script and check it before any other operation. The Checksum algorithms look into the
contents of a file and calculate a fixed-length string from them. If any change (even in a
bit or byte) is made within the file, the resulting string will change, for more see Wikipedia
(https://en.wikipedia.org/wiki/Checksum). There are many common algorithms, but
a simple one is the SHA-1 algorithm (https://en.wikipedia.org/wiki/SHA-1) (Secure
Hash Algorithm 1) that you can calculate easily with the command below (the second line
is the output, and the checksum is the first/long string: it is independent of the file name)

$ sha1sum r.fits.bz2

5fb06a572c6107c72cbc5eb8a9329f536c7e7f65 r.fits.bz2

If the checksum on your computer is different from this, either the file has been incorrectly
downloaded (most probable), or it has changed on SDSS servers (very unlikely27). To get
a better feeling of checksums open your favorite text editor and make a test file by writing

26 To make the command easier to view on screen or in a page, we have defined the top URL of the image
as the topurl shell variable. You can just replace the value of this variable with $topurl in the wget

command.
27 If your checksum is different, try uncompressing the file with the bunzip2 command after this, and open

the resulting FITS file. If it opens and you see the image of M51 and NGC5195, then there was no

https://dr12.sdss.org/fields
https://en.wikipedia.org/wiki/Checksum
https://en.wikipedia.org/wiki/Checksum
https://en.wikipedia.org/wiki/SHA-1
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something in it. Save it and calculate the text file’s SHA-1 checksum with sha1sum. Try
renaming that file, and you’ll see the checksum has not changed (checksums only look into
the contents, not the name/location of the file). Then open the file with your text editor
again, make a change and re-calculate its checksum, you’ll see the checksum string has
changed.

Its always good to keep this short checksum string with your project’s scripts and validate
your input data before using them. You can do this with a shell conditional like this:

filename=r.fits.bz2

expected=5fb06a572c6107c72cbc5eb8a9329f536c7e7f65

sum=$(sha1sum $filename | awk '{print $1}')

if [ $sum = $expected ]; then

echo "$filename: validated"

else

echo "$filename: wrong checksum!"

exit 1

fi

Now that we know you have the same data that we wrote this tutorial with, let’s continue.
The SDSS server keeps the files in a Bzip2 compressed file format (that have a .bz2 suffix).
So we will first decompress it with the following command to use it as a normal FITS file. By
convention, compression programs delete the original file (compressed when uncompressing,
or uncompressed when compressing). To keep the original file, you can use the --keep or
-k option which is available in most compression programs for this job. Here, we do not
need the compressed file any more, so we will just let bunzip delete it for us and keep the
directory clean.

$ bunzip2 r.fits.bz2

2.2.2 NoiseChisel optimization

In Section 2.2.1 [Downloading and validating input data], page 82, we downloaded the single
exposure SDSS image. Let’s see how NoiseChisel operates on it with its default parameters:

$ astnoisechisel r.fits -h0

As described in Section 2.1.10 [NoiseChisel and Multi-Extension FITS files],
page 39, NoiseChisel’s default output is a multi-extension FITS file. Open the output
r_detected.fits file and have a look at the extensions, the 0-th extension is only
meta-data and contains NoiseChisel’s configuration parameters. The rest are the
Sky-subtracted input, the detection map, Sky values and Sky standard deviation.

$ ds9 -mecube r_detected.fits -zscale -zoom to fit

Flipping through the extensions in a FITS viewer, you will see that the first image (Sky-
subtracted image) looks reasonable: there are no major artifacts due to bad Sky subtraction
compared to the input. The second extension also seems reasonable with a large detection
map that covers the whole of NGC5195, but also extends towards the bottom of the image
where we actually see faint and diffuse signal in the input image.

Now try flipping between the DETECTIONS and SKY extensions. In the SKY extension,
you’ll notice that there is still significant signal beyond the detected pixels. You can tell

download problem, and the file has indeed changed on the SDSS servers! In this case, please contact us
at bug-gnuastro@gnu.org.
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that this signal belongs to the galaxy because the far-right side of the image (away from
M51) is dark (has lower values) and the brighter parts in the Sky image (with larger values)
are just under the detections and follow a similar pattern.

The fact that signal from the galaxy remains in the SKY HDU shows that NoiseChisel
can be optimized for a much better result. The SKY extension must not contain any light
around the galaxy. Generally, any time your target is much larger than the tile size and
the signal is very diffuse and extended at low signal-to-noise values (like this case), this will
happen. Therefore, when there are large objects in the dataset, the best place to check the
accuracy of your detection is the estimated Sky image.

When dominated by the background, noise has a symmetric distribution. However, sig-
nal is not symmetric (we do not have negative signal). Therefore when non-constant28 signal
is present in a noisy dataset, the distribution will be positively skewed. For a demonstra-
tion, see Figure 1 of Akhlaghi and Ichikawa 2015 (https://arxiv.org/abs/1505.01664).
This skewness is a good measure of how much faint signal we have in the distribution. The
skewness can be accurately measured by the difference in the mean and median (assuming
no strong outliers): the more distant they are, the more skewed the dataset is. This impor-
tant concept will be discussed more extensively in the next section (Section 2.2.3 [Skewness
caused by signal and its measurement], page 89).

However, skewness is only a proxy for signal when the signal has structure (varies per
pixel). Therefore, when it is approximately constant over a whole tile, or sub-set of the
image, the constant signal’s effect is just to shift the symmetric center of the noise distribu-
tion to the positive and there will not be any skewness (major difference between the mean
and median). This positive29 shift that preserves the symmetric distribution is the Sky
value. When there is a gradient over the dataset, different tiles will have different constant
shifts/Sky-values, for example, see Figure 11 of Akhlaghi and Ichikawa 2015 (https://
arxiv.org/abs/1505.01664).

To make this very large diffuse/flat signal detectable, you will therefore need a larger tile
to contain a larger change in the values within it (and improve number statistics, for less
scatter when measuring the mean and median). So let’s play with the tessellation a little
to see how it affects the result. In Gnuastro, you can see the option values (--tilesize in
this case) by adding the -P option to your last command. Try running NoiseChisel with -P

to see its default tile size.

You can clearly see that the default tile size is indeed much smaller than this (huge)
galaxy and its tidal features. As a result, NoiseChisel was unable to identify the skewness
within the tiles under the outer parts of M51 and NGC 5159 and the threshold has been
over-estimated on those tiles. To see which tiles were used for estimating the quantile
threshold (no skewness was measured), you can use NoiseChisel’s --checkqthresh option:

$ astnoisechisel r.fits -h0 --checkqthresh

Did you see how NoiseChisel aborted after finding and applying the quantile thresholds?
When you call any of NoiseChisel’s --check* options, by default, it will abort as soon as
all the check steps have been written in the check file (a multi-extension FITS file). This
allows you to focus on the problem you wanted to check as soon as possible (you can disable
this feature with the --continueaftercheck option).

28 by constant, we mean that it has a single value in the region we are measuring.
29 In processed images, where the Sky value can be over-estimated, this constant shift can be negative.

https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1505.01664
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To optimize the threshold-related settings for this image, let’s play with this quantile
threshold check image a little. Do not forget that “Good statistical analysis is not a purely
routine matter, and generally calls for more than one pass through the computer” (Anscombe
1973, see Section 1.3 [Gnuastro manifesto: Science and its tools], page 6). A good scientist
must have a good understanding of her tools to make a meaningful analysis. So do not
hesitate in playing with the default configuration and reviewing the manual when you have
a new dataset (from a new instrument) in front of you. Robust data analysis is an art,
therefore a good scientist must first be a good artist. So let’s open the check image as a
multi-extension cube:

$ ds9 -mecube r_qthresh.fits -zscale -cmap sls -zoom to fit

The first extension (called CONVOLVED) of r_qthresh.fits is the convolved input im-
age where the threshold(s) is(are) defined (and later applied to). For more on the effect
of convolution and thresholding, see Sections 3.1.1 and 3.1.2 of Akhlaghi and Ichikawa
2015 (https://arxiv.org/abs/1505.01664). The second extension (QTHRESH_ERODE) has
a blank/white value for all the pixels of any tile that was identified as having significant
signal. The other tiles have the measured threshold over them. The next two extensions
(QTHRESH_NOERODE and QTHRESH_EXPAND) are the other two quantile thresholds that are
necessary in NoiseChisel’s later steps. Every step in this file is repeated on the three
thresholds.

Play a little with the color bar of the QTHRESH_ERODE extension, you clearly see how the
non-blank tiles around NGC 5195 have a gradient. As one line of attack against discarding
too much signal below the threshold, NoiseChisel rejects outlier tiles. Go forward by three
extensions to VALUE1_NO_OUTLIER and you will see that many of the tiles over the galaxy
have been removed in this step. For more on the outlier rejection algorithm, see the latter
half of Section 7.1.4.3 [Quantifying signal in a tile], page 522.

Even though much of the galaxy’s footprint has been rejected as outliers, there are still
tiles with signal remaining: play with the DS9 color-bar and you still see a gradient near
the outer tidal feature of the galaxy. Before trying to correct this, let’s look at the other
extensions of this check image. We will use a * as a wild-card that can be 1, 2 or 3. In the
THRESH*_INTERP extensions, you see that all the blank tiles have been interpolated using
their nearest neighbors (the relevant option here is --interpnumngb). In the following
THRESH*_SMOOTH extensions, you can see the tile values after smoothing (configured with
--smoothwidth option). Finally, in QTHRESH-APPLIED, you see the thresholded image:
pixels with a value of 1 will be eroded later, but pixels with a value of 2 will pass the
erosion step un-touched.

Let’s get back to the problem of optimizing the result. You have two strategies for
detecting the outskirts of the merging galaxies: 1) Increase the tile size to get more accurate
measurements of skewness. 2) Strengthen the outlier rejection parameters to discard more
of the tiles with signal (primarily by increasing --outliernumngb). Fortunately in this
image we have a sufficiently large region on the right side of the image that the galaxy does
not extend to. So we can use the more robust first solution. In situations where this does
not happen (for example, if the field of view in this image was shifted to the left to have
more of M51 and less sky) you are limited to a combination of the two solutions or just to
the second solution.

https://arxiv.org/abs/1505.01664
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� �
Skipping convolution for faster tests: The slowest step of NoiseChisel is the convolution of
the input dataset. Therefore when your dataset is large (unlike the one in this test), and
you are not changing the input dataset or kernel in multiple runs (as in the tests of this
tutorial), it is faster to do the convolution separately once (using Section 6.3 [Convolve],
page 469) and use NoiseChisel’s --convolved option to directly feed the convolved image
and avoid convolution. For more on --convolved, see Section 7.2.2.1 [NoiseChisel input],
page 547.
 	

To better identify the skewness caused by the flat NGC 5195 and M51 tidal features on
the tiles under it, we have to choose a larger tile size. Let’s try a tile size of 100 by 100
pixels and inspect the check image.

$ astnoisechisel r.fits -h0 --tilesize=100,100 --checkqthresh

$ ds9 -mecube r_qthresh.fits -zscale -cmap sls -zoom to fit

You can clearly see the effect of this increased tile size: the tiles are much larger and
when you look into VALUE1_NO_OUTLIER, you see that all the tiles are nicely grouped on the
right side of the image (the farthest from M51, where we do not see a gradient in QTHRESH_

ERODE). Things look good now, so let’s remove --checkqthresh and let NoiseChisel proceed
with its detection.

$ astnoisechisel r.fits -h0 --tilesize=100,100

$ ds9 -mecube r_detected.fits -zscale -cmap sls -zoom to fit

The detected pixels of the DETECTIONS extension have expanded a little, but not as
much. Also, the gradient in the SKY image is almost fully removed (and does not fall over
M51 anymore). However, on the bottom-right of the m51 detection, we see many holes
gradually increasing in size. This hints that there is still signal out there. Let’s check the
next series of detection steps by adding the --checkdetection option this time:

$ astnoisechisel r.fits -h0 --tilesize=100,100 --checkdetection

$ ds9 -mecube r_detcheck.fits -zscale -cmap sls -zoom to fit

The output now has 16 extensions, showing every step that is taken by NoiseChisel.
The first and second (INPUT and CONVOLVED) are clear from their names. The third
(THRESHOLDED) is the thresholded image after finding the quantile threshold (last extension
of the output of --checkqthresh). The fourth HDU (ERODED) is new: it is the name-stake
of NoiseChisel, or eroding pixels that are above the threshold. By erosion, we mean that
all pixels with a value of 1 (above the threshold) that are touching a pixel with a value of
0 (below the threshold) will be flipped to zero (or “carved” out)30. You can see its effect
directly by going back and forth between the THRESHOLDED and ERODED extensions.

In the fifth extension (OPENED-AND-LABELED) the image is “opened”, which is a name
for eroding once, then dilating (dilation is the inverse of erosion). This is good to remove
thin connections that are only due to noise. Each separate connected group of pixels is also
given its unique label here. Do you see how just beyond the large M51 detection, there
are many smaller detections that get smaller as you go more distant? This hints at the

30 Pixels with a value of 2 are very high signal-to-noise pixels, they are not eroded, to preserve sharp and
bright sources.
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solution: the default number of erosions is too much. Let’s see how many erosions take
place by default (by adding -P | grep erode to the previous command)

$ astnoisechisel r.fits -h0 --tilesize=100,100 -P | grep erode

We see that the value of erode is 2. The default NoiseChisel parameters are primarily
targeted to processed images (where there is correlated noise due to all the processing
that has gone into the warping and stacking of raw images, see Section 2.1.11 [NoiseChisel
optimization for detection], page 42). In those scenarios 2 erosions are commonly necessary.
But here, we have a single-exposure image where there is no correlated noise (the pixels are
not mixed). So let’s see how things change with only one erosion:

$ astnoisechisel r.fits -h0 --tilesize=100,100 --erode=1 \

--checkdetection

$ ds9 -mecube r_detcheck.fits -zscale -cmap sls -zoom to fit

Looking at the OPENED-AND-LABELED extension again, we see that the main/large detec-
tion is now much larger than before. While the immediately-outer connected regions are
still present, they have decreased dramatically, so we can pass this step.

After the OPENED-AND-LABELED extension, NoiseChisel goes onto finding false detec-
tions using the undetected pixels. The process is fully described in Section 3.1.5. (Defining
and Removing False Detections) of Akhlaghi and Ichikawa 2015 (https://arxiv.org/pdf/
1505.01664.pdf). Please compare the extensions to what you read there and things will be
very clear. In the last HDU (DETECTION-FINAL), we have the final detected pixels that will
be used to estimate the Sky and its Standard deviation. We see that the main detection
has indeed been detected very far out, so let’s see how the full NoiseChisel will estimate the
Sky and its standard deviation (by removing --checkdetection):

$ astnoisechisel r.fits -h0 --tilesize=100,100 --erode=1

$ ds9 -mecube r_detected.fits -zscale -cmap sls -zoom to fit

The DETECTIONS extension of r_detected.fits closely follows what the DETECTION-

FINAL of the check image (looks good!). If you go ahead to the SKY extension, things still
look good. But it can still be improved.

Look at the DETECTIONS again, you will see the right-ward edges of M51’s detected pixels
have many “holes” that are fully surrounded by signal (value of 1) and the signal stretches
out in the noise very thinly (the size of the holes increases as we go out). This suggests
that there is still undetected signal and that we can still dig deeper into the noise.

With the --detgrowquant option, NoiseChisel will “grow” the detections in to the noise.
Its value is the ultimate limit of the growth in units of quantile (between 0 and 1). Therefore
--detgrowquant=1 means no growth and --detgrowquant=0.5 means an ultimate limit of
the Sky level (which is usually too much and will cover the whole image!). See Figure 2 of
Akhlaghi 2019 (https://arxiv.org/pdf/1909.11230.pdf) for more on this option. Try
running the previous command with various values (from 0.6 to higher values) to see this
option’s effect on this dataset. For this particularly huge galaxy (with signal that extends
very gradually into the noise), we will set it to 0.75:

$ astnoisechisel r.fits -h0 --tilesize=100,100 --erode=1 \

--detgrowquant=0.75

$ ds9 -mecube r_detected.fits -zscale -cmap sls -zoom to fit

Beyond this level (smaller --detgrowquant values), you see many of the smaller back-
ground galaxies (towards the right side of the image) starting to create thin spider-leg-like

https://arxiv.org/pdf/1505.01664.pdf
https://arxiv.org/pdf/1505.01664.pdf
https://arxiv.org/pdf/1909.11230.pdf
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features, showing that we are following correlated noise for too much. Please try it for
yourself by changing it to 0.6 for example.

When you look at the DETECTIONS extension of the command shown above, you see the
wings of the galaxy being detected much farther out, But you also see many holes which are
clearly just caused by noise. After growing the objects, NoiseChisel also allows you to fill
such holes when they are smaller than a certain size through the --detgrowmaxholesize

option. In this case, a maximum area/size of 10,000 pixels seems to be good:

$ astnoisechisel r.fits -h0 --tilesize=100,100 --erode=1 \

--detgrowquant=0.75 --detgrowmaxholesize=10000

$ ds9 -mecube r_detected.fits -zscale -cmap sls -zoom to fit

When looking at the raw input image (which is very “shallow”: less than a minute ex-
posure!), you do not see anything so far out of the galaxy. You might just think to yourself
that “this is all noise, I have just dug too deep and I’m following systematics”! If you feel
like this, have a look at the deep images of this system in Watkins 2015 (https://arxiv.
org/abs/1501.04599), or a 12 hour deep image of this system (with a 12-inch telescope):
https://i.redd.it/jfqgpqg0hfk11.jpg31. In these deeper images you clearly see how the
outer edges of the M51 group follow this exact structure, below in Section 2.2.5 [Achieved
surface brightness level], page 98, we will measure the exact level.

As the gradient in the SKY extension shows, and the deep images cited above confirm,
the galaxy’s signal extends even beyond this. But this is already far deeper than what most
(if not all) other tools can detect. Therefore, we will stop configuring NoiseChisel at this
point in the tutorial and let you play with the other options a little more, while reading
more about it in the papers: Akhlaghi and Ichikawa 2015 (https://arxiv.org/abs/1505.
01664) and 2019 (https://arxiv.org/abs/1909.11230) and Section 7.2 [NoiseChisel],
page 541. When you do find a better configuration feel free to contact us for feedback. Do
not forget that good data analysis is an art, so like a sculptor, master your chisel for a good
result.

To avoid typing all these options every time you run NoiseChisel on this image, you can
use Gnuastro’s configuration files, see Section 4.2 [Configuration files], page 268. For an
applied example of setting/using them, see Section 2.1.8 [Option management and config-
uration files], page 36.

31 The image is taken from this Reddit discussion: https://www.reddit.com/r/Astronomy/comments/

9d6x0q/12_hours_of_exposure_on_the_whirlpool_galaxy/

https://arxiv.org/abs/1501.04599
https://arxiv.org/abs/1501.04599
https://i.redd.it/jfqgpqg0hfk11.jpg
https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1909.11230
https://www.reddit.com/r/Astronomy/comments/9d6x0q/12_hours_of_exposure_on_the_whirlpool_galaxy/
https://www.reddit.com/r/Astronomy/comments/9d6x0q/12_hours_of_exposure_on_the_whirlpool_galaxy/
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� �
This NoiseChisel configuration is NOT GENERIC: Do not use the configuration derived
above, on another instrument’s image blindly. If you are unsure, just use the default
values. As you saw above, the reason we chose this particular configuration for NoiseChisel
to detect the wings of the M51 group was strongly influenced by the noise properties of
this particular image. Remember Section 2.1.11 [NoiseChisel optimization for detection],
page 42, where we looked into the very deep XDF image which had strong correlated
noise?

As long as your other images have similar noise properties (from the same data-
reduction step of the same instrument), you can use your configuration on any of them.
But for images from other instruments, please follow a similar logic to what was presented
in these tutorials to find the optimal configuration.
 	� �
Smart NoiseChisel: As you saw during this section, there is a clear logic behind the optimal
parameter value for each dataset. Therefore, we plan to add capabilities to (optionally)
automate some of the choices made here based on the actual dataset, please join us in
doing this if you are interested. However, given the many problems in existing “smart”
solutions, such automatic changing of the configuration may cause more problems than
they solve. So even when they are implemented, we would strongly recommend quality
checks for a robust analysis.
 	
2.2.3 Skewness caused by signal and its measurement

In the previous section (Section 2.2.2 [NoiseChisel optimization], page 83) we showed how
to customize NoiseChisel for a single-exposure SDSS image of the M51 group. During
the customization, we also discussed the skewness caused by signal. In the next section
(Section 2.2.4 [Image surface brightness limit], page 93), we will use this to measure the
surface brightness limit of the image. However, to better understand NoiseChisel and also,
the image surface brightness limit, understanding the skewness caused by signal, and how
to measure it properly are very important. Therefore now that we have separated signal
from noise, let’s pause for a moment and look into skewness, how signal creates it, and find
the best way to measure it.

Let’s start masking all the detected pixels found at the end of the previous section
(Section 2.2.2 [NoiseChisel optimization], page 83) and having a look at the noise distri-
bution with Gnuastro’s Arithmetic and Statistics programs as shown below (while visually
inspecting the masked image with DS9 in the middle).

$ astarithmetic r_detected.fits -hINPUT-NO-SKY set-in \

r_detected.fits -hDETECTIONS set-det \

in det nan where -odet-masked.fits

$ ds9 det-masked.fits

$ aststatistics det-masked.fits

You will see that Gnuastro’s Statistics program prints an ASCII histogram when no option
is given (it is shown below). This is done to give you a fast and easy view of the distribution
of values in the dataset (pixels in an image, or rows in a table’s column).
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-------

Input: det-masked.fits (hdu: 1)

-------

Number of elements: 903920

Minimum: -0.113543

Maximum: 0.130339

Median: -0.00216306

Mean: -0.0001893073877

Standard deviation: 0.02569057188

-------

Histogram:

| ** *

| * ** * *

| ** ** * *

| * ** ** ** *

| ** ** ** ** * **

| ** ** ** ** * ** *

| * ** ** ** ** * ** **

| ** ** ** ** **** ** ** *

| ** ** ** ** ** **** ** ** ** *

| ** ** ** ** ** ** ******* ** ** ** *

|*********** ** ** ** ******************* ** ** ** ** ***** ** ***** **

|----------------------------------------------------------------------

This histogram shows a roughly symmetric noise distribution, so let’s have a look at its
skewness. The most commonly used definition of skewness is known as the “Pearson’s first
skewness coefficient”. It measures the difference between the mean and median, in units of
the standard deviation (STD):

Skewness ≡ (mean−median)

STD

The logic behind this definition is simple: as more signal is added to the same pixels
that originally only have raw noise (skewness is increased), the mean shifts to the positive
faster than the median, so the distance between the mean and median should increase. Let’s
measure the skewness (as defined above) over the image without any signal. Its very easy
with Gnuastro’s Statistics program (and piping the output to AWK):

$ aststatistics det-masked.fits --mean --median --std \

| awk '{print ($1-$2)/$3}'

0.0768279

We see that the mean and median are only 0.08σ (rounded) away from each other (which is
very close)! All pixels with significant signal are masked, so this is expected, and everything
is fine. Now, let’s check the pixel distribution of the sky-subtracted input (where pixels with
significant signal remain, and are not masked):

$ ds9 r_detected.fits

$ aststatistics r_detected.fits -hINPUT-NO-SKY

-------
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Input: r_detected.fits (hdu: INPUT-NO-SKY)

Unit: nanomaggy

-------

Number of elements: 3049472

Minimum: -0.113543

Maximum: 159.25

Median: 0.0241158

Mean: 0.1057885317

Standard deviation: 0.698167489

-------

Histogram:

|*

|*

|*

|*

|*

|*

|*

|*

|*

|*

|******************************************* *** ** **** * * * * *

|----------------------------------------------------------------------

Comparing the distributions above, you can see that the minimum value of the image has
not changed because we have not masked the minimum values. However, as expected, the
maximum value of the image has changed (from 0.13 to 159.25). This is clearly evident
from the ASCII histogram: the distribution is very elongated because the galaxy inside the
image is extremely bright.

Now, let’s limit the displayed information with the --lessthan=0.13 option of Statistics
as shown below (to only use values less than 0.13; the maximum of the image where all
signal is masked).

$ aststatistics r_detected.fits -hINPUT-NO-SKY --lessthan=0.13

-------

Input: r_detected.fits (hdu: INPUT-NO-SKY)

Range: up to (exclusive) 0.13.

Unit: nanomaggy

-------

Number of elements: 2531949

Minimum: -0.113543

Maximum: 0.126233

Median: 0.0137138

Mean: 0.01735551527

Standard deviation: 0.03590550597

-------

Histogram:

| *
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| * ** **

| * * ** ** **

| * * ** ** ** *

| * ** * ** ** ** *

| ** ** * ** ** ** * *

| * ** ** * ** ** ** * *

| ** ** ** * ** ** ** ** * ** *

| * ** ** **** ** ** ** **** ** ** **

| * ** ** ** **** ** ** ** ******* ** ** ** * ** ** **

|***** ** ********** ** ** ********** ** ********** ** ************* **

|----------------------------------------------------------------------

The improvement is obvious: the ASCII histogram better shows the pixel values near the
noise level. We can now compare with the distribution of det-masked.fits that we found
earlier. The ASCII histogram of det-masked.fits was approximately symmetric, while
this is asymmetric in this range, especially in outer (to the right, or positive) direction.
The heavier right-side tail is a clear visual demonstration of skewness that is caused by the
signal in the un-masked image.

Having visually confirmed the skewness, let’s quantify it with Pearson’s first skewness
coefficient. Like before, we can simply use Gnuastro’s Statistics and AWK for the measure-
ment and calculation:

$ aststatistics r_detected.fits --mean --median --std \

| awk '{print ($1-$2)/$3}'

0.116982

The difference between the mean and median is now approximately 0.12σ. This is larger
than the skewness of the masked image (which was approximately 0.08σ). At a glance
(only looking at the numbers), it seems that there is not much difference between the two
distributions. However, visually looking at the non-masked image, or the ASCII histogram,
you would expect the quantified skewness to be much larger than that of the masked image,
but that has not happened! Why is that?

The reason is that the presence of signal does not only shift the mean and median, it
also increases the standard deviation! To see this for yourself, compare the standard devi-
ation of det-masked.fits (which was approximately 0.025) to r_detected.fits (without
--lessthan; which was approximately 0.699). The latter is almost 28 times larger!

This happens because the standard deviation is defined only in a symmetric (and Gaus-
sian) distribution. In a non-Gaussian distribution, the standard deviation is poorly defined
and is not a good measure of “width”. Since Pearson’s first skewness coefficient is defined
in units of the standard deviation, this very large increase in the standard deviation has
hidden the much increased distance between the mean and median after adding signal.

We therefore need a better unit or scale to quantify the distance between the mean and
median. A unit that is less affected by skewness or outliers. One solution that we have
found to be very useful is the quantile units or quantile scale. The quantile scale is defined
by first sorting the dataset (which has N elements). If we want the quantile of a value V
in a distribution, we first find the nearest data element to V in the sorted dataset. Let’s
assume the nearest element is the i-th element, counting from 0, after sorting. The quantile
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of V in that distribution is then defined as i/(N − 1) (which will have a value between 0
and 1).

The quantile of the median is obvious from its definition: 0.5. This is because the median
is defined to be the middle element of the distribution after sorting. We can therefore define
skewness as the quantile of the mean (qm). If qm ∼ 0.5 (the median), then the distribution
(of signal blended in noise) is symmetric (possibly Gaussian, but the functional form is
irrelevant here). A larger value for |qm − 0.5| quantifies a more skewed the distribution.
Furthermore, a qm > 0.5 signifies a positive skewness, while qm < 0.5 signifies a negative
skewness.

Let’s put this definition to a test on the same two images we have already created.
Fortunately Gnuastro’s Statistics program has the --quantofmean option to easily calculate
qm for you. So testing is easy:

$ aststatistics det-masked.fits --quantofmean

0.51295636

$ aststatistics r_detected.fits -hINPUT-NO-SKY --quantofmean

0.8105163158

The two quantiles of mean are now very distinctly different (0.51 and 0.81): differing by
about 0.3 (on a scale of 0 to 1)! Recall that when defining skewness with Pearson’s first skew-
ness coefficient, their difference was negligible (0.04σ)! You can now better appreciate why
we discussed quantile so extensively in Section 2.2.2 [NoiseChisel optimization], page 83. In
case you would like to know more about the usage of the quantile of the mean in Gnuastro,
please see Section 7.1.4.3 [Quantifying signal in a tile], page 522, or watch this video demon-
stration: https://peertube.stream/w/35b7c398-9fd7-4bcf-8911-1e01c5124585.

2.2.4 Image surface brightness limit

When your science is related to extended emission (like the example here) and you are
presenting your results in a scientific conference, usually the first thing that someone will
ask (if you do not explicitly say it!), is the dataset’s surface brightness limit (a standard
measure of the noise level), and your target’s surface brightness (a measure of the signal,
either in the center or outskirts, depending on context). For more on the basics of these
important concepts please see Section 7.4.3 [Quantifying measurement limits], page 578. So
in this section of the tutorial, we will measure these values for the single-exposure SDSS
image of the M51 group that we downloaded in Section 2.2.1 [Downloading and validating
input data], page 82.

Before measuring the surface brightness limit, let’s see how reliable our detection was. In
other words, let’s see how “clean” our noise is (after masking all detections, as described
previously in Section 2.2.3 [Skewness caused by signal and its measurement], page 89):

$ aststatistics det-masked.fits --quantofmean

0.5111848629

Showing that the mean is indeed very close to the median, although just about 1 quantile
larger. As we saw in Section 2.2.2 [NoiseChisel optimization], page 83, a very small residual
signal still remains in the undetected regions and this very small difference is a quantitative
measure of that undetected signal. It was up to you as an exercise to improve it, so we will
continue with this dataset.

https://peertube.stream/w/35b7c398-9fd7-4bcf-8911-1e01c5124585
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The surface brightness limit of the image can be measured from the masked image and
the equation in Section 7.4.3 [Quantifying measurement limits], page 578. Let’s do it for a
3σ surface brightness limit over an area of 25arcsec2:

$ nsigma=3

$ zeropoint=22.5

$ areaarcsec2=25

$ std=$(aststatistics det-masked.fits --sigclip-std)

$ pixarcsec2=$(astfits det-masked.fits --pixelscale --quiet \

| awk '{print $3*3600*3600}')

$ astarithmetic --quiet $nsigma $std x \

$areaarcsec2 $pixarcsec2 x \

sqrt / $zeropoint counts-to-mag

26.0241

The customizable steps above are good for any type of mask. For example, your field
of view may contain a very deep part so you need to mask all the shallow parts as well
as the detections before these steps. But when your image is flat (like this), there is a
much simpler method to obtain the same value through MakeCatalog (when the standard
deviation image is made by NoiseChisel). NoiseChisel has already calculated the minimum
(MINSTD), maximum (MAXSTD) and median (MEDSTD) standard deviation within the tiles
during its processing and has stored them as FITS keywords within the SKY_STD HDU.
You can see them by piping all the keywords in this HDU into grep. In Grep, each ‘.’
represents one character that can be anything so M..STD will match all three keywords
mentioned above.

$ astfits r_detected.fits --hdu=SKY_STD | grep 'M..STD'

The MEDSTD value is very similar to the standard deviation derived above, so we can
safely use it instead of having to mask and run Statistics.� �
MEDSTD is more reliable than the standard deviation of masked pixels: it may happen that
differences between these two become more significant than the experiment above. In such
cases, the MEDSTD is more reliable because NoiseChisel estimates it within the tiles and
after several steps of outlier rejection (for example due to un-detected signal) and before
interpolation. Whereas the standard deviation of the masked image is calculated based on
the final detection, does no higher-level outlier rejection and is based on the interpolated
image. Therefore, it can be easily biased by signal or artifacts in the image and besides
being easier to measure, MEDSTD is also more statistically robust.
 	

Fortunately, MakeCatalog will use this keyword and will report the dataset’s nσ surface
brightness limit as keywords in the output (not as measurement columns, since it is related
to the noise, not labeled signal) as described below.

$ astmkcatalog r_detected.fits -hDETECTIONS --output=sbl.fits \

--forcereadstd --ids

Before looking into the measured surface brightness limits, let’s review some important
points about this call to MakeCatalog first:

• We are only concerned with the noise (not the signal), so we do not ask for any further
measurements, because they can un-necessarily slow it down. However, MakeCatalog
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requires at least one column, so we will only ask for the --ids column (which does not
need any measurement!). The output catalog will therefore have a single row and a
single column, with 1 as its value32.

• If we do not ask for any noise-related column (for example, the signal-to-noise ratio
column with --sn, among other noise-related columns), MakeCatalog is not going
to read the noise standard deviation image (again, to speed up its operation when
it is redundant). We are thus using the --forcereadstd option (short for “force
read standard deviation image”) here so it is ready for the surface brightness limit
measurements that are written as keywords.

With the command below you can see all the keywords that were measured with the
table. Notice the group of keywords that are under the “Surface brightness limit (SBL)”
title.

$ astfits sbl.fits -h1

Since all the keywords of interest here start with SBL, we can get a more cleaner view with
this command.

$ astfits sbl.fits -h1 | grep ^SBL

Notice how the SBLSTD has the same value as NoiseChisel’s MEDSTD above. Using SBLSTD,
MakeCatalog has determined the nσ surface brightness limiting magnitude in these header
keywords. The multiple of σ, or n, is the value of the SBLNSIG keyword which you can
change with the --sfmagnsigma. The surface brightness limiting magnitude within a pixel
(SBLNSIG) and within a pixel-agnostic area of SBLAREA arcsec2 are stored in SBLMAG.

You will notice that the two surface brightness limiting magnitudes above have values
around 3 and 4 (which is not correct!). This is because we have not given a zero point
magnitude to MakeCatalog, so it uses the default value of 0. SDSS image pixel values are
calibrated in units of “nanomaggy” which are defined to have a zero point magnitude of
22.533. So with the first command below we give the zero point value and with the second
we can see the surface brightness limiting magnitudes with the correct values (around 25
and 26)

$ astmkcatalog r_detected.fits -hDETECTIONS --zeropoint=22.5 \

--output=sbl.fits --forcereadstd --ids

$ astfits sbl.fits -h1 | grep ^SBL

As you see from SBLNSIG and SBLAREA, the default multiple of sigma is 1 and the default
area is 1 arcsec2. Usually higher values are used for these two parameters. Following the
manual example we did above, you can ask for the multiple of sigma to be 3 and the area
to be 25 arcsec2:

$ astmkcatalog r_detected.fits -hDETECTIONS --zeropoint=22.5 \

--output=sbl.fits --sfmagarea=25 --sfmagnsigma=3 \

--forcereadstd --ids

$ astfits sbl.fits -h1 | awk '/^SBLMAG /{print $3}'

26.02296

32 Recall that NoiseChisel’s output is a binary image: 0-valued pixels are noise and 1-valued pixel are signal.
NoiseChisel does not identify sub-structure over the signal, this is the job of Segment, see Section 2.2.6
[Extract clumps and objects (Segmentation)], page 100.

33 From https://www.sdss.org/dr12/algorithms/magnitudes

https://www.sdss.org/dr12/algorithms/magnitudes
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You see that the value is identical to the custom surface brightness limiting magnitude
we measured above (a difference of 0.00114 magnitudes is negligible and hundreds of times
larger than the typical errors in the zero point magnitude or magnitude measurements).
But it is much more easier to have MakeCatalog do this measurement, because these values
will be appended (as keywords) into your final catalog of objects within that image.� �
Custom STD for MakeCatalog’s Surface brightness limit: You can manually change/set
the value of the MEDSTD keyword in your input STD image with Section 5.1 [Fits], page 295:

$ std=$(aststatistics masked.fits --sigclip-std)

$ astfits noisechisel.fits -hSKY_STD --update=MEDSTD,$std

With this change, MakeCatalog will use your custom standard deviation for the surface
brightness limit. This is necessary in scenarios where your image has multiple depths and
during your masking, you also mask the shallow regions (as well as the detections of
course).
 	

We have successfully measured the image’s 3σ surface brightness limiting magnitude
over 25 arcsec2. However, as discussed in Section 7.4.3 [Quantifying measurement limits],
page 578, this value is just an extrapolation of the per-pixel standard deviation. Issues like
correlated noise will cause the real noise over a large area to be different. So for a more
robust measurement, let’s use the upper-limit magnitude of similarly sized region. For
more on the upper-limit magnitude, see the respective item in Section 7.4.3 [Quantifying
measurement limits], page 578.

In summary, the upper-limit measurements involve randomly placing the footprint of an
object in undetected parts of the image many times. This results in a random distribution
of brightness measurements, the standard deviation of that distribution is then converted
into magnitudes. To be comparable with the results above, let’s make a circular aperture
that has an area of 25 arcsec2 (thus with a radius of 2.82095 arcsec).

zeropoint=22.5

r_arcsec=2.82095

## Convert the radius (in arcseconds) to pixels.

r_pixel=$(astfits r_detected.fits --pixelscale -q \

| awk '{print '$r_arcsec'/($1*3600)}')

## Make circular aperture at pixel (100,100) position is irrelevant.

echo "1 100 100 5 $r_pixel 0 0 1 1 1" \

| astmkprof --background=r_detected.fits \

--clearcanvas --mforflatpix --type=uint8 \

--output=lab.fits

## Do the upper-limit measurement, ignoring all NoiseChisel's

## detections as a mask for the upper-limit measurements.

astmkcatalog lab.fits -h1 --zeropoint=$zeropoint -osbl.fits \

--sfmagarea=25 --sfmagnsigma=3 --forcereadstd \

--valuesfile=r_detected.fits --valueshdu=INPUT-NO-SKY \
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--upmaskfile=r_detected.fits --upmaskhdu=DETECTIONS \

--upnsigma=3 --checkuplim=1 --upnum=1000 \

--ids --upperlimit-sb

The sbl.fits catalog now contains the upper-limit surface brightness for a circle with
an area of 25 arcsec2. You can check the value with the command below, but the great
thing is that now you have both of the surface brightness limiting magnitude in the headers
discussed above, and the upper-limit surface brightness within the table. You can also
add more profiles with different shapes and sizes if necessary. Of course, you can also use
--upperlimit-sb in your actual science objects and clumps to get an object-specific or
clump-specific value.

$ asttable sbl.fits -cUPPERLIMIT_SB

25.9119

You will get a slightly different value from the command above. In fact, if you run the
MakeCatalog command again and look at the measured upper-limit surface brightness, it
will be slightly different with your first trial! Please try exactly the same MakeCatalog
command above a few times to see how it changes.

This is because of the random factor in the upper-limit measurements: every time you
run it, different random points will be checked, resulting in a slightly different distribution.
You can decrease the random scatter by increasing the number of random checks (for
example, setting --upnum=100000, compared to 1000 in the command above). But this
will be slower and the results will not be exactly reproducible. The only way to ensure you
get an identical result later is to fix the random number generator function and seed like the
command below34. This is a very important point regarding any statistical process involving
random numbers, please see Section 6.2.3.4 [Generating random numbers], page 406.

export GSL_RNG_TYPE=ranlxs1

export GSL_RNG_SEED=1616493518

astmkcatalog lab.fits -h1 --zeropoint=$zeropoint -osbl.fits \

--sfmagarea=25 --sfmagnsigma=3 --forcereadstd \

--valuesfile=r_detected.fits --valueshdu=INPUT-NO-SKY \

--upmaskfile=r_detected.fits --upmaskhdu=DETECTIONS \

--upnsigma=3 --checkuplim=1 --upnum=1000 \

--ids --upperlimit-sb --envseed

But where do all the random apertures of the upper-limit measurement fall on the image?
It is good to actually inspect their location to get a better understanding for the process and
also detect possible bugs/biases. When MakeCatalog is run with the --checkuplim option,
it will print all the random locations and their measured brightness as a table in a file with
the suffix _upcheck.fits. With the first command below you can use Gnuastro’s asttable
and astscript-ds9-region to convert the successful aperture locations into a DS9 region
file, and with the second can load the region file into the detections and sky-subtracted
image to visually see where they are.

## Create a DS9 region file from the check table (activated

## with '--checkuplim')

asttable sbl_upcheck.fits --noblank=RANDOM_SUM \

34 You can use any integer for the seed. One recommendation is to run MakeCatalog without --envseed
once and use the randomly generated seed that is printed on the terminal.
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| astscript-ds9-region -c1,2 --mode=img \

--radius=$r_pixel

## Have a look at the regions in relation with NoiseChisel's

## detections.

ds9 r_detected.fits[INPUT-NO-SKY] -regions load ds9.reg

ds9 r_detected.fits[DETECTIONS] -regions load ds9.reg

In this example, we were looking at a single-exposure image that has no correlated
noise. Because of this, the surface brightness limit and the upper-limit surface brightness
are very close. They will have a bigger difference on deep datasets with stronger correlated
noise (that are the result of stacking many individual exposures). As an exercise, please
try measuring the upper-limit surface brightness level and surface brightness limit for the
deep HST data that we used in the previous tutorial (Section 2.1 [General program usage
tutorial], page 23).

2.2.5 Achieved surface brightness level

In Section 2.2.2 [NoiseChisel optimization], page 83, we customized NoiseChisel for a single-
exposure SDSS image of the M51 group and in Section 2.2.4 [Image surface brightness limit],
page 93, we measured the surface brightness limit and the upper-limit surface brightness
level (which are both measures of the noise level). In this section, let’s do some mea-
surements on the outer-most edges of the M51 group to see how they relate to the noise
measurements found in the previous section.

For this measurement, we will need to estimate the average flux on the outer edges of the
detection. Fortunately all this can be done with a few simple commands using Section 6.2
[Arithmetic], page 399, and Section 7.4 [MakeCatalog], page 572. First, let’s separate each
detected region, or give a unique label/counter to all the connected pixels of NoiseChisel’s
detection map with the command below. Recall that with the set- operator, the popped
operand will be given a name (det in this case) for easy usage later.

$ astarithmetic r_detected.fits -hDETECTIONS set-det \

det 2 connected-components -olabeled.fits

You can find the label of the main galaxy visually (by opening the image and hovering
your mouse over the M51 group’s label). But to have a little more fun, let’s do this auto-
matically (which is necessary in a general scenario). The M51 group detection is by far the
largest detection in this image, this allows us to find its ID/label easily. We will first run
MakeCatalog to find the area of all the labels, then we will use Table to find the ID of the
largest object and keep it as a shell variable (id):

# Run MakeCatalog to find the area of each label.

$ astmkcatalog labeled.fits --ids --geo-area -h1 -ocat.fits

## Sort the table by the area column.

$ asttable cat.fits --sort=AREA_FULL

## The largest object, is the last one, so we will use '--tail'.

$ asttable cat.fits --sort=AREA_FULL --tail=1

## We only want the ID, so let's only ask for that column:
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$ asttable cat.fits --sort=AREA_FULL --tail=1 --column=OBJ_ID

## Now, let's put this result in a variable (instead of printing)

$ id=$(asttable cat.fits --sort=AREA_FULL --tail=1 --column=OBJ_ID)

## Just to confirm everything is fine.

$ echo $id

We can now use the id variable to reject all other detections:

$ astarithmetic labeled.fits $id eq -oonly-m51.fits

Open the image and have a look. To separate the outer edges of the detections, we will
need to “erode” the M51 group detection. So in the same Arithmetic command as above,
we will erode three times (to have more pixels and thus less scatter), using a maximum
connectivity of 2 (8-connected neighbors). We will then save the output in eroded.fits.

$ astarithmetic labeled.fits $id eq 2 erode 2 erode 2 erode \

-oeroded.fits

In labeled.fits, we can now set all the 1-valued pixels of eroded.fits to 0 using Arith-
metic’s where operator added to the previous command. We will need the pixels of the
M51 group in labeled.fits two times: once to do the erosion, another time to find the
outer pixel layer. To do this (and be efficient and more readable) we will use the set-i

operator (to give this image the name ‘i’). In this way we can use it any number of times
afterwards, while only reading it from disk and finding M51’s pixels once.

$ astarithmetic labeled.fits $id eq set-i i \

i 2 erode 2 erode 2 erode 0 where -oedge.fits

Open the image and have a look. You’ll see that the detected edge of the M51 group is
now clearly visible. You can use edge.fits to mark (set to blank) this boundary on the
input image and get a visual feeling of how far it extends:

$ astarithmetic r.fits -h0 edge.fits nan where -oedge-masked.fits

To quantify how deep we have detected the low-surface brightness regions (in units of
signal to-noise ratio), we will use the command below. In short it just divides all the
non-zero pixels of edge.fits in the Sky subtracted input (first extension of NoiseChisel’s
output) by the pixel standard deviation of the same pixel. This will give us a signal-to-noise
ratio image. The mean value of this image shows the level of surface brightness that we
have achieved. You can also break the command below into multiple calls to Arithmetic and
create temporary files to understand it better. However, if you have a look at Section 6.2.1
[Reverse polish notation], page 399, and Section 6.2.4 [Arithmetic operators], page 408, you
should be able to easily understand what your computer does when you run this command35.

$ astarithmetic edge.fits -h1 set-edge \

35 edge.fits (extension 1) is a binary (0 or 1 valued) image. Applying the not operator on it, just
flips all its pixels (from 0 to 1 and vice-versa). Using the where operator, we are then setting all
the newly 1-valued pixels (pixels that are not on the edge) to NaN/blank in the sky-subtracted input
image (r_detected.fits, extension INPUT-NO-SKY, which we call skysub). We are then dividing all the
non-blank pixels (only those on the edge) by the sky standard deviation (r_detected.fits, extension
SKY_STD, which we called skystd). This gives the signal-to-noise ratio (S/N) for each of the pixels on
the boundary. Finally, with the meanvalue operator, we are taking the mean value of all the non-blank
pixels and reporting that as a single number.
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r_detected.fits -hSKY_STD set-skystd \

r_detected.fits -hINPUT-NO-SKY set-skysub \

skysub skystd / edge not nan where meanvalue --quiet

We have thus detected the wings of the M51 group down to roughly 1/3rd of the noise
level in this image which is a very good achievement! But the per-pixel S/N is a relative
measurement. Let’s also measure the depth of our detection in absolute surface brightness
units; or magnitudes per square arc-seconds (see Section 7.4.2 [Brightness, Flux, Magnitude
and Surface brightness], page 574). We will also ask for the S/N and magnitude of the full
edge we have defined. Fortunately doing this is very easy with Gnuastro’s MakeCatalog:

$ astmkcatalog edge.fits -h1 --valuesfile=r_detected.fits \

--zeropoint=22.5 --ids --sb --sn --magnitude

$ asttable edge_cat.fits

1 25.6971 55.2406 15.8994

We have thus reached an outer surface brightness of 25.70 magnitudes/arcsec2 (second
column in edge_cat.fits) on this single exposure SDSS image! This is very similar to the
surface brightness limit measured in Section 2.2.4 [Image surface brightness limit], page 93,
(which is a big achievement!). But another point in the result above is very interesting:
the total S/N of the edge is 55.24 with a total edge magnitude36 of 15.90!!! This is very
large for such a faint signal (recall that the mean S/N per pixel was 0.32) and shows a very
important point in the study of galaxies: While the per-pixel signal in their outer edges
may be very faint (and invisible to the eye in noise), a lot of signal hides deeply buried in
the noise.

In interpreting this value, you should just have in mind that NoiseChisel works based on
the contiguity of signal in the pixels. Therefore the larger the object, the deeper NoiseChisel
can carve it out of the noise (for the same outer surface brightness). In other words, this
reported depth, is the depth we have reached for this object in this dataset, processed with
this particular NoiseChisel configuration. If the M51 group in this image was larger/smaller
than this (the field of view was smaller/larger), or if the image was from a different instru-
ment, or if we had used a different configuration, we would go deeper/shallower.

2.2.6 Extract clumps and objects (Segmentation)

In Section 2.2.2 [NoiseChisel optimization], page 83, we found a good detection map over the
image, so pixels harboring signal have been differentiated from those that do not. For noise-
related measurements like the surface brightness limit, this is fine. However, after finding
the pixels with signal, you are most likely interested in knowing the sub-structure within
them. For example, how many star forming regions (those bright dots along the spiral
arms) of M51 are within this image? What are the colors of each of these star forming
regions? In the outer most wings of M51, which pixels belong to background galaxies and
foreground stars? And many more similar questions. To address these questions, you can
use Section 7.3 [Segment], page 561, to identify all the “clumps” and “objects” over the
detection.

$ astsegment r_detected.fits --output=r_segmented.fits

$ ds9 -mecube r_segmented.fits -cmap sls -zoom to fit -scale limits 0 2

36 You can run MakeCatalog on only-m51.fits instead of edge.fits to see the full magnitude of the M51
group in this image.
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Open the output r_segmented.fits as a multi-extension data cube with the second
command above and flip through the first and second extensions, zoom-in to the spiral
arms of M51 and see the detected clumps (all pixels with a value larger than 1 in the second
extension). To optimize the parameters and make sure you have detected what you wanted,
we recommend to visually inspect the detected clumps on the input image.

For visual inspection, you can make a simple shell script like below. It will first call
MakeCatalog to estimate the positions of the clumps, then make an SAO DS9 region file
and open ds9 with the image and region file. Recall that in a shell script, the numeric
variables (like $1, $2, and $3 in the example below) represent the arguments given to the
script. But when used in the AWK arguments, they refer to column numbers.

To create the shell script, using your favorite text editor, put the contents below into a
file called check-clumps.sh. Recall that everything after a # is just comments to help you
understand the command (so read them!). Also note that if you are copying from the PDF
version of this book, fix the single quotes in the AWK command.

#! /bin/bash

set -e # Stop execution when there is an error.

set -u # Stop execution when a variable is not initialized.

# Run MakeCatalog to write the coordinates into a FITS table.

# Default output is `$1_cat.fits'.

astmkcatalog $1.fits --clumpscat --ids --ra --dec

# Use Gnuastro's Table and astscript-ds9-region to build the DS9

# region file (a circle of radius 1 arcseconds on each point).

asttable $1"_cat.fits" -hCLUMPS -cRA,DEC \

| astscript-ds9-region -c1,2 --mode=wcs --radius=1 \

--output=$1.reg

# Show the image (with the requested color scale) and the region file.

ds9 -geometry 1800x3000 -mecube $1.fits -zoom to fit \

-scale limits $2 $3 -regions load all $1.reg

# Clean up (delete intermediate files).

rm $1"_cat.fits" $1.reg

Finally, you just have to activate the script’s executable flag with the command below. This
will enable you to directly/easily call the script as a command.

$ chmod +x check-clumps.sh

This script does not expect the .fits suffix of the input’s filename as the first argument.
Because the script produces intermediate files (a catalog and DS9 region file, which are later
deleted). However, we do not want multiple instances of the script (on different files in the
same directory) to collide (read/write to the same intermediate files). Therefore, we have
used suffixes added to the input’s name to identify the intermediate files. Note how all the
$1 instances in the commands (not within the AWK command37) are followed by a suffix.
If you want to keep the intermediate files, put a # at the start of the last line.

37 In AWK, $1 refers to the first column, while in the shell script, it refers to the first argument.
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The few, but high-valued, bright pixels in the central parts of the galaxies can hinder easy
visual inspection of the fainter parts of the image. With the second and third arguments
to this script, you can set the numerical values of the color map (first is minimum/black,
second is maximum/white). You can call this script with any38 output of Segment (when
--rawoutput is not used) with a command like this:

$ ./check-clumps.sh r_segmented -0.1 2

Go ahead and run this command. You will see the intermediate processing being done
and finally it opens SAO DS9 for you with the regions superimposed on all the extensions
of Segment’s output. The script will only finish (and give you control of the command-line)
when you close DS9. If you need your access to the command-line before closing DS9, add
a & after the end of the command above.

While DS9 is open, slide the dynamic range (values for black and white, or mini-
mum/maximum values in different color schemes) and zoom into various regions of the
M51 group to see if you are satisfied with the detected clumps. Do not forget that through
the “Cube” window that is opened along with DS9, you can flip through the extensions and
see the actual clumps also. The questions you should be asking yourself are these: 1) Which
real clumps (as you visually feel) have been missed? In other words, is the completeness
good? 2) Are there any clumps which you feel are false? In other words, is the purity good?

Note that completeness and purity are not independent of each other, they are anti-
correlated: the higher your purity, the lower your completeness and vice-versa. You can see
this by playing with the purity level using the --snquant option. Run Segment as shown
above again with -P and see its default value. Then increase/decrease it for higher/lower
purity and check the result as before. You will see that if you want the best purity, you
have to sacrifice completeness and vice versa.

One interesting region to inspect in this image is the many bright peaks around the
central parts of M51. Zoom into that region and inspect how many of them have actually
been detected as true clumps. Do you have a good balance between completeness and
purity? Also look out far into the wings of the group and inspect the completeness and
purity there.

An easier way to inspect completeness (and only completeness) is to mask all the pixels
detected as clumps and visually inspecting the rest of the pixels. You can do this using
Arithmetic in a command like below. For easy reading of the command, we will define the
shell variable i for the image name and save the output in masked.fits.

$ in="r_segmented.fits -hINPUT-NO-SKY"

$ clumps="r_segmented.fits -hCLUMPS"

$ astarithmetic $in $clumps 0 gt nan where -oclumps-masked.fits

Inspecting clumps-masked.fits, you can see some very diffuse peaks that have been
missed, especially as you go farther away from the group center and into the diffuse wings.
This is due to the fact that with this configuration, we have focused more on the sharper
clumps. To put the focus more on diffuse clumps, you can use a wider convolution kernel.

38 Some modifications are necessary based on the input dataset: depending on the dynamic range, you
have to adjust the second and third arguments. But more importantly, depending on the dataset’s world
coordinate system, you have to change the region width, in the AWK command. Otherwise the circle
regions can be too small/large.
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Using a larger kernel can also help in detecting the existing clumps to fainter levels (thus
better separating them from the surrounding diffuse signal).

You can make any kernel easily using the --kernel option in Section 8.1 [MakeProfiles],
page 629. But note that a larger kernel is also going to wash-out many of the sharp/small
clumps close to the center of M51 and also some smaller peaks on the wings. Please
continue playing with Segment’s configuration to obtain a more complete result (while
keeping reasonable purity). We will finish the discussion on finding true clumps at this
point.

The properties of the clumps within M51, or the background objects can then easily
be measured using Section 7.4 [MakeCatalog], page 572. To measure the properties of the
background objects (detected as clumps over the diffuse region), you should not mask the
diffuse region. When measuring clump properties with Section 7.4 [MakeCatalog], page 572,
and using the --clumpscat, the ambient flux (from the diffuse region) is calculated and
subtracted. If the diffuse region is masked, its effect on the clump brightness cannot be
calculated and subtracted.

To keep this tutorial short, we will stop here. See Section 2.1.13 [Segmentation and
making a catalog], page 48, and Section 7.3 [Segment], page 561, for more on using Segment,
producing catalogs with MakeCatalog and using those catalogs.

2.3 Building the extended PSF

Deriving the extended PSF of an image is very important in many aspects of the analysis of
the objects within it. Gnuastro has a set of installed scripts, designed to simplify the process
following the recipe of Infante-Sainz et al. 2020 (https://arxiv.org/abs/1911.01430);
for more, see Section 10.8 [PSF construction and subtraction], page 700. An overview of
the process is given in Section 10.8.1 [Overview of the PSF scripts], page 701.

2.3.1 Preparing input for extended PSF

We will use an image of the M51 galaxy group in the r (SDSS) band of the Javalambre
Photometric Local Universe Survey (J-PLUS) to extract its extended PSF. For more infor-
mation on J-PLUS, and its unique features visit: http://www.j-plus.es.

First, let’s download the image from the J-PLUS web page using wget. But to have a
generalize-able, and easy to read command, we will define some base variables (in all-caps)
first. After the download is complete, open the image with SAO DS9 (or any other FITS
viewer you prefer!) to have a feeling of the data (and of course, enjoy the beauty of M51 in
such a wide field of view):

$ urlend="jplus-dr2/get_fits?id=67510"

$ urlbase="http://archive.cefca.es/catalogues/vo/siap/"

$ mkdir jplus-dr2

$ wget $urlbase$urlend -O jplus-dr2/67510.fits.fz

$ astscript-fits-view jplus-dr2/67510.fits.fz

After enjoying the large field of view, have a closer look at the edges of the image. Please
zoom in to the corners. You will see that on the edges, the pixel values are either zero or
with significantly different values than the main body of the image. This is due to the

https://arxiv.org/abs/1911.01430
http://www.j-plus.es
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dithering pattern that was used to make this image and happens in all imaging surveys39.
To avoid potential issues or problems that these regions may cause, we will first crop out
the main body of the image with the command below. To keep the top-level directory clean,
let’s also put the crop in a directory called flat.

$ mkdir flat

$ astcrop jplus-dr2/67510.fits.fz --section=225:9275,150:9350 \

--mode=img -oflat/67510.fits

$ astscript-fits-view flat/67510.fits

Please zoom into the edges again, you will see that they now have the same noise-level as
the rest of the image (the problematic parts are now gone).

2.3.2 Saturated pixels and Segment’s clumps

A constant-depth (flat) image was created in the previous section (Section 2.3.1 [Preparing
input for extended PSF], page 103). As explained in Section 10.8.1 [Overview of the PSF
scripts], page 701, an important step when building the PSF is to mask other sources in the
image. Therefore, before going onto selecting stars, let’s detect all significant signal, and
identify the clumps of background objects over the wings of the extended PSF.

There is a problem however: the saturated pixels of the bright stars are going to cause
problems in the segmentation phase. To see this problem, let’s make a 1000 × 1000 crop
around a bright star to speed up the test (and its solution). Afterwards we will apply the
solution to the whole image.

$ astcrop flat/67510.fits --mode=wcs --widthinpix --width=1000 \

--center=203.3916736,46.7968652 --output=saturated.fits

$ astnoisechisel saturated.fits --output=sat-nc.fits

$ astsegment sat-nc.fits --output=sat-seg.fits

$ astscript-fits-view sat-seg.fits

Have a look at the CLUMPS extension. You will see that instead of a single clump at the
center of the bright star, we have many clumps! This has happened because of the saturated
pixels! When saturation occurs, the sharp peak of the profile is lost (like cutting off the tip
of a mountain to build a telescope!) and all saturated pixels get a noisy value close to the
saturation level. To see this saturation noise run the last command again and in SAO DS9,
set the “Scale” to “min max” and zoom into the center. You will see the noisy saturation
pixels at the center of the star in red.

This noise-at-the-peak disrupts Segment’s assumption to expand clumps from a local
maxima: each noisy peak is being treated as a separate local maxima and thus a separate
clump. For more on how Segment defines clumps, see Section 3.2.1 and Figure 8 of Akhlaghi
and Ichikawa 2015 (https://arxiv.org/abs/1505.01664). To have the center identified
as a single clump, we should mask these saturated pixels in a way that suites Segment’s
non-parametric methodology.

First we need to find the saturation level! The saturation level is usually fixed for any
survey or input data that you receive from a certain database, so you will usually have to do
this only once (the first time you get data from that database). Let’s make a smaller crop
of 50× 50 pixels around the star with the first command below. With the next command,

39 Recall the cropping in a previous tutorial for a similar reason (varying “depth” across the image):
Section 2.1.4 [Dataset inspection and cropping], page 26.

https://arxiv.org/abs/1505.01664
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please look at the crop with DS9 to visually understand the problem. You will see the
saturated pixels as the noisy red pixels in the center of the image. A non-saturated star will
have a single pixel as the maximum and will not have such a large area covered by a noisy
constant value (find a few stars in the image and see for yourself). Visual and qualitative
inspection of the process is very important for understanding the solution.

$ astcrop saturated.fits --mode=wcs --widthinpix --width=50 \

--center=203.3916736,46.7968652 --output=sat-center.fits

$ astscript-fits-view sat-center.fits --ds9scale=minmax

To quantitatively identify the saturation level in this image, let’s have a look at the distri-
bution of pixels with a value larger than 100 (above the noise level):

$ aststatistics sat-center.fits --greaterequal=100

Histogram:

|*

|*

|*

|*

|* *

|** *

|*** **

|**** **

|****** ****

|********** * * * ******

|************************* ************ * *** ******* *** ************

|----------------------------------------------------------------------

The peak you see in the right end (larger values) of the histogram shows the saturated
pixels (a constant level, with some scatter due to the large Poisson noise). If there was no
saturation, the number of pixels should have decreased at increasing values; until reaching
the maximum value of the profile in one pixel. But that is not the case here. Please try
this experiment on a non-saturated (fainter) star to see what we mean.

If you still have not experimented on a non-saturated star, please stop reading this
tutorial! Please open flat/67510.fits in DS9, select a fainter/smaller star and repeat the
last three commands (with a different center). After you have confirmed the point above
(visually, and with the histogram), please continue with the rest of this tutorial.

Finding the saturation level is easy with Statistics (by using the --lessthan option until
the histogram becomes as expected: only decreasing). First, let’s try --lessthan=3000:

$ aststatistics sat-center.fits --greaterequal=100 --lessthan=3000

-------

Histogram:

|*

|*

|*

|*

|*

|**

|*** *
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|**** *

|******* **

|*********** * * * * * * * ****

|************************* * ***** ******* ***** ** ***** * ********

|----------------------------------------------------------------------

We still see an increase in the histogram around 3000. Let’s try a threshold of 2500:

$ aststatistics sat-center.fits --greaterequal=100 --lessthan=2500

-------

Histogram:

|*

|*

|**

|**

|**

|**

|****

|*****

|*********

|************* * * * *

|********************************* ** ** ** *** ** * **** ** *****

|----------------------------------------------------------------------

The peak at the large end of the histogram has gone! But let’s have a closer look at the
values (the resolution of an ASCII histogram is limited!). To do this, we will ask Statistics
to save the histogram into a table with the --histogram option, then look at the last 20
rows:

$ aststatistics sat-center.fits --greaterequal=100 --lessthan=2500 \

--histogram --output=sat-center-hist.fits

$ asttable sat-center-hist.fits --tail=20

2021.1849112701 1

2045.0495397186 0

2068.9141681671 1

2092.7787966156 1

2116.6434250641 0

2140.5080535126 0

2164.3726819611 0

2188.2373104095 0

2212.101938858 1

2235.9665673065 1

2259.831195755 2

2283.6958242035 0

2307.560452652 0

2331.4250811005 1

2355.289709549 1

2379.1543379974 1

2403.0189664459 2

2426.8835948944 1
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2450.7482233429 2

2474.6128517914 2

Since the number of points at the extreme end are increasing (from 1 to 2), We therefore
see that a value 2500 is still above the saturation level (the number of pixels has started to
increase)! A more reasonable saturation level for this image would be 2200! As an exercise,
you can try automating this selection with AWK.

Therefore, we can set the saturation level in this image40 to be 2200. Let’s mask all such
pixels with the command below:

$ astarithmetic saturated.fits set-i i i 2200 gt nan where \

--output=sat-masked.fits

$ astscript-fits-view sat-masked.fits --ds9scale=minmax

Please see the peaks of several bright stars, not just the central very bright star. Zoom
into each of the peaks you see. Besides the central very bright one that we were looking
at closely until now, only one other star is saturated (its center is NaN, or Not-a-Number).
Try to find it.

But we are not done yet! Please zoom-in to that central bright star and have another look
on the edges of the vertical “bleeding” saturated pixels, there are strong positive/negative
values touching it (almost like “waves”). These will also cause problems and have to be
masked! So with a small addition to the previous command, let’s dilate the saturated
regions (with 2-connectivity, or 8-connected neighbors) four times and have another look:

$ astarithmetic saturated.fits set-i i i 2200 gt \

2 dilate 2 dilate 2 dilate 2 dilate \

nan where --output=sat-masked.fits

$ astscript-fits-view sat-masked.fits --ds9scale=minmax

Now that saturated pixels (and their problematic neighbors) have been masked, we can
convolve the image (recall that Segment will use the convolved image for identifying clumps)
with the command below. However, we will use the Spatial Domain convolution which can
account for blank pixels (for more on the pros and cons of spatial and frequency domain
convolution, see Section 6.3.3 [Spatial vs. Frequency domain], page 487). We will also
create a Gaussian kernel with FWHM = 2 pixels, truncated at 5× FWHM.

$ astmkprof --kernel=gaussian,2,5 --oversample=1 -okernel.fits

$ astconvolve sat-masked.fits --kernel=kernel.fits --domain=spatial \

--output=sat-masked-conv.fits

$ astscript-fits-view sat-masked-conv.fits --ds9scale=minmax

Please zoom-in to the star and look closely to see how after spatial-domain convolution, the
problematic pixels are still NaN. But Segment requires the profile to start with a maximum
value and decrease. So before feeding into Segment, let’s fill the blank values with the
maximum value of the neighboring pixels in both the input and convolved images (see
Section 6.2.4.10 [Interpolation operators], page 428):

$ astarithmetic sat-masked.fits 2 interpolate-maxofregion \

--output=sat-fill.fits

40 In raw exposures, this value is usually around 65000 (close to 216, since most CCDs have 16-bit pixels;
see Section 4.5 [Numeric data types], page 277). But that is not the case here, because this is a
processed/stacked image that has been calibrated.
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$ astarithmetic sat-masked-conv.fits 2 interpolate-maxofregion \

--output=sat-fill-conv.fits

$ astscript-fits-view sat-fill* --ds9scale=minmax

Have a closer look at the opened images. Please zoom-in (you will notice that they are
already matched and locked, so they will both zoom-in together). Go to the centers of the
saturated stars and confirm how they are filled with the largest non-blank pixel. We can
now feed this image to NoiseChisel and Segment as the convolved image:

$ astnoisechisel sat-fill.fits --convolved=sat-fill-conv.fits \

--output=sat-nc.fits

$ astsegment sat-nc.fits --convolved=sat-fill-conv.fits \

--output=sat-seg.fits --rawoutput

$ ds9 -mecube sat-seg.fits -zoom to fit -scale limits -1 1

See the CLUMPS extension. Do you see how the whole center of the star has indeed been
identified as a single clump? We thus achieved our aim and did not let the saturated pixels
harm the identification of the center!

If the issue was only clumps (like in a normal deep image processing), this was the end
of Segment’s special considerations. However, in the scenario here, with the very extended
wings of the bright stars, it usually happens that background objects become “clumps”
in the outskirts and will rip the bright star outskirts into separate “objects”. In the next
section (Section 2.3.3 [One object for the whole detection], page 108), we will describe how
you can modify Segment to avoid this issue.

2.3.3 One object for the whole detection

In Section 2.3.2 [Saturated pixels and Segment’s clumps], page 104, we described how you
can run Segment such that saturated pixels do not interfere with its clumps. However, due
to the very extended wings of the PSF, the default definition of “objects” should also be
modified for the scenario here. To better see the problem, let’s inspect now the OBJECTS

extension, focusing on those objects with a label between 50 to 150 (which include the main
star):

$ astscript-fits-view sat-seg.fits -hOBJECTS --ds9scale="limits 50 150"

We can see that the detection corresponding to the star has been broken into different
objects. This is not a good object segmentation image for our scenario here. Since those
objects in the outer wings of the bright star’s detection harbor a lot of the extended PSF.
We want to keep them with the same “object” label as the star (we only need to mask the
“clumps” of the background sources). To do this, we will make the following changes to
Segment’s options (see Section 7.3.1.2 [Segmentation options], page 567, for more on this
options):

• Since we want the extended diffuse flux of the PSF to be taken as a single object, we
want all the grown clumps to touch. Therefore, it is necessary to decrease --gthresh

to very low values, like −10. Recall that its value is in units of the input standard
deviation, so --gthresh=-10 corresponds to −10σ. The default value is not for such
extended sources that dominate all background sources.

• Since we want all connected grown clumps to be counted as a single object in any case,
we will set --objbordersn=0 (its smallest possible value).
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Let’s make these changes and check if the star has been kept as a single object in the
OBJECTS extension or not:

$ astsegment sat-nc.fits --convolved=sat-fill-conv.fits \

--gthresh=-10 --objbordersn=0 \

--output=sat-seg.fits --rawoutput

$ astscript-fits-view sat-seg.fits -hOBJECTS --ds9scale="limits 50 150"

Now we can extend these same steps to the whole image. To detect signal, we can run
NoiseChisel using the command below. We modified the default value to two of the options,
below you can see the reason for these changes. See Section 2.2 [Detecting large extended
targets], page 81, for more on optimizing NoiseChisel.

• Since the image is so large, we have increased --outliernumngb to get better outlier
statistics on the tiles. The default value is primarily for small images, so this is usually
the first thing you should do when running NoiseChisel on a real/large image.

• Since the image is not too deep (made from few exposures), it does not have strong cor-
related noise, so we will decrease --detgrowquant and increase --detgrowmaxholesize
to better extract signal.

Furthermore, since both NoiseChisel and Segment need a convolved image, we will do the
convolution before and feed it to both (to save running time). But in the first command
below, let’s delete all the temporary files we made above.

Since the image is large (+300 MB), to avoid wasting storage, any temporary file that is
no longer necessary for later processing is deleted after it is used. You can visually check
each of them with DS9 before deleting them (or not delete them at all!). Generally, within a
pipeline it is best to remove such large temporary files, because space runs out much faster
than you think (for example, once you get good results and want to use more fields).

$ rm *.fits

$ mkdir label

$ astmkprof --kernel=gaussian,2,5 --oversample=1 \

-olabel/kernel.fits

$ astarithmetic flat/67510.fits set-i i i 2200 gt \

2 dilate 2 dilate 2 dilate 2 dilate nan where \

--output=label/67510-masked-sat.fits

$ astconvolve label/67510-masked-sat.fits --kernel=label/kernel.fits \

--domain=spatial --output=label/67510-masked-conv.fits

$ rm label/kernel.fits

$ astarithmetic label/67510-masked-sat.fits 2 interpolate-maxofregion \

--output=label/67510-fill.fits

$ astarithmetic label/67510-masked-conv.fits 2 interpolate-maxofregion \

--output=label/67510-fill-conv.fits

$ rm label/67510-masked-conv.fits

$ astnoisechisel label/67510-fill.fits --outliernumngb=100 \

--detgrowquant=0.8 --detgrowmaxholesize=100000 \

--convolved=label/67510-fill-conv.fits \

--output=label/67510-nc.fits

$ rm label/67510-fill.fits

$ astsegment label/67510-nc.fits --output=label/67510-seg-raw.fits \
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--convolved=label/67510-fill-conv.fits --rawoutput \

--gthresh=-10 --objbordersn=0

$ rm label/67510-fill-conv.fits

$ astscript-fits-view label/67510-seg-raw.fits

We see that the saturated pixels have not caused any problem and the central
clumps/objects of bright stars are now a single clump/object. We can now proceed to
estimating the outer PSF. But before that, let’s make a “standard” segment output: one
that can safely be fed into MakeCatalog for measurements and can contain all necessary
outputs of this whole process in a single file (as multiple extensions).

The main problem is again the saturated pixels: we interpolated them to be the maxi-
mum of their nearby pixels. But this will cause problems in any measurement that is done
over those regions. To let MakeCatalog know that those pixels should not be used, the first
extension of the file given to MakeCatalog should have blank values on those pixels. We
will do this with the commands below:

## First HDU of Segment (Sky-subtracted input)

$ astarithmetic label/67510-nc.fits -hINPUT-NO-SKY \

label/67510-masked-sat.fits isblank nan where \

--output=label/67510-seg.fits

$ astfits label/67510-seg.fits --update=EXTNAME,INPUT-NO-SKY

## Second and third HDUs: CLUMPS and OBJECTS

$ astfits label/67510-seg-raw.fits --copy=CLUMPS --copy=OBJECTS \

--output=label/67510-seg.fits

## Fourth HDU: Sky standard deviation (from NoiseChisel):

$ astfits label/67510-nc.fits --copy=SKY_STD \

--output=label/67510-seg.fits

## Clean up all the un-necessary files:

$ rm label/67510-masked-sat.fits label/67510-nc.fits \

label/67510-seg-raw.fits

You can now simply run MakeCatalog on this image and be sure that saturated pixels
will not affect the measurements. As one example, you can use MakeCatalog to find the
clumps containing saturated pixels: recall that the --area column only calculates the area
of non-blank pixels, while --geo-area calculates the area of the label (independent of their
blank-ness in the values image):

$ astmkcatalog label/67510-seg.fits --ids --ra --dec --area \

--geo-area --clumpscat --output=cat.fits

The information of the clumps that have been affected by saturation can easily be found
by selecting those with a differing value in the AREA and AREA_FULL columns:

## With AWK (second command, counts the number of rows)

$ asttable cat.fits -hCLUMPS | awk '$5!=$6'

$ asttable cat.fits -hCLUMPS | awk '$5!=$6' | wc -l

## Using Table arithmetic (compared to AWK, you can use column



Chapter 2: Tutorials 111

## names, save as FITS, and be faster):

$ asttable cat.fits -hCLUMPS -cRA,DEC --noblankend=3 \

-c'arith AREA AREA AREA_FULL eq nan where'

## Remove the table (which was just for a demo)

$ rm cat.fits

We are now ready to start building the outer parts of the PSF in Section 2.3.4 [Building
outer part of PSF], page 111.

2.3.4 Building outer part of PSF

In Section 2.3.2 [Saturated pixels and Segment’s clumps], page 104, and Section 2.3.3 [One
object for the whole detection], page 108, we described how to create a Segment clump
and object map, while accounting for saturated stars and not having over-fragmentation of
objects in the outskirts of stars. We are now ready to start building the extended PSF.

First we will build the outer parts of the PSF, so we want the brightest stars. You will
see we have several bright stars in this very large field of view, but we do not yet have a
feeling how many they are, and at what magnitudes. So let’s use Gnuastro’s Query program
to find the magnitudes of the brightest stars (those brighter than g-magnitude 10 in Gaia
data release 3, or DR3). For more on Query, see Section 5.4 [Query], page 375.

$ astquery gaia --dataset=dr3 --overlapwith=flat/67510.fits \

--range=phot_g_mean_mag,-inf,10 \

--output=flat/67510-bright.fits

Now, we can easily visualize the magnitude and positions of these stars using astscript-
ds9-region and the command below (for more on this script, see Section 10.3 [SAO DS9
region files from table], page 678)

$ astscript-ds9-region flat/67510-bright.fits -cra,dec \

--namecol=phot_g_mean_mag \

--command="ds9 flat/67510.fits -zoom to fit -zscale"

You can see that we have several stars between magnitudes 6 to 10. Let’s use astscript-
psf-select-stars in the command below to select the relevant stars in the image (the
brightest; with a magnitude between 6 to 10). The advantage of using this script (instead
of a simple --range in Table), is that it will also check distances to nearby stars and reject
those that are too close (and not good for constructing the PSF). Since we have very bright
stars in this very wide-field image, we will also increase the distance to nearby neighbors
with brighter or similar magnitudes (the default value is 1 arcmin). To do this, we will set
--mindistdeg=0.02, which corresponds to 1.2 arcmin. The details of the options for this
script are discussed in Section 10.8.2 [Invoking astscript-psf-select-stars], page 702.

$ mkdir outer

$ astscript-psf-select-stars flat/67510.fits \

--magnituderange=6,10 --mindistdeg=0.02 \

--output=outer/67510-6-10.fits

Let’s have a look at the selected stars in the image (it is very important to visually check
every step when you are first discovering a new dataset).

$ astscript-ds9-region outer/67510-6-10.fits -cra,dec \

--namecol=phot_g_mean_mag \
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--command="ds9 flat/67510.fits -zoom to fit -zscale"

Now that the catalog of good stars is ready, it is time to construct the individual stamps
from the catalog above. To create stamps, first, we need to crop a fixed-size box around
each isolated star in the catalog. The contaminant objects in the crop should be masked
and finally, the fluxes in these cropped images should be normalized. To do these, we will
use astscript-psf-stamp (for more on this script see Section 10.8.3 [Invoking astscript-
psf-stamp], page 705).

One of the most important parameters for this script is the normalization radii
--normradii. This parameter defines a ring for the flux normalization of each star stamp.
The normalization of the flux is necessary because each star has a different brightness, and
consequently, it is crucial for having all the stamps with the same flux level in the same
region. Otherwise the final stack of the different stamps would have no sense. Depending
on the PSF shape, internal reflections, ghosts, saturated pixels, and other systematics, it
would be necessary to choose the --normradii appropriately.

The selection of the normalization radii is something that requires a good understanding
of the data. To do that, let’s use two useful parameters that will help us in the checking of
the data: --tmpdir and --keeptmp;

• With --tmpdir=checking-normradii all temporary files, including the radial profiles,
will be save in that directory (instead of an internally-created name).

• With --keeptmp we will not remove the temporal files, so it is possible to have a look
at them (by default the temporary directory gets deleted at the end). It is necessary
to specify the --normradii even if we do not know yet the final values. Otherwise the
script will not generate the radial profile.

As a consequence, in this step we put the normalization radii equal to the size of the
stamps. By doing this, the script will generate the radial profile of the entire stamp. In
this particular step we set it to --normradii=500,510. We also use the --nocentering

option to disable sub-pixel warping in this phase (it is only relevant for the central part of
the PSF). Furthermore, since there are several stars, we iterate over each row of the catalog
using a while loop.

$ counter=1

$ mkdir finding-normradii

$ asttable outer/67510-6-10.fits \

| while read -r ra dec mag; do

astscript-psf-stamp label/67510-seg.fits \

--mode=wcs \

--nocentering \

--center=$ra,$dec \

--normradii=500,510 \

--widthinpix=1000,1000 \

--segment=label/67510-seg.fits \

--output=finding-normradii/$counter.fits \

--tmpdir=finding-normradii --keeptmp; \

counter=$((counter+1)); \

done
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First let’s have a look at all the masked postage stamps of the cropped stars. Once they
all open, feel free to zoom-in, they are all matched and locked. It is always good to check
the different stamps to ensure the quality and possible two dimensional features that are
difficult to detect from the radial profiles (such as ghosts and internal reflections).

$ astscript-fits-view finding-normradii/cropped-masked*.fits

If everything looks good in the image, let’s open all the radial profiles and visually check
those with the command below. Note that astscript-fits-view calls the topcat graphic
user interface (GUI) program to visually inspect (plot) tables. If you do not already have
it, see Section A.2 [TOPCAT], page 960.

$ astscript-fits-view finding-normradii/rprofile*.fits

After some study of this data, we could say that a good normalization ring is those
pixels between R=20 and R=30 pixels. Such a ring ensures having a high number of pixels
so the estimation of the flux normalization will be robust. Also, at such distance from the
center the signal to noise is high and there are not obvious features that can affect the
normalization. Note that the profiles are different because we are considering a wide range
of magnitudes, so the fainter stars are much more noisy. However, in this tutorial we will
keep these stars in order to have a higher number of stars for the outer part. In a real case
scenario, we should look for stars with a much more similar brightness (smaller range of
magnitudes) to not lose signal to noise as a consequence of the inclusion of fainter stars.

$ rm -r finding-normradii

$ counter=1

$ mkdir outer/stamps

$ asttable outer/67510-6-10.fits \

| while read -r ra dec mag; do

astscript-psf-stamp label/67510-seg.fits \

--mode=wcs \

--nocentering \

--center=$ra,$dec \

--normradii=20,30 \

--widthinpix=1000,1000 \

--segment=label/67510-seg.fits \

--output=outer/stamps/67510-$counter.fits; \

counter=$((counter+1)); \

done

After the stamps are created, we need to stack them together with a simple Arithmetic
command (see Section 6.2.4.7 [Stacking operators], page 421). The stack is done using the
sigma-clipped mean operator that will preserve more of the signal, while rejecting outliers
(more than 3σ with a tolerance of 0.2, for more on sigma-clipping see Section 2.10.2 [Sigma
clipping], page 200). Just recall that we need to specify the number of inputs into the
stacking operators, so we are reading the list of images and counting them as separate
variables before calling Arithmetic.

$ numimgs=$(echo outer/stamps/*.fits | wc -w)

$ astarithmetic outer/stamps/*.fits $numimgs 3 0.2 sigclip-mean \

-g1 --output=outer/stack.fits --wcsfile=none
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Did you notice the --wcsfile=none option above? With it, the stacked image no longer
has any WCS information. This is natural, because the stacked image does not correspond
to any specific region of the sky any more.

Let’s compare this stacked PSF with the images of the individual stars that were used
to create it. You can clearly see that the number of masked pixels is significantly decreased
and the PSF is much more “cleaner”.

$ astscript-fits-view outer/stack.fits outer/stamps/*.fits

However, the saturation in the center still remains. Also, because we did not have too
many images, some regions still are very noisy. If we had more bright stars in our selected
magnitude range, we could have filled those outer remaining patches. In a large survey like
J-PLUS (that we are using here), you can simply look into other fields that were observed
soon before/after the image ID 67510 that we used here (to have a similar PSF) and get
more stars in those images to add to these. In fact, the J-PLUS DR2 image ID of the
field above was intentionally preserved during the steps above to show how easy it is to use
images from other fields and blend them all into the output PSF.

2.3.5 Inner part of the PSF

In Section 2.3.4 [Building outer part of PSF], page 111, we were able to create a stack of
the outer-most behavior of the PSF in a J-PLUS survey image. But the central part that
was affected by saturation and non-linearity is still remaining, and we still do not have a
“complete” PSF! In this section, we will use the same steps before to make stacks of more
inner regions of the PSF to ultimately unite them all into a single PSF in Section 2.3.6
[Uniting the different PSF components], page 115.

For the outer PSF, we selected stars in the magnitude range of 6 to 10. So let’s have
a look and see how many stars we have in the magnitude range of 12 to 13 with a more
relaxed condition on the minimum distance for neighbors, --mindistdeg=0.01 (36 arcsec,
since these stars are fainter), and use the ds9 region script to visually inspect them:

$ mkdir inner

$ astscript-psf-select-stars flat/67510.fits \

--magnituderange=12,13 --mindistdeg=0.01 \

--output=inner/67510-12-13.fits

$ astscript-ds9-region inner/67510-12-13.fits -cra,dec \

--namecol=phot_g_mean_mag \

--command="ds9 flat/67510.fits -zoom to fit -zscale"

We have 41 stars, but if you zoom into their centers, you will see that they do not have
any major bleeding-vertical saturation any more. Only the very central core of some of the
stars is saturated. We can therefore use these stars to fill the strong bleeding footprints
that were present in the outer stack of outer/stack.fits. Similar to before, let’s build
ready-to-stack crops of these stars. To get a better feeling of the normalization radii, follow
the same steps of Section 2.3.4 [Building outer part of PSF], page 111, (setting --tmpdir

and --keeptmp). In this case, since the stars are fainter, we can set a smaller size for the
individual stamps, --widthinpix=500,500, to speed up the calculations:

$ counter=1

$ mkdir inner/stamps
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$ asttable inner/67510-12-13.fits \

| while read -r ra dec mag; do

astscript-psf-stamp label/67510-seg.fits \

--mode=wcs \

--normradii=5,10 \

--center=$ra,$dec \

--widthinpix=500,500 \

--segment=label/67510-seg.fits \

--output=inner/stamps/67510-$counter.fits; \

counter=$((counter+1)); \

done

$ numimgs=$(echo inner/stamps/*.fits | wc -w)

$ astarithmetic inner/stamps/*.fits $numimgs 3 0.2 sigclip-mean \

-g1 --output=inner/stack.fits --wcsfile=none

$ astscript-fits-view inner/stack.fits inner/stamps/*.fits

We are now ready to unite the two stacks we have constructed: the outer and the inner
parts.

2.3.6 Uniting the different PSF components

In Section 2.3.4 [Building outer part of PSF], page 111, we built the outer part of the
extended PSF and the inner part was built in Section 2.3.5 [Inner part of the PSF], page 114.
The outer part was built with very bright stars, and the inner part using fainter stars to
not have saturation in the core of the PSF. The next step is to join these two parts in order
to have a single PSF. First of all, let’s have a look at the two stacks and also to their radial
profiles to have a good feeling of the task. Note that you will need to have TOPCAT to
run the last command and plot the radial profile (see Section A.2 [TOPCAT], page 960).

$ astscript-fits-view outer/stack.fits inner/stack.fits

$ astscript-radial-profile outer/stack.fits -o outer/profile.fits

$ astscript-radial-profile inner/stack.fits -o inner/profile.fits

$ astscript-fits-view outer/profile.fits inner/profile.fits

From the visual inspection of the images and the radial profiles, it is clear that we have
saturation in the center for the outer part. Note that the absolute flux values of the PSFs
are meaningless since they depend on the normalization radii we used to obtain them. The
uniting step consists in scaling up (or down) the inner part of the PSF to have the same
flux at the junction radius, and then, use that flux-scaled inner part to fill the center of the
outer PSF. To get a feeling of the process, first, let’s open the two radial profiles and find
the factor manually first:

1. Run this command to open the two tables in Section A.2 [TOPCAT], page 960:

$ astscript-fits-view outer/profile.fits inner/profile.fits

2. On the left side of the screen, under “Table List”, you will see the two imported tables.
Click on the first one (profile of the outer part) so it is shown first.

3. Under the “Graphics” menu item, click on “Plane plot”. A new window will open
with the plot of the first two columns: RADIUS on the horizontal axis and MEAN on the
vertical. The rest of the steps are done in this window.
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4. In the bottom settings, within the left panel, click on the “Axes” item. This will allow
customization of the plot axes.

5. In the bottom-right panel, click on the box in front of “Y Log” to make the vertical
axis logarithmic-scaled.

6. On the “Layers” menu, select “Add Position Control” to allow adding the profile of
the inner region. After it, you will see that a new red-blue scatter plot icon opened on
the bottom-left menu (with a title of <no table>).

7. On the bottom-right panel, in the drop-down menu in front of Table:, select 2:

profile.fits. Afterwards, you will see the radial profile of the inner stack as the
newly added blue plot. Our goal here is to find the factor that is necessary to multiply
with the inner profile so it matches the outer one.

8. On the bottom-right panel, in front of Y:, you will see MEAN. Click in the white-space
after it, and type this: *100. This will display the MEAN column of the inner profile, after
multiplying it by 100. Afterwards, you will see that the inner profile (blue) matches
more cleanly with the outer (red); especially in the smaller radii. At larger radii, it
does not drop like the red plot. This is because of the extremely low signal-to-noise
ratio at those regions in the fainter stars used to make this stack.

9. Take your mouse cursor over the profile, in particular over the bump around a radius
of 100 pixels. Scroll your mouse down-ward to zoom-in to the profile and up-ward to
zoom-out. You can click-and-hold any part of the profile and if you move your cursor
(while still holding the mouse-button) to look at different parts of the profile. This is
particular helpful when you have zoomed-in to the profile.

10. Zoom-in to the bump around a radius of 100 pixels until the horizontal axis range
becomes around 50 to 130 pixels.

11. You clearly see that the inner stack (blue) is much more noisy than the outer (red)
stack. By “noisy”, we mean that the scatter of the points is much larger. If you further
zoom-out, you will see that the shallow slope at the larger radii of the inner (blue)
profile has also affected the height of this bump in the inner profile. This is a very
important point: this clearly shows that the inner profile is too noisy at these radii.

12. Click-and-hold your mouse to see the inner parts of the two profiles (in the range 0 to
80). You will see that for radii less than 40 pixels, the inner profile (blue) points loose
their scatter (and thus have a good signal-to-noise ratio).

13. Zoom-in to the plot and follow the profiles until smaller radii (for example, 10 pixels).
You see that for each radius, the inner (blue) points are consistently above the outer
(red) points. This shows that the ×100 factor we selected above was too much.

14. In the bottom-right panel, change the 100 to 80 and zoom-in to the same region. At
each radius, the blue points are now below the red points, so the scale-factor 80 is not
enough. So let’s increase it and try 90. After zooming-in, you will notice that in the
inner-radii (less than 30 pixels), they are now very similar. The ultimate aim of the
steps below is to find this factor automatically.

15. But before continuing, let’s focus on another important point about the central regions:
non-linearity and saturation. While you are zoomed-in (from the step above), follow
(click-and-drag) the profile towards smaller radii. You will see that smaller than a
radius of 10, they start to diverge. But this time, the outer (red) profile is getting a
shallower slope and diverges significantly from about the radius of 8. We had masked all
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saturated pixels before, so this divergence for radii smaller than 10 shows the effect of
the CCD’s non-linearity (where the number of electrons will not be linearly correlated
with the number of incident photons). This is present in all CCDs and pixels beyond
this level should not be used in measurements (or properly corrected).

The items above were only listed so you get a good mental/visual understanding of the
logic behind the operation of the next script (and to learn how to tune its parameters where
necessary): astscript-psf-scale-factor. This script is more general than this particular
problem, but can be used for this special case also. Its job is to take a model of an object
(PSF, or inner stack in this case) and the position of an instance of that model (a star, or
the outer stack in this case) in a larger image.

Instead of dealing with radial profiles (that enforce a certain shape), this script will put
the centers of the inner and outer PSFs over each other and divide the outer by the inner.
Let’s have a look with the command below. Just note that we are running it with --keeptmp

so the temporary directory with all the intermediate files remain for further clarification:

$ astscript-psf-scale-factor outer/stack.fits \

--psf=inner/stack.fits --center=501,501 \

--mode=img --normradii=10,15 --keeptmp

$ astscript-fits-view stack_psfmodelscalefactor/cropped-*.fits \

stack_psfmodelscalefactor/for-factor-*.fits

With the second command, you see the four steps of the process: the first two images
show the cropped outer and inner stacks (to same width image). The third shows the radial
position of each pixel (which is used to only keep the pixels within the desired radial range).
The fourth shows the per-pixel division of the outer by the inner within the requested radii.
The sigma-clipped median of these pixels is finally reported. Unlike the radial profile method
(which averages over a circular/elliptical annulus for each radius), this method imposes no
a-priori shape on the PSF. This makes it very useful for complex PSFs (like the case here).

To continue, let’s remove the temporary directory and re-run the script but with --quiet

mode so we can put the output in a shell variable.

$ rm -r stack_psfmodelscalefactor

$ scale=$(astscript-psf-scale-factor outer/stack.fits \

--psf=inner/stack.fits --center=501,501 \

--mode=img --normradii=10,15 --quiet)

$ echo $scale

Now that we know the scaling factor, we are ready to unite the outer and the inner part
of the PSF. To do that, we will use the script astscript-psf-unite with the command
below (for more on this script, see Section 10.8.4 [Invoking astscript-psf-unite], page 709).
The basic parameters are the inner part of the PSF (given to --inner), the inner part’s
scale factor (--scale), and the junction radius (--radius). The inner part is first scaled,
and all the pixels of the outer image within the given radius are replaced with the pixels of
the inner image. Since the flux factor was computed for a ring of pixels between 10 and 15
pixels, let’s set the junction radius to be 12 pixels (roughly in between 10 and 15):

$ astscript-psf-unite outer/stack.fits \

--inner=inner/stack.fits --radius=12 \

--scale=$scale --output=psf.fits
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Let’s have a look at the outer stack and the final PSF with the command below. Since
we want several other DS9 settings to help you directly see the main point, we are using
--ds9extra. After DS9 is opened, you can see that the center of the PSF has now been
nicely filled. You can click on the “Edit” button and then the “Colorbar” and hold your
cursor over the image and move it. You can see that besides filling the inner regions nicely,
there is also no major discontinuity in the 2D image around the union radius of 12 pixels
around the center.

$ astscript-fits-view outer/stack.fits psf.fits --ds9scale=minmax \

--ds9extra="-scale limits 0 22000 -match scale" \

--ds9extra="-lock scale yes -zoom 4 -scale log"

Nothing demonstrates the effect of a bad analysis than actually seeing a bad result! So
let’s choose a bad normalization radial range (50 to 60 pixels) and unite the inner and outer
parts based on that. The last command will open the two PSFs together in DS9, you should
be able to immediately see the discontinuity in the union radius.

$ scale=$(astscript-psf-scale-factor outer/stack.fits \

--psf=inner/stack.fits --center=501,501 \

--mode=img --normradii=50,60 --quiet)

$ astscript-psf-unite outer/stack.fits \

--inner=inner/stack.fits --radius=55 \

--scale=$scale --output=psf-bad.fits

$ astscript-fits-view psf-bad.fits psf.fits --ds9scale=minmax \

--ds9extra="-scale limits 0 50 -match scale" \

--ds9extra="-lock scale yes -zoom 4 -scale log"

As you see, the selection of the normalization radii and the unite radius are very impor-
tant. The first time you are trying to build the PSF of a new dataset, it has to be explored
with a visual inspection of the images and radial profiles. Once you have found a good
normalization radius for a certain part of the PSF in a survey, you can generally use it
comfortably without change. But for a new survey, or a different part of the PSF, be sure
to repeat the visual checks above to choose the best radii. As a summary, a good junction
radius is one that:

• Is large enough to not let saturation and non-linearity (from the outer profile) into the
inner region.

• Is small enough to have a sufficiently high signal to noise ratio (from the inner profile)
to avoid adding noise in the union radius.

Now that the complete PSF has been obtained, let’s remove that bad-looking PSF, and
stick with the nice and clean PSF for the next step in Section 2.3.7 [Subtracting the PSF],
page 118.

$ rm -rf psf-bad.fits

2.3.7 Subtracting the PSF

Previously (in Section 2.3.6 [Uniting the different PSF components], page 115) we con-
structed a full PSF, from the central pixel to a radius of 500 pixels. Now, let’s use the PSF
to subtract the scattered light from each individual star in the image.
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By construction, the pixel values of the PSF came from the normalization of the indi-
vidual stamps (that were created for stars of different magnitudes). As a consequence, it is
necessary to compute a scale factor to fit that PSF image to each star. This is done with
the same astscript-psf-scale-factor command that we used previously in Section 2.3.6
[Uniting the different PSF components], page 115. The difference is that now we are not
aiming to join two different PSF parts but looking for the necessary scale factor to match
the star with the PSF. Afterwards, we will use astscript-psf-subtract for placing the
PSF image at the desired coordinates within the same pixel grid as the image. Finally, once
the stars have been modeled by the PSF, we will subtract it.

First, let’s start with a single star. Later, when the basic idea has been explained, we
will generalize the method for any number of stars. With the following command we obtain
the coordinates (RA and DEC) and magnitude of the brightest star in the image (which is
on the top edge of the image):

$ mkdir single-star

$ center=$(asttable flat/67510-bright.fits --sort phot_g_mean_mag \

--column=ra,dec --head 1 \

| awk '{printf "%s,%s", $1, $2}')

$ echo $center

With the center position of that star, let’s obtain the flux factor using the same normal-
ization ring we used for the creation of the outer part of the PSF:

$ scale=$(astscript-psf-scale-factor label/67510-seg.fits \

--mode=wcs --quiet \

--psf=psf.fits \

--center=$center \

--normradii=10,15 \

--segment=label/67510-seg.fits)

Now we have all the information necessary to model the star using the PSF: the position
on the sky and the flux factor. Let’s use this data with the script astscript-psf-subtract
for modeling this star and have a look with DS9.

$ astscript-psf-subtract label/67510-seg.fits \

--mode=wcs \

--psf=psf.fits \

--scale=$scale \

--center=$center \

--output=single-star/subtracted.fits

$ astscript-fits-view label/67510-seg.fits single-star/subtracted.fits \

--ds9center=$center --ds9mode=wcs --ds9extra="-zoom 4"

You will notice that there is something wrong with this “subtraction”! The box of the
extended PSF is clearly visible! The sky noise under the box is clearly larger than the rest
of the noise in the image. Before reading on, please try to think about the cause of this
yourself.

To understand the cause, let’s look at the scale factor, the number of stamps used to
build the outer part (and its square root):

$ echo $scale
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$ ls outer/stamps/*.fits | wc -l

$ ls outer/stamps/*.fits | wc -l | awk '{print sqrt($1)}'

You see that the scale is almost 19! As a result, the PSF has been multiplied by 19 before
being subtracted. However, the outer part of the PSF was created with only a handful of
star stamps. When you stack N images, the stack’s signal-to-noise ratio (S/N) improves by√
N . We had 8 images for the outer part, so the S/N has only improved by a factor of just

under 3! When we multiply the final stacked PSF with 19, we are also scaling up the noise
by that same factor (most importantly: in the outer most regions where there is almost no
signal). So the stacked image’s noise-level is 19/3 = 6.3 times larger than the noise of the
input image. This terrible noise-level is what you clearly see as the footprint of the PSF.

To confirm this, let’s use the commands below to subtract the faintest of the bright-stars
catalog (note the use of --tail when finding the central position). You will notice that the
scale factor (∼ 1.3) is now smaller than 3. So when we multiply the PSF with this factor,
the PSF’s noise level is lower than our input image and we should not see any footprint like
before. Note also that we are using a larger zoom factor, because this star is smaller in the
image.

$ center=$(asttable flat/67510-bright.fits --sort phot_g_mean_mag \

--column=ra,dec --tail 1 \

| awk '{printf "%s,%s", $1, $2}')

$ scale=$(astscript-psf-scale-factor label/67510-seg.fits \

--mode=wcs --quiet \

--psf=psf.fits \

--center=$center \

--normradii=10,15 \

--segment=label/67510-seg.fits)

$ echo $scale

$ astscript-psf-subtract label/67510-seg.fits \

--mode=wcs \

--psf=psf.fits \

--scale=$scale \

--center=$center \

--output=single-star/subtracted.fits

$ astscript-fits-view label/67510-seg.fits single-star/subtracted.fits \

--ds9center=$center --ds9mode=wcs --ds9extra="-zoom 10"

In a large survey like J-PLUS, it is easy to use more and more bright stars from different
pointings (ideally with similar FWHM and similar telescope properties41) to improve the
S/N of the PSF. As explained before, we designed the output files of this tutorial with the
67510 (which is this image’s pointing label in J-PLUS) where necessary so you see how easy
it is to add more pointings to use in the creation of the PSF.

41 For example, in J-PLUS, the baffle of the secondary mirror was adjusted in 2017 because it produced
extra spikes in the PSF. So all images after that date have a PSF with 4 spikes (like this one), while
those before it have many more spikes.
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Let’s consider now more than one single star. We should have two things in mind:

• The brightest (subtract-able, see the point below) star should be the first star to be
subtracted. This is because of its extended wings which may affect the scale factor of
nearby stars. So we should sort the catalog by magnitude and come down from the
brightest.

• We should only subtract stars where the scale factor is less than the S/N of the PSF
(in relation to the data).

Since it can get a little complex, it is easier to implement this step as a script (that is
heavily commented for you to easily understand every step; especially if you put it in a
good text editor with color-coding!). You will notice that script also creates a .log file,
which shows which star was subtracted and which one was not (this is important, and will
be used below!).

#!/bin/bash

# Abort the script on first error.

set -e

# ID of image to subtract stars from.

imageid=67510

# Get S/N level of the final PSF in relation to the actual data:

snlevel=$(ls outer/stamps/*.fits | wc -l | awk '{print sqrt($1)}')

# Put a copy of the image we want to subtract the PSF from in the

# final file (this will be over-written after each subtraction).

subtracted=subtracted/$imageid.fits

cp label/$imageid-seg.fits $subtracted

# Name of log-file to keep status of the subtraction of each star.

logname=subtracted/$imageid.log

echo "# Column 1: RA [deg, f64] Right ascension of star." > $logname

echo "# Column 2: Dec [deg, f64] Declination of star." >> $logname

echo "# Column 3: Stat [deg, f64] Status (1: subtracted)" >> $logname

# Go over each item in the bright star catalog:

asttable flat/67510-bright.fits -cra,dec --sort phot_g_mean_mag \

| while read -r ra dec; do

# Put a comma between the RA/Dec to pass to options.

center=$(echo $ra $dec | awk '{printf "%s,%s", $1, $2}')

# Calculate the scale value

scale=$(astscript-psf-scale-factor label/67510-seg.fits \

--mode=wcs --quiet\

--psf=psf.fits \

--center=$center \
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--normradii=10,15 \

--segment=label/67510-seg.fits)

# Subtract this star if the scale factor is less than the S/N

# level calculated above.

check=$(echo $snlevel $scale \

| awk '{if($1>$2) c="good"; else c="bad"; print c}')

if [ $check = good ]; then

# A temporary file to subtract this star.

subtmp=subtracted/$imageid-tmp.fits

# Subtract this star from the image where all previous stars

# were subtracted.

astscript-psf-subtract $subtracted \

--mode=wcs \

--psf=psf.fits \

--scale=$scale \

--center=$center \

--output=$subtmp

# Rename the temporary subtracted file to the final one:

mv $subtmp $subtracted

# Keep the status for this star.

status=1

else

# Let the user know this star did not work, and keep the status

# for this star.

echo "$center: $scale is larger than $snlevel"

status=0

fi

# Keep the status in a log file.

echo "$ra $dec $status" >> $logname

done

Copy the contents above into a file called subtract-psf-from-cat.sh and run the
following commands. Just note that in the script above, we assumed the output is written
in the subtracted/, directory, so we will first make that.

$ mkdir subtracted

$ chmod +x subtract-psf-from-cat.sh

$ ./subtract-psf-from-cat.sh

$ astscript-fits-view label/67510-seg.fits subtracted/67510.fits

Can you visually find the stars that have been subtracted? Its a little hard, is not it?
This shows that you done a good job this time (the sky-noise is not significantly affected)!
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So let’s subtract the actual image from the PSF-subtracted image to see the scattered
light field of the subtracted stars. With the second command below we will zoom into the
brightest subtracted star, but of course feel free to zoom-out and inspect the others also.

$ astarithmetic label/67510-seg.fits subtracted/67510.fits - \

--output=scattered-light.fits -g1

$ center=$(asttable subtracted/67510.log --equal=Stat,1 --head=1 \

-cra,dec | awk '{printf "%s,%s", $1, $2}')

$ astscript-fits-view label/67510-seg.fits subtracted/67510.fits \

scattered-light.fits \

--ds9center=$center --ds9mode=wcs \

--ds9extra="-scale limits -0.5 1.5 -match scale" \

--ds9extra="-lock scale yes -zoom 10" \

--ds9extra="-tile mode column"

## We can always make it easily, so let's remove this.

$ rm scattered-light.fits

You will probably have noticed that in the scattered light field there are some patches
that correspond to the saturation of the stars. Since we obtained the scattered light field
by subtracting PSF-subtracted image from the original image, it is natural that we have
such saturated regions. To solve such inconvenience, this script also has an option to not
make the subtraction of the PSF but to give as output the modeled star. For doing that,
it is necessary to run the script with the option --modelonly. We encourage the reader to
obtain such scattered light field model. In some scenarios it could be interesting having such
way of correcting the PSF. For example, if there are many faint stars that can be modeled
at the same time because their flux do not affect each other. In such situation, the task
could be easily parallelized without having to wait to model the brighter stars before the
fainter ones. At the end, once all stars have been modeled, a simple Arithmetic command
could be used to sum the different modeled-PSF stamps to obtain the entire scattered light
field.

In general you see that the subtraction has been done nicely and almost all the extended
wings of the PSF have been subtracted. The central regions of the stars are not perfectly
subtracted:

• Some may get too dark at the center. This may be due to the non-linearity of the
CCD counting (as discussed previously in Section 2.3.6 [Uniting the different PSF
components], page 115).

• Others may have a strong gradient: one side is too positive and one side is too negative
(only in the very central few pixels). This is due to the non-accurate positioning: most
probably this happens because of imperfect astrometry.

Note also that during this process we assumed that the PSF does not vary with the CCD
position or any other parameter. In other words, we are obtaining an averaged PSF model
from a few star stamps that are naturally different, and this also explains the residuals on
each subtracted star.
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We let as an interesting exercise the modeling and subtraction of other stars, for example,
the non saturated stars of the image. By doing this, you will notice that in the core region
the residuals are different compared to the residuals of brighter stars that we have obtained.

In general, in this tutorial we have showed how to deal with the most important chal-
lenges for constructing an extended PSF. Each image or dataset will have its own particu-
larities that you will have to take into account when constructing the PSF.

2.4 Sufi simulates a detection

It is the year 953 A.D. and Abd al-rahman Sufi (903 – 986 A.D.)42 is in Shiraz as a guest
astronomer. He had come there to use the advanced 123 centimeter astrolabe for his studies
on the ecliptic. However, something was bothering him for a long time. While mapping
the constellations, there were several non-stellar objects that he had detected in the sky,
one of them was in the Andromeda constellation. During a trip he had to Yemen, Sufi had
seen another such object in the southern skies looking over the Indian ocean. He was not
sure if such cloud-like non-stellar objects (which he was the first to call ‘Sahābi’ in Arabic
or ‘nebulous’) were real astronomical objects or if they were only the result of some bias in
his observations. Could such diffuse objects actually be detected at all with his detection
technique?

He still had a few hours left until nightfall (when he would continue his studies on
the ecliptic) so he decided to find an answer to this question. He had thoroughly studied
Claudius Ptolemy’s (90 – 168 A.D) Almagest and had made lots of corrections to it, in
particular in measuring the brightness. Using his same experience, he was able to measure
a magnitude for the objects and wanted to simulate his observation to see if a simulated
object with the same brightness and size could be detected in simulated noise with the same
detection technique. The general outline of the steps he wants to take are:

1. Make some mock profiles in an over-sampled image. The initial mock image has to
be over-sampled prior to convolution or other forms of transformation in the image.
Through his experiences, Sufi knew that this is because the image of heavenly bodies
is actually transformed by the atmosphere or other sources outside the atmosphere
(for example, gravitational lenses) prior to being sampled on an image. Since that
transformation occurs on a continuous grid, to best approximate it, he should do all
the work on a finer pixel grid. In the end he can resample the result to the initially
desired grid size.

2. Convolve the image with a point spread function (PSF, see Section 8.1.1.2 [Point spread
function], page 631) that is over-sampled to the same resolution as the mock image.
Since he wants to finish in a reasonable time and the PSF kernel will be very large due
to oversampling, he has to use frequency domain convolution which has the side effect
of dimming the edges of the image. So in the first step above he also has to build the
image to be larger by at least half the width of the PSF convolution kernel on each
edge.

3. With all the transformations complete, the image should be resampled to the same size
of the pixels in his detector.

42 In Latin Sufi is known as Azophi. He was an Iranian astronomer. His manuscript “Book of fixed stars”
contains the first recorded observations of the Andromeda galaxy, the Large Magellanic Cloud and seven
other non-stellar or ‘nebulous’ objects.
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4. He should remove those extra pixels on all edges to remove frequency domain convolu-
tion artifacts in the final product.

5. He should add noise to the (until now, noise-less) mock image. After all, all observations
have noise associated with them.

Fortunately Sufi had heard of GNU Astronomy Utilities from a colleague in Isfahan
(where he worked) and had installed it on his computer a year before. It had tools to do all
the steps above. He had used MakeProfiles before, but was not sure which columns he had
chosen in his user or system-wide configuration files for which parameters, see Section 4.2
[Configuration files], page 268. So to start his simulation, Sufi runs MakeProfiles with the
-P option to make sure what columns in a catalog MakeProfiles currently recognizes, and
confirm the output image parameters. In particular, Sufi is interested in the recognized
columns (shown below).

$ astmkprof -P

[[[ ... Truncated lines ... ]]]

# Output:

type float32 # Type of output: e.g., int16, float32, etc.

mergedsize 1000,1000 # Number of pixels along first FITS axis.

oversample 5 # Scale of oversampling (>0 and odd).

[[[ ... Truncated lines ... ]]]

# Columns, by info (see `--searchin'), or number (starting from 1):

ccol 2 # Coord. columns (one call for each dim.).

ccol 3 # Coord. columns (one call for each dim.).

fcol 4 # sersic (1), moffat (2), gaussian (3), point

# (4), flat (5), circumference (6), distance

# (7), custom-prof (8), azimuth (9),

# custom-img (10).

rcol 5 # Effective radius or FWHM in pixels.

ncol 6 # Sersic index or Moffat beta.

pcol 7 # Position angle.

qcol 8 # Axis ratio.

mcol 9 # Magnitude.

tcol 10 # Truncation in units of radius or pixels.

[[[ ... Truncated lines ... ]]]

In Gnuastro, column counting starts from 1, so the columns are ordered such that the first
column (number 1) can be an ID he specifies for each object (and MakeProfiles ignores),
each subsequent column is used for another property of the profile. It is also possible to use
column names for the values of these options and change these defaults, but Sufi preferred
to stick to the defaults. Fortunately MakeProfiles has the capability to also make the PSF
which is to be used on the mock image and using the --prepforconv option, he can also
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make the mock image to be larger by the correct amount and all the sources to be shifted
by the correct amount.

For his initial check he decides to simulate the nebula in the Andromeda constellation.
The night he was observing, the PSF had roughly a FWHM of about 5 pixels, so as the first
row (profile) in the table below, he defines the PSF parameters. Sufi sets the radius column
(rcol above, fifth column) to 5.000, he also chooses a Moffat function for its functional
form. Remembering how diffuse the nebula in the Andromeda constellation was, he decides
to simulate it with a mock Sérsic index 1.0 profile. He wants the output to be 499 pixels
by 499 pixels, so he can put the center of the mock profile in the central pixel of the image
which is the 250th pixel along both dimensions (note that an even number does not have a
“central” pixel).

Looking at his drawings of it, he decides a reasonable effective radius for it would be 40
pixels on this image pixel scale (second row, 5th column below). He also sets the axis ratio
(0.4) and position angle (-25 degrees) to approximately correct values too, and finally he
sets the total magnitude of the profile to 3.44 which he had measured. Sufi also decides to
truncate both the mock profile and PSF at 5 times the respective radius parameters. In the
end he decides to put four stars on the four corners of the image at very low magnitudes
as a visual scale. While he was preparing the catalog, one of his students approached him
and was also following the steps.

As described above, the catalog of profiles to build will be a table (multiple columns of
numbers) like below:

0 0.000 0.000 2 5 4.7 0.0 1.0 30.0 5.0

1 250.0 250.0 1 40 1.0 -25 0.4 3.44 5.0

2 50.00 50.00 4 0 0.0 0.0 0.0 6.00 0.0

3 450.0 50.00 4 0 0.0 0.0 0.0 6.50 0.0

4 50.00 450.0 4 0 0.0 0.0 0.0 7.00 0.0

5 450.0 450.0 4 0 0.0 0.0 0.0 7.50 0.0

This contains all the “data” to build the profile, and you can easily pass it to Gnuastro’s
MakeProfiles: since Sufi already knows the columns and expected values very good, he has
placed the information in the proper columns. However, when the student sees this, he just
sees a mumble-jumble of numbers! Generally, Sufi explains to the student that even if you
know the number positions and values very nicely today, in a couple of months you will
forget! It will then be very hard for you to interpret the numbers properly. So you should
never use naked data (or data without any extra information).

Data (or information) that describes other data is called “metadata”! One common
example is column names (the name of a column is itself a data element, but data that
describes the lower-level data within that column: how to interpret the numbers within it).
Sufi explains to his student that Gnuastro has a convention for adding metadata within
a plain-text file; and guides him to Section 4.7.2 [Gnuastro text table format], page 285.
Because we do not want metadata to be confused with the actual data, in a plain-text file,
we start lines containing metadata with a ‘#’. For example, see the same data above, but
this time with metadata for every column:

# Column 1: ID [counter, u8] Identifier

# Column 2: X [pix, f32] Horizontal position

# Column 3: Y [pix, f32] Vertical position
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# Column 4: PROFILE [name, u8] Radial profile function

# Column 5: R [pix, f32] Effective radius

# Column 6: N [n/a, f32] Sersic index

# Column 7: PA [deg, f32] Position angle

# Column 8: Q [n/a, f32] Axis ratio

# Column 9: MAG [log, f32] Magnitude

# Column 10: TRUNC [n/a, f32] Truncation (multiple of R)

0 0.000 0.000 2 5 4.7 0.0 1.0 30.0 5.0

1 250.0 250.0 1 40 1.0 -25 0.4 3.44 5.0

2 50.00 50.00 4 0 0.0 0.0 0.0 6.00 0.0

3 450.0 50.00 4 0 0.0 0.0 0.0 6.50 0.0

4 50.00 450.0 4 0 0.0 0.0 0.0 7.00 0.0

5 450.0 450.0 4 0 0.0 0.0 0.0 7.50 0.0

The numbers now make much more sense for the student! Before continuing, Sufi reminded
the student that even though metadata may not be strictly/technically necessary (for the
computer programs), metadata are critical for human readers! Therefore, a good scientist
should never forget to keep metadata with any data that they create, use or archive.

To start simulating the nebula, Sufi creates a directory named simulationtest in his
home directory. Note that the pwd command will print the “parent working directory” of
the current directory (its a good way to confirm/check your current location in the full file
system: it always starts from the root, or ‘/’).

$ mkdir ~/simulationtest

$ cd ~/simulationtest

$ pwd

/home/rahman/simulationtest

It is possible to use a plain-text editor to manually put the catalog contents above into
a plain-text file. But to easily automate catalog production (in later trials), Sufi decides
to fill the input catalog with the redirection features of the command-line (or shell). Sufi’s
student was not familiar with this feature of the shell! So Sufi decided to do a fast demo;
giving the following explanations while running the commands:

Shell redirection allows you to “re-direct” the “standard output” of a program (which is
usually printed by the program on the command-line during its execution; like the output
of pwd above) into a file. For example, let’s simply “echo” (or print to standard output) the
line “This is a test.”:

$ echo "This is a test."

This is a test.

As you see, our statement was simply “echo”-ed to the standard output! To redirect this
sentence into a file (instead of simply printing it on the standard output), we can simply
use the > character, followed by the name of the file we want it to be dumped in.

$ echo "This is a test." > test.txt

This time, the echo command did not print anything in the terminal. Instead, the
shell (command-line environment) took the output, and “re-directed” it into a file called
test.txt. Let’s confirm this with the ls command (ls is short for “list” and will list all
the files in the current directory):

$ ls



Chapter 2: Tutorials 128

test.txt

Now that you confirm the existence of test.txt, you can see its contents with the cat

command (short for “concatenation”; because it can also merge multiple files together):

$ cat test.txt

This is a test.

Now that we have written our first line in test.txt, let’s try adding a second line (do not
forget that our final catalog of objects to simulate will have multiple lines):

$ echo "This is my second line." > test.txt

$ cat test.txt

This is my second line.

As you see, the first line that you put in the file is no longer present! This happens
because ‘>’ always starts dumping content to a file from the start of the file. In effect,
this means that any possibly pre-existing content is over-written by the new content! To
append new lines (or dumping new content at the end of existing content), you can use
‘>>’. for example, with the commands below, first we will write the first sentence (using
‘>’), then use ‘>>’ to add the second and third sentences. Finally, we will print the contents
of test.txt to confirm that all three lines are preserved.

$ echo "My first sentence." > test.txt

$ echo "My second sentence." >> test.txt

$ echo "My third sentence." >> test.txt

$ cat test.txt

My first sentence.

My second sentence.

My third sentence.

The student thanked Sufi for this explanation and now feels more comfortable with
redirection. Therefore Sufi continues with the main project. But before that, he deletes the
temporary test file:

$ rm test.txt

To put the catalog of profile data and their metadata (that was described above) into a
file, Sufi uses the commands below. While Sufi was writing these commands, the student
complained that “I could have done in this in a text editor”. Sufi reminded the student
that it is indeed possible; but it requires manual intervention. The advantage of a solution
like below is that it can be automated (for example, adding more rows; for more profiles in
the final image).

$ echo "# Column 1: ID [counter, u8] Identifier" > cat.txt

$ echo "# Column 2: X [pix, f32] Horizontal position" >> cat.txt

$ echo "# Column 3: Y [pix, f32] Vertical position" >> cat.txt

$ echo "# Column 4: PROF [name, u8] Radial profile function" \

>> cat.txt

$ echo "# Column 5: R [pix, f32] Effective radius" >> cat.txt

$ echo "# Column 6: N [n/a, f32] Sersic index" >> cat.txt

$ echo "# Column 7: PA [deg, f32] Position angle" >> cat.txt

$ echo "# Column 8: Q [n/a, f32] Axis ratio" >> cat.txt

$ echo "# Column 9: MAG [log, f32] Magnitude" >> cat.txt

$ echo "# Column 10: TRUNC [n/a, f32] Truncation (multiple of R)" \
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>> cat.txt

$ echo "0 0.000 0.000 2 5 4.7 0.0 1.0 30.0 5.0" >> cat.txt

$ echo "1 250.0 250.0 1 40 1.0 -25 0.4 3.44 5.0" >> cat.txt

$ echo "2 50.00 50.00 4 0 0.0 0.0 0.0 6.00 0.0" >> cat.txt

$ echo "3 450.0 50.00 4 0 0.0 0.0 0.0 6.50 0.0" >> cat.txt

$ echo "4 50.00 450.0 4 0 0.0 0.0 0.0 7.00 0.0" >> cat.txt

$ echo "5 450.0 450.0 4 0 0.0 0.0 0.0 7.50 0.0" >> cat.txt

To make sure if the catalog’s content is correct (and there was no typo for example!), Sufi
runs ‘cat cat.txt’, and confirms that it is correct.

Now that the catalog is created, Sufi is ready to call MakeProfiles to build the image
containing these objects. He looks into his records and finds that the zero point magnitude
for that night, and that particular detector, was 18 magnitudes. The student was a little
confused on the concept of zero point, so Sufi pointed him to Section 7.4.2 [Brightness,
Flux, Magnitude and Surface brightness], page 574, which the student can study in detail
later. Sufi therefore runs MakeProfiles with the command below:

$ astmkprof --prepforconv --mergedsize=499,499 --zeropoint=18.0 cat.txt

MakeProfiles 0.22.24-f3e8 started on Sat Oct 6 16:26:56 953

- 6 profiles read from cat.txt

- Random number generator (RNG) type: ranlxs1

- Basic RNG seed: 1652884540

- Using 12 threads.

---- row 3 complete, 5 left to go

---- row 4 complete, 4 left to go

---- row 6 complete, 3 left to go

---- row 5 complete, 2 left to go

---- ./0_cat_profiles.fits created.

---- row 1 complete, 1 left to go

---- row 2 complete, 0 left to go

- ./cat_profiles.fits created. 0.092573 seconds

-- Output: ./cat_profiles.fits

MakeProfiles finished in 0.293644 seconds

Sufi encourages the student to read through the printed output. As the statements say,
two FITS files should have been created in the running directory. So Sufi ran the command
below to confirm:

$ ls

0_cat_profiles.fits cat_profiles.fits cat.txt

The file 0_cat_profiles.fits is the PSF Sufi had asked for, and cat_profiles.fits is
the image containing the main objects in the catalog. Sufi opened the main image with the
command below (using SAO DS9):

$ astscript-fits-view cat_profiles.fits --ds9scale=95

The student could clearly see the main elliptical structure in the center. However, the
size of cat_profiles.fits was surprising for the student, instead of 499 by 499 (as we had
requested), it was 2615 by 2615 pixels (from the command below):

$ astfits cat_profiles.fits

Fits (GNU Astronomy Utilities) 0.22.24-f3e8



Chapter 2: Tutorials 130

Run on Sat Oct 6 16:26:58 953

-----

HDU (extension) information: 'cat_profiles.fits'.

Column 1: Index (counting from 0, usable with '--hdu').

Column 2: Name ('EXTNAME' in FITS standard, usable with '--hdu').

Column 3: Image data type or 'table' format (ASCII or binary).

Column 4: Size of data in HDU.

-----

0 MKPROF-CONFIG no-data 0

1 Mock profiles float32 2615x2615

So Sufi explained why oversampling is important in modeling, especially for parts of the
image where the flux change is significant over a pixel. Recall that when you oversample
the model (for example, by 5 times), for every desired pixel, you get 25 pixels (5× 5). Sufi
then explained that after convolving (next step below) we will down-sample the image to
get our originally desired size/resolution.

After seeing the image, the student complained that only the large elliptical model for
the Andromeda nebula can be seen in the center. He could not see the four stars that we had
also requested in the catalog. So Sufi had to explain that the stars are there in the image,
but the reason that they are not visible when looking at the whole image at once, is that
they only cover a single pixel! To prove it, he centered the image around the coordinates
2308 and 2308, where one of the stars is located in the over-sampled image [you can do this
in ds9 by selecting “Pan” in the “Edit” menu, then clicking around that position]. Sufi
then zoomed in to that region and soon, the star’s non-zero pixel could be clearly seen.

Sufi explained that the stars will take the shape of the PSF (cover an area of more than
one pixel) after convolution. If we did not have an atmosphere and we did not need an
aperture, then stars would only cover a single pixel with normal CCD resolutions. So Sufi
convolved the image with this command:

$ astconvolve --kernel=0_cat_profiles.fits cat_profiles.fits \

--output=cat_convolved.fits

Convolve started on Sat Oct 6 16:35:32 953

- Using 8 CPU threads.

- Input: cat_profiles.fits (hdu: 1)

- Kernel: 0_cat_profiles.fits (hdu: 1)

- Input and Kernel images padded. 0.075541 seconds

- Images converted to frequency domain. 6.728407 seconds

- Multiplied in the frequency domain. 0.040659 seconds

- Converted back to the spatial domain. 3.465344 seconds

- Padded parts removed. 0.016767 seconds

- Output: cat_convolved.fits

Convolve finished in: 10.422161 seconds

When convolution finished, Sufi opened cat_convolved.fits and the four stars could be
easily seen now:

$ astscript-fits-view cat_convolved.fits --ds9scale=95

It was interesting for the student that all the flux in that single pixel is now distributed
over so many pixels (the sum of all the pixels in each convolved star is actually equal to
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the value of the single pixel before convolution). Sufi explained how a PSF with a larger
FWHM would make the points even wider than this (distributing their flux in a larger area).
With the convolved image ready, they were prepared to resample it to the original pixel
scale Sufi had planned [from the $ astmkprof -P command above, recall that MakeProfiles
had over-sampled the image by 5 times]. Sufi explained the basic concepts of warping the
image to his student and ran Warp with the following command:

$ astwarp --scale=1/5 --centeroncorner cat_convolved.fits

Warp started on Sat Oct 6 16:51:59 953

Using 8 CPU threads.

Input: cat_convolved.fits (hdu: 1)

matrix:

0.2000 0.0000 0.4000

0.0000 0.2000 0.4000

0.0000 0.0000 1.0000

$ astfits cat_convolved_scaled.fits --quiet

0 WARP-CONFIG no-data 0

1 Warped float32 523x523

cat_convolved_scaled.fits now has the correct pixel scale. However, the image is still
larger than what we had wanted, it is 523 × 523 pixels (not our desired 499 × 499). The
student is slightly confused, so Sufi also resamples the PSF with the same scale by running

$ astwarp --scale=1/5 --centeroncorner 0_cat_profiles.fits

$ astfits 0_cat_profiles_scaled.fits --quiet

0 WARP-CONFIG no-data 0

1 Warped float32 25x25

Sufi notes that 25 = 12 + 12 + 1 and that 523 = 499 + 12 + 12. He goes on to explain that
frequency space convolution will dim the edges and that is why he added the --prepforconv
option to MakeProfiles above. Now that convolution is done, Sufi can remove those extra
pixels using Crop with the command below. Crop’s --section option accepts coordinates
inclusively and counting from 1 (according to the FITS standard), so the crop region’s first
pixel has to be 13, not 12.

$ astcrop cat_convolved_scaled.fits --section=13:*-12,13:*-12 \

--mode=img --zeroisnotblank

Crop started on Sat Oct 6 17:03:24 953

- Read metadata of 1 image. 0.001304 seconds

---- ...nvolved_scaled_cropped.fits created: 1 input.

Crop finished in: 0.027204 seconds

To fully convince the student, Sufi checks the size of the output of the crop command above:

$ astfits cat_convolved_scaled_cropped.fits --quiet

0 n/a no-data 0

1 n/a float32 499x499

Finally, cat_convolved_scaled_cropped.fits is 499 × 499 pixels and the mock
Andromeda galaxy is centered on the central pixel. This is the same dimensions as Sufi
had desired in the beginning. All this trouble was certainly worth it because now there is
no dimming on the edges of the image and the profile centers are more accurately sampled.
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The final step to simulate a real observation would be to add noise to the image. Sufi
set the zero point magnitude to the same value that he set when making the mock profiles
and looking again at his observation log, he had measured the background flux near the
nebula had a per-pixel magnitude of 7 that night. For more on how the background value
determines the noise, see Section 6.2.3 [Noise basics], page 403. So using these values
he ran Arithmetic’s mknoise-sigma-from-mean operator, and with the second command,
he visually inspected the image. The mknoise-sigma-from-mean operator takes the noise
standard deviation in linear units, not magnitudes (which are logarithmic). Therefore within
the same Arithmetic command, he has converted the sky background magnitude to counts
using Arithmetic’s counts-to-mag operator.

$ astarithmetic cat_convolved_scaled_cropped.fits \

7 18 mag-to-counts mknoise-sigma-from-mean \

--output=out.fits

$ astscript-fits-view out.fits

The out.fits file now contains the noised image of the mock catalog Sufi had asked for.
The student had not observed the nebula in the sky, so when he saw the mock image in
SAO DS9 (with the second command above), he understood why Sufi was dubious: it was
very diffuse!

Seeing how the --output option allows the user to specify the name of the output file,
the student was confused and wanted to know why Sufi had not used it more regularly
before? Sufi explained that for intermediate steps, you can rely on the automatic output
of the programs (see Section 4.9 [Automatic output], page 290). Doing so will give all the
intermediate files a similar basic name structure, so in the end you can simply remove them
all with the Shell’s capabilities, and it will be familiar for other users. So Sufi decided to
show this to the student by making a shell script from the commands he had used before.

The command-line shell has the capability to read all the separate input commands from
a file. This is useful when you want to do the same thing multiple times, with only the
names of the files or minor parameters changing between the different instances. Using the
shell’s history (by pressing the up keyboard key) Sufi reviewed all the commands and then
he retrieved the last 5 commands with the $ history 5 command. He selected all those
lines he had input and put them in a text file named mymock.sh. Then he defined the
edge and base shell variables for easier customization later, and before every command, he
added some comments (lines starting with #) for future readability. Finally, Sufi pointed
the student to Gnuastro’s Section 2.1 [General program usage tutorial], page 23, which has
a full section on Section 2.1.22 [Writing scripts to automate the steps], page 74.

#!/bin/bash

edge=12

base=cat

# Stop running next commands if one fails.

set -e

# Remove any (possibly) existing output (from previous runs)

# before starting.
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rm -f out.fits

# Run MakeProfiles to create an oversampled FITS image.

astmkprof --prepforconv --mergedsize=499,499 --zeropoint=18.0 \

"$base".txt

# Convolve the created image with the kernel.

astconvolve "$base"_profiles.fits \

--kernel=0_"$base"_profiles.fits \

--output="$base"_convolved.fits

# Scale the image back to the intended resolution.

astwarp --scale=1/5 --centeroncorner "$base"_convolved.fits

# Crop the edges out (dimmed during convolution). '--section'

# accepts inclusive coordinates, so the start of the section

# must be one pixel larger than its end.

st_edge=$(( edge + 1 ))

astcrop "$base"_convolved_scaled.fits --zeroisnotblank \

--mode=img --section=$st_edge:*-$edge,$st_edge:*-$edge

# Add noise to the image.

$ astarithmetic "$base"_convolved_scaled_cropped.fits \

7 18 mag-to-counts mknoise-sigma-from-mean \

--output=out.fits

# Remove all the temporary files.

rm 0*.fits "$base"*.fits

He used this chance to remind the student of the importance of comments in code or
shell scripts! Just like metadata in a dataset, when writing the code, you have a good
mental picture of what you are doing, so writing comments might seem superfluous and
excessive. However, in one month when you want to re-use the script, you have lost that
mental picture and remembering it can be time-consuming and frustrating. The importance
of comments is further amplified when you want to share the script with a friend/colleague.
So it is good to accompany any step of a script, or code, with useful comments while you
are writing it (create a good mental picture of why you are doing something: do not just
describe the command, but its purpose).

Sufi then explained to the eager student that you define a variable by giving it a name,
followed by an = sign and the value you want. Then you can reference that variable from
anywhere in the script by calling its name with a $ prefix. So in the script whenever you
see $base, the value we defined for it above is used. If you use advanced editors like GNU
Emacs or even simpler ones like Gedit (part of the GNOME graphical user interface) the
variables will become a different color which can really help in understanding the script.
We have put all the $base variables in double quotation marks (") so the variable name
and the following text do not get mixed, the shell is going to ignore the " after replacing
the variable value. To make the script executable, Sufi ran the following command:
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$ chmod +x mymock.sh

Then finally, Sufi ran the script, simply by calling its file name:

$ ./mymock.sh

After the script finished, the only file remaining is the out.fits file that Sufi had wanted
in the beginning. Sufi then explained to the student how he could run this script anywhere
that he has a catalog if the script is in the same directory. The only thing the student had
to modify in the script was the name of the catalog (the value of the base variable in the
start of the script) and the value to the edge variable if he changed the PSF size. The
student was also happy to hear that he will not need to make it executable again when he
makes changes later, it will remain executable unless he explicitly changes the executable
flag with chmod.

The student was really excited, since now, through simple shell scripting, he could really
speed up his work and run any command in any fashion he likes allowing him to be much
more creative in his works. Until now he was using the graphical user interface which does
not have such a facility and doing repetitive things on it was really frustrating and some
times he would make mistakes. So he left to go and try scripting on his own computer.
He later reminded Sufi that the second tutorial in the Gnuastro book as more complex
commands in data analysis, and a more advanced introduction to scripting (see Section 2.1
[General program usage tutorial], page 23).

Sufi could now get back to his own work and see if the simulated nebula which re-
sembled the one in the Andromeda constellation could be detected or not. Although
it was extremely faint43. Therefore, Sufi ran Gnuastro’s detection software (Section 7.2
[NoiseChisel], page 541) to see if this object is detectable or not. NoiseChisel’s output
(out_detected.fits) is a multi-extension FITS file, so he used Gnuastro’s astscript-

fits-view program in the second command to see the output:

$ astnoisechisel out.fits

$ astscript-fits-view out_detected.fits

In the “Cube” window (that was opened with DS9), if Sufi clicked on the “Next” button
to see the pixels that were detected to contain significant signal. Fortunately the nebula’s
shape was detectable and he could finally confirm that the nebula he kept in his notebook
was actually observable. He wrote this result in the draft manuscript that would later
become “Book of fixed stars”44.

He still had to check the other nebula he saw from Yemen and several other such objects,
but they could wait until tomorrow (thanks to the shell script, he only has to define a new
catalog). It was nearly sunset and they had to begin preparing for the night’s measurements
on the ecliptic.

43 The brightness of a diffuse object is added over all its pixels to give its final magnitude, see Section 7.4.2
[Brightness, Flux, Magnitude and Surface brightness], page 574. So although the magnitude 3.44 (of the
mock nebula) is orders of magnitude brighter than 6 (of the stars), the central galaxy is much fainter.
Put another way, the brightness is distributed over a large area in the case of a nebula.

44 https://en.wikipedia.org/wiki/Book_of_Fixed_Stars

https://en.wikipedia.org/wiki/Book_of_Fixed_Stars
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2.5 Detecting lines and extracting spectra in 3D data

3D data cubes are an increasingly common format of data products in observational as-
tronomy. As opposed to 2D images (where each 2D “picture element” or “pixel” covers an
infinitesimal area on the surface of the sky), 3D data cubes contain “volume elements” or
“voxels” that are also connected in a third dimension.

The most common case of 3D data in observational astrophysics is when the first two
dimensions are spatial (RA and Dec on the sky), and the third dimension is wavelength. This
type of data is generically (also outside of astronomy) known as Hyperspectral imaging45.
For example high-level data products of Integral Field Units (IFUs) like MUSE46 in the
optical, ACIS47 in the X-ray, or in the radio where most data are 3D cubes.

In this tutorial, we’ll use a small crop of a reduced deep MUSE cube centered on the
Abell 370 (https://en.wikipedia.org/wiki/Abell_370) galaxy cluster from the Pilot-
WINGS survey; see Lagattuta et al. 2022 (https://arxiv.org/abs/2202.04663). Abell
370 has a spiral galaxy in its background that is stretched due to the cluster’s gravitational
potential to create a beautiful arch. If you haven’t seen it yet, have a look at some of its
images in the Wikipedia link above before continuing.

The Pilot-WINGS survey data are available in its webpage48. The cube of the core
region is 10.2GBs. This can be prohibitively large to download (and later process) on
many networks and smaller computers. Therefore, in this demonstration we won’t be using
the full cube. We have prepared a small crop49 of the full cube that you can download
with the first command below. The randomly selected crop is centered on (RA,Dec) of
(39.96769,-1.58930), with a width of about 27 arcseconds.

$ mkdir tutorial-3d

$ cd tutorial-3d

$ wget http://akhlaghi.org/data/a370-crop.fits # Downloads 287 MB

In the sections below, we will first review how you can visually inspect a 3D datacube in
DS9 and interactively see the spectra of any region. We will then subtract the continuum
emission, detect the emission-lines within this cube and extract their spectra. We will finish
with creating pseudo narrow-band images optimized for some of the emission lines.

2.5.1 Viewing spectra and redshifted lines

In Section 2.5 [Detecting lines and extracting spectra in 3D data], page 135, we downloaded
a small crop from the Pilot-WINGS survey of Abell 370 cluster; observed with MUSE. In

45 https://en.wikipedia.org/wiki/Hyperspectral_imaging
46 https://en.wikipedia.org/wiki/Multi-unit_spectroscopic_explorer
47 https://en.wikipedia.org/wiki/Advanced_CCD_Imaging_Spectrometer
48 https://astro.dur.ac.uk/~hbpn39/pilot-wings.html
49 You can download the full cube and create the crop your self with the commands below. Due to the

decompression of the +10GB file that is necessary for the compressed downloaded file (note that its suffix
is .fits.gz), the Crop command will take a little long.

$ wget https://astro.dur.ac.uk/~hbpn39/pilotWINGS/A370_PilotWINGS_CORE.fits.gz

$ astcrop A370_PilotWINGS_CORE.fits.gz -hDATA --mode=img \

--section=200:300,100:200 -oa370-crop.fits --metaname=DATA

$ astcrop A370_PilotWINGS_CORE.fits.gz -hSTAT --mode=img --append \

--section=200:300,100:200 -oa370-crop.fits --metaname=STAT

https://en.wikipedia.org/wiki/Abell_370
https://arxiv.org/abs/2202.04663
https://en.wikipedia.org/wiki/Hyperspectral_imaging
https://en.wikipedia.org/wiki/Multi-unit_spectroscopic_explorer
https://en.wikipedia.org/wiki/Advanced_CCD_Imaging_Spectrometer
https://astro.dur.ac.uk/~hbpn39/pilot-wings.html
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this section, we will review how you can visualize/inspect a datacube using that example.
With the first command below, we’ll open DS9 such that each 2D slice of the cube (at a
fixed wavelength) is seen as a single image. If you move the slider in the “Cube” window
(that also opens), you can view the same field at different wavelengths. We are ending the
first command with a ‘&’ so you can continue viewing DS9 while using the command-line
(press one extra ENTER to see the prompt). With the second command, you can see that
the spacing between each slice is 1.25× 10−10 meters (or 1.25 Angstroms).

$ astscript-fits-view a370-crop.fits -h1 --ds9scale="limits -5 20" &

$ astfits a370-crop.fits --pixelscale

Basic info. for --pixelscale (remove info with '--quiet' or '-q')

Input: a370-crop.fits (hdu 1) has 3 dimensions.

Pixel scale in each FITS dimension:

1: 5.55556e-05 (deg/pixel) = 0.2 (arcsec/pixel)

2: 5.55556e-05 (deg/pixel) = 0.2 (arcsec/pixel)

3: 1.25e-10 (m/slice)

Pixel area (on each 2D slice) :

3.08642e-09 (deg^2) = 0.04 (arcsec^2)

Voxel volume:

3.85802e-19 (deg^2*m) = 5e-12 (arcsec^2*m) = 0.05 (arcsec^2*A)

In the DS9 “Cube” window, you will see two numbers on the two sides of the scroller.
The left number is the wavelength in meters (WCS coordinate in 3rd dimension) and the
right number is the slice number (slice number or array coordinates in 3rd dimension).
You can manually edit any of these numbers and press ENTER to go to that slice in any
coordinate system. If you want to go one-by-one, simply press the “Next” button. The first
few slides are very noisy, but in the rest the noise level decreases and the galaxies are more
obvious.

As you slide between the different wavelengths, you see that the noise-level is not constant
and in some slices, the sky noise is very strong (for example, go to slice 3201 and press the
“Next” button). We will discuss these issues below (in Section 2.5.2 [Sky lines in optical
IFUs], page 139). To view the spectra of a region in DS9 take the following steps:

1. Click somewhere on the image (to make sure DS9 receives your keyboard inputs),
then press Ctrl+R to activate regions and click on the brightest galaxy of this cube
(center-right, at RA, Dec of 39.9659175 and -1.5893075).

2. A thin green circle will show up; this is called a “region” in DS9.

3. Double-click on the region, and you will see a “Circle” window.

4. Within the “Circle” window, click on the “Analysis” menu and select “Plot 3D”.

5. A second “Circle” window will open that shows the spectra within your selected region.
This is just the sum of values on each slice within the region.

6. Don’t close the second “circle” window (that shows the spectrum). Click and hold the
region in DS9, and move it to other objects within the cube. You will see that the
spectrum changes as you move the region, and you can see that different objects have
very different spectra. You can even see the spectra of only one part of a galaxy, not
the whole galaxy.

7. Take the region back to the first (brightest) galaxy that we originally started with.
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8. Slide over different wavelengths in the “Cube” window, you will see the light-blue line
moving through the spectrum as you slide to different wavelengths. This line shows
the wavelength of the displayed image in the main window over the spectra.

9. The strongest emission line in this galaxy appears to be around 8500 Angstroms or
8.5 × 10−7 meters. From the position of the Balmer break (https://en.wikipedia.
org/wiki/Balmer_jump) (blue-ward of 5000 Angstroms for this galaxy), the strong
seems to be H-alpha.

10. To confirm that this is H-alpha, you can select the “Edit” menu in the spectrum window
and select “Zoom”.

11. Double-click and hold (for next step also) somewhere before the strongest line
and slightly above the continuum (for example at 8E-07 in the horizontal and
60 × 10−20erg/Angstrom/cm2/s on the vertical). As you move your cursor (while
holding), you will see a rectangular box getting created.

12. Move the bottom-left corner of the box to somewhere after the strongest line and below
the continuum. For example at 9E-07 and 20× 10−20erg/Angstrom/cm2/s.

13. Once you remove your finger from the mouse/touchpad, it will zoom-in to that part of
the spectrum.

14. To zoom out to the full spectrum, just press the right mouse button over the spectra
(or tap with two fingers on a touchpad).

15. Select that zoom-box again to see the brightest line much more clearly. You can also
see the two lines of the Nitrogen II doublet that sandwich H-alpha. Beside its relative
position to the Balmer break, this is further evidence that the strongest line is H-alpha.

16. Let’s have a look at the galaxy in its best glory: right over the H-alpha line: Move
the wavelength slider accurately (by pressing the “Previous” or “Next” buttons) such
that the blue line falls in the middle of the H-alpha line. We see that the wavelength
at this slice is 8.56593e-07 meters or 8565.93 Angstroms. Please compare the image
of the galaxy at this wavelength with the wavelengths before (by pressing “Next” or
“Previous”). You will also see that it is much more extended and brighter than other
wavelengths! H-alpha shows the un-obscured star formation of the galaxy!� �

Automaticly going to next slice: When you want to get a general feeling of the cube,
pressing the “Next” button many times is annoying and slow. To automatically shift
between the slices, you can press the “Play” button in the DS9 “Cube” window. You can
adjust the time it stays on each slice by clicking on the “Interval” menu and selecting
lower values.
 	

Knowing that this is H-alpha at 8565.93 Angstroms, you can get the redshift of the galaxy
with the first command below and the location of all other expected lines in Gnuastro’s
spectral line database with the second command. Because there are many lines in the
second command (more than 200!), with the third command, we’ll only limit it to the
Balmer series (that start with H-) using grep. The output of the second command prints
the metadata on the top (that is not shown any more in the third command due to the
grep call). To be complete, the first column is the observed wavelength of the given line in
the given redshift and the second column is the name of the line.

# Redshift where H-alpha falls on 8565.93.

https://en.wikipedia.org/wiki/Balmer_jump
https://en.wikipedia.org/wiki/Balmer_jump
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$ astcosmiccal --obsline=H-alpha,8565.93 --usedredshift

0.305221

# Wavelength of all lines in Gnuastro's database at this redshift

$ astcosmiccal --obsline=H-alpha,8565.93 --listlinesatz

# Only the Balmer series (Lines starting with 'H-'; given to Grep).

$ astcosmiccal --obsline=H-alpha,8565.93 --listlinesatz | grep H-

4812.13 H-19

4818.29 H-18

4825.61 H-17

4834.36 H-16

4844.95 H-15

4857.96 H-14

4874.18 H-13

4894.79 H-12

4921.52 H-11

4957.1 H-10

5006.03 H-9

5076.09 H-8

5181.83 H-epsilon

5353.68 H-delta

5665.27 H-gamma

6345.11 H-beta

8565.93 H-alpha

4758.84 H-limit

Zoom-out to the full spectrum and move the displayed slice to the location of the
first emission line that is blue-ward (at shorter wavelengths) of H-alpha (at around 6300
Angstroms) and follow the previous steps to confirm that you are on its center. You will
see that it falls exactly on 6.34468 × 10−7 m or 6344.68 Angstroms. Now, have a look at
the Balmer lines above. You have found the H-beta line!

The rest of the Balmer series (https://en.wikipedia.org/wiki/Balmer_series) that
you see in the list above (like H-gamma, H-delta and H-epsilon) are visible only as absorp-
tion lines. Please check their location by moving the blue line on the wavelengths above
and confirm the spectral absorption lines with the ones above. The Balmer break is caused
by the fact that these stronger Balmer absorption lines become too close to each other.

Looking back at the full spectrum, you can also confirm that the only other relatively
strong emission line in this galaxy, that is on the blue side of the spectrum is the weakest
OII line that is approximately located at 4864 Angstroms in the observed spectra of this
galaxy. The numbers after the various OII emission lines show their rest-frame wavelengths
(“OII” can correspond to many electron transitions, so we should be clear about which one
we are talking about).

$ astcosmiccal --obsline=H-alpha,8565.93 --listlinesatz | grep O-II-

4863.3 O-II-3726

4866.93 O-II-3728

5634.82 O-II-4317

https://en.wikipedia.org/wiki/Balmer_series
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5762.42 O-II-4414

9554.21 O-II-7319

9568.22 O-II-7330

Please stop here and spend some time on doing the exercise above on other galaxies in
the this cube to get a feeling of types of galaxy spectral features (and later on the full/large
cube). You will notice that only star-forming galaxies have such strong emission lines! If
you enjoy it, go get the full non-cropped cube and investigate the spectra, redshifts and
emission/absorption lines of many more galaxies.

But going into those higher-level details of the physical meaning of the spectra (as
intriguing as they are!) is beyond the scope of this tutorial. So we have to stop at this
stage unfortunately. Now that you have a relatively good feeling of this small cube, let’s
start doing some analysis to extract the spectra of the objects in this cube.

2.5.2 Sky lines in optical IFUs

As we were visually inspecting the cube in Section 2.5.1 [Viewing spectra and redshifted
lines], page 135, we noticed some slices with very bad noise. They will later affect our
detection within the cube, so in this section let’s have a fast look at them here. We’ll start
by looking at the two cubes within the downloaded FITS file:

$ astscript-fits-view a370-crop.fits

The cube on the left is the same cube we studied before. The cube on the right (which
is called STAT) shows the variance of each voxel. Go to slice 3195 and press “Next” to view
the subsequent slices. Initially (for the first 5 or 6 slices), the noise looks reasonable. But
as you pass slice 3206, you will see that the noise becomes very bad in both cubes. It stays
like this until about slice 3238! As you go through the whole cube, you will notice that
these slices are much more frequent in the reddest wavelengths.

These slices are affected by the emission lines from our own atmosphere! The atmo-
sphere’s emission in these wavelengths significantly raises the background level in these
slices. As a result, the Poisson noise also increases significantly (see Section 6.2.3.1 [Photon
counting noise], page 403). During the data reduction, the excess background flux of each
slice is removed as the Sky (or the mean of undetected pixels, see Section 7.1.4 [Sky value],
page 519). However, the increased Poisson noise (scatter of pixel values) remains!

To see spectrum of the sky emission lines, simply put a region somewhere in the STAT

cube and generate its spectrum (as we did in Section 2.5.1 [Viewing spectra and redshifted
lines], page 135). You will clearly see the comb-like shape of atmospheric emission lines and
can use this to know where to expect them.

2.5.3 Continuum subtraction

In Section 2.5.1 [Viewing spectra and redshifted lines], page 135, we visually inspected some
of the most prominent emission lines of the brightest galaxy of the demo MUSE cube (see
Section 2.5 [Detecting lines and extracting spectra in 3D data], page 135). Here, we will
remove the “continuum” flux from under the emission lines to see them more distinctly.

Within a spectra, the continuum is the local “background” flux in the third/wavelength
dimension. In other words, it is the flux that would be present at that wavelength if the
emission line didn’t exist. Therefore, to accurately measure the flux of the emission line, we
first need to subtract the continuum. One crude way of estimating the continuum flux at
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every slice is to use the sigma-clipped median value of that same pixel in the ±N/2 slides
around it (for more on sigma-clipping, see Section 2.10.2 [Sigma clipping], page 200).

In this case, N = 100 should be a good first approximate (since it is much larger than any
of the absorption or emission lines). With the first command below, let’s use Arithmetic’s
filtering operators for estimating the sigma-clipped median only along the third dimension
for every pixel in every slice (see Section 6.2.4.8 [Filtering (smoothing) operators], page 424).
With the second command, have a look at the filtered cube and spectra. Note that the first
command is computationally expensive and may take a minute or so.

$ astarithmetic a370-crop.fits set-i --output=filtered.fits \

3 0.2 1 1 100 i filter-sigclip-median

$ astscript-fits-view filtered.fits -h1 --ds9scale="limits -5 20"

Looking at the filtered cube above, and sliding through the different wavelengths, you
will see the noise in each slice has been significantly reduced! This is expected because each
pixel’s value is now calculated from 100 others (along the third dimension)! Using the same
steps as Section 2.5.1 [Viewing spectra and redshifted lines], page 135, plot the spectra of
the brightest galaxy. Then, have a look at its spectra. You see that the emission lines have
been significantly smoothed out to become almost50 invisible.

You can now subtract this “continuum” cube from the input cube to create the emission-
line cube. In fact, as you see below, we can do it in a single Arithmetic command (blending
the filtering and subtraction in one command). Note how the only difference with the
previous Arithmetic command is that we added an i before the 3 and a - after filter-
sigclip-median. For more on Arithmetic’s powerful notation, see Section 6.2.1 [Reverse
polish notation], page 399. With the second command below, let’s view the input and
continuum-subtracted cubes together:

$ astarithmetic a370-crop.fits set-i --output=no-continuum.fits \

i 3 0.2 1 1 100 i filter-sigclip-median -

$ astscript-fits-view a370-crop.fits no-continuum.fits -h1 \

--ds9scale="limits -5 20"

Once the cubes are open, slide through the different wavelengths. Comparing the
left (input) and right (continuum-subtracted) slices, you will rarely see any galaxy in the
continuum-subtracted one! As its name suggests, the continuum flux is continuously present
in all the wavelengths (with gradual change)! But the continuum has been subtracted now;
so in the right-side image, you don’t see anything on wavelengths that don’t contain a spec-
tral emission line. Some dark regions also appear; these are absorption lines! Please spend
a few minutes sliding through the wavelengths and seeing how the emission lines pop-up
and disappear again. It is almost like scuba diving, with fish appearing out of nowhere and
passing by you.

Let’s go to slice 3046 (corresponding to 8555.93 Angstroms; just before the H-alpha line
for the brightest galaxy in Section 2.5.1 [Viewing spectra and redshifted lines], page 135).
Now press the “Next” button to change slices one by one until there is no more emission
in the brightest galaxy. As you go to redder slices, you will see that not only does the

50 For more on why Sigma-clipping is only a crude solution to background removal, see Akhlaghi and
Ichikawa 2015 (https://arxiv.org/abs/1505.01664).

https://arxiv.org/abs/1505.01664


Chapter 2: Tutorials 141

brightness increase, but the position of the emission also changes. This is the Doppler
effect (https://en.wikipedia.org/wiki/Doppler_effect) caused by the rotation of the
galaxy: the side that rotating towards us gets blue-shifted to bluer slices and the one that
is going away from us gets redshifted to redder slices. If you go to the emission lines of the
other galaxies, you will see that they move with a different angle! We can use this to derive
the galaxy’s rotational properties and kinematics (Gnuastro doesn’t have this feature yet).

To see the Doppler shift in the spectrum, plot the spectrum over the top-side of the
galaxy (which is visible in slice 3047). Then Zoom-in to the H-alpha line (as we did in
Section 2.5.1 [Viewing spectra and redshifted lines], page 135) and press “Next” until you
reach the end of the H-alpha emission-line. You see that by the time H-alpha disappears in
the spectrum, within the cube, the emission shifts in the vertical axis by about 15 pixels!
Then, move the region across the same path that the emission passed. You will clearly see
that the H-alpha and Nitrogen II lines also move with you, in the zoomed-in spectra. Again,
try this for several other emission lines, and several other galaxies to get a good feeling of
this important concept when using hyper-spectral 3D data.

2.5.4 3D detection with NoiseChisel

In Section 2.5.3 [Continuum subtraction], page 139, we subtracted the continuum emission,
leaving us with only noise and the absorption and emission lines. The absorption lines are
negative and will be missed by detection methods that look for a positive skewness51 (like
Section 7.2 [NoiseChisel], page 541). So we will focus on the detection and extraction of
emission lines here.

The first step is to extract the voxels that contain emission signal. To do that, we
will be using Section 7.2 [NoiseChisel], page 541. NoiseChisel and Section 7.3 [Segment],
page 561, operate on 2D images or 3D cubes. But by default, they are configured for
2D images (some parameters like tile size take a different number of values based on the
dimensionality). Therefore, to do 3D detection, the first necessary step is to run NoiseChisel
with the default 3D configuration file.

To see where Gnuastro’s programs are installed, you can run the following command
(the printed output is the default location when you install Gnuastro from source, but if
you used another installation method or manually set a different location, you will see a
different output, just use that):

$ which astnoisechisel

/usr/local/bin/astnoisechisel

As you see, the compiled binary programs (like NoiseChisel) are installed in the bin/

sub-directory of the install path (/usr/local in the example above, may be different on
your system). The configuration files are in the etc/gnuastro/ sub-directory of the install
path (here only showing NoiseChisel’s configuration files):

$ ls /usr/local/etc/gnuastro/astnoisechisel*.conf

/usr/local/etc/gnuastro/astnoisechisel-3d.conf

/usr/local/etc/gnuastro/astnoisechisel.conf

We should therefore call NoiseChisel with the 3D configuration file like below (please change
/usr/local to any directory that you find from the which command above):

51 But if you want to detect the absorption lines, just multiply the cube by −1 and repeat the same steps
here (the noise is symmetric around 0).

https://en.wikipedia.org/wiki/Doppler_effect
https://en.wikipedia.org/wiki/Doppler_effect
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$ astnoisechisel no-continuum.fits --output=det.fits \

--config=/usr/local/etc/gnuastro/astnoisechisel-3d.conf

But having to add this long --config option is annoying and makes the command hard
to read! To simplify the calling of NoiseChisel in 3D, let’s first make a shell alias called
astnoisechisel-3d using the alias command. Afterwards, we can just use the alias.
Afterwards (in the second command below), we are calling the alias, producing the same
output as above. Finally (with the last command), let’s have a look at NoiseChisel’s output:

$ alias astnoisechisel-3d="astnoisechisel \

--config=/usr/local/etc/gnuastro/astnoisechisel-3d.conf"

$ astnoisechisel-3d no-continuum.fits --output=det.fits

$ astscript-fits-view det.fits

Similar to its 2D outputs, NoiseChisel’s output contains four extensions/HDUs (see
Section 7.2.2.3 [NoiseChisel output], page 558). For a multi-extension file with 3D data,
astscript-fits-view shows each cube as a separate DS9 “Frame”. In this way, as you
slide through the wavelengths, you see the same slice in all the cubes. The third and fourth
extensions are the Sky and Sky standard deviation, which are not relevant here, so you can
close them. To do that, press on the “Frame” button (in the top row of buttons), then
press “delete” two times in the second row of buttons.

As a final preparation, manually set the scale of INPUT-NO-SKY cube to a fixed range so
the changing flux/noise in each slice doesn’t interfere with visually comparing the data in
the slices as you move around:

1. Click on the INPUT-NO-SKY cube, so it is selected.

2. Click on the “Scale” menu, then the “Scale Parameters”.

3. For the “Low” value set -2 and for the “High” value set 5.

4. In the “Cube” window, slide between the slices to confirm that the noise level is visually
fixed.

5. Go back to the first slice for the next steps. Note that the first and last couple of slices
have much higher noise, don’t worry about those.

As you press the “Next” button in the first few slides, you will notice that the DETECTION
cube is fully black: showing that nothing has been detected. The first detection pops up
in the 55th slice for the galaxy on the top of this cube. As you press “Next” you will see
that the detection fades away and other detections pop up. Spend a few minutes shifting
between the different slices and comparing the detected voxels with the emission lines in
the continuum-subtracted cube (the INPUT-NO-SKY extension).

Go ahead to slice 2815 and press “Next” a few times. You will notice that the detections
suddenly start covering the whole slice and until slice 2859 where the detection map becomes
normal (no extra detections!). This is the effect of the sky lines we mentioned before in
Section 2.5.2 [Sky lines in optical IFUs], page 139. The increased noise makes the reduction
very hard and as a result, a lot of artifacts appear. To reduce the effect of sky lines, we can
divide the cube by its standard deviation (the square root of the variance or STAT extension;
see Section 2.5.2 [Sky lines in optical IFUs], page 139) and run NoiseChisel afterwards.

$ astarithmetic no-continuum.fits -h1 a370-crop.fits -hSTAT sqrt / \
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--output=sn.fits

$ astnoisechisel-3d sn.fits --output=det.fits

$ astscript-fits-view det.fits

After the new detection map opens have another look at the specific slices mentioned
above (from slice 2851 to 2859). You will see that there are no more detection maps that
cover the whole field of view. Scroll the slide counter across the whole cube, you will rarely
see such effects by Sky lines any more. But this is just a crude solution and doesn’t remove
all sky line artifacts. For example go to slide 650 and press “Next”. You will see that the
artifacts caused by this sky line are so strong that the solution above wasn’t successful. For
these very strong emission lines, we need to improve the reduction. But generally, since the
number of sky-line affected slices has significantly decreased, we can go ahead.

2.5.5 3D measurements and spectra

In the context of optical IFUs or radio IFUs in astronomy, a “Spectrum” is defined as
separate measurements on each 2D slice of the 3D cube. Each 2D slice is defined by
the first two FITS dimensions: the first FITS dimension is the horizontal axis and the
second is the vertical axis. As with the tutorial on 2D image analysis (in Section 2.1.13
[Segmentation and making a catalog], page 48), let’s run Segment to see how it works in
3D. Like NoiseChisel above, to simplify the commands, let’s make an alias (Section 2.5.4
[3D detection with NoiseChisel], page 141):

$ alias astsegment-3d="astsegment \

--config=/usr/local/etc/gnuastro/astsegment-3d.conf"

$ astsegment-3d det.fits --output=seg.fits

$ astscript-fits-view seg.fits

You see that we now have 3D clumps and 3D objects. So we can go ahead to do
measurements. MakeCatalog can do single-valued measurements (as in 2D) on 3D datasets
also. For example, with the command below, let’s get the flux-weighted center (in the three
dimensions) and sum of pixel values. There isn’t usually a standard name for the third
WCS dimension (unlike Ra/Dec). So in Gnuastro, we just call it --w3. With the second
command, we are having a look at the first 5 rows. Note that we are not using -Y with
asttable anymore because it the wavelength column would only be shown as zero (since it
is in meters!).

$ astmkcatalog seg.fits --ids --ra --dec --w3 --sum --output=cat.fits

$ asttable cat.fits -h1 -O --txtf64p=5 --head=5

# Column 1: OBJ_ID [counter ,i32,] Object identifier.

# Column 2: RA [deg ,f64,] Flux weighted center (WCS axis 1).

# Column 3: DEC [deg ,f64,] Flux weighted center (WCS axis 2).

# Column 4: AWAV [m ,f64,] Flux weighted center (WCS axis 3).

# Column 5: SUM [input-units,f32,] Sum of sky subtracted values.

1 3.99677e+01 -1.58660e+00 4.82994e-07 7.311189e+02

2 3.99660e+01 -1.58927e+00 4.86411e-07 7.872681e+03
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3 3.99682e+01 -1.59141e+00 4.90609e-07 1.314548e+03

4 3.99677e+01 -1.58666e+00 4.90816e-07 7.798024e+02

5 3.99659e+01 -1.58930e+00 4.93657e-07 3.255210e+03

Besides the single-valued measurements above (that are shared with 2D inputs), on 3D
cubes, MakeCatalog can also do per-slice measurements. The options for these measure-
ments are formatted as --*in-slice. With the command below, you can check their list:

$ astmkcatalog --help | grep in-slice

--area-in-slice [3D input] Number of labeled in each slice.

--area-other-in-slice [3D input] Area of other lab. in projected area.

--area-proj-in-slice [3D input] Num. voxels in '--sum-proj-in-slice'.

--sum-err-in-slice [3D input] Error in '--sum-in-slice'.

--sum-in-slice [3D input] Sum of values in each slice.

--sum-other-err-in-slice [3D input] Area in '--sum-other-in-slice'.

--sum-other-in-slice [3D input] Sum of other lab. in projected area.

--sum-proj-err-in-slice [3D input] Error of '--sum-proj-in-slice'.

--sum-proj-in-slice [3D input] Sum of projected area in each slice.

For every label and measurement, these options will give many values in a vector column
(see Section 5.3.2 [Vector columns], page 343). Let’s have a look by asking for the sum of
values and area of each label in each slice associated to each label with the command
below. There is just one important point: in Section 2.5.4 [3D detection with NoiseChisel],
page 141, we ran NoiseChisel on the signal-to-noise image, not the continuum-subtracted
image! So the values to use for the measurement of each label should come from the no-

continuum.fits file (not seg.fits).

$ astmkcatalog seg.fits --ids --ra --dec --w3 --sum \

--area-in-slice --sum-in-slice --output=cat.fits \

--valuesfile=no-continuum.fits

$ asttable -i cat.fits

--------

seg_cat.fits (hdu: 1)

------- ----- ---- -------

No.Name Units Type Comment

------- ----- ---- -------

1 OBJ_ID counter int32 Object identifier.

2 RA deg float64 Flux wht center (WCS 1).

3 DEC deg float64 Flux wht center (WCS 2).

4 AWAV m float64 Flux wht center (WCS 3).

5 SUM input-units float32 Sum of sky-subed values.

6 AREA-IN-SLICE counter int32(3681) Number of pix. in each slice.

7 SUM-IN-SLICE input-units float32(3681) Sum of values in each slice.

--------

Number of rows: 211

--------

You can see that the new AREA-IN-SLICE and SUM-IN-SLICE columns have a (3681) in
their types. This shows that unlike the single-valued columns before them, in these columns,
each row has 3681 values (a “vector” column). If you are not already familiar with vector
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columns, please take a few minutes to read Section 5.3.2 [Vector columns], page 343. Since
a MUSE data cube has 3681 slices, this is effectively the spectrum of each object.

Let’s find the object that corresponds to the H-alpha emission of the brightest galaxy
(that we found in Section 2.5.1 [Viewing spectra and redshifted lines], page 135). That emis-
sion line was around 8565.93 Angstroms, so let’s look for the objects within ±5 Angstroms
of that value (between 8560 to 8570 Angstroms):

$ asttable cat.fits --range=AWAV,8.560e-7,8.570e-7 -cobj_id,ra,dec -Y

198 39.965897 -1.589279

From the command above, we see that at this wavelength, there was only one object.
Let’s extract its spectrum by asking for the sum-in-slice column:

$ asttable cat.fits --range=AWAV,8.560e-7,8.570e-7 \

-carea-in-slice,sum-in-slice

If you look into the outputs, you will see that it is a single line! It contains a long list
of 0 values at the start and nan values in the end. If you scroll slowly, in the middle of
each you will see some non-zero and non-NaN numbers. To help interpret this more easily,
let’s transpose these vector columns (so each value of the vector column becomes a row in
the output). We will use the --transpose option of Table for this (just note that since
transposition changes the number of rows, it can only be used when your table only has
vector columns and they all have the same number of elements (as in this case, for more):

$ asttable cat.fits --range=AWAV,8.560e-7,8.570e-7 \

-carea-in-slice,sum-in-slice --transpose

We now see the measurements on each slice printed in a separate line (making it much
more easier to visually read). However, without a counter, it is very hard to interpret
them. Let’s pipe the output to a new Table command and use column arithmetic’s counter
operator for displaying the slice number (see Section 6.2.4.19 [Size and position operators],
page 456). Note that since we are piping the output, we also added -O so the column
metadata are also passed to the new instance of Table:

$ asttable cat.fits --range=AWAV,8.560e-7,8.570e-7 -O \

-carea-in-slice,sum-in-slice --transpose \

| asttable -c'arith $1 counter swap',2

...[[truncated]]...

3040 0 nan

3041 0 nan

3042 0 nan

3043 0 nan

3044 1 4.311140e-01

3045 18 3.936019e+00

3046 161 -5.800080e+00

3047 360 2.967184e+02

3048 625 1.912855e+03

3049 823 5.140487e+03

3050 945 7.174101e+03

3051 999 6.967604e+03

3052 1046 6.468591e+03

3053 1025 6.457354e+03
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3054 996 6.599119e+03

3055 966 6.762280e+03

3056 873 5.014052e+03

3057 649 2.003334e+03

3058 335 3.167579e+02

3059 131 1.670975e+01

3060 25 -2.953789e+00

3061 0 nan

3062 0 nan

3063 0 nan

3064 0 nan

...[[truncated]]...

$ astscript-fits-view seg.fits

After DS9 opens with the last command above, go to slice 3044 (which is the first non-
NaN slice in the spectrum above). In the OBJECTS extension of this slice, you see several
non-zero pixels. The few non-zero pixels on the bottom have a label of 197 and the single
non-zero pixel at a higher Y axis position has a label of 198 (which as we saw above, was
the label of the H-alpha emission of this galaxy). The few 197 labeled pixels in this slice
are the last voxels of the NII emission that is just blue-ward of H-alpha.

The single pixel you see in slice 3044 is why you see a value of 1 in the AREA-IN-SLICE

column. As you go to the next slices, if you count the pixels, you will see they add up to
the same number you see in that column. The values in the SUM-IN-SLICE are the sum of
values in the continuum-subtracted cube for those same voxels. You should now be able to
understand why the --sum-in-slice column has NaN values in all other slices: because
this label doesn’t exist in any other slice! Also, within slices that contain label 198, this
column only uses the voxels that have the label. So as you see in the second column above,
the area that is used in each changes.

Therefore --sum-in-slice or area-in-slice are the raw 3D spectrum of each 3D
emission-line. This is a different concept from the traditional “spectrum” where the same
area is used over all the slices. To get that you should use the --sumprojinslice column
of MakeCatalog. All the --*in-slice options that contain a proj in their name are
measurements over the fixed “projection” of the 3D volume on the 2D surface of each slice.
To see the effect, let’s also ask MakeCatalog to measure this projected sum column:

$ astmkcatalog seg.fits --ids --ra --dec --w3 --sum \

--area-in-slice --sum-in-slice --sum-proj-in-slice \

--output=cat.fits --valuesfile=no-continuum.fits

$ asttable cat.fits --range=AWAV,8.560e-7,8.570e-7 -O \

-carea-in-slice,sum-in-slice,sum-proj-in-slice \

--transpose \

| asttable -c'arith $1 counter swap',2,3

...[[truncated]]...

3040 0 nan 8.686357e+02

3041 0 nan 4.384907e+02

3042 0 nan 4.994813e+00

3043 0 nan -1.595918e+02
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3044 1 4.311140e-01 -2.793141e+02

3045 18 3.936019e+00 -3.251023e+02

3046 161 -5.800080e+00 -2.709914e+02

3047 360 2.967184e+02 1.049625e+02

3048 625 1.912855e+03 1.841315e+03

3049 823 5.140487e+03 5.108451e+03

3050 945 7.174101e+03 7.149740e+03

3051 999 6.967604e+03 6.913166e+03

3052 1046 6.468591e+03 6.442184e+03

3053 1025 6.457354e+03 6.393185e+03

3054 996 6.599119e+03 6.572642e+03

3055 966 6.762280e+03 6.716916e+03

3056 873 5.014052e+03 4.974084e+03

3057 649 2.003334e+03 1.870787e+03

3058 335 3.167579e+02 1.057906e+02

3059 131 1.670975e+01 -2.415764e+02

3060 25 -2.953789e+00 -3.534623e+02

3061 0 nan -3.745465e+02

3062 0 nan -2.532008e+02

3063 0 nan -2.372232e+02

3064 0 nan -2.153670e+02

...[[truncated]]...

As you see, in the new SUM-PROJ-IN-SLICE column, we have a measurement in each slice:
including slices that do not have the label of 198 at all. Also, the area used to measure this
sum is the same in all slices (similar to a classical spectrometer’s output).

However, there is a big problem: have a look at the sums in slices 3040 and 3041:
the values are increasing! This is because of the emission in the NII line that also falls
over the projected area of H-alpha. This shows the power of IFUs as opposed to classical
spectrometers: we can distinguish between individual lines based on spatial position and
do measurements in 3D!

Finally, in case you want the spectrum with the continuum, you just have to change the
file given to --valuesfile:

$ astmkcatalog seg.fits --ids --ra --dec --w3 --sum \

--area-in-slice --sum-in-slice --sum-proj-in-slice \

--valuesfile=a370-crop.fits \

--output=cat-with-continuum.fits

2.5.6 Extracting a single spectrum and plotting it

In Section 2.5.5 [3D measurements and spectra], page 143, we measured the spectra of all
the objects with the MUSE data cube of this demonstration tutorial. Let’s now write the
resulting spectra for our object 198 into a file to view our measured spectra in TOPCAT for
a more visual inspection. But we don’t want slice numbers (which are specific to MUSE), we
want the horizontal axis to be in Angstroms. To do that, we can use the WCS information:

CRPIX3 The “Coordinate Reference PIXel” in the 3rd dimension (or slice number of
reference) Let’s call this sr.
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CRVAL3 The “Coordinate Reference VALue” in the 3rd dimension (the WCS coordinate
of the slice in CRPIX3. Let’s call this λr

CDELT3 The “Coordinate DELTa” in the 3rd dimension, or how much the WCS changes
with every slice. Let’s call this δ.

To find the λ (wavelength) of any slice with number s, we can simply use this equation:

λ = λr + δ(s− sr)

Let’s extract these three values from the FITS WCS keywords as shell variables to
automatically do this within Table’s column arithmetic. Here we are using the technique
that is described in Section 4.1.5.1 [Separate shell variables for multiple outputs], page 265.

$ eval $(astfits seg.fits --keyvalue=CRPIX3,CRVAL3,CDELT3 -q \

| xargs printf "sr=%s; lr=%s; d=%s;")

## Just for a check:

$ echo $sr

1.000000e+00

$ echo $lr

4.749679687500000e-07

$ echo $d

1.250000000000000e-10

Now that we have the necessary constants, we can simply convert the equation above
into Section 6.2.1 [Reverse polish notation], page 399, and use column arithmetic to convert
the slice counter into wavelength in the command of Section 2.5.5 [3D measurements and
spectra], page 143.

$ asttable cat.fits --range=AWAV,8.560e-7,8.570e-7 -O \

-carea-in-slice,sum-in-slice,sum-proj-in-slice \

--transpose \

| asttable -c'arith $1 counter '$sr' - '$d' x '$lr' + f32 swap' \

-c2,3 --output=spectrum-obj-198.fits \

--colmetadata=1,WAVELENGTH,m,"Wavelength of slice." \

--colmetadata=2,"AREA-IN-SLICE",voxel,"No. of voxels."

$ astscript-fits-view spectrum-obj-198.fits

Once TOPCAT opens, take the following steps:

1. In the “Graphics” menu, select “Plane plot”.

2. Change AREA-IN-SLICE to SUM-PROJ-IN-SLICE.

3. Select the “Form” tab.

4. Click on the button with the large green “+” button and select “Add line”.

5. Un-select the “Mark” item that was originally selected.

Of course, the table in spectrum-obj-198.fits can be plotted using any other plotting
tool you prefer to use in your scientific papers.
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2.5.7 Pseudo narrow-band images

In Section 2.5.3 [Continuum subtraction], page 139, we subtracted/separated the continuum
from the emission/absorption lines of our galaxy in the MUSE cube. Let’s visualize the
morphology of the galaxy at some of the spectral lines to see how it looks. To do this, we
will create pseudo narrow-band 2D images by collapsing the cube along the third dimension
within a certain wavelength range that is optimized for that flux.

Let’s find the wavelength range that corresponds to H-alpha emission we studied in Sec-
tion 2.5.6 [Extracting a single spectrum and plotting it], page 147. Fortunately MakeCatalog
can calculate the minimum and maximum position of each label along each dimension like
the command below. If you always need these values, you can include these columns in the
same MakeCatalog with --sum-proj-in-slice. Here we are running it separately to help
you follow the discussion there.

$ astmkcatalog seg.fits --output=cat-ranges.fits \

--ids --min-x --max-x --min-y --max-y --min-z --max-z

Let’s extract the minimum and maximum positions of this particular object with the
first command and with the second, we’ll write them into different shell variables. With
the second command, we are writing those six values into a single string in the format of
Crop’s Section 6.1.2 [Crop section syntax], page 388. For more on the eval-based shell trick
we used here, see Section 4.1.5.1 [Separate shell variables for multiple outputs], page 265.
Finally, we are running Crop and viewing the cropped 3D cube.

$ asttable cat-ranges.fits --equal=OBJ_ID,198 \

-cMIN_X,MAX_X,MIN_Y,MAX_Y,MIN_Z,MAX_Z

56 101 11 61 3044 3060

$ eval $(asttable cat-ranges.fits --equal=OBJ_ID,198 \

-cMIN_X,MAX_X,MIN_Y,MAX_Y,MIN_Z,MAX_Z \

| xargs printf "section=%s:%s,%s:%s,%s:%s; ")

$ astcrop no-continuum.fits --mode=img --section=$section \

--output=crop-no-continuum.fits

$ astscript-fits-view crop-no-continuum.fits

Go through the slices and you will only see this particular region of the full cube. We
can now collapse the third dimension of this image into a 2D pseudo-narrow band image
with Arithmetic’s Section 6.2.4.11 [Dimensionality changing operators], page 430:

$ astarithmetic crop-no-continuum.fits 3 collapse-sum \

--output=collapsed-all.fits

$ astscript-fits-view collapsed-all.fits

During the collapse, used all the pixels in each slice. This is not good for the faint
outskirts in the peak of the emission line: the noise of the slices with less signal decreases
the over-all signal-to-noise ratio in the pseudo-narrow band image. So let’s set all the pixels
that aren’t labeled with this object as NaN, then collapse. To do that, we first need to crop
the OBJECT cube in seg.fits. With the second command, please have a look to confirm
how the labels change as a function of wavelength.
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$ astcrop seg.fits -hOBJECTS --mode=img --section=$section \

--output=crop-obj.fits

$ astscript-fits-view crop-obj.fits

Let’s use Arithmetic to first set all the pixels that are not equal to 198 in collapsed-

obj.fits to be NaN in crop-no-continuum.fits. With the second command, we are
opening the two collapsed images together:

$ astarithmetic crop-no-continuum.fits set-i \

crop-obj.fits set-o \

i o 198 ne nan where 3 collapse-sum \

--output=collapsed-obj.fits

$ astscript-fits-view collapsed-all.fits collapsed-obj.fits \

--ds9extra="-lock scalelimits yes -blink"

Let it blink a few times and focus on the outskirts: you will see that the diffuse flux in
the outskirts has indeed been preserved better in the object-based collapsed narrow-band
image. But this is a little hard to appreciate in the 2D image. To see it better practice,
let’s get the two radial profiles. We will approximately assume a position angle of -80 and
axis ratio of 0.752. With the final command below, we are opening both radial profiles in
TOPCAT to visualize them. We are also undersampling the radial profile to have better
signal-to-noise ratio in the outer radii:

$ astscript-radial-profile collapsed-all.fits \

--position-angle=-80 --axis-ratio=0.7 \

--undersample=2 --output=collapsed-all-rad.fits

$ astscript-radial-profile collapsed-obj.fits \

--position-angle=-80 --axis-ratio=0.7 \

--undersample=2 --output=collapsed-obj-rad.fits

To view the difference, let’s merge the two profiles (the MEAN column) into one table
and simply print the two profiles beside each other. We will then pipe the resulting table
containing both columns to a second call to Gnuastro’s Table and use column arithmetic to
subtract the two mean values and divide them by the optimized one (to get the fractional
difference):

$ asttable collapsed-all-rad.fits --catcolumns=MEAN -O \

--catcolumnfile=collapsed-obj-rad.fits \

52 To derive the axis ratio and position angle automatically, you can take the following steps. Note that we
are not using NoiseChisel because this crop has been intentionally selected to contain signal, so there is
no raw noise inside of it.

$ aststatistics collapsed-all.fits --sky --tilesize=5,5

$ astarithmetic collapsed-all.fits -h1 collapsed-all_sky.fits -hSKY_STD / 5 gt \

-ocollapsed-lab.fits

$ astmkcatalog collapsed-lab.fits -h1 --valuesfile=collapsed-all.fits \

--position-angle --axis-ratio

$ asttable collapsed-all_arith_cat.fits -Y

-78.817 0.694
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| asttable -c1,2,3 -c'arith $3 $2 - $3 /' \

--colmetadata=2,MEAN-ALL \

--colmetadata=3,MEAN-OBJ \

--colmetadata=4,DIFF,frac,"Fractional diff." -YO

# Column 1: RADIUS [pix ,f32,] Radial distance

# Column 2: MEAN-ALL [input-units,f32,] Mean of sky subtracted values.

# Column 3: MEAN-OBJ [input-units,f32,] Mean of sky subtracted values.

# Column 4: DIFF [frac ,f32,] Fractional diff.

0.000 436.737 450.256 0.030

2.000 371.880 384.071 0.032

4.000 313.429 320.138 0.021

6.000 275.744 280.102 0.016

8.000 152.214 154.470 0.015

10.000 59.311 62.207 0.047

12.000 18.466 20.396 0.095

14.000 6.940 8.671 0.200

16.000 3.052 4.256 0.283

18.000 1.590 2.848 0.442

20.000 1.430 2.550 0.439

22.000 0.838 1.975 0.576

As you see, beyond a radius of 10, the last fractional difference column becomes very large,
showing that a lot of signal is missing in the MEAN-ALL column. For a more visual comparison
of the two profiles, you can use the command below to open both tables in TOPCAT:

$ astscript-fits-view collapsed-all-rad.fits \

collapsed-obj-rad.fits

Once TOPCAT has opened take the following steps:

1. Select collapsed-all-rad.fits

2. In the “Graphics” menu, select “Plane Plot”.

3. Click on the “Axes” side-bar (by default, at the bottom half of the window), and click
on “Y Log” to view the vertical axis in logarithmic scale.

4. In the “Layers” menu, select “Add Position Control”. You will see that at the bottom
half, a new scatter plot information is displayed.

5. Click on the scroll-down menu in front of “Table” and select 2: collapsed-obj-

rad.fits. Afterwards, you will see the optimized pseudo-narrow-band image radial
profile as blue points.

2.6 Color images with full dynamic range

Color images are fundamental tools to visualize astronomical datasets, allowing to visualize
valuable physical information within them. A color image is a composite representation
derived from different channels. Each channel usually corresponding to different filters
(each showing wavelength intervals of the object’s spectrum). In general, most common
color image formats (like JPEG, PNG or PDF) are defined from a combination of Red-
Green-Blue (RGB) channels (to cover the optical range with normal cameras). These three
filters are hard-wired in your monitor and in most normal camera (for example smartphone
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or DSLR) pixels. For more on the concept and usage of colors, see Section 5.2.3 [Color],
page 318, and Section 5.2.3.2 [Colormaps for single-channel pixels], page 319.

However, normal images (that you take with your smartphone during the day for ex-
ample) have a very limited dynamic range (difference between brightest and fainest part
of an image). For example in an image you take from a farm, the brightness pixel (the
sky) cannot be more than 255 times the faintest/darkest shadow in the image (because
normal cameras produce unsigned 8 bit integers; containing 28 = 256 levels; see Section 4.5
[Numeric data types], page 277).

However, astronomical sources span a much wider dynamic range such that their central
parts can be tens of millions of times brighter than their larger outer regions. Our astro-
nomical images in the FITS format are therefore usually 32-bit floating points to preserve
this information. Therefore a simple linear scaling of 32-bit astronomical data to the 8-bit
range will put most of the pixels on the darkest level and barely show anything! This
presents a major challenge in visualizing our astronomical images on a monitor, in print or
for a projector when showing slides.

In this tutorial, we review how to prepare your images and create informative RGB im-
ages for your PDF reports. We start with aligning the images to the same pixel grid (which
is usually necessary!) and using the low-level engine (Gnuastro’s Section 5.2 [ConvertType],
page 314, program) directly to create an RGB image. Afterwards, we will use a higher-level
installed script (Section 10.7 [Color images with gray faint regions], page 694). This is a
high-level wrapper over ConvertType that does some pre-processing and stretches the pixel
values to enhance their 8-bit representation before calling ConvertType.

2.6.1 Color channels in same pixel grid

In order to use different images as color channels, it is important that the images be properly
aligned and on the same pixel grid. When your inputs are high-level products of the same
survey, this is usually the case. However, in many other situations the images you plan to
use as different color channels lie on different sky positions, even if they may have the same
number of pixels. In this section we will show how to solve this problem.

For an example dataset, let’s use the same SDSS field that we used in Section 2.2
[Detecting large extended targets], page 81: the field covering the outer parts of the M51
group. With the commands below, we’ll make an inputs directory and download and
prepare the three g, r and i band images of SDSS over the same field there:

$ mkdir in

$ sdssurl=https://dr12.sdss.org/sas/dr12/boss/photoObj/frames

$ for f in g r i; do \

wget $sdssurl/301/3716/6/frame-$f-003716-6-0117.fits.bz2 \

-O$f.fits.bz2; \

bunzip2 $f.fits.bz2; \

astfits $f.fits --copy=0 -oin/$f-sdss.fits; \

rm $f.fits; \

done

Let’s have a look at the three three images with the first command, and get their number
of pixels with the second:

## Open the images locked by image coordinates



Chapter 2: Tutorials 153

$ astscript-fits-view in/*-sdss.fits

## Check the number of pixels along each axis of all images.

$ astfits in/*-sdss.fits --keyvalue=NAXIS1,NAXIS2

in/g-sdss.fits 2048 1489

in/i-sdss.fits 2048 1489

in/r-sdss.fits 2048 1489

From the first command, the images look like they cover the same astronomical object
(M51) in the same region of the sky, and with the second, we see that they have the
same number of pixels. But this general visual inspection does not guarantee that the
astronomical objects within the pixel grid cover exactly the same positions (within a pixel!)
on the sky. Let’s open the images again, but this time asking DS9 to only show one at a
time, and to “blink” between them:

$ astscript-fits-view in/*-sdss.fits \

--ds9extra="-single -zoom to fit -blink"

If you pay attention, you will see that the objects within each image are at slightly
different locations. If you don’t immediately see it, try zooming in to any star within the
image and let DS9 continue blinking. You will see that the star jumps a few pixels between
each blink.

In essence, the images are not aligned on the same pixel grid, therefore, the same source
does not share identical image coordinates across these three images. As a consequence, it
is necessary to align the images before making the color image, otherwise this misalignment
will generate multiply-peaked point-sources (stars and centers of galaxies) and artificial
color gradients in the more diffuse parts. To align the images to the same pixel grid, we
will employ Gnuastro’s Section 6.4 [Warp], page 492, program. In particular, its features
to Section 6.4.4.1 [Align pixels with WCS considering distortions], page 499.

Let’s take the middle (r band) filter as the reference to define our grid. With the
first command after building the aligned/ directory, let’s align the r filter to the celestial
coordinates (so the M51 group’s position angle doesn’t depend on the orientation of the
telescope when it took this image). With for the other two filters, we will use Warp’s
--gridfile option to ensure that ensure that their pixel grid and WCS exactly match the
r band image, but the pixel values come from the other two filters. Finally, in the last
command, we’ll visualize the three aligned images.

## Put all three channels in the same pixel grid.

$ mkdir aligned

$ astwarp in/r-sdss.fits --output=aligned/r-sdss.fits

$ astwarp in/g-sdss.fits --output=aligned/g-sdss.fits \

--gridfile=aligned/r-sdss.fits

$ astwarp in/i-sdss.fits --output=aligned/i-sdss.fits \

--gridfile=aligned/r-sdss.fits

## Open the images locked by image coordinates

$ astscript-fits-view aligned/*-sdss.fits \

--ds9extra="-single -zoom to fit -blink"
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As the images blink between each other, zoom in to some of the smaller stars and you
will see that they no longer jump from one blink to the next. These images are now precisely
pixel-aligned. We are now equipped with the essential data to proceed with the color image
generation in Section 2.6.2 [Color image using linear transformation], page 154.

2.6.2 Color image using linear transformation

Previously (in Section 2.6.1 [Color channels in same pixel grid], page 152), we downloaded
three SDSS filters of M51 and described how you can put them all in the same pixel grid. In
this section, we will explore the raw and low-level process of generating color images using
the input images (without modifying the pixel value distributions). We will use Gnuastro’s
ConvertType program (with executable name astconvertt).

Let’s create our first color image using the aligned SDSS images mentioned in the pre-
vious section. The order in which you provide the images matters, so ensure that you sort
the filters from redder to bluer (iSDSS and gSDSS are respectively the reddest and bluest
of the three filters used here).

$ astconvertt aligned/i-sdss.fits aligned/r-sdss.fits \

aligned/g-sdss.fits -g1 --output=m51.pdf� �
Other color formats: In the example above, we are using PDF because this is usually the
best format to later also insert marks that are commonly necessary in scientific publications
(see Section 2.1.21 [Marking objects for publication], page 70. But you can also generate
JPEG and TIFF outputs simply by using a different suffix for your output file (for example
--output=m51.jpg or --output=m51.tiff).
 	

Open the image with your PDF viewer and have a look. Do you see something? Initially,
it appears predominantly black. However, upon closer inspection, you will discern very tiny
points where some color is visible. These points correspond to the brightest part of the
brightest sources in this field! The reason you saw much more structure when looking at
the image in DS9 previously in Section 2.6.1 [Color channels in same pixel grid], page 152,
was that astscript-fits-view used DS9’s -zscale option to scale the values in a non-
linear way! Let’s have another look at the images with the linear minmax scaling of DS9:

$ astscript-fits-view aligned/*-sdss.fits \

--ds9extra="-scale minmax -lock scalelimits"

You see that it looks very similar to the PDF we generated above: almost fully black!
This phenomenon exemplifies the challenge discussed at the start of this tutorial in Sec-
tion 2.6 [Color images with full dynamic range], page 151). Given the vast number of
pixels close to the sky background level compared to the relatively few very bright pixels,
visualizing the entire dynamic range simultaneously is tricky.

To address this challenge, the low-level ConvertType program allows you to selectively
choose the pixel value ranges to be displayed in the color image. This can be accom-
plished using the --fluxlow and --fluxhigh options of ConvertType. Pixel values below
--fluxlow are mapped to the minimum value (displayed as black in the default colormap),
and pixel values above --fluxhigh are mapped to the maximum value (displayed as white))
The choice of these values depends on the pixel value distribution of the images.
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But before that, we have to account for an important differences between the filters:
the brightness of the background also has different values in different filters (the sky has
colors!) So before making more progress, generally, first you have to subtract the sky from
all three images you want to feed to the color channels. In a previous tutorial (Section 2.2
[Detecting large extended targets], page 81) we used these same images as a basis to show
how you can do perfect sky subtraction in the presence of large extended objects like M51.
Here we are just doing a visualization and bringing pixels to 8-bit, so we don’t need that
level of precision reached there (we won’t be doing photometry!). Therefore, let’s just keep
the --tilesize=100,100 of NoiseChisel.

$ mkdir no-sky

$ for f in i r g; do \

astnoisechisel aligned/$f-sdss.fits --tilesize=100,100 \

--output=no-sky/$f-sdss.fits; \

done� �
Accounting for zero points: An important step that we have not implemented in this
section is to unify the zero points of the three filters. In the case of SDSS (and some other
surveys), the images have already been brought to the same zero point, but that is not
generally the case. So before subtracting sky (and estimating the standard deviation) you
should also unify the zero points of your images (for example through Arithmetic’s counts-
to-nanomaggy or counts-to-jy described in Section 6.2.4.5 [Unit conversion operators],
page 415). If you don’t already have the zero point of your images, see the dedicated
tutorial: Section 2.7 [Zero point of an image], page 166.
 	

Now that we know the noise fluctuates around zero in all three images, we can start
to define the values for the --fluxlow and --fluxhigh. But the sky standard deviation
comes from the sky brightness in different filters and is therefore different! Let’s have a look
by taking the median value of the SKY_STD extension of NoiseChisel’s output:

$ aststatistics no-sky/i-sdss.fits -hSKY_STD --median

2.748338e-02

$ aststatistics no-sky/r-sdss.fits -hSKY_STD --median

1.678463e-02

$ aststatistics no-sky/g-sdss.fits -hSKY_STD --median

9.687680e-03

You see that the sky standard deviation of the reddest filter (i) is almost three times the
bluest filter (g)! This is usually the case in any scenario (redder emission usually requires
much less energy and gets absorbed less, so the background is usually brighter in the reddest
filters). As a result, we should define our limits based on the noise of the reddest filter.
Let’s set the minimum flux to 0 and the maximum flux to ~50 times the noise of the i-band
image (0.027× 50 = 1.35).

$ astconvertt no-sky/i-sdss.fits no-sky/r-sdss.fits no-sky/g-sdss.fits \

-g1 --fluxlow=0.0 --fluxhigh=1.35 --output=m51.pdf
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After opening the new color image, you will observe that a spiral arm of M51 and M51B
(or NGC5195, which is interacting with M51), become visible. However, the majority of
the image remains black. Feel free to experiment with different values for --fluxhigh to
set the maximum value closer to the noise-level and see the more diffuse structures. For
instance, try with --fluxhigh=0.27 the brightest pixels will have a signal-to-noise ratio of
10, or even --fluxhigh=0.135 for a signal-to-noise ratio of 5. But you will notice that, the
brighter areas of the galaxy become "saturated": you don’t see the structure of brighter
parts of the galaxy any more. As you bring down the maximum threshold, the saturated
areas also increase in size: loosing some useful information on the bright side!

Let’s go to the extreme and decrease the threshold to close the noise-level (for example
--fluxhigh=0.027 to have a signal-to-noise ratio of 1)! You will see that the noise now
becomes colored! You generally don’t want this because the difference in filter values of one
pixel are only physically meaningful when they have a high signal-to-noise ratio. For lower
signal-to-noise ratios, we should avoid color.

Ideally, we want to see both the brighter parts of the central galaxy, as well as the
fainter diffuse parts together! But with the simple linear transformation here, that is not
possible! You need some pre-processing (before calling ConvertType) to scale the images.
For example, you can experiment with taking the logarithm or the square root of the images
(using Section 6.2 [Arithmetic], page 399) before creating the color image.

These non-linear functions transform pixel values, mapping them to a new range.
After applying such transformations, you can use the transformed images as inputs to
astconvertt to generate color images (similar to how we subtracted the sky; which is a
linear operation). In addition to that, it is possible to use a different color schema for
showing the different brightness ranges as it is explained in the next section. In the next
section (Section 2.6.3 [Color for bright regions and grayscale for faint], page 156), we’ll
review one high-level installed script which will simplify all these pre-processings and help
you produce images with more information in them.

2.6.3 Color for bright regions and grayscale for faint

In the previous sections we aligned three SDSS images of M51 group Section 2.6.1 [Color
channels in same pixel grid], page 152, and created a linearly-scaled color image (only using
astconvertt program) in Section 2.6.2 [Color image using linear transformation], page 154.
But we saw that showing the brighter and fainter parts of the galaxy in a single image is
impossible in the linear scale! In this section, we will use Gnuastro’s astscript-color-

faint-gray installed script to address this problem and create images which visualize a
major fraction of the contents of our astronomical data.

This script aims to solve the problems mentioned in the previous section. See Infante-
Sainz et al. 2024 (https://arxiv.org/abs/2401.03814), which first introduced this script,
for examples of the final images we will be producing in this tutorial. This script uses a non-
linear transformation to modify the bright input values before combining them to produce
the color image. Furthermore, for the faint regions of the image, it will use grayscale and
avoid color over all (as we saw, colored noised is not too nice to look at!). The faint regions
are also inverted: so the brightest pixel in the faint (black-and-white or grayscale) region is
black and the faintest pixels will be white. Black therefore creates a smooth transition from
the colored bright pixels: the faintest colored pixel is also black. Since the background is

https://arxiv.org/abs/2401.03814
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white and the diffuse parts are black, the final product will also show nice in print or show
on a projector (the background is not black, but white!).

The SDSS image we used in the previous sections doesn’t show the full glory of the M51
group! Therefore, in this section, we will use the wider images from the J-PLUS survey
(https://www.j-plus.es). Fortunately J-PLUS includes the SDSS filters, so we can use
the same iSDSS, rSDSSS, and gSDSS filters of J-PLUS. As a consequence, similar to the
previous section, the R, G, and B channels are respectively mapped to the iSDSS, rSDSS
and gSDSS filters of J-PLUS.

The J-PLUS identification numbers for the images containing the M51 galaxy group are
in these three filters are respectively: 92797, 92801, 92803. The J-PLUS images are already
sky subtracted and aligned into the same pixel grid (so we will not need the astwarp and
astnoisechisel steps before). However, zero point magnitudes of the J-PLUS images are
different: 23.43, 23.74, 23.74. Also, the field of view of the J-PLUS Camera is very large
and we only need a small region to see the M51 galaxy group. Therefore, we will crop the
regions around the M51 group with a width of 0.35 degree wide (or 21 arcmin) and put the
crops in the same aligned/ directory we made before (which contains the inputs to the
colored images). With all the above information, let’s download, crop, and have a look at
the images to check that everything is fine. Finally, let’s run astscript-color-faint-gray

on the three cropped images.

## Download

$ url=https://archive.cefca.es/catalogues/vo/siap/jplus-dr3/get_fits?id=

$ wget "$url"92797 -Oin/i-jplus.fits.fz

$ wget "$url"92801 -Oin/r-jplus.fits.fz

$ wget "$url"92803 -Oin/g-jplus.fits.fz

## Crop

$ widthdeg=0.35

$ ra=202.4741207

$ dec=47.2171879

$ for f in i r g; do \

astcrop in/$f-jplus.fits.fz --center=$ra,$dec \

--width=$widthdeg --output=aligned/$f-jplus.fits; \

done

## Visual inspection of the images used for the color image

$ astscript-fits-view aligned/*-jplus.fits

## Create colored image.

$ R=aligned/i-jplus.fits

$ G=aligned/r-jplus.fits

$ B=aligned/g-jplus.fits

$ astscript-color-faint-gray $R $G $B -g1 --output=m51.pdf

After opening the PDF, you will notice that it is a color image with a gray background,
making the M51 group and background galaxies visible together. However, the images does
not look nice and there is significant room for improvement! You will notice that at the
end of its operation, the script printed some numerical values for four options in a table, to

https://www.j-plus.es
https://www.j-plus.es
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show automatically estimated parameter values. To enhance the output, let’s go through
and explain these step by step.� �
Zero as blank value: Some astronomical data analysis software do not put “Not a Number”
(NaN) in pixels that do not have data (for example there was no exposure there); instead
they put a value of zero (or any other arbitrary number)! When present, such pixels
usually occur on the outer edges of images (for example the image was taken at a rotated
angle to the equatorial coordinates of the pixel grid). However, zero (or any arbitrary
number) is statistically meaningful and will bias the measurements done in this (or any
other) analysis. The examples here don’t have such regions, but it is important to be
prepared.

If your inputs suffer from this problem, run the command below to convert the zero
(or any other arbitrary value) to a NaN before starting to use this script:

$ astarithmetic img.fits set-i i i 0 eq nan where --output=good.fits
 	
The first important point to take into account is the photometric calibration. If the

images are photometrically calibrated, then it is necessary to use the calibration to put
the images in the same physical units and create “real” colors. The script is able to do it
through the zero point magnitudes with the option --zeropoint (or -z). With this option,
the images are internally transformed to have the same pixel units and then create the color
image. Since the magnitude zero points are 23.43, 23.74, 23.74 for the i, r, and g images,
let’s use them in the definition

$ astscript-color-faint-gray $R $G $B -g1 --output=m51.pdf \

-z23.43 -z23.74 -z23.74

Open the image and have a look. This image does not differ too much from the one
generated by default (not using the zero point magnitudes). This is because the zero point
values used here are similar for the three images. But in other datasets the calibration could
make a big difference!

Let’s consider another vital parameter: the minimum value to be displayed (--minimum
or -m). Pixel values below this number will not be shown on the color image. In general,
if the sky background has been subtracted (see Section 2.6.2 [Color image using linear
transformation], page 154), you can use the same value (0) for all three. However, it is
possible to consider different minimum values for the inputs (in this case use as many -m as
input images). In this particular case, a minimum value of zero for all images is suitable.
To keep the command simple, we’ll add the zero point, minimum and HDU of each image
in the variable that also had its filename.

$ R="aligned/i-jplus.fits -h1 --zeropoint=23.43 --minimum=0.0"

$ G="aligned/r-jplus.fits -h1 --zeropoint=23.74 --minimum=0.0"

$ B="aligned/g-jplus.fits -h1 --zeropoint=23.74 --minimum=0.0"

$ astscript-color-faint-gray $R $G $B --output=m51.pdf

In contrast to the previous image, the new PDF (with a minimum value of zero) exhibits
a better background visualization because it is avoiding negative pixels to be included in
the scaling (they are white).

Now let’s review briefly how the script modifies the pixel value distribution in order to
show the entire dynamical range in an appropriate way. The script combines the three
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images into a single one by using a the mean operator, as a consequence, the combined
image is the average of the three R, G, and B images. This averaged image is used for
performing the asinh transformation of Lupton et al. 2004 (https://ui.adsabs.harvard.
edu/abs/2004PASP..116..133L) that is controlled by two parameters: --qbright (q) and
--stretch (s).

The asinh transformation consists in transforming the combined image (I) according to
the expression: f(I) = asinh(q × s × I)/q. When q → 0, the expression becomes linear
with a slope of the “stretch” (s) parameter: f(I) = s × I. In practice, we can use this
characteristic to first set a low value for --qbright and see the brighter parts in color,
while changing the parameter --stretch to show linearly the fainter regions (outskirts
of the galaxies for example. The image obtained previously was computed by the default
parameters (--qthresh=1.0 and --stretch=1.0). So, let’s set a lower value for --qbright
and check the result.

$ astscript-color-faint-gray $R $G $B --output=m51-qlow.pdf \

--qbright=0.01

Comparing m51.pdf and m51-qlow.pdf, you will see that a large area of the previously
colored colored pixels have become black. Only the very brightest pixels (core of the galaxies
and stars) are shown in color. Now, let’s bring out the fainter regions around the brightest
pixels linearly by increasing --stretch. This allows you to reveal fainter regions, such
as outer parts of galaxies, spiral arms, stellar streams, and similar structures. Please, try
different values to see the effect of changing this parameter. Here, we will use the value of
--stretch=100.

$ astscript-color-faint-gray $R $G $B --output=m51-qlow-shigh.pdf \

--qbright=0.01 --stretch=100

Do you see how the spiral arms and the outskirts of the galaxies have become visible
as --stretch is increased? After some trials, you will have the necessary feeling to see
how it works. Please, play with these two parameters until you obtain the desired results.
Depending on the absolute pixel values of the input images and the photometric calibration,
these two parameters will be different. So, when using this script on your own data, take
your time to study and analyze which parameters are good for showing the entire dynamical
range. For this tutorial, we will keep it simple and use the previous parameters. Let’s define
a new variable to keep the parameters already discussed so we have short command-line
examples.

$ params="--qbright=0.01 --stretch=100"

$ astscript-color-faint-gray $R $G $B $params --output=m51.pdf

$ rm m51-qlow.pdf m51-qlow-shigh.pdf

Having a separate color-map for the fainter parts is generally a good thing, but for some
reason you may not want it! To disable this feature, you can use the --coloronly option:

$ astscript-color-faint-gray $R $G $B $params --coloronly \

--output=m51-coloronly.pdf

Open the image and note that now the coloring has gone all the way into the noise
(producing a black background). In contrast with the gray background images before, the
fainter/smaller stars/galaxies and the low surface brightness features are not visible any-
more! These regions show the interaction of two galaxies; as well as all the other background

https://ui.adsabs.harvard.edu/abs/2004PASP..116..133L
https://ui.adsabs.harvard.edu/abs/2004PASP..116..133L
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galaxies and foreground stars. These structures were entirely hidden in the “only-color” im-
ages. Consequently, the gray background color scheme is particularly useful for visualizing
the most features of your data and you will rarely need to use the --coloronly option. We
will therefore not use this option anymore in this tutorial; and let’s clean the temporary file
made before:

$ rm m51-coloronly.pdf

Now that we have the basic parameters are set, let’s consider other parameters that
allow to fine tune the three ranges of values: color for the brightest pixel values, black for
intermediate pixel values, and gray for the faintest pixel values:

• --colorval defines the boundary between the color and black regions (the lowest pixel
value that is colored).

• --grayval defines the boundary between the black and gray regions (the highest gray
value).

Looking at the last lines that the script prints, we see that the default value estimated for
--colorval and --grayval are roughly 1.4. What do they mean? To answer this question
it is necessary to have a look at the image that is used to separate those different regions.
By default, this image is computed internally by the script and removed at the end. To
have a look at it, you need to use the option --keeptmp to keep the temporary files. Let’s
put the temporary files into the tmp directory with the option --tmpdir=tmp --keeptmp.
The first will use the name tmp for the temporary directory and with the second, we ask
the script to not delete (keep) it after all operations are done.

$ astscript-color-faint-gray $R $G $B $params --output=m51.pdf \

--tmpdir=tmp --keeptmp

The image that defines the thresholds is ./tmp/colorgray_threshold.fits. By de-
fault, this image is the asinh-transformed image with the pixel values between 0 (faint) and
100 (bright). If you obtain the statistics of this image, you will see that the median value
is exactly the value that the script is giving as the --colorval.

$ aststatistics ./tmp/colorgray_threshold.fits

In other words, all pixels between 100 and this value (1.4) on the threshold image will
be shown in color. To see its effect, let’s increase this parameter to --colorval=25. By
doing this, we expect that only bright pixels (those between 100 and 25 in the threshold
image) will be in color.

$ astscript-color-faint-gray $R $G $B $params --colorval=25 \

--output=m51-colorval.pdf

Open m51-colorval.pdf and check that it is true! Only the central part of the objects
(very bright pixels, those between 100 and 25 on the threshold image) are shown in color.
Fainter pixels (below 25 on the threshold image) are shown in black and gray. However,
in many situations it is good to be able to show the outskirts of galaxies and low surface
brightness features in pure black, while showing the background in gray. To do that, we
can use another threshold that separates the black and gray pixels: --grayval.

Similar to --colorval, the --grayval option defines the separation between the pure
black and the gray pixels from the threshold image. For example, by setting --grayval=5,
those pixels below 5 in the threshold image will be shown in gray, brighter pixels will be
shown in black until the value 25. Pixels brighter than 25 are shown in color.
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$ astscript-color-faint-gray $R $G $B $params --output=m51-check.pdf \

--colorval=25 --grayval=5

Open the image and check that the regions shown in color are smaller (as before), and
that now there is a region around those color pixels that are in pure black. After the black
pixels toward the fainter ones, they are shown in gray. As explained above, in the gray
region, the brightest are black and the faintest are white. It is recommended to experiment
with different values around the estimated one to have a feeling on how it changes the
image. To have even better idea of those regions, please run the following example to keep
temporary files and check the labeled image it has produced:

$ astscript-color-faint-gray $R $G $B $params --output=m51-check.pdf \

--colorval=25 --grayval=5 \

--tmpdir=tmp --keeptmp

$ astscript-fits-view tmp/total_mask-2color-1black-0gray.fits

In this segmentation image, pixels equal to 2 will be shown in color, pixels equal to 1
will be shown as pure black, and pixels equal to zero are shown in gray. By default, the
script sets the same value for both thresholds. That means that there is not many pure
black pixels. By adjusting the --colorval and --grayval parameters, you can obtain an
optimal result to show the bright and faint parts of your data within one printable image.
The values used here are somewhat extreme to illustrate the logic of the procedure, but
we encourage you to experiment with values close to the estimated by default in order to
have a smooth transition between the three regions (color, black, and gray). The script
can provide additional information about the pixel value distributions used to estimate the
parameters by using the --checkparams option.

To conclude this section of the tutorial, let’s clean up the temporary test files:

$ rm m51-check.pdf m51-colorval.pdf

2.6.4 Manually setting color-black-gray regions

In Section 2.6.3 [Color for bright regions and grayscale for faint], page 156, we created a
non-linear colored image. We used the --colorval and --grayval options to specify which
regions to show in gray (faintest values), black (intermediate values) and color (brightest
values). We also saw that the script uses a labeled image with three possible values for each
pixel to identify how that pixel should be colored.

A useful feature of this script is the possibility of providing this labeled image as an input
directly. This expands the possibilities of generating color images in a more quantitative
way. In this section, we’ll use this feature to use a more physically motivated criteria to
select these three regions (the surface brightness in the reddest band).

First, let’s generate a surface brightness image from the R channel. That is, the value
of each pixel will be in the units of surface brightness (mag/arcsec2). To do that, we
need obtain the pixel area in arcsec and use the zero point value of the image. Then, the
counts-to-sb operator of astarithmetic is used. For more on the conversion of NaN
surface brightness values and the value to R_sbl (which is roughly the surface brightness
limit of this image), see Section 2.1.20 [FITS images in a publication], page 66.

$ sb_sbl=26

$ sb_zp=23.43
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$ sb_img=aligned/i-jplus.fits

$ pixarea=$(astfits $sb_img --pixelareaarcsec2 --quiet)

# Compute the SB image (set NaNs to SB of 26!)

$ astarithmetic $sb_img $sb_zp $pixarea counts-to-sb set-sb \

sb sb isblank sb $sb_sbl gt or $sb_sbl where \

--output=sb.fits

# Have a look at the image

$ astscript-fits-view sb.fits --ds9scale=minmax \

--ds9extra="-invert"

Remember that because sb.fits is a surface brightness image where lower values are
brighter and higher values are fainter. Let’s build the labeled image that defines the regions
(regions.fits) step-by-step with the following criteria in surface brightness (SB)

SB < 23 These are the brightest pixels, we want these in color. In the regions labeled
image, these should get a value of 2.

23 < SB < 25
These are the intermediate pixel values, to see the fainter parts better, we want
these in pure black (no change in color in this range). In the regions labeled
image, these should get a value of 1.

SB > 25 These are the faintest pixel values, we want these in a gray color map (pixels
with an SB of 25 will be black and as they become fainter, they will become
lighter shades of gray). In the regions labeled image, these should get a value
of 0.

# SB thresholds (low and high)

$ sb_faint=25

$ sb_bright=23

# Select the three ranges of pixels.

$ astarithmetic sb.fits set-sb \

sb $sb_bright lt set-color \

sb $sb_bright ge sb $sb_faint lt and set-black \

color 2 u8 x black + \

--output=regions.fits

# Check the images

$ astscript-fits-view regions.fits

We can now use this labeled image with the --regions option for obtaining the final
image with the desired regions (the R, G, B and params shell variables were set previously
in Section 2.6.3 [Color for bright regions and grayscale for faint], page 156):

$ astscript-color-faint-gray $R $G $B $params --output=m51-sb.pdf \

--regions=regions.fits

Open m51-sb.pdf and have a look. Do you see how the different regions (SB intervals)
have been colored differently? They come from the SB levels we defined, and because it
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is using absolute thresholds in physical units of surface brightness, the visualization is not
only a nice looking color image, but can be used in scientific analysis.

This is really interesting because now it is possible to use color images for detecting
low surface brightness features at the same time they provide quantitative measurements.
Of course, here we have defined this region label image just using two surface brightness
values, but it is possible to define any other labeled region image that you may need for
your particular purpose.

2.6.5 Weights, contrast, markers and other customizations

Previously (in Section 2.6.4 [Manually setting color-black-gray regions], page 161) we used
an absolute (in units of surface brightness) thresholding for selecting which regions to show
by color, black and gray. To keep the previous configurations and avoid long commands,
let’s add the previous options to the params shell variable. To help in readability, we will
repeat the other shell variables from previous sections also:

$ R="aligned/i-jplus.fits -h1 --zeropoint=23.43 --minimum=0.0"

$ G="aligned/r-jplus.fits -h1 --zeropoint=23.74 --minimum=0.0"

$ B="aligned/g-jplus.fits -h1 --zeropoint=23.74 --minimum=0.0"

$ params="--regions=regions.fits --qbright=0.01 --stretch=100"

$ astscript-color-faint-gray $R $G $B $params --output=m51.pdf

To modify the color balance of the output image, you can weigh the three channels
differently with the --weight or -w option. For example, by using -w1 -w1 -w2, you give
two times more weight to the blue channel than to the red and green channels:

$ astscript-color-faint-gray $R $G $B $params -w1 -w1 -w2 \

--output=m51-weighted.pdf

The colored pixels of the output are much bluer now and the distinction between the two
merging galaxies is more clear. However, keep in mind that altering the different filters can
lead to incorrect subsequent analyses by the readers/viewers of this work (for example they
will falsely think that the galaxy is blue, and not red!). If the reduction and photometric
calibration are correct, and the images represent what you consider as the red, green, and
blue channels, then the output color image should be suitable without weights.

In certain situations, the combination of channels may not have a traditional color inter-
pretation. For instance, combining an X-ray channel with an optical filter and a far-infrared
image can complicate the interpretation in terms of human understanding of color. But the
physical interpretation remains valid as the different channels (colors in the output) repre-
sent different physical phenomena of astronomical sources. Another easier example is the
use of narrow-band filters such as the H-alpha of J-PLUS survey. This is shown in the
Bottom-right panel of Figure 1 by Infante-Sainz et al. 2024 (https://arxiv.org/abs/
2401.03814), in this case the G channel has been substituted by the image corresponding
to the H-alpha filter to show the star formation regions. Therefore, please use the weights
with caution, as it can significantly affect the output and misinform your readers/viewers.

If you do apply weights be sure to report the weights in the caption of the image (beside
the filters that were used for each channel). With great power there must also come great
responsibility!

Two additional transformations are available to modify the appearance of the output
color image. The linear transformation combines bias adjustment and contrast enhancement

https://arxiv.org/abs/2401.03814
https://arxiv.org/abs/2401.03814
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through the --bias and --contrast options. In most cases, only the contrast adjustment
is necessary to improve the quality of the color image. To illustrate the impact of adjusting
image contrast, we will generate an image with higher contrast and compare with the
previous one.

$ astscript-color-faint-gray $R $G $B $params --contrast=2 \

--output=m51-contrast.pdf

When you compare this (m51-contrast.pdf) with the previous output (m51.pdf), you
see that the colored parts are now much more clear! Use this option also with caution
because it may happen that the bright parts become saturated.

Another option available for transforming the image appearance is the gamma correction,
a non-linear transformation that can be useful in specific cases. You can experiment with
different gamma values to observe the impact on the resulting image. Lower gamma values
will enhance faint structures, while higher values will emphasize brighter regions. Let’s have
a look by giving two very different values to it with the simple loop below:

$ for g in 0.4 2.0; do \

astscript-color-faint-gray $R $G $B $params --contrast=2 \

--gamma=$g --output=m51-gamma-$g.pdf; \

done

Comparing the last three files (m51-contrast.pdf, m51-gamma-0.4.pdf and
m51-gamma-2.0.pdf), you will clearly see the effect of the --gamma.

Instead of using a combination of the three input images for the gray background, you
can introduce a fourth image that will be used for generating the gray background. This
image is referred to as the "K" channel and may be useful when a particular filter is deeper,
has unique characteristics, or you have built by some custom processing to show the diffuse
features better. In this case, this image will be used for defining the --colorval and
--grayval thresholds, but the rationale remains the same as explained earlier.

Two additional options are available to smooth different regions by convolving with a
Gaussian kernel: --colorkernelfwhm for smoothing color regions and --graykernelfwhm

for convolving gray regions. The value specified for these options represents the full width
at half maximum of the Gaussian kernel.

Finally, another commonly useful feature is --markoptions: it allows you to mark and
label the final output image with vector graphics over the color image. The arguments
passed through this option are directly passed to ConvertType for the generation of the
output image. This feature was already used in Section 2.1.21 [Marking objects for publi-
cation], page 70, of the Section 2.1 [General program usage tutorial], page 23; see there for
a more complete introduction.

Let’s create four marks/labels just to illustrate the procedure within astscript-color-

faint-gray. First we need to create a table that contains the parameters for creating the
marks (coordinates, shape, size, colors, etc.). In order to have an example that could be
easily salable to more marks, with elaborated options let’s create it by parts: the header
with the column names, and the parameters. With the following commands, we’ll create
the header that contains the column metadata.

echo "# Column 1: ra [pix, f32] RA coordinate" > markers.txt

echo "# Column 2: dec [pix, f32] Dec coordinate" >> markers.txt

echo "# Column 3: shape [none, u8] Marker shape" >> markers.txt
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echo "# Column 4: size [pix, f32] Marker Size" >> markers.txt

echo "# Column 5: aratio [none, f32] Axis ratio" >> markers.txt

echo "# Column 6: angle [deg, f32] Position angle" >> markers.txt

echo "# Column 7: color [none, u8] Marker color" >> markers.txt

Next is to create the parameters that define the markers. In this case, with the lines
below we create four markers (cross, ellipse, square, and line) at different positions, with
different shapes, and colors. These lines are appended to the header file created previously.

echo "400.00 400.00 3 60.000 0.50 0.000 8" >> markers.txt

echo "1800.0 400.00 4 120.00 0.30 45.00 58" >> markers.txt

echo "400.00 1800.0 6 180.00 1.00 0.000 85" >> markers.txt

echo "1800.0 1800.0 8 240.00 1.00 -45.0 25" >> markers.txt

Now that we have the table containing the definition of the markers, we use the
--markoptions option of this script. This option will pass what ever is given to it directly
to ConvertType, so you can use all the options in Section 5.2.5.3 [Drawing with vector
graphics], page 334. For this basic example, let’s give it the following options:

markoptions="--mode=img \

--sizeinarcsec \

--markshape=shape \

--markrotate=angle \

--markcolor=color \

--marks=markers.txt \

--markcoords=ra,dec \

--marksize=size,aratio"

The last step consists in executing the script with the option that provides all the markers
options.

$ astscript-color-faint-gray $R $G $B $params --contrast=2 \

--markoptions="$markoptions" \

--output=m51-marked.pdf

Open the m51-marked.pdf and check that the four markers have been printed on the
image. With this quick example we just show the possibility of drawing markers on images
very easily. This task can be automated, for example by plotting markers from a given
catalog at specific positions, and so on. Note that there are many other options for customize
your markers/drawings over an output of ConvertType, see Section 5.2.5.3 [Drawing with
vector graphics], page 334, and Section 2.1.21 [Marking objects for publication], page 70.

Congratulations! By following the tutorial up to this point, we have been able to re-
produce three images of Infante-Sainz et al. 2024 (https://arxiv.org/abs/2401.
03814). You can see the commands that were used to generate them within the repro-
ducible source of that paper at https://codeberg.org/gnuastro/papers/src/branch/

color-faint-gray. Remember that this paper is exactly reproducible with Maneage, so
you can explore and build the entire paper by yourself. For more on Maneage, see Akhlaghi
et al. 2021 (https://ui.adsabs.harvard.edu/abs/2021CSE....23c..82A).

This tutorial provided a general overview of the various options to construct a color im-
age from three different FITS images using the astscript-color-faint-gray script. Keep
in mind that the optimal parameters for generating the best color image depend on your
specific goals and the quality of your input images. We encourage you to follow this tutorial

https://arxiv.org/abs/2401.03814
https://arxiv.org/abs/2401.03814
https://codeberg.org/gnuastro/papers/src/branch/color-faint-gray
https://codeberg.org/gnuastro/papers/src/branch/color-faint-gray
https://ui.adsabs.harvard.edu/abs/2021CSE....23c..82A
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with the provided J-PLUS images and later with your own dataset. See Section 10.7 [Color
images with gray faint regions], page 694, for more information, and please consider citing
Infante-Sainz et al. 2024 (https://arxiv.org/abs/2401.03814) if you use this script in
your work (the full BibTEX entry of this paper will be given to you with the --cite option).

2.7 Zero point of an image

The “zero point” of an image is astronomical jargon for the calibration factor of its pixel
values; allowing us to convert the raw pixel values to physical units. It is therefore a
critical step during data reduction. For more on the definition and importance of the zero
point magnitude, see Section 7.4.2 [Brightness, Flux, Magnitude and Surface brightness],
page 574, and Section 10.5 [Zero point estimation], page 684.

In this tutorial, we will use Gnuastro’s astscript-zeropoint, to estimate the zero point
of a single exposure image from the J-PLUS survey (https://www.j-plus.es), while using
an SDSS (http://www.sdss.org) image as reference (recall that all SDSS images have been
calibrated to have a fixed zero point of 22.5). In this case, both images that we are using
were taken with the SDSS r filter. See Eskandarlou et al. 2023 (https://arxiv.org/abs/
2312.04263).� �
Same filters and SVO filter database: It is very important that both your images are taken
with the same filter. When looking at filter names, don’t forget that different filter systems
sometimes have the same names for one filter, such as the name “R”; which is used in
both the Johnson and SDSS filter systems. Hence if you confront an image in the “R” or
“r” filter, double check to see exactly which filter system it corresponds to. If you know
which observatory your data came from, you can use the SVO database (http://svo2.
cab.inta-csic.es/theory/fps) to confirm the similarity of the transmission curves of
the filters of your input and reference images. SVO contains the filter data for many of
the observatories world-wide.
 	
2.7.1 Zero point tutorial with reference image

First, let’s create a directory named tutorial-zeropoint to keep things clean and work
in that. Then, with the commands below, you can download an image from J-PLUS and
SDSS. To speed up the analysis, the image is cropped to have a smaller region around its
center.

$ mkdir tutorial-zeropoint

$ cd tutorial-zeropoint

$ jplusdr2=http://archive.cefca.es/catalogues/vo/siap/jplus-dr2/reduced

$ wget $jplusdr2/get_fits?id=771463 -O jplus.fits.fz

$ astcrop jplus.fits.fz --center=107.7263,40.1754 \

--width=0.6 --output=jplus-crop.fits

Although we cropped the J-PLUS image, it is still very large in comparison with the
SDSS image (the J-PLUS field of view is almost 1.5 × 1.5 deg2, while the field of view of
SDSS in each filter is almost 0.3 × 0.5 deg2). Therefore, let’s download two SDSS images
(and then decompress them) in the region of the cropped J-PLUS image to have a more
accurate result compared to a single SDSS footprint: generally, your zero point estimation

https://arxiv.org/abs/2401.03814
https://www.j-plus.es
http://www.sdss.org
https://arxiv.org/abs/2312.04263
https://arxiv.org/abs/2312.04263
http://svo2.cab.inta-csic.es/theory/fps
http://svo2.cab.inta-csic.es/theory/fps
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will have less scatter with more overlap between your reference image(s) and your input
image.

$ sdssbase=https://dr12.sdss.org/sas/dr12/boss/photoObj/frames

$ wget $sdssbase/301/6509/5/frame-r-006509-5-0115.fits.bz2 \

-O sdss1.fits.bz2

$ wget $sdssbase/301/6573/5/frame-r-006573-5-0174.fits.bz2 \

-O sdss2.fits.bz2

$ bunzip2 sdss1.fits.bz2

$ bunzip2 sdss2.fits.bz2

To have a feeling of the data, let’s open the three images with astscript-fits-view

using the command below. Wait a few seconds to see the three images “blinking” one after
another. The largest one is the J-PLUS crop and the two smaller ones that partially cover
it in different regions are from SDSS.

$ astscript-fits-view sdss1.fits sdss2.fits jplus-crop.fits \

--ds9extra="-lock frame wcs -single -zoom to fit -blink yes"

The test above showed that the three images are already astrometrically calibrated (the
coverage of the pixel positions on the sky is correct in both). To confirm, you can zoom-
in to a certain object and confirm it on a pixel level. It is always good to do the visual
check above when you are confronted with new images (and may not be confident about the
accuracy of the astrometry). Do not forget that the goal here is to find the calibration of
pixel values; and that we assume pixel positions are already calibrated (the image already
has a good astrometry).

The SDSS images are Sky subtracted, while this single-exposure J-PLUS image still
contains the counts related to the Sky emission within them. In the J-PLUS survey, the
sky-level in each pixel is kept in a separate BACKGROUND_MODEL HDU of jplus.fits.fz;
this allows you to use a different sky if you like. The SDSS image FITS files also have
multiple extensions. To understand our inputs, let’s have a fast look at the basic info of
each:

$ astfits sdss1.fits

Fits (GNU Astronomy Utilities) 0.22.24-f3e8

Run on Fri Apr 14 11:24:03 2023

-----

HDU (extension) information: 'sdss1.fits'.

Column 1: Index (counting from 0, usable with '--hdu').

Column 2: Name ('EXTNAME' in FITS standard, usable with '--hdu').

('n/a': no name in HDU metadata)

Column 3: Image data type or 'table' format (ASCII or binary).

Column 4: Size of data in HDU.

Column 5: Units of data in HDU (only images).

('n/a': no unit in HDU metadata, or HDU is a table)

-----

0 n/a float32 2048x1489 nanomaggy

1 n/a float32 2048 n/a

2 n/a table_binary 1x3 n/a

3 n/a table_binary 1x31 n/a
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$ astfits jplus.fits.fz

Fits (GNU Astronomy Utilities) 0.22.24-f3e8

Run on Fri Apr 14 11:21:30 2023

-----

HDU (extension) information: 'jplus.fits.fz'.

Column 1: Index (counting from 0, usable with '--hdu').

Column 2: Name ('EXTNAME' in FITS standard, usable with '--hdu').

('n/a': no name in HDU metadata)

Column 3: Image data type or 'table' format (ASCII or binary).

Column 4: Size of data in HDU.

Column 5: Units of data in HDU (only images).

('n/a': no unit in HDU metadata, or HDU is a table)

-----

0 n/a no-data 0 n/a

1 IMAGE float32 9216x9232 adu

2 MASKED_PIXELS int16 9216x9232 n/a

3 BACKGROUND_MODEL float32 9216x9232 n/a

4 MASK_MODEL uint8 9216x9232 n/a

Therefore, in order to be able to compare the SDSS and J-PLUS images, we should
first subtract the sky from the J-PLUS image. To do that, we can either subtract the
BACKGROUND_MODEL HDU from the IMAGE HDU using Section 6.2 [Arithmetic], page 399, or
we can use Section 7.2 [NoiseChisel], page 541, to find a good sky ourselves. As scientists
we like to tweak and be creative, so let’s estimate it ourselves with the command below.
Generally, you may not have a pre-estimated Sky estimation like above, so you should be
prepared to subtract the sky yourself.

$ astnoisechisel jplus-crop.fits --output=jplus-nc.fits

$ astscript-fits-view jplus-nc.fits

Notice that there is a relatively bright star in the center-bottom of the image. In the
“Cube” window, click on the “Next” button to see the DETECTIONS HDU. The large footprint
of the bright star is obvious. Press the “Next” button one more time to get to the SKY HDU.
You see that in the center-bottom, the footprint of the large star is clearly visible in the
measured Sky level. This is not good! With Sky values above 54 ADU in the center of the
star (the white pixels). This over-subtracted Sky level in part of the image will affect your
magnitude measurements and thus the zero point!

In Section 2.1 [General program usage tutorial], page 23, we have a section on Sec-
tion 2.1.11 [NoiseChisel optimization for detection], page 42, there is also a full tutorial
on this in Section 2.2 [Detecting large extended targets], page 81. Therefore, we will not
go into the details of NoiseChisel optimization here. Given the large images of J-PLUS,
we will increase the tile-size to 100 × 100 pixels and the number of neighbors to identify
outlying tiles to 50 (these are usually the first parameters you should start editing when
you are confronted with a new image). After the second command, check the SKY extension
to confirm that there is no footprint of any bright object there. You will still see a gradient,
but note the minimum and maximum values of the Sky level: their difference is more than
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26 times smaller than the noise standard deviation (so statistically speaking, it is pretty
flat!)

$ astnoisechisel jplus-crop.fits --output=jplus-nc.fits \

--tilesize=100,100 --outliernumngb=50

$ astscript-fits-view jplus-nc.fits

## Check that the gradient in the sky is statistically negligible.

$ aststatistics jplus-nc.fits -hSKY --minimum --maximum \

| awk '{print $2-$1}'

0.32809

$ aststatistics jplus-nc.fits -hSKY_STD --median

8.377977e+00

We are now ready to find the zero point! First, let’s run the astscript-zeropoint

with --help to see the option names (recall that you can see more details of each option
in Section 10.5.1 [Invoking astscript-zeropoint], page 685). For the first time, let’s use the
script in the most simple state possible. We will keep only the essential options: the names
of the input and reference images (and their HDUs), the name of the output, and also two
apertures with radii of 3 arcsec to start with:

$ astscript-zeropoint --help

$ astscript-zeropoint jplus-nc.fits --hdu=INPUT-NO-SKY \

--refimgs=sdss1.fits,sdss2.fits \

--output=jplus-zeropoint.fits \

--refimgszp=22.5,22.5 \

--refimgshdu=0,0 \

--aperarcsec=3

The output is a FITS table (because generally, you will give more apertures and choose
the best one based on a higher-level analysis). Let’s check the output’s internal structure
with Gnuastro’s astfits program.

$ astfits jplus-zeropoint.fits

-----

0 n/a no-data 0 n/a

1 ZEROPOINTS table_binary 1x3 n/a

2 APER-3 table_binary 321x2 n/a

You can see that there are two HDUs in this file. The HDU names give a hint, so let’s
have a look at each extension with Gnuastro’s asttable program:

$ asttable jplus-zeropoint.fits --hdu=1 -i

--------

jplus-zeropoint.fits (hdu: 1)

------- ----- ---- -------

No.Name Units Type Comment

------- ----- ---- -------

1 APERTURE arcsec float32 n/a

2 ZEROPOINT mag float32 n/a

3 ZPSTD mag float32 n/a
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--------

Number of rows: 1

--------

As you can see, in the first extension, for each of the apertures you requested (APERTURE),
there is a zero point (ZEROPOINT) and the standard deviation of the measurements on the
apertures (ZPSTD). In this case, we only requested one aperture, so it only has one row.
Now, let’s have a look at the next extension:

$ asttable jplus-zeropoint.fits --hdu=2 -i

--------

jplus-zeropoint.fits (hdu: 2)

------- ----- ---- -------

No.Name Units Type Comment

------- ----- ---- -------

1 MAG-REF f32 float32 Magnitude of reference.

2 MAG-DIFF f32 float32 Magnitude diff with input.

--------

Number of rows: 321

--------

It contains a table of measurements for the aperture with the least scatter. In this case,
we only gave one aperture, so it is the same. If you give multiple apertures, only the one
with least scatter will be present by default. In the MAG-REF column you see the magnitudes
within each aperture on the reference (SDSS) image(s). The MAG-DIFF column contains the
difference of the input (J-PLUS) and reference (SDSS) magnitudes for each aperture (see
Section 10.5 [Zero point estimation], page 684). The two catalogs, created by the aperture
photometry from the SDSS images, are merged into one so that there are more stars to
compare. Therefore, no matter how many reference images you provide, there will only be
a single table here. If the two SDSS images overlapped, each object in the overlap region
would have two rows (one row for the measurement from one SDSS image, and another
from the measurement from the other).

Now that we have obtained the zero point of the J-PLUS image, let’s go a little deeper
into lower-level details of how this script operates. This will help you better understand
what happened and how to interpret and improve the outputs when you are confronted
with a new image and strange outputs.

To keep intermediate results the astscript-zeropoint script keeps temporary files in
a temporary directory and later deletes it (and all the intermediate products). If you like
to check the temporary files of the intermediate steps, you can use --keeptmp option to not
remove them.

Let’s take a closer look into the contents of each HDU. First, we’ll use Gnuastro’s
asttable to see the measured zero point for this aperture. We are using -Y to have
human-friendly (non-scientific!) numbers (which are sufficient here) and -O to also show
the metadata of each column at the start.

$ asttable jplus-zeropoint.fits -Y -O

# Column 1: APERTURE [arcsec,f32,] Aperture used.

# Column 2: ZEROPOINT [mag ,f32,] Zero point (sig-clip median).

# Column 3: ZPSTD [mag ,f32,] Zero point Standard deviation.
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3.000 26.435 0.057

Now, let’s have a look at the first 10 rows of the second (APER-3) extension. From the
previous check we did above, we see that it contains 321 rows!

$ asttable jplus-zeropoint.fits -Y -O --hdu=APER-3 --head=10

# Column 1: MAG-REF [f32,f32,] Magnitude of reference.

# Column 2: MAG-DIFF [f32,f32,] Magnitude diff with input.

16.461 30.035

16.243 28.209

15.427 26.427

20.064 26.459

17.334 26.425

20.518 26.504

17.100 26.400

16.919 26.428

17.654 26.373

15.392 26.429

But the table above is hard to interpret, so let’s plot it. To do this, we’ll use the same
astscript-fits-view command above that we used for images. It detects if the file has
a image or table HDU and will call DS9 or TOPCAT respectively. You can also use any
other plotter you like (TOPCAT is not part of Gnuastro), this script just calls it.

$ astscript-fits-view jplus-zeropoint.fits --hdu=APER-3

After TOPCAT opens, you can select the “Graphics” menu and then “Plain plot”. This
will show a plot with the SDSS (reference image) magnitude on the horizontal axis and
the difference of magnitudes between the the input and reference (the zero point) on the
vertical axis.

In an ideal world, the zero point should be independent of the magnitude of the different
stars that were used. Therefore, this plot should be a horizontal line (with some scatter
as we go to fainter stars). But as you can see in the plot, in the real world, this expected
behavior is seen only for stars with magnitudes about 16 to 19 in the reference SDSS images.
The stars that are brighter than 16 are saturated in one (or both) surveys53. Therefore,
they do not have the correct magnitude or mag-diff. You can check some of these stars
visually by using the blinking command above and zooming into some of the brighter stars
in the SDSS images.

On the other hand, it is natural that we cannot measure accurate magnitudes for the
fainter stars because the noise level (or “depth”) of each image is limited. As a result, the
horizontal line becomes wider (scattered) as we go to the right (fainter magnitudes on the
horizontal axis). So, let’s limit the range of used magnitudes from the SDSS catalog to
calculate a more accurate zero point for the J-PLUS image. For this reason, we have the
--magnituderange option in astscript-zeropoint.

53 To learn more about saturated pixels and recognition of the saturated level of the image, please see
Section 2.3.2 [Saturated pixels and Segment’s clumps], page 104
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� �
Necessity of sky subtraction: To obtain this horizontal line, it is very important that both
your images have been sky subtracted. Please, repeat the last astscript-zeropoint

command above only by changing the input file to jplus-crop.fits. Then use Gnuastro’s
astscript-fits-view again to draw a plot with TOPCAT (also same as above). Instead of
a horizontal line, you will see a sloped line in the magnitude range above! This happens
because the sky level acts as a source of constant signal in all apertures, so the magnitude
difference will not be independent of the star’s magnitude, but dependent on it (the
measurement on a fainter star will be dominated by the sky level).

Remember: if you see a sloped line instead of a horizontal line, the input or reference
image(s) are not sky subtracted.
 	

Another key parameter of this script is the aperture size (--aperarcsec) for the aperture
photometry of images. On one hand, if the selected aperture is too small, you will be at the
mercy of the differing PSFs between your input and reference image(s): part of the light
of the star will be lost in the image with the worse PSF. On the other hand, with large
aperture size, the light of neighboring objects (stars/galaxies) can affect the photometry.
We should select an aperture radius of the same order than the one used in the reference
image, typically 2 to 3 times the PSF FWHM of the images. For now, let’s assume the
values 2, 3, 4, 5, and 6 arcsec for the aperture sizes parameter. The script will compare
the result for several aperture sizes and choose the one with least standard deviation value,
ZPSTD column of the ZEROPOINTS HDU.

Let’s re-run the script with the following changes:

• Using --magnituderange to limit the stars used for estimating the zero point.

• Giving more values for aperture size to find the best for these two images as explained
above.

• Call --keepzpap option to keep the result of matching the catalogs done with the
selected apertures in the different extensions of the output file.

$ astscript-zeropoint jplus-nc.fits --hdu=INPUT-NO-SKY \

--refimgs=sdss1.fits,sdss2.fits \

--output=jplus-zeropoint.fits \

--refimgszp=22.5,22.5 \

--aperarcsec=2,3,4,5,6 \

--magnituderange=16,18 \

--refimgshdu=0,0 \

--keepzpap

Now, check number of HDU extensions by astfits.

$ astfits jplus-zeropoint.fits

-----

0 n/a no-data 0 n/a

1 ZEROPOINTS table_binary 5x3 n/a

2 APER-2 table_binary 319x2 n/a

3 APER-3 table_binary 321x2 n/a

4 APER-4 table_binary 323x2 n/a

5 APER-5 table_binary 323x2 n/a
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6 APER-6 table_binary 325x2 n/a

You can see that the output file now has a separate HDU for each aperture (thanks to
--keepzpap.) The ZEROPOINTS hdu contains the final zero point values for each aperture
and their error. The best zero point value belongs to the aperture that has the least scatter
(has the lowest standard deviation). The rest of extensions contain the zero point value
computed within each aperture (as discussed above).

Let’s check the different tables by plotting all magnitude tables at the same time with
TOPCAT.

$ astscript-fits-view jplus-zeropoint.fits

After TOPCAT has opened take the following steps:

1. From the “Graphics” menu, select “Plain plot”. You will see the last HDU’s scatter
plot open in a new window (for APER-6, with red points). The Bottom-left panel has
the logo of a red-blue scatter plot that has written 6:jplus-zeropoint.fits in front
of it (showing that this is the 6th HDU of this file). In the bottom-right panel, you see
the names of the columns that are being displayed.

2. In the “Layers” menu, Click on “Add Position Control”. On the bottom-left panel, you
will notice that a new blue-red scatter plot has appeared but it just says <no table>.
In the bottom-right panel, in front of “Table:”, select any other extension. This will
plot the same two columns of that extension as blue points. Zoom-in to the region of
the horizontal line to see/compare the different scatters.

Change the HDU given to “Table:” and see the distribution of zero points for the
different apertures.

The manual/visual operation above is critical if this is your first time with a new dataset
(it shows all kinds of systematic biases (like the Sky issue above)! But once you know your
data has no systematic biases, choosing between the different apertures is not easy visually!
Let’s have a look at the table the ZEROPOINTS HDU (we don’t need to explicitly call this
HDU since it is the first one):

$ asttable jplus-zeropoint.fits -O -Y

# Column 1: APERTURE [arcsec,f32,] Aperture used.

# Column 2: ZEROPOINT [mag ,f32,] Zero point (sig-clip median).

# Column 3: ZPSTD [mag ,f32,] Zero point Standard deviation.

2.000 26.405 0.028

3.000 26.436 0.030

4.000 26.448 0.035

5.000 26.458 0.042

6.000 26.466 0.056

The most accurate zero point is the one where ZPSTD is the smallest. In this case,
minimum of ZPSTD is with radii of 2 and 3 arcseconds. Run the astscript-fits-view

command above again to open TOPCAT. Let’s focus on the magnitude plots in these two
apertures and determine a more accurate range of magnitude. The more reliable option is
the range between 16.4 (where we have no saturated stars) and 18.5 mag (fainter than this,
the scatter becomes too strong). Finally, let’s set some more apertures between 2 and 3
arcseconds radius:

$ astscript-zeropoint jplus-nc.fits --hdu=INPUT-NO-SKY \
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--refimgs=sdss1.fits,sdss2.fits \

--output=jplus-zeropoint.fits \

--magnituderange=16.4,18.5 \

--refimgszp=22.5,22.5 \

--aperarcsec=2,2.5,3,3.5,4 \

--refimgshdu=0,0 \

--keepzpap

$ asttable jplus-zeropoint.fits -Y

2.000 26.405 0.037

2.500 26.425 0.033

3.000 26.436 0.034

3.500 26.442 0.039

4.000 26.449 0.044

The aperture with the least scatter is therefore the 2.5 arcsec radius aperture, giving a
zero point of 26.425 magnitudes for this image. However, you can see that the scatter for
the 3 arcsec aperture is also acceptable. Actually, the ZPSTD for of the 2.5 and 3 arcsec
apertures only have a difference of 3% (= (0.034−0.0333)/0.033×100). So simply choosing
the minimum is just a first-order approximation (which is accurate within 26.436−26.425 =
0.011 magnitudes)

Note that in aperture photometry, the PSF plays an important role (because the aperture
is fixed but the two images can have very different PSFs). The aperture with the least scatter
should also account for the differing PSFs. Overall, please, always check the different and
intermediate steps to make sure the parameters are the good so the estimation of the zero
point is correct.

If you are happy with the minimum, you don’t have to search for the minimum aperture
or its corresponding zero point yourself. This script has written it in ZPVALUE keyword of
the table. With the first command, we also see the name of the file also, (you can use this
on many files for example). With the second command, we are only printing the number
by adding the -q (or --quiet) option (this is useful in a script where you want to write the
value in a shell variable to use later).

$ astfits jplus-zeropoint.fits --keyvalue=ZPVALUE

jplus-zeropoint.fits 2.642512e+01

$ astfits jplus-zeropoint.fits --keyvalue=ZPVALUE -q

2.642512e+01

Generally, this script will write the following FITS keywords (all starting with ZP) for
your future reference in its output:

$ astfits jplus-zeropoint.fits -h1 | grep ^ZP

ZPAPER = 2.5 / Best aperture.

ZPVALUE = 26.42512 / Best zero point.

ZPSTD = 0.03276644 / Best std. dev. of zeropoint.

ZPMAGMIN= 16.4 / Min mag for obtaining zeropoint.

ZPMAGMAX= 18.5 / Max mag for obtaining zeropoint.
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Using the --keyvalue option of the Section 5.1 [Fits], page 295, program, you can easily
get multiple of the values in one run (where necessary):

$ astfits jplus-zeropoint.fits --hdu=1 --quiet \

--keyvalue=ZPAPER,ZPVALUE,ZPSTD

2.500000e+00 2.642512e+01 3.276644e-02

2.7.2 Zero point tutorial with reference catalog

In Section 2.7.1 [Zero point tutorial with reference image], page 166, we explained how
to use the astscript-zeropoint for estimating the zero point of one image based on a
reference image. Sometimes there is not a reference image and we need to use a reference
catalog. Fortunately, astscript-zeropoint can also use the catalog instead of the image
to find the zero point.

To show this, let’s download a catalog of SDSS in the area that overlaps with the cropped
J-PLUS image (used in the previous section). For more on Gnuastro’s Query program,
please see Section 5.4 [Query], page 375. The columns of ID, RA, Dec and magnitude in
the SDSS r filter are called by their name in the SDSS catalog.

$ astquery vizier \

--dataset=sdss12 \

--overlapwith=jplus-crop.fits \

--column=objID,RA_ICRS,DE_ICRS,rmag \

--output=sdss-catalog.fits

To visualize the position of the SDSS objects over the J-PLUS image, let’s use
astscript-ds9-region (for more details please see Section 10.3 [SAO DS9 region files
from table], page 678) with the command below (it will automatically open DS9 and load
the regions it created):

$ astscript-ds9-region sdss-catalog.fits \

--column=RA_ICRS,DE_ICRS \

--color=red --width=3 --output=sdss.reg \

--command="ds9 jplus-nc.fits[INPUT-NO-SKY] \

-scale zscale"

Now, we are ready to estimate the zero point of the J-PLUS image based on the SDSS cat-
alog. To download the input image and understand how to use the astscript-zeropoint,
please see Section 2.7.1 [Zero point tutorial with reference image], page 166.

Many of the options (like the aperture size) and magnitude range are the same so we
will not discuss them further. You will notice that the only substantive difference of the
command below with the last command in the previous section is that we are using --refcat
instead of --refimgs. There are also some cosmetic differences for example a new output
name, not using --refimgszp since it is only necessary for images) and the --*column

options which are used to identify the names of the necessary columns of the input catalog:

$ astscript-zeropoint jplus-nc.fits --hdu=INPUT-NO-SKY \

--refcat=sdss-catalog.fits \

--refcatmag=rmag \

--refcatra=RA_ICRS \

--refcatdec=DE_ICRS \

--output=jplus-zeropoint-cat.fits \
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--magnituderange=16.4,18.5 \

--aperarcsec=2,2.5,3,3.5,4 \

--keepzpap

Let’s inspect the output with the command below.

$ asttable jplus-zeropoint-cat.fits -Y

2.000 26.337 0.034

2.500 26.386 0.036

3.000 26.417 0.041

3.500 26.439 0.043

4.000 26.455 0.050

As you see, the values and standard deviations are very similar to the results we got pre-
viously in Section 2.7.1 [Zero point tutorial with reference image], page 166. The Standard
deviations are generally a little higher here because we didn’t do the photometry ourselves,
but they are statistically similar.

Before we finish, let’s open the two outputs (from a reference image and reference catalog)
with the command below. To confirm how they compare, we are showing the result for
APER-3 extension in both (following the TOPCAT plotting recipe in Section 2.7.1 [Zero
point tutorial with reference image], page 166).

$ astscript-fits-view jplus-zeropoint.fits jplus-zeropoint-cat.fits \

-hAPER-3

2.8 Pointing pattern design

A dataset that is ready for scientific analysis is usually composed of many separate exposures
and how they are taken is usually known as “observing strategy”. This tutorial describes
Gnuastro’s tools to simplify the process of deciding the pointing pattern of your observing
strategy.

A “pointing” is the location on the sky that each exposure is aimed at. Each exposure’s
pointing is usually moved (on the sky) compared to the previous exposure. This is done for
reasons like improving calibration, increasing resolution, expending the area of the observa-
tion and etc. Therefore, deciding a suitable pointing pattern is one of the most important
steps when planning your observation strategy.

There are commonly two types of pointings: “dither” and “offset”. These are some-
times used interchangeably with “pointing” (especially when the final stack is roughly the
same area as the field of view. Alternatively, “dither” and “offset” are used to distinguish
pointings with large or small (on the scale of the field of view) movement compared to a
previous one. When a pointing has a large distance to the previous pointing, it is known as
an “offset”, while pointings with a small displacement are known as a “dither”. This dis-
tinction originates from the mechanics and optics of most modern telescopes: the overhead
(for example the need to re-focus the camera) to make small movements is usually less than
large movements.

In this tutorial, let’s simulate a hypothetical pointing pattern using Gnuastro’s
astscript-pointing-simulate installed script (see Section 10.6 [Pointing pattern
simulation], page 689). Since we will be testing very different displacements between
pointings, we’ll ignore the difference between offset and dither here, and only use the term
pointing.
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Let’s assume you want to observe M94 (https://en.wikipedia.org/wiki/
Messier_94) in the H-alpha and rSDSS filters (to study the extended star formation in
the outer rings of this beautiful galaxy!). Including the outer parts of the rings, the galaxy
is half a degree in diameter! This is very large, and you want to design a pointing pattern
that will allow you to cover as much area, while not loosing your ability to calibrate
properly.� �
Do not start with this tutorial: If you are new to Gnuastro and have not already completed
Section 2.1 [General program usage tutorial], page 23, we recommend going through that
tutorial before starting this one. Basic features like access to this book on the command-
line, the configuration files of Gnuastro’s programs, benefiting from the modular nature of
the programs, viewing multi-extension FITS files, and many others are discussed in more
detail there.
 	
2.8.1 Preparing input and generating exposure map

As mentioned in Section 2.8 [Pointing pattern design], page 176, the assumed goal here is
to plan an observations strategy for M94. Let’s assume that after some searching, you de-
cide to write a proposal for the JAST80 telescope (https://oaj.cefca.es/telescopes/
jast80) at the Observatorio Astrof́ısico de Javalambre (https://oaj.cefca.es), OAJ54,
in Teruel (Spain). The field of view of this telescope’s camera is almost 1.4 degrees wide,
nicely fitting M94! It also has these two filters that you need55.

Before we start, as described in Section 10.6 [Pointing pattern simulation], page 689, it
is just important to remember that the ideal pointing pattern depends primarily on your
scientific objective, as well as the limitations of the instrument you are observing with.
Therefore, there is no single pointing pattern for all purposes. However, the tools, methods,
criteria or logic to check if your pointing pattern satisfies your scientific requirement are
similar. Therefore, you can use the same methods, tools or logic here to simulate or verify
that your pointing pattern will produce the products you expect after the observation.

To start simulating a pointing pattern for a certain telescope, you just need a single-
exposure image of that telescope with WCS information. In other words, after astrometry,
but before warping into any other pixel grid (to combine into a deeper stack). The image
will give us the default number of the camera’s pixels, its pixel scale (width of pixel in
arcseconds) and the camera distortion. These are reference parameters that are independent
of the position of the image on the sky.

Because the actual position of the reference image is irrelevant, let’s assume that in a pre-
vious project, presumably on NGC 4395 (https://en.wikipedia.org/wiki/NGC_4395),
you already had the download command of the following single exposure image. With the
last command, please take a look at this image before continuing and explore it.

$ mkdir pointing-tutorial

$ cd pointing-tutorial

54 For full disclosure, Gnuastro is being developed at CEFCA (Centro de Estudios de F́isica del Cosmos de
Aragón); which also hosts OAJ.

55 For the full list of available filters, see the T80Cam description (https://oaj.cefca.es/telescopes/
t80cam).

https://en.wikipedia.org/wiki/Messier_94
https://en.wikipedia.org/wiki/Messier_94
https://oaj.cefca.es/telescopes/jast80
https://oaj.cefca.es/telescopes/jast80
https://oaj.cefca.es
https://en.wikipedia.org/wiki/NGC_4395
https://oaj.cefca.es/telescopes/t80cam
https://oaj.cefca.es/telescopes/t80cam
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$ mkdir input

$ siapurl=https://archive.cefca.es/catalogues/vo/siap

$ wget $siapurl/jplus-dr3/reduced/get_fits?id=1050345 \

-O input/jplus-1050345.fits.fz

$ astscript-fits-view input/jplus-1050345.fits.fz� �
This is the first time I am using an instrument: In case you haven’t already used im-
ages from your desired instrument (to use as reference), you can find such images from
their public archives; or contacting them. A single exposure images is rarely of any scien-
tific value (post-processing and stacking is necessary to make high-level and science-ready
products). Therefore, they become publicly available very soon after the observation date;
furthermore, calibration images are usually public immediately.
 	

As you see from the image above, the T80Cam images are large (9216 by 9232 pixels).
Therefore, to speed up the pointing testing, let’s down-sample the image by a factor of 10.
This step is optional and you can safely use the full resolution, which will give you a more
precise stack. But it will be much slower (maybe good after you have an almost final solution
on the down-sampled image). We will call the output ref.fits (since it is the “reference”
for our test). We are putting these two “input” files (to the script) in a dedicated directory
to keep the running directory clean (and be able to easily delete temporary/test files for a
fresh start with a ‘rm *.fits’).

$ astwarp input/jplus-1050345.fits.fz --scale=1/10 -oinput/ref.fits

For a first trial, let’s create a cross-shaped pointing pattern with 5 points around M94,
which is centered at its center on the RA and Dec of 192.721250, 41.120556. We’ll center
one exposure on the center of the galaxy, and include 4 more exposures that are each 1
arc-minute away along the RA and Dec axes. To simplify the actual command later56, let’s
also include the column names in pointing.txt through two lines of metadata. Also note
that the pointing.txt file can be made in any manner you like, for example, by writing
the coordinates manually on your favorite text editor, or through another programming
language or logic, or etc. Here, we are using AWK because it is sufficiently powerful for this
job, and it is a very small program that is available on any Unix-based operating system
(allowing you to easily run your programs on any computer).

$ step_arcmin=1

$ center_ra=192.721250

$ center_dec=41.120556

$ echo "# Column 1: RA [deg, f64] Right Ascension" > pointing.txt

$ echo "# Column 2: Dec [deg, f64] Declination" >> pointing.txt

$ echo $center_ra $center_dec \

| awk '{s='$step_arcmin'/60; fmt="%-10.6f %-10.6f\n"; \

56 Instead of this, later, when you called astscript-pointing-simulate, you could pass the --racol=1

and --deccol=2 options. But having metadata is always preferred (will avoid many bugs/frustrations
in the long-run!).
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printf fmt, $1, $2; \

printf fmt, $1+s, $2; \

printf fmt, $1, $2+s; \

printf fmt, $1-s, $2; \

printf fmt, $1, $2-s}' \

>> pointing.txt

With the commands below, let’s have a look at the produced file, first as plain-text,
then with TOPCAT (which needs conversion to FITS). After TOPCAT is opened, in the
“Graphics” menu, select “Plane plot” to see the five points in a flat RA, Dec plot.

$ cat pointing.txt

# Column 1: RA [deg, f64] Right Ascension

# Column 2: Dec [deg, f64] Declination

192.721250 41.120556

192.737917 41.120556

192.721250 41.137223

192.704583 41.120556

192.721250 41.103889

$ asttable pointing.txt -opointing.fits

$ astscript-fits-view pointing.fits

$ rm pointing.fits

We are now ready to generate the exposure map of the pointing pattern above using the
reference image that we downloaded before. Let’s put the center of our final stack to be on
the center of the galaxy, and we’ll assume the stack has a size of 2 degrees. With the second
command, you can see the exposure map of the final stack. Recall that in this image, each
pixel shows the number of input images that went into it.

$ astscript-pointing-simulate pointing.txt --output=stack.fits \

--img=input/ref.fits --center=$center_ra,$center_dec \

--width=2

$ astscript-fits-view stack.fits

You will see that except for a thin boundary, we have a depth of 5 exposures over the
area of the single exposure. Let’s see what the width of the deepest part of the image is.
First, we’ll use Arithmetic to set all pixels that contain less than 5 exposures (the outer
pixels) to NaN (Not a Number). In the same Arithmetic command, let’s trim all the blank
rows and columns, so the output only contains the pixels that are exposed 5 times. With
the next command, let’s view the deep region and with the last command below, let’s use
the --skycoverage option of the Fits program to see the coverage of deep part on the sky.

$ deep_thresh=5

$ astarithmetic stack.fits set-s s s $deep_thresh lt nan where trim \

--output=deep.fits

$ astscript-fits-view deep.fits

$ astfits deep.fits --skycoverage
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Input file: deep.fits (hdu: 1)

Sky coverage by center and (full) width:

Center: 192.72125 41.120556

Width: 1.880835157 1.392461166

Sky coverage by range along dimensions:

RA 191.7808324 193.6616676

DEC 40.42058203 41.81304319

As we see, in declination, the width of this deep field is about 1.4 degrees. Recall that
RA is only defined on the equator and actual coverage in RA depends on the declination
due to the spherical nature of the sky. This area therefore nicely covers the expected outer
parts of M94. On first thought, it may seem that we are now finished, but that is not the
case unfortunately!

There is a problem: with a step size of 1 arc-minute, the brighter central parts of this
large galaxy will always be on very similar pixels; making it hard to calibrate those pixels
properly. If you are interested in the low surface brightness parts of this galaxy, it is even
worse: the outer parts of the galaxy will always cover similar parts of the detector in
all the exposures; and they cover a large area on your image. To be able to accurately
calibrate the image (in particular to estimate the flat field pattern and subtract the sky),
you do not want this to happen! You want each exposure to cover very different sources of
astrophysical signal, so you can accurately calibrate the artifacts created by the instrument
or environment (for example flat field) or of natural causes (for example the Sky).

For an example of how these calibration issues can ruin low surface brightness sci-
ence, please see the image of M94 in the Legacy Survey interactive viewer (https://www.
legacysurvey.org/viewer). After it is loaded, at the bottom-left corner of the window,
write “M94” in the box of “Jump to object” and press ENTER. At first, M94 looks good
with a black background, but as you increase the “Brightness” (by scrolling it to the right
and seeing what is under the originally black pixels), you will see the calibration artifacts
clearly.

2.8.2 Area of non-blank pixels on sky

In Section 2.8.1 [Preparing input and generating exposure map], page 177, we generated a
pointing pattern with very small steps, showing how this can cause calibration problems.
Later (in Section 2.8.4 [Larger steps sizes for better calibration], page 183) using larger
steps is discussed. In this section, let’s see how we can get an accurate measure of the area
that is covered in a certain depth.

A first thought would be to simply multiply the widths along RA and Dec reported
before: 1.8808×1.3924 = 2.6189 degrees squared. But there are several problems with this:

• It ignores the fact that RA only has units of degrees on the equator: at different
declinations, differences in RA should be converted to degrees. This is discussed further
in this tutorial: Section 2.8.5 [Pointings that account for sky curvature], page 186.

• It doesn’t take into account the thin rows/columns of blank pixels (NaN) that are on
the four edges of the deep.fits image.

https://www.legacysurvey.org/viewer
https://www.legacysurvey.org/viewer
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• The differing area of the pixels on the spherical sky in relation to those blank values
can result in wrong estimations of the area.

Let’s get a very accurate estimation of the area that will not be affected by the issues
above. With the first command below, we’ll use the --pixelareaonwcs option of the Fits
program that will return the area of each pixel (in pixel units of degrees squared). After
running the second command, please have a look at the produced image.

$ astfits deep.fits --pixelareaonwcs --output=deep-pix-area.fits

$ astfits deep.fits --pixelscale

Basic info. for --pixelscale (remove extra info with '--quiet' or '-q')

Input: deep.fits (hdu 1) has 2 dimensions.

Pixel scale in each FITS dimension:

1: 0.00154403 (deg/pixel) = 5.5585 (arcsec/pixel)

2: 0.00154403 (deg/pixel) = 5.5585 (arcsec/pixel)

Pixel area:

2.38402e-06 (deg^2) = 30.8969 (arcsec^2)

$ astscript-fits-view deep-pix-area.fits

You see a donut-like shape in DS9. Move your mouse over the central (white) region of
the region and look at the values. You will see that the pixel area (in degrees squared) is
exactly the same as we saw in the output of --pixelscale. As you move your mouse away
to other colors, you will notice that the area covered by each pixel (its value in this image)
deceases very slightly (in the 5th decimal!). This is the effect of the Gnomonic projec-
tion (https://en.wikipedia.org/wiki/Gnomonic_projection); summarized as TAN (for
“tangential”) in the FITS WCS standard, the most commonly used in optical astronomical
surveys and the default in this script.

Having deep-pix-area.fits, we can now use Arithmetic to set the areas of all the
pixels that were NaN in deep.fits and sum all the values to get an accurate estimate of
the area we get from this pointing pattern:

$ astarithmetic deep-pix-area.fits deep.fits isblank nan where -g1 \

sumvalue --quiet

1.93836806631634e+00

Therefore, the actual area that is covered is less than the simple multiplication above.
At these declinations, the dominant cause of this difference is the first point above (that RA
needs correction), this will be discussed in more detail later in this tutorial (see Section 2.8.5
[Pointings that account for sky curvature], page 186). Generally, using this method to
measure the area of your non-NAN pixels in an image is very easy and robust (automatically
takes into account the curvature, coordinate system, projection and blank pixels of the
image).

2.8.3 Script with pointing simulation steps so far

In Section 2.8.1 [Preparing input and generating exposure map], page 177, and Section 2.8.2
[Area of non-blank pixels on sky], page 180, the basic steps to simulate a pointing pattern’s
exposure map and measure the final output area on the sky where described in detail. From
this point on in the tutorial, we will be experimenting with the shell variables that were set

https://en.wikipedia.org/wiki/Gnomonic_projection
https://en.wikipedia.org/wiki/Gnomonic_projection
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above, but the actual commands will not be changed regularly. If a change is necessary in
a command, it is clearly mentioned in the text.

Therefore, it is better to write the steps above (after downloading the reference image)
as a script. In this way, you can simply change those variables and see the final result
fast by running your script. For more on writing scripts, see as described in Section 2.1.22
[Writing scripts to automate the steps], page 74.

Here is a summary of some points to remember when transferring the code in the sections
before into a script:

• Where the commands are edited/changed, please also update them in your script.

• Keep all the variables at the top, even if they are used later. This allows to easily view
or changed them without digging into the script.

• You do not need to include visual check commands like the astscript-fits-view or
cat commands above. Those can be run interactively after your script is finished; recall
that a script is for batch (non-interactive) processing.

• Put all your intermediate products inside a “build” directory.

Here is the script that summarizes the steps in Section 2.8.1 [Preparing input and gen-
erating exposure map], page 177, (after download) and Section 2.8.2 [Area of non-blank
pixels on sky], page 180:

#!/bin/bash

#

# Copyright (C) 2024-2024 Mohammad Akhlaghi <mohammad@akhlaghi.org>

#

# Copying and distribution of this file, with or without modification,

# are permitted in any medium under the GNU GPL v3+, without royalty

# provided the copyright notice and this notice are preserved. This

# file is offered as-is, without any warranty.

# Parameters of the script

deep_thresh=5

step_arcmin=1

center_ra=192.721250

center_dec=41.120556

# Input and build directories (can be anywhere in your file system)

indir=input

bdir=build

# Abort the script in case of an error.

set -e

# Make the build directory if it doesn't already exist.

if ! [ -d $bdir ]; then mkdir $bdir; fi

# Build the 5-pointing pointing pattern (with the step size above).

pointingcat=$bdir/pointing.txt
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echo "# Column 1: RA [deg, f64] Right Ascension" > $pointingcat

echo "# Column 2: Dec [deg, f64] Declination" >> $pointingcat

echo $center_ra $center_dec \

| awk '{s='$step_arcmin'/60; fmt="%-10.6f %-10.6f\n"; \

printf fmt, $1, $2; \

printf fmt, $1+s, $2; \

printf fmt, $1, $2+s; \

printf fmt, $1-s, $2; \

printf fmt, $1, $2-s}' \

>> $pointingcat

# Simulate the pointing pattern.

stack=$bdir/stack.fits

astscript-pointing-simulate $pointingcat --output=$stack \

--img=input/ref.fits --center=$center_ra,$center_dec \

--width=2

# Trim the regions shallower than the threshold.

deep=$bdir/deep.fits

astarithmetic $stack set-s s s $deep_thresh lt nan where trim \

--output=$deep

# Calculate the area of each pixel on the curved celestial sphere:

pixarea=$bdir/deep-pix-area.fits

astfits $deep --pixelareaonwcs --output=$pixarea

# Report the final area (the empty 'echo's are for visual help in outputs)

echo; echo

echo "Area with step of $step_arcmin arcminutes, at $deep_thresh depth:"

astarithmetic $pixarea $deep isblank nan where -g1 \

sumvalue --quiet

For a description of how to make it executable and how to run it, see Section 2.1.22
[Writing scripts to automate the steps], page 74. Note that as you start adding your own
text to the script, be sure to add your name (and year that you modified) in the copyright
notice at the start of the script (this is very important!).

2.8.4 Larger steps sizes for better calibration

In Section 2.8.1 [Preparing input and generating exposure map], page 177, we saw that a
small pointing pattern is not good for the reduction of data from a large object like M94!
M94 is about half a degree in diameter; so let’s set step_arcmin=15. This is one quarter of
a degree and will put the center of the four exposures on the four corners of the M94’s main
ring. Furthermore, Section 2.8.3 [Script with pointing simulation steps so far], page 181, the
steps were summarized into a script to allow easy changing of variables without manually
re-entering the individual/separate commands.

After you change step_arcmin=15 and re-run the script, you will get a total area (from
counting of per-pixel areas) of approximately 0.96 degrees squared. This is just roughly
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half the previous area and will barely fit M94! To understand the cause, let’s have a look
at the full stack (not just the deepest area):

$ astscript-fits-view build/stack.fits

Compared to the first run (with step_arcmin=1), we clearly see how there are indeed
fewer pixels that get photons in all 5 exposures. As the area of the deepest part has
decreased, the areas with fewer exposures have also grown. Let’s define our deep region to
be the pixels with 3 or more exposures. Please set deep_thresh=3 in the script and re-run
it. You will see that the “deep” area is now almost 2.02 degrees squared! This is (slightly)
larger than the first run (with step_arcmin=1)!

The difference between 3 exposures and 5 exposures seems a lot at first. But let’s calcu-
late how much it actually affects the achieved signal-to-noise ratio and the surface brightness
limit. The surface brightness limit (or upper-limit surface brightness) are both calculated
by applying the definition of magnitude to the standard deviation of the background. So we
should first calculate how much this difference in depth affects the sky standard deviation.
For a complete discussion on the definition of the surface brightness limit, see Section 7.4.3
[Quantifying measurement limits], page 578.

Deep images will usually be dominated by Section 6.2.3.1 [Photon counting noise],
page 403, (or Poisson noise). Therefore, if a single exposure image has a sky standard
deviation of σs, and we combine N such exposures by taking their mean, the final/stacked
sky standard deviation (σ) will be σ = σs/

√
N . As a result, the surface brightness limit

between the regions with N exposures and M exposures differs by 2.5 × log10(
√
N/M) =

1.25 × log10(N/M) magnitudes. If we set N = 3 and M = 5, we get a surface brightness
magnitude difference of 0.28!

This is a very small difference; given all the other sources of error that will be present;
but how much it improves the calibration artifacts. Therefore at the cost of decreasing our
surface brightness limit by 0.28 magnitudes, we are now able to calibrate the individual
exposures much better, and even cover a larger area!

The argument above didn’t involve any image and was primarily theoretical. For the
more visually-inclined readers, let’s add raw Gaussian noise (with a σ of 100 counts) over
each simulated exposure. We will then instruct astscript-pointing-simulate to stack
them as we would stack actual data (by taking the sigma-clipped mean). The command
below is identical to the previous call to the pointing simulation script with the following
differences. Note that this is just for demonstration, so you should not include this in your
script (unless you want to see the noisy stack every time; at double the processing time).

--output We are using a different output name, so we can compare the output of the new
command with the previous one.

--stack-operator

This should be one of the Arithmetic program’s Section 6.2.4.7 [Stacking op-
erators], page 421. By default the value is sum; because by default, each pixel
of each exposure is given a value of 1. When stacking is defined through the
summation operator, we can obtain the exposure map that you have already
seen above.

But in this run, we are adding noise to each input exposure (through the hook
that is described below) and stacking them (as we would stack actual science
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images). Since the purpose differs here, we are using this option to change the
operator.

--hook-warp-after

This is the most visible difference of this command the previous one. Through
a “hook”, you can give any arbitrarily long (series of) command(s) that will be
added to the processing of this script at a certain location. This particular hook
gets applied “after” the “warp”ing phase of each exposure (when the pixels of
each exposure are mapped to the final pixel grid; but not yet stacked).

Since the script runs in parallel (the actual work-horse is a Makefile!), you can’t
assume any fixed file name for the input(s) and output. Therefore the inputs
to, and output(s) of, hooks are some pre-defined shell variables that you should
use in the command(s) that you hook into the processing. They are written
in full-caps to be clear and separate from your own variables. In this case,
they are the $WARPED (input file of the hook) and $TARGET (output name that
next steps in the script will operate on). As you see from the command below,
through this hook we are calling the Arithmetic program to add noise to all
non-zero pixels in the warped image. For more on the noise-adding operators,
see Section 6.2.4.16 [Random number generators], page 443.

$ center_ra=192.721250

$ center_dec=41.120556

$ astscript-pointing-simulate build/pointing.txt --img=input/ref.fits \

--center=$center_ra,$center_dec \

--width=2 --stack-operator="3 0.2 sigclip-mean" \

--output=build/stack-noised.fits \

--hook-warp-after='astarithmetic $WARPED set-i \

i i 0 uint8 eq nan where \

100 mknoise-sigma \

--output=$TARGET'

$ astscript-fits-view build/stack.fits build/stack-noised.fits

When you visually compare the two images of the last command above, you will see
that (at least by eye) it is almost impossible to distinguish the differing noise pattern in
the regions with 3 exposures from the regions with 5 exposures. But the regions with
a single exposure are clearly visible! This is because the surface brightness limit in the
single-exposure regions is 1.25× log10(1/5) = −0.87 magnitudes brighter. This almost one
magnitude difference in surface brightness is significant and clearly visible in the stacked
image (recall that magnitudes are measured in a logarithmic scale).

Thanks to the argument above, we can now have a sufficiently large area with a usable
depth. However, each the center of each pointing will still contain the central part of the
galaxy. In other words, M94 will be present in all the exposures while doing the calibrations.
Even in not-too-deep observations, we already see a large ring around this galaxy. When
we do a low surface brightness optimized reduction, there is a good chance that the size of
the galaxy is much larger than that ring. This very extended structure will make it hard to
do the calibrations on very accurate scales. Accurate calibration is necessary if you do not
want to loose the faint photons that have been recorded in your exposures.
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� �
Calibration is very important: Better calibration can result in a fainter surface brightness
limit than more exposures with poor calibration; especially for very low surface brightness
signal that covers a large area and is systematically affected by calibration issues.
 	

Ideally, you want your target to be on the four edges/corners of each image. This will
make sure that a large fraction of each exposure will not be covered by your final target in
each exposure, allowing you to calibrate much more accurately.

2.8.5 Pointings that account for sky curvature

In Section 2.8.4 [Larger steps sizes for better calibration], page 183, we saw how a small loss
in surface brightness limit can allow better calibration and even a larger area. Let’s extend
this by setting step_arcmin=40 (almost half the width of the detector) inside your script
(see Section 2.8.3 [Script with pointing simulation steps so far], page 181). After running
the script with this change, take a look at build/deep.fits:

$ astscript-fits-view build/deep.fits --ds9scale=minmax

You will see that the region with 5 exposure depth is a horizontally elongated rectangle
now! Also, the vertical component of the cross with four exposures is much thicker than
the horizontal component! Where does this asymmetry come from? All the steps in our
pointing strategy had the same (fixed) size of 40 arc minutes.

This happens because the same change in RA and Dec (defined on the curvature of a
sphere) will result in different absolute changes on the equator. To visually see this, let’s
look at the pointing positions in TOPCAT:

$ cat build/pointing.txt

# Column 1: RA [deg, f64] Right Ascension

# Column 2: Dec [deg, f64] Declination

192.721250 41.120556

193.387917 41.120556

192.721250 41.787223

192.054583 41.120556

192.721250 40.453889

$ asttable build/pointing.txt -obuild/pointing.fits

$ astscript-fits-view build/pointing.fits

After TOPCAT opens, under the “graphics” window, select “Plane Plot”. In the newly
opened window, click on the “Axes” item on the bottom-left list of items. Then activate
the “Aspect lock” box so the vertical and horizontal axes have the same scaling. You will
see what you expect from the numbers: we have a beautifully symmetric set of 5 points
shaped like a ‘+’ sign.

Keep the previous window, and let’s go back to the original TOPCAT window. In
the first TOPCAT window, click on “Graphics” again, but this time, select “Sky plot”.
You will notice that the vertical component of the cross is now longer than the horizontal
component! If you zoom-out (by scrolling your mouse over the plot) a lot, you will see that
this is actually on the spherical surface of the sky! In other words, as you see here, on the
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sky, the horizontal points are closer to each other than the vertical points; causing a larger
overlap between them, making the vertical overlap thicker in build/pointing.fits.

On the celestial sphere, only the declination is measured in degrees. In other words,
the difference in declination of two points can be calculated only with their declination.
However, except for points that are on the equator, differences in right ascension depend
on the declination. Therefore, the origin of this problem is that we done the additions and
subtractions for defining the pointing points in a flat space: based on the step size in arc
minutes that was applied similarly on RA and Dec (in Section 2.8.1 [Preparing input and
generating exposure map], page 177).

To fix this problem, we need to convert our points from the flat RA/Dec into the spherical
RA/Dec. In the FITS standard, we have the “World Coordinate System” (WCS) that
defines this type of conversion, using pre-defined projections in the CTYPEi keyword (short
for for “Coordinate TYPE in dimension i”). Let’s have a look at the stack to see the default
projection of our final stack:

$ astfits build/stack.fits -h1 | grep CTYPE

CTYPE1 = 'RA---TAN' / Right ascension, gnomonic projection

CTYPE2 = 'DEC--TAN' / Declination, gnomonic projection

We therefore see that the default projection of our final stack is the TAN (short for “tan-
gential”) projection, which is more formally known as the Gnomonic projection (https://
en.wikipedia.org/wiki/Gnomonic_projection). This is the most commonly used projec-
tion in optical astronomy. Now that we know the final projection, we can do this conversion
using Table’s column arithmetic operator eq-j2000-from-flat like below:

$ pointingcat=build/pointing.txt

$ pointingonsky=build/pointing-on-sky.fits

$ asttable $pointingcat --output=$pointingonsky \

-c'arith RA set-r \

DEC set-d \

r meanvalue set-ref-r \

d meanvalue set-ref-d \

r d ref-r ref-d TAN eq-j2000-from-flat' \

--colmetadata=1,RA,deg,"Right ascension" \

--colmetadata=2,Dec,deg,"Declination"

$ astscript-fits-view build/pointing-on-sky.fits

Here is a break-down of the first command above: to do the flat-to-sky conversion, we
need a reference point (where the two are equal). We have used the mean RA and mean Dec
(through the meanvalue operator in Arithmetic) as our reference point (which are placed in
the ref-r and red-d variables. After calling the eq-j2000-from-flat operator, we have
just added metadata to the two columns.

To confirm that this operator done the job correctly, after the second command above,
repeat the same experiment as before with TOPCAT (where you viewed the pointing po-
sitions on a flat and spherical coordinate system). You will see that indeed, on the sphere
you have a ‘+’ shape, but on the flat plot, it looks stretched.

https://en.wikipedia.org/wiki/Gnomonic_projection
https://en.wikipedia.org/wiki/Gnomonic_projection
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� �
Script update 1: you should now add the pointingonsky definition and the asttable

command above into the script of Section 2.8.3 [Script with pointing simulation steps so
far], page 181. They should be placed before the call to astscript-pointing-simulate.
Also, in the call to astscript-pointing-simulate, $pointingcat should be replaced
with $pointingonsky (so it doesn’t use the flat RA, Dec pointings).
 	

After implementing this change in your script and running it, open deep.fits and you
will see that the widths of both the horizontal and vertical regions are much more similar.
The top of the vertical overlap is slightly wider than the bottom, but that is something
you can’t fix by just pointing (your camera’s field of view is fixed on the sky!). It can be
correctly by slightly rotating some of the exposures, but that will result in different PSFs
from one exposure to another; and this can cause more important problems for your final
science.� �
Plotting the spherical RA and Dec in your papers: The inverse of the eq-j2000-from-

flat operator above is the eq-j2000-to-flat. eq-j2000-to-flat can be used when you
want to plot a set points with spherical RA and Dec in a paper. When the minimum and
maximum RA and Dec differ by larger than half a degree, you’ll clearly see the difference.
For more, see the description of these operators in Section 5.3.3 [Column arithmetic],
page 346.
 	

Try to slightly increase step_arcmin to make the cross-like region with 4 exposures as
thin as possible. For example, set it to step_arcmin=42. When you open deep.fits, you
will see that the depth across this image is almost contiguous (which is another positive
factor!). Try increasing it to 43 arc minutes to see that the central cross will become almost
fully NaN in deep.fits (which is bad!).

You will notice that the vertical region of 4 exposure depth is thinner in the bottom
than on the top. This is due to the RA/Dec change above, but across the width of the
image. We can’t therefore change this by just changing the position of the pointings, we
need to rotate some of the exposures if we want it to be removed. But rotation is not yet
implemented in this script.

You can construct any complex pointing pattern (with more than 5 points and in any
shape) based on the logic and reasoning above to help extract the most science from the
valuable telescope time that you will be getting. Since the output is a FITS file, you can
easily download another FITS file of your target, open it with DS9 (and “lock” the “WCS”)
with the stack produced by this simulation to make sure that the deep parts correspond to
the area of interest for your science case.

Factors like the optimal exposure time are also critical for the final result57, but is was
beyond the scope of this tutorial. One relevant factor however is the effect of vignetting: the
pixels on the outer extremes of the field of view that are not exposed to light and should be
removed from your final stack. They effect your pointing pattern: by decreasing your total
area, they act like a larger spacing between your points, causing similar shallow crosses as

57 The exposure time will determine the Signal-to-noise ration on a single exposure level.
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you saw when you set step_arcmin to 43 arc minutes. In Section 2.8.6 [Accounting for
non-exposed pixels], page 189, we will show how this can be done within the same test
concept that we done here.

2.8.6 Accounting for non-exposed pixels

At the end of Section 2.8.5 [Pointings that account for sky curvature], page 186, we were
able to maximize the region of same depth in our stack. But we noticed that issues like
strong vignetting (https://en.wikipedia.org/wiki/Vignetting) can create discontinu-
ity in our final stacked data product. In this section, we’ll review the steps to account for
such effects. Generally, the full area of a detector is not usually used in the final stack.
Vignetting is one cause, it can be due to other problems also. For example due to baffles in
the optical path (to block stray light), or large regions of bad (unusable or “dead”) pixels
that may be in any place on the detector58.

Without accounting for these pixels that do not receive any light, the deep area we
measured in the sections above will be over-estimated. In this sub-section, let’s review
the necessary additions to account for such artifacts. Therefore, before continuing, please
make sure that you have already read and applied the steps of the previous sections (this
sub-section builds upon that section).

Vignetting strongly depends on the optical design of the instrument you are using. It
can be a constant number of pixels on all the edges the detector, or it can have a more
complex shape. For example on cameras that have multiple detectors on the field of view,
in this case, the regions to exclude on each detector can be very different and will not be
symmetric!

Therefore, within Gnuastro’s astscript-pointing-simulate script there is no param-
eter for pre-defined vignetting shapes. Instead, you should define a mask that you can
apply on each exposure through the provided hook (--hook-warp-before; recall that we
previously used another hook in Section 2.8.4 [Larger steps sizes for better calibration],
page 183). Through the mask, you are free to set any vignetted or bad pixel to NaN (thus
ignoring them in the stack) and applying it in any way that best suites your instrument
and detector.

The mask image should be same size as the reference image, but only containing two
values: 0 or 1. Pixels in each exposure that have a value of 1 in the mask will be set to NaN
before the stacking process and will not contribute to the final stack. Ideally, you can use
the master flat field image of the previous reductions to create this mask: any pixel that
has a low sensitivity in the master flat (for any reason) can be set to 1, and the rest of the
pixels to 0.

Let’s build a simple mask by assuming that we only have strong vignetting that is af-
fecting the outer 30 arc seconds of the individual exposures. To mask the outer edges of an
image we can use Gnuastro’s Arithmetic program; and in particular, the indexonly oper-
ator. To learn more about this operator, see Section 6.2.4.19 [Size and position operators],
page 456.

58 For an example of bad pixels over the detector, see Figures 4 and 6 of Instrument Science Report
WFC3 2019-03 (https://www.stsci.edu/files/live/sites/www/files/home/hst/instrumentation/
wfc3/documentation/instrument-science-reports-isrs/_documents/2019/WFC3-2019-03.pdf) by
the Space Telescope Science Institute.

https://en.wikipedia.org/wiki/Vignetting
https://www.stsci.edu/files/live/sites/www/files/home/hst/instrumentation/wfc3/documentation/instrument-science-reports-isrs/_documents/2019/WFC3-2019-03.pdf
https://www.stsci.edu/files/live/sites/www/files/home/hst/instrumentation/wfc3/documentation/instrument-science-reports-isrs/_documents/2019/WFC3-2019-03.pdf
https://www.stsci.edu/files/live/sites/www/files/home/hst/instrumentation/wfc3/documentation/instrument-science-reports-isrs/_documents/2019/WFC3-2019-03.pdf
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But before doing that, we need convert this angular distance to pixels on the detector.
In Section 2.8 [Pointing pattern design], page 176, we used an undersampled version of the
input image, so we should do this conversion on that image:

$ margin_arcsec=30

$ margin_pix=$(astfits input/ref.fits --pixelscale --quiet \

| awk '{print int('$margin_arcsec'/($1*3600))}')

$ echo $margin_pix

5

To build the mask, we can now follow the recipe under “Image: masking margins” of the
index operator in Arithmetic (for a full description of what this command is doing59, see
Section 6.2.4.19 [Size and position operators], page 456). Finally, in the last command, let’s
look at the mask image in the “red” color map of DS9 (which will shows the thin 1-valued
pixels to mask on the border more clearly).

$ width=$(astfits input/ref.fits --keyvalue=NAXIS1 -q)

$ height=$(astfits input/ref.fits --keyvalue=NAXIS2 -q)

$ astarithmetic input/ref.fits indexonly set-i \

$width uint16 set-w \

$height uint16 set-h \

$margin_pix uint16 set-m \

i w % uint16 set-X \

i w / uint16 set-Y \

X m lt X w m - gt or \

Y m lt Y h m - gt or \

or --output=build/mask.fits

$ astscript-fits-view build/mask.fits --ds9extra="-cmap red"

We are now ready to run the main pointing simulate script. With the command below,
we will use the --hook-warp-before to apply this mask on the image of each exposure just
before warping. The concept of this hook is very similar to that of --hook-warp-after in
Section 2.8 [Pointing pattern design], page 176. As the name suggests, this hook is applied
“before” the warping. The input to the command given to this hook should be called with
$EXPOSURE and the output should be called with $TOWARP. With the second command, let’s
compare the two outputs:

$ astscript-pointing-simulate build/pointing-on-sky.fits \

--output=build/stack-with-trim.fits --img=input/ref.fits \

--center=$center_ra,$center_dec --width=2 \

--hook-warp-before='astarithmetic $EXPOSURE build/mask.fits \

nan where -g1 -o$TOWARP'

$ astscript-fits-view build/stack.fits build/stack-with-trim.fits

59 By learning how this command works, you can customize it. For example, to mask different widths along
each separate edge: it often happens that the left/right or top/bottom edges are affected differently by
vignetting.
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As expected, due to the smaller area of the detector that is exposed to photons, the
regions with 4 exposures have become much thinner and on the bottom, it has been removed.
To have contiguous depth in the deeper region, use this new call in your script and decrease
the step_arcmin=41.

You can use the same command on a mask that is created in any way and as realistic as
possible. More generically, you can use the before and after hooks for any other operation;
for example to insert objects from a catalog using Section 8.1 [MakeProfiles], page 629, as
well as adding noise as we did in Section 2.8 [Pointing pattern design], page 176.

Therefore it is also good to add the mask and its application in your script. This should
be pretty easy by now (following Section 2.8.3 [Script with pointing simulation steps so far],
page 181, and the “Script update 1” box of Section 2.8.5 [Pointings that account for sky
curvature], page 186). So we will leave this as an exercise.

2.9 Moiré pattern in stacking and its correction

After warping some images with the default mode of Warp (see Section 6.4.4.1 [Align pixels
with WCS considering distortions], page 499) you may notice that the background noise
is no longer flat. Some regions will be smoother and some will be sharper; depending
on the orientation and distortion of the input/output pixel grids. This is due to the Moiré
pattern (https://en.wikipedia.org/wiki/Moir%C3%A9_pattern), which is especially no-
ticeable/significant when two slightly different grids are super-imposed.

With the commands below, we’ll download a single exposure image from the J-PLUS
survey (https://www.j-plus.es) and run Warp (on a 8× 8 arcmin2 region to speed it up
the demos here). Finally, we’ll open the image to visually see the artificial Moiré pattern
on the warped image.

## Download the image (73.7 MB containing an 9216x9232 pixel image)

$ jplusdr2=http://archive.cefca.es/catalogues/vo/siap/jplus-dr2/reduced

$ wget $jplusdr2/get_fits?id=771463 -Ojplus-exp1.fits.fz

## Align a small part of it with the sky coordinates.

$ astwarp jplus-exp1.fits.fz --center=107.62920,39.72472 \

--width=8/60 -ojplus-e1.fits

## Open the aligned region with DS9

$ astscript-fits-view jplus-e1.fits

In the opened DS9 window, you can see the Moiré pattern as wave-like patterns in the
noise: some parts of the noise are more smooth and some parts are more sharp. Right in
the center of the image is a blob of sharp noise. Warp has the --checkmaxfrac option for
direct inspection of the Moiré pattern (described with the other options in Section 6.4.4.1
[Align pixels with WCS considering distortions], page 499). When run with this option, an
extra HDU (called MAX-FRAC) will be added to the output. The image in this HDU has the
same size as the output. However, each output pixel will contain the largest (maximum)
fraction of area that it covered over the input pixel grid. So if an output pixel has a value of
0.9, this shows that it covered 90% of an input pixel. Let’s run Warp with --checkmaxfrac

and see the output (after DS9 opens, in the “Cube” window, flip between the first and
second HDUs):

https://en.wikipedia.org/wiki/Moir%C3%A9_pattern
https://en.wikipedia.org/wiki/Moir%C3%A9_pattern
https://www.j-plus.es
https://www.j-plus.es
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$ astwarp jplus-exp1.fits.fz --center=107.62920,39.72472 \

--width=8/60 -ojplus-e1.fits --checkmaxfrac

$ astscript-fits-view jplus-e1.fits

By comparing the first and second HDUs/extensions, you will clearly see that the regions
with a sharp noise pattern fall exactly on parts of the MAX-FRAC extension with values larger
than 0.5. In other words, output pixels where one input pixel contributed more than half
of the its value. As this fraction increases, the sharpness also increases because a single
input pixel’s value dominates the value of the output pixel. On the other hand, when this
value is small, we see that many input pixels contribute to that output pixel. Since many
input pixels contribute to an output pixel, it acts like a convolution, hence that output pixel
becomes smoother (see Section 6.3.1 [Spatial domain convolution], page 470). Let’s have a
look at the distribution of the MAX-FRAC pixel values:

$ aststatistics jplus-e1.fits -hMAX-FRAC

Statistics (GNU Astronomy Utilities) 0.22.24-f3e8

-------

Input: jplus-e1.fits (hdu: MAX-FRAC)

-------

Number of elements: 744769

Minimum: 0.250213461

Maximum: 0.9987495374

Mode: 0.5034223567

Mode quantile: 0.3773819498

Median: 0.5520805544

Mean: 0.5693956458

Standard deviation: 0.1554693738

-------

Histogram:

| ***

| **********

| *****************

| ************************

| *******************************

| **************************************

| *********************************************

| ****************************************************

| ***********************************************************

| ******************************************************************

|**********************************************************************

|----------------------------------------------------------------------

The smallest value is 0.25 (=1/4), showing that 4 input pixels contributed to the output
pixels value. While the maximum is almost 1.0, showing that a single input pixel defined
the output pixel value. You can also see that the most probable value (the mode) is 0.5,
and that the distribution is positively skewed.

This is a well-known problem in astronomical imaging and professional photography.
If you only have a single image (that is already taken!), you can undersample the input:
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set the angular size of the output pixels to be larger than the input. This will decrease
the resolution of your image, but will ensure that pixel-mixing will always happen. In
the example below we are setting the output pixel scale (which is known as CDELT in the
FITS standard) to 1/0.5 = 2 of the input’s. In other words each output pixel edge will
cover double the input pixel’s edge on the sky, and the output’s number of pixels in each
dimension will be half of the previous output.

$ cdelt=$(astfits jplus-exp1.fits.fz --pixelscale -q \

| awk '{print $1}')

$ astwarp jplus-exp1.fits.fz --center=107.62920,39.72472 \

--width=8/60 -ojplus-e1.fits --cdelt=$cdelt/0.5 \

--checkmaxfrac

In the first extension, you can hardly see any Moiré pattern in the noise. When you go
to the next (MAX-FRAC) extension, you will see that almost all the pixels have a value of 1.
Of course, decreasing the resolution by half is a little too drastic. Depending on your image,
you may be able to reach a sufficiently good result without such a drastic degrading of the
input image. For example, if you want an output pixel scale that is just 1.5 times larger
than the input, you can divide the original coordinate-delta (or “cdelt”) by 1/1.5 = 0.6666
and try again. In the MAX-FRAC extension, you will see that the range of pixel values is now
between 0.56 to 1.0 (recall that originally, this was between 0.25 and 1.0). This shows that
the pixels are more similarly mixed and in fact, when you look at the actual warped image,
you can hardly distinguish any Moiré pattern in the noise.

However, deep astronomical data are usually built by several exposures (images), not
a single one. Each image is also taken by (slightly) shifting the telescope compared to
the previous exposure. This shift is known as “dithering” or a “pointing pattern”, see
Section 2.8 [Pointing pattern design], page 176. We do this for many reasons (for example
tracking errors in the telescope, high background values, removing the effect of bad pixels
or those affected by cosmic rays, robust flat pattern measurement, etc.60). One of those
“etc.” reasons is to correct the Moiré pattern in the final coadded deep image.

The Moiré pattern is fixed to the grid of the image, slightly shifting the telescope will
result in the pattern appearing in different parts of the sky. Therefore when we later stack, or
coadd, the separate exposures into a deep image, the Moiré pattern will be decreased there.
However, dithering has possible drawbacks based on the scientific goal. For example when
observing time-variable phenomena where cutting the exposures to several shorter ones is
not feasible. If this is not the case for you (for example in galaxy evolution), continue with
the rest of this section.

Because we have multiple exposures that are slightly (sub-pixel) shifted, we can also
increase the spatial resolution of the output. For example, let’s set the output coordinate-
delta (--cdelt, or pixel scale) to be 1/2 of the input. In other words, the number of pixels
in each dimension of the output is double the first Warp command of this section:

$ astwarp jplus-exp1.fits.fz --center=107.62920,39.72472 \

--width=8/60 -ojplus-e1.fits --cdelt=$cdelt/2 \

--checkmaxfrac

$ aststatistics jplus-e1.fits -hMAX-FRAC --minimum --maximum

60 E.g., https://www.stsci.edu/hst/instrumentation/wfc3/proposing/dithering-strategies

https://www.stsci.edu/hst/instrumentation/wfc3/proposing/dithering-strategies
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6.26360438764095e-02 2.50680270139128e-01

$ astscript-fits-view jplus-e1.fits

From the last command, you see that like the previous change in --cdelt, the range of
MAX-FRAC has decreased. However, when you look at the warped image and the MAX-FRAC

image with the last command, you still visually see the Moiré pattern in the noise (although
it has significantly decreased compared to the original resolution). It is still present because
2 is an exact multiple of 1. Let’s try increasing the resolution (oversampling) by a factor of
1.25 (which isn’t an exact multiple of 1):

$ astwarp jplus-exp1.fits.fz --center=107.62920,39.72472 \

--width=8/60 -ojplus-e1.fits --cdelt=$cdelt/1.25 \

--checkmaxfrac

$ astscript-fits-view jplus-e1.fits

You don’t see any Moiré pattern in the noise any more, but when you look at the MAX-
FRAC extension, you see it is very different from the ones you had seen before. In the
previous MAX-FRAC image, you could see large blobs of similar values. But here, you see
that the variation is almost on a pixel scale, and the difference between one pixel to the
next is not significant. This is why you don’t see any Moiré pattern in the warped image.

In J-PLUS, each part of the sky was observed with a three-point pointing pattern (very
small shifts in each pointing). Let’s download the other two exposures and warp the same
region of the sky to the same pixel grid (using the --gridfile feature). Then, let’s open
all three warped images in one DS9 instance:

$ wget $jplusdr2/get_fits?id=771465 -Ojplus-exp2.fits.fz

$ wget $jplusdr2/get_fits?id=771467 -Ojplus-exp3.fits.fz

$ astwarp jplus-exp2.fits.fz --gridfile jplus-e1.fits \

-o jplus-e2.fits --checkmaxfrac

$ astwarp jplus-exp3.fits.fz --gridfile jplus-e1.fits \

-o jplus-e3.fits --checkmaxfrac

$ astscript-fits-view jplus-e*.fits

In the three warped images, you don’t see any Moiré pattern, so far so good... now, take
the following steps:

1. In the small “Cube” window, click the “Next” button so you see the MAX-FRAC exten-
sion/HDU.

2. Click on the “Frame” button (in the top row of buttons just on top of the image), and
select the “Single” button in the bottom row.

3. Open the “Zoom” menu (not button), and select “Zoom 16”.

4. Press the TAB key to flip through each exposure.

5. Focus your eyes on the pixels with the largest value (white colored pixels), while pressing
TAB to flip between the exposures. You will see that in each exposure they cover different
pixels (nicely getting averaged out after stacking).

The exercise above shows that the Moiré pattern (that had already decreased signif-
icantly) will be further decreased after we stack the images. So let’s stack these three
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images with the commands below. First, we need to remove the sky-level from each image
using Section 7.2 [NoiseChisel], page 541, then we’ll stack the INPUT-NO-SKY extensions
using filled MAD-clipping (to reject outliers, and especially diffuse outliers, robustly, see
Section 2.10 [Clipping outliers], page 195).

$ for i in $(seq 3); do \

astnoisechisel jplus-e$i.fits -ojplus-nc$i.fits; \

done

$ astarithmetic jplus-nc*.fits 3 5 0.2 sigclip-mean \

-gINPUT-NO-SKY -ojplus-stack.fits

$ astscript-fits-view jplus-nc*.fits jplus-stack.fits

After opening the individual exposures and the final stack with the last command, take the
following steps to see the comparisons properly:

1. Click on the stack image so it is selected.

2. Go to the “Frame” menu, then the “Lock” item, then activate “Scale and Limits”.

3. Scroll your mouse or touchpad to zoom into the image.

You clearly see that the stacked image is deeper and that there is no Moiré pattern, while
you have slightly improved the spatial resolution of the output compared to the input. In
case you want the stack to have the original pixel resolution, you just need one more warp:

$ astwarp jplus-stack.fits --cdelt=$cdelt -ojplus-stack-origres.fits

For optimal results, the oversampling should be determined by the dithering pattern of
the observation: For example if you only have two dither points, you want the pixels with
maximum value in the MAX-FRAC image of one exposure to fall on those with a minimum
value in the other exposure. Ideally, many more dither points should be chosen when
you are planning your observation (not just for the Moiré pattern, but also for all the
other reasons mentioned above). Based on the dithering pattern, you want to select the
increased resolution such that the maximum MAX-FRAC values fall on every different pixel
of the output grid for each exposure. Note that this discussion is on small shifts between
pointings (dithers), not large ones like offsets); see Section 2.8 [Pointing pattern design],
page 176.

2.10 Clipping outliers

Outliers occur often in data sets. For example cosmic rays in astronomical imaging: the
image of your target galaxy can be affected by a cosmic ray in one of the five exposures you
took in one night. As a result, when you compare the measured magnitude of your target
galaxy in all the exposures, you will get measurements like this (all in magnitudes) 19.8,
20.1, 20.5, 17.0, 19.9 (all fluctuating around magnitude 20, except the much brighter 17th
magnitude measurement).

Normally, you would simply take the mean of these measurements to estimate the magni-
tude of your target with more precision. However, the 17th magnitude measurement above
is clearly wrong and will significantly affect the mean: without it, the mean magnitude is
20.07, but with it, the mean is 19.46:

$ echo " 19.8 20.1 20.5 17 19.9" \
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| tr ' ' '\n' \

| aststatistics --mean

1.94600000000000e+01

$ echo " 19.8 20.1 20.5 19.9" \

| tr ' ' '\n' \

| aststatistics --mean

2.00750000000000e+01

This difference of 0.61 magnitudes (or roughly 1.75 times) is significant (for the definition
of magnitudes in astronomy, see Section 7.4.2 [Brightness, Flux, Magnitude and Surface
brightness], page 574). In the simple example above, you can visually identify the “outlier”
and manually remove it. But in most common situations you will not be so lucky! For
example when you want to stack the five images of the five exposures above, and each
image has 4000×4000 (or 16 million!) pixels and not possible by hand in a reasonable time
(an average human’s lifetime!).

This tutorial reviews the effect of outliers and different available ways to remove them.
In particular, we will be looking at stacking of multiple datasets and collapsing one dataset
along one of its dimensions. But the concepts and methods are applicable to any analysis
that is affected by outliers.

2.10.1 Building inputs and analysis without clipping

As described in Section 2.10 [Clipping outliers], page 195, the goal of this tutorial is to
demonstrate the effects of outliers and show how to “clip” them from basic statistics mea-
surements. This is best done on an actual dataset (rather than pure theory). In this
section we will build nine noisy images with the script below, such that one of the images
has a circle in the middle. We will then stack the 9 images into one final image based on
different statistical measurements: the mean, median, standard deviation (STD), median
absolute deviation (MAD) and number of inputs used in each pixel. We will then analyze
the resulting stacks to demonstrate the problem with outliers.

Put the script below into a plain-text file (assuming it is called script.sh), and run
it with bash ./script.sh. For more on writing and good practices in shell scripts, see
Section 2.1.22 [Writing scripts to automate the steps], page 74. The last command of the
script above calls DS9 to visualize the five output stacked images mentioned above.

# Constants

list=""

sigma=10

number=9

radius=30

width=201

bdir=build

profsum=3e5

background=10

random_seed=1699270427

# Clipping parameters (will be set later when we start clipping).
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# clip_multiple: 3 for sigma; 4.5 for MAD

# clip_tolerance: 0.1 for sigma; 0.01 for MAD

clip_operator=""

clip_multiple=""

clip_tolerance=""

# Stop if there is any error.

set -e

# If the build directory does not exist, build it.

if ! [ -d $bdir ]; then mkdir $bdir; fi

# The final image (with largest number) will contain the outlier:

# we'll put a flat circle in the center of the image as the outlier

# structure.

outlier=$bdir/in-$number.fits

nn=$bdir/$number-no-noise.fits

export GSL_RNG_SEED=$random_seed

center=$(echo $width | awk '{print int($1/2)+1}')

echo "1 $center $center 5 $radius 0 0 1 $profsum 1" \

| astmkprof --mode=img --mergedsize=$width,$width \

--oversample=1 --output=$nn --mcolissum

astarithmetic $nn $background + $sigma mknoise-sigma \

--envseed -o$outlier

# Build pure noise and add elements to the list of images to stack.

list=$outlier

numnoise=$(echo $number | awk '{print $1-1}')

for i in $(seq 1 $numnoise); do

img="$bdir/in-$i.fits"

if ! [ -f $img ]; then

export GSL_RNG_SEED=$(echo $random_seed | awk '{print $1+'$i'}')

astarithmetic $width $width 2 makenew float32 $background + \

$sigma mknoise-sigma --envseed --output=$img

fi

list="$list $img"

done

# Stack the images.

for op in mean median std mad; do

if [ x"$clip_operator" = x ]; then # No clipping.

out=$bdir/stack-$op.fits
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astarithmetic $list $number $op -g1 --output=$out

else # With clipping.

operator=$clip_operator-$op

out=$bdir/stack-$operator.fits

astarithmetic $list $number $clip_multiple $clip_tolerance \

$operator -g1 --writeall --output=$out

fi

done

# Collapse the first and last image along the 2nd dimension.

for i in 1 $number; do

if [ x"$clip_operator" = x ]; then # No clipping.

out=$bdir/collapsed-$i.fits

astarithmetic $bdir/in-$i.fits 2 collapse-median counter \

--writeall --output=$out

else # With clipping.

out=$bdir/collapsed-$clip_operator-$i.fits

astarithmetic $bdir/in-$i.fits $clip_multiple $clip_tolerance \

2 collapse-$clip_operator-median counter \

--writeall --output=$out

fi

done

After the script finishes, you can see the generated input images with the first command
below. The second command shows the stacked images with the different statistics:

$ astscript-fits-view build/in-*.fits --ds9extra="-lock scalelimits yes"

$ astscript-fits-view build/stack-*.fits

Color-blind readers may not clearly see the issue in the opened images with this color
bar. In this case, please choose the “color” menu at the top of the DS9 and select “gray”
or any other color that makes the noisy circle (in the noise) most visible.

The effect of an outlier on the different measurements above can be visually seen (and
quantitatively measured) through the visibility of the circle (that was only present in one
image, of nine). Let’s look at them one by one (from the one that is most affected to the
least):

std.fits The standard deviation (third image in DS9) is the most strongly affected
statistic by an outlier. This is so strong that the edge of the circle is also
clearly visible! The standard deviation is calculated by first finding the mean,
and estimating the difference of each element from the mean. Those differences
are then taken to the power of two and finally the square root is taken (after a
division by the number). It is the power-of-two component that amplifies the
effect of the single outlier as you see here.

mean.fits

The mean (first image in DS9) is also affected by the outlier in such a way that
the circle footprint is clearly visible. This is because the nine images have the
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same importance in the combination with a simple mean. Therefore, the outlier
value pushes the result to higher values and the circle is printed.

median.fits

The median (second image in DS9) is also affected by the outlier; although
much less significantly than the standard deviation or mean. At first sight the
circle may not be too visible! To see it more clearly, click on the “Analysis”
menu in DS9 and then the “smooth” item. After smoothing, you will see how
the single outlier has leaked into the median stack.

Intuitively, we would think that since the median is calculated from the middle
element after sorting, the outlier goes to the end and won’t affect the result.
However, this is not the case as we see here: with 9 elements, the “central”
element is the 5th (counting from 1; after sorting). Since the pixels covered
by the circle only have 8 pure noise elements; the “true” median should have
been the average of the 4th and 5th elements (after sorting). By definition, the
5th element is always larger than the mean of the 4th and 5th (because the
4th element after sorting has a smaller value than the 5th element). Therefore,
using the 5th element (after sorting), we are systematically choosing higher
noise values in regions that are covered by the circle!

With larger datasets, the difference between the central elements will be less.
However, the improved precision (in the elements without an outlier) will also
be more. A detailed analysis of the effect of a single outlier on the median
based on the number of inputs can be done as an exercise; but in general, as
this argument shows, the median is not immune to outliers; especially when
you care about low signal-to-noise regimes (as we do in astronomy: low surface
brightness science).

mad.fits The median absolute deviation (fourth image in DS9) is affected by outliers in
a similar fashion to the median.

The example above included a single outlier. But we are not usually that lucky: there
are usually more outliers! For example, the last for loop in the script above collapsed
1.fits (that was pure noise, without the circle) and 9.fits (with the circle) along their
second dimension (the vertical). The output of collapsing has one less dimension; in this
case, producing a 1D table (with the same number of rows as the image’s horizontal axis).
Collapsing was done by taking the median along all the pixels in the vertical dimension.
To easily plot the output afterwards, we have also used the counter operator. With the
command below, you can open both tables and compare them:

$ astscript-fits-view build/collapsed-*.fits

After TOPCAT has opened, select collapsed-1.fits in the “Table List” side-bar. In
the “Graphics” menu, select “Plane plot” and you will see all the values fluctuating around
10 (with a maximum/minimum around ±2). Afterwards, click on the “Layers” menu of
the new window (with a plot) and click on “Add position control”. Tt the bottom of the
window (where the scroll bar in front of “Table” is empty), select collapsed-9.fits. In
the regions that there was no circle in any of the vertical axes, the two match nicely (the
noise level is the same). However, you see that the regions that were partly covered by
the outlying circle gradually get more affected as the width of the circle in that column
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increases (the full diameter of the circle was in the middle of the image). This shows how
the median is biased by outliers as their number increases.

To see the problem more prominently, use the collapse-mean operator instead of the
median. The reason that the mean is more strongly affected by the outlier is exactly the
same as above for the stacking of the input images. In the subsections below, we will
describe some of the available ways (in Gnuastro) to reject the effect of these outliers (and
have better stacks or collapses). But the methodology is not limited to these types of data
and can be generically applied; unless specified explicitly.

2.10.2 Sigma clipping

Let’s assume that you have pure noise (centered on zero) with a clear Gaussian distribution
(https://en.wikipedia.org/wiki/Normal_distribution), or see Section 6.2.3.1 [Pho-
ton counting noise], page 403. Now let’s assume you add very bright objects (signal) on
the image which have a very sharp boundary. By a sharp boundary, we mean that there
is a clear cutoff (from the noise) at the pixels the objects finish. In other words, at their
boundaries, the objects do not fade away into the noise.

In optical astronomical imaging, cosmic rays (when they collide at a near normal in-
cidence angle) are a very example of such outliers. The tracks they leave behind in the
image are perfectly immune to the blurring caused by the atmosphere on images of stars or
galaxies and they have a very high signal-to-noise ratio. They are also very energetic and
so their borders are usually clearly separated from the surrounding noise. See Figure 15 in
Akhlaghi and Ichikawa, 2015 (https://arxiv.org/abs/1505.01664).

In such a case, when you plot the histogram (see Section 7.1.1 [Histogram and Cumulative
Frequency Plot], page 508) of the distribution, the pixels relating to those objects will be
clearly separate from pixels that belong to parts of the image that did not have any signal
(were just noise). In the cumulative frequency plot, after a steady rise (due to the noise), you
would observe a long flat region were for a certain range of the dynamic range (horizontal
axis), there is no increase in the index (vertical axis).

In the previous section (Section 2.10.1 [Building inputs and analysis without clipping],
page 196) we created one such dataset (in-9.fits). With the command below, let’s have
a look at its histogram and cumulative frequency plot (in simple ASCII format; we are
decreasing the default number of bins with --numasciibins to show them easily within the
width of the print version of this manual; feel free to change this).

$ aststatistics build/in-9.fits --asciihist --asciicfp \

--numasciibins=65

ASCII Histogram:

Number: 40401

Y: (linear: 0 to 4191)

X: (linear: -31.9714 -- 150.323, in 65 bins)

| **

| ****

| ******

| ******

| ********

| ********

https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Normal_distribution
https://arxiv.org/abs/1505.01664
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| **********

| ************

| **************

| ****************** ******

|******************************* *************************

|-----------------------------------------------------------------

ASCII Cumulative frequency plot:

Y: (linear: 0 to 40401)

X: (linear: -31.9714 -- 150.323, in 65 bins)

| ***************

| **********************************************

| ***********************************************

| *************************************************

| **************************************************

| ***************************************************

| ****************************************************

| *****************************************************

| ******************************************************

| ********************************************************

|*****************************************************************

|-----------------------------------------------------------------

We see a clear bimodal (https://en.wikipedia.org/w/index.php?title=Bimodal)
distribution in the histogram. Such outliers can significantly bias any single measurement
over the whole dataset. For example let’s compare the median, mean and standard deviation
of the image above with 1.fits:

$ aststatistics build/in-1.fits --median --mean --std

9.90529778313248e+00 9.96143102101206e+00 1.00137568561776e+01

$ aststatistics build/in-9.fits --median --mean --std

1.09305819367634e+01 1.74470443173776e+01 2.88895986970341e+01

The effect of the outliers is obvious in all three measures: the median has become 1.10
times larger, the mean 1.75 times and the standard deviation about 2.88 times! The differing
effect of outliers in different statistics was already discussed in Section 2.10.1 [Building
inputs and analysis without clipping], page 196; also see Section 7.1.4.3 [Quantifying signal
in a tile], page 522.

σ-clipping is one commonly used way to remove/clip the effect of such very strong outliers
in measures like the above (although not the most robust, continue reading to the end of
this tutorial in the next sections). σ-clipping is defined as the very simple iteration below.
In each iteration, the number of input values used might decrease. When the outliers are
as strong as above, the outliers will be removed through this iteration.

1. Calculate the standard deviation (σ) and median (m) of a distribution. The median is
used because, as shown above, the mean is too significantly affected by the presence of
outliers.

2. Remove all points that are smaller or larger than m± ασ.

https://en.wikipedia.org/w/index.php?title=Bimodal
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3. Go back to step 1, unless the selected exit criteria is reached. There are commonly two
types of exit criteria (to stop the σ-clipping iteration). Within Gnuastro’s programs
that use sigma-clipping, the exit criteria is the second value to the --sclipparams

option (the first value is the α above):

• When a certain number of iterations has taken place (exit criteria is an integer,
larger than 1). For example --sclipparams=5,3 means that the 5σ clipping will
stop after 3 clips.

• When the new measured standard deviation is within a certain tolerance level
of the previous iteration (exit criteria is floating point and less than 1.0). The
tolerance level is defined by:

σold − σnew
σnew

In each clipping, the dispersion in the distribution is either less or equal. So
σold ≥ σnew. For example --sclipparams=5,0.2 means that the 5σ clipping will
stop the old and new standard deviations are equal within a factor of 0.2.

Let’s see the algorithm in practice with the --sigmaclip option of Gnuastro’s Statistics
program (using the default configuration of 3σ clipping and tolerance of 0.1):

$ aststatistics build/in-9.fits --sigmaclip

Statistics (GNU Astronomy Utilities) 0.22.24-f3e8

-------

Input: build/in-9.fits (hdu: 1)

-------

3-sigma clipping steps until relative change in STD is less than 0.1:

round number median STD

1 40401 1.09306e+01 2.88896e+01

2 37660 1.00306e+01 1.07153e+01

3 37539 1.00080e+01 9.93741e+00

-------

Statistics (after clipping):

Number of input elements: 40401

Number of clips: 2

Final number of elements: 37539

Median: 1.000803e+01

Mean: 1.001822e+01

Standard deviation: 9.937410e+00

Median Absolute Deviation: 6.772760e+00

After the basic information about the input and settings, the Statistics program has
printed the information for each round (iteration) of clipping. Initially, there was 40401
elements (the image is 201 × 201 pixels). After the first round of clipping, only 37660
elements remained and because the difference in standard deviation was larger than the
tolerance level, a third clipping was one. But the change in standard deviation after the
third clip (in relation to the second) was smaller than the tolerance level, so the exit criteria
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was activated and the clipping finished with 37539 elements. In the end, we see that the
final median, mean and standard deviation are very similar to the data without any outlier
(build/1.fits in the example above). Therefore, through clipping we were able to remove
the second “outlier” distribution from the bimodal histogram above (because it was so nicely
separated from the main/noise).

The example above provided a single statistic from a single dataset. Other scenarios
where sigma-clipping becomes necessary are stacking and collapsing (that was the main goal
of the script in Section 2.10.1 [Building inputs and analysis without clipping], page 196).
To generate σ-clipped stacks and collapsed tables, you just need to change the values of the
three variables of the script (shown below). After making this change in your favorite text
editor, have a look at the outputs. By the way, if you have still not read (and understood)
the commands in that script, this is a good time to do it so the steps below do not appear
as a black box to you (for more on writig shell scripts, see Section 2.1.22 [Writing scripts
to automate the steps], page 74).

$ grep ^clip_ script.sh

clip_operator=sigclip # These variables will be used more

clip_multiple=3 # effectively with the clipping

clip_tolerance=0.1 # operators of the next sections.

$ bash ./script.sh

$ astscript-fits-view build/stack-std.fits \

build/stack-sigclip-std.fits \

build/stack-*mean.fits \

build/stack-*median.fits \

--ds9extra="-tile grid layout 2 3 -scale minmax"

You will see 6 images arranged in two columns: the first column is the normal stack
(without σ-clipping) and the second column is the σ-clipped stack of the same statistic
(first row: standard deviation, second row: mean, third row: median).

It is clear that the σ-clipped (right column in DS9) results have improved in all three
measures (compared to the left column). This was achieved by clipping/removing outliers.
To see how many input images were used in each pixel of the clipped stack, you should look
into the second HDU of any clipping output which shows the number of inputs that were
used for each pixel:

$ astscript-fits-view build/stack-sigclip-median.fits \

--ds9extra="-scale minmax"

In the “Cube” window of opened DS9, click on the “Next” button. The pixels in this
image only have two values: 8 or 9. Over the footprint of the circle, most pixels have a
value of 8: only 8 inputs were used for these (one of the inputs was clipped out). In the
other regions of the image, you see that the pixels almost consistently have a value of 9
(except for some noisy pixels here and there).

It is the “holes” (with value 9) within the footprint of the circle that keep the circle
visible in the final stack of the ouput (as we saw previously in the 2-column DS9 command
before). Spoiler alert: in a later section of this tutorial (Section 2.10.4 [Contiguous outliers],
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page 209) you will see how we fix this problem. But please be patient and continue reading
and running the commands for now.

So far, σ-clipping seems to have preformed nicely. However, there are important caveats
to σ-clipping that are listed in the box below and further elaborated (with examples) after-
wards.� �
Caveats of σ-clipping: continue this section to visually see the effect of both these caveats:

• The standard deviation is itself heavily influenced by the presence of outliers (as we
have shown above). Therefore a sufficiently small number of outliers can cause an
over-estimation of the standard deviation. This can be strong enough to keep those
from getting clipped!

• When the outliers do not constitute a clearly distinct distribution like the example
here, σ-clipping will not be able to separate them (see the bimodal histogram above
for situations that σ-clipping is useful).
 	

To demonstrate the caveats above, let’s decrease the brightness (total sum of values) in
the circle by decreasing the value of the profsum variable in the script:

$ grep ^profsum script.sh

profsum=1e5

$ bash ./script.sh

First, let’s have a look at the new circle in noise with the first command below. With
the second command, let’s view its pixel value histogram (recall that previously, the circle
had a clearly separate distribution):

$ astscript-fits-view build/in-9.fits

$ aststatistics build/in-9.fits --asciihist --numasciibins=65

ASCII Histogram:

Number: 40401

Y: (linear: 0 to 2654)

X: (linear: -31.9714 -- 79.4266, in 65 bins)

| **

| *****

| *********

| **********

| *************

| **************

| *****************

| *******************

| ***********************

| ****************************************

|*****************************************************************

|-----------------------------------------------------------------

We see that even tough the circle is still clearly visible in the noise in DS9, we don’t
have a bimodal histogram any more; the circle’s pixels have blended into the noise, and just
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caused a skewness in the (otherwise symmetric) noise distribution. Let’s try running the
--sigmaclip option as above:

$ aststatistics build/in-9.fits --sigmaclip

Statistics (GNU Astronomy Utilities) 0.22.24-f3e8

-------

Input: build/in-9.fits (hdu: 1)

-------

3-sigma clipping steps until relative change in STD is less than 0.1:

round number median STD

1 40401 1.09295e+01 1.34784e+01

2 39618 1.06762e+01 1.19852e+01

3 39126 1.05265e+01 1.12983e+01

-------

Statistics (after clipping):

Number of input elements: 40401

Number of clips: 2

Final number of elements: 39126

Median: 1.052652e+01

Mean: 1.114819e+01

Standard deviation: 1.129831e+01

Median Absolute Deviation: 7.106166e+00

We see that the median, mean and standard deviation are over estimated (each worse
than the time when the circle was brighter!). Let’s look at the σ-clipping stack:

$ astscript-fits-view build/stack-std.fits \

build/stack-sigclip-std.fits \

build/stack-*mean.fits \

build/stack-*median.fits \

--ds9extra="-tile grid layout 2 3 -scale minmax"

Compared to the previous run (where the outlying circle was brighter), we see that σ-
clipping is now less successful in removing the outlying circle from the stacks; or in the
single value measurements. To see the reason, we can have a look at the numbers image
(note that here, we are using -h2 to only see the numbers image)

$ astscript-fits-view build/stack-sigclip-median.fits -h2 \

--ds9extra="-scale minmax"

Unlike before (where the density of pixels with 8 images was very high over the circle’s
footprint), the circle is barely visible in the numbers image! There is only a very weak
clustering of pixels with a value of 8 over the circle’s footprint. This has happened because
the outliers have biased the standard deviation itself to a level that includes them with this
multiple of the standard deviation.

To gauge if σ-clipping will be useful for your dataset, you should inspect the bimodality
of its histogram like we did above. But you can’t do this manually in every case (as
in the stacking which involved more than forty thousand separate σ-clippings: one for
every output)! Clipping outliers should be based on a different (from standard deviation)
measure of scatter/dispersion, one that is more robust (less affected by outliers). Therefore,
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in Gnuastro we also have median absolute deviation (MAD) clipping which is described in
the next section (Section 2.10.3 [MAD clipping], page 206).

2.10.3 MAD clipping

When clipping outliers, it is important that the used measure of dispersion is itself not
strongly affected by the outliers. Previously (in Section 2.10.2 [Sigma clipping], page 200),
we saw that the standard deviation is not a good measure of dispersion because of its
strong dependency on outliers. In this section, we’ll introduce clipping operators that
are based on the median absolute deviation (https://en.wikipedia.org/wiki/
Median_absolute_deviation) (MAD).

The median absolute deviation is defined as the median of the differences from the
median (MAD requires taking two rounds of medians). As mathematically derived in the
Wikipedia page above, for a pure Gaussian distribution, the median absolute deviation
will be roughly 0.67449σ. We can confirm this numerically from the images with pure noise
that we created previously in Section 2.10.1 [Building inputs and analysis without clipping],
page 196. With the first command below we can see the raw standard deviation and median
absolute deviation values and the second command shows their division:

$ aststatistics build/in-1.fits --std --mad

1.00137568561776e+01 6.74662296703343e+00

$ aststatistics build/in-1.fits --std --mad | awk '{print $2/$1}'

0.673735

The algorithm of MAD-clipping is identical to σ-clipping, except that instead of σ,
it uses the median absolute deviation. Since the median absolute deviation is smaller
than the standard deviation by roughly 0.67, if you regularly use 3σ there, you should use
(3/0.67)MAD = (4.48)MAD when doing MAD-clipping. The usual tolerance should also
be changed due to the differing (discrete) nature of the median absolute deviation (based
on sorted differences) in relation to the standard deviation (based on the sum of squared
differences; which is more smooth). A tolerance of 0.01 is better suited to the termination
criteria of MAD-clipping.

To demonstrate the steps in practice, let’s assume you have the original script in Sec-
tion 2.10.1 [Building inputs and analysis without clipping], page 196, with the changes
shown in the first command below and With the second command we’ll execute the script.

$ grep '^clip_\|^profsum' script.sh

profsum=1e5

clip_operator=madclip

clip_multiple=4.5

clip_tolerance=0.01

$ bash ./script.sh

Let’s start by applying MAD-clipping on the image with the bright circle:

$ aststatistics build/in-9.fits --madclip

Statistics (GNU Astronomy Utilities) 0.22.24-f3e8

-------

Input: build/in-9.fits (hdu: 1)

https://en.wikipedia.org/wiki/Median_absolute_deviation
https://en.wikipedia.org/wiki/Median_absolute_deviation
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-------

4.5-MAD clipping steps until relative change in MAD

(median absolute deviation) is less than 0.01:

round number median MAD

1 40401 1.09295e+01 7.38609e+00

2 38812 1.04313e+01 7.04036e+00

3 38567 1.03497e+01 6.98680e+00

-------

Statistics (after clipping):

Number of input elements: 40401

Number of clips: 2

Final number of elements: 38567

Median: 1.034968e+01

Mean: 1.070246e+01

Standard deviation: 1.063998e+01

Median Absolute Deviation: 6.986797e+00

We see that the median, mean and standard deviation after MAD-clipping are much
better than the σ-clipping (see Section 2.10.2 [Sigma clipping], page 200): the median is
now 10.3 (was 10.5 in σ-clipping), mean is 10.7 (was 10.11) and the standard deviation is
10.6 (was 10.12).

Let’s compare the MAD-clipped stacks with the results of the previous section. Since
we want the images shown in a certain order, we’ll first construct the list of images (with a
for loop that will fill the imgs variable). Note that this assumes you have ran and carefully
read/understand all the commands in the previous sections (Section 2.10.1 [Building inputs
and analysis without clipping], page 196, and Section 2.10.2 [Sigma clipping], page 200).

$ imgs=""

$ p=build/stack # 'p' is short for "prefix"

$ for m in std mean median mad; do \

imgs="$imgs $p-$m.fits $p-sigclip-$m.fits $p-madclip-$m.fits"; \

done

$ astscript-fits-view $imgs --ds9extra="-tile grid layout 3 4"

The first column shows the non-clipped stacks for each statistic (generated in Sec-
tion 2.10.1 [Building inputs and analysis without clipping], page 196), the second column
are σ-clipped stacks (generated in Section 2.10.2 [Sigma clipping], page 200), and the third
column shows the newly created MAD-clipped stacks. We see that the circle is much more
weaker in the MAD-clipped stacks than in the σ-clipped stacks in all rows (different statis-
tics). Let’s confirm this with the numbers images of the two clipping methods:

$ astscript-fits-view -g2 \

build/stack-sigclip-median.fits \

build/stack-madclip-median.fits -g2 \

--ds9extra="-scale limits 1 9 -lock scalelimits yes"

In the numbers image of the MAD-clipped stack, you see the circle much more clearly.
However, you also see that in the regions outside the circle, many random pixels have also
been stacked with less than 9 input images! This is a caveat of MAD clipping and is
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expected: by nature MAD clipping is much more “noisy”. With the command below, let’s
have a look at the statistics of the numbers image of the MAD-clipping. With the second,
let’s see how many pixels used fewer than 5 input images:

$ aststatistics build/stack-madclip-median.fits -h2 \

--numasciibins=60

Statistics (GNU Astronomy Utilities) 0.22.24-f3e8

-------

Input: build/stack-madclip-median.fits (hdu: 2)

-------

Number of elements: 40401

Minimum: 2

Maximum: 9

Median: 9

Mean: 8.500284646

Standard deviation: 1.1275244

-------

| *

| *

| *

| *

| *

| *

| *

| *

| * *

| * * *

|* * * * * * * *

|------------------------------------------------------------

$ aststatistics build/stack-madclip-median.fits -h2 \

--lessthan=5 --number

686

Almost 700 pixels were made with less than 5 inputs! The large number of random pixels
that have been clipped is not good and can make it hard to understand the noise statistics
of the stack.

Ultimately, even MAD-clipping is not perfect and even though the circle is weaker, we
still see the circle in all four cases, even with the MAD-clipped median (more clearly: after
smoothing/blocking). The reason is similar to what was described in σ-clipping (using the
original profsum=3e5: the “holes” in the numbers image. Because the circle’s pixel values
are not too distant from the noise and the noisy nature of the MAD, some of its elements
do not get clipped, and their stacked value gets systematically higher than the rest of the
image.

Fortunately all is not lost! In Gnuastro, we have a fix for such contiguous outliers that
is described fully in the next section (Section 2.10.4 [Contiguous outliers], page 209).
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2.10.4 Contiguous outliers

When source of the outlier covers more than one element, and its flux is close to the noise
level, not all of its elements will be clipped: because of noise, some of its elements will
remain un-clipped; and thus affecting the output.

Examples of this were created and thoroughly discussed in previous sections with σ-
clipping and MAD-clipping (see Section 2.10.2 [Sigma clipping], page 200, and Section 2.10.3
[MAD clipping], page 206). σ-clipping had good purity (very few non-outliers were clipped)
but at the cost of bad completeness (many outliers remained). MAD-clipping was the
opposite: it masked many outliers (good completeness), but at the cost of clipping many
pixels that shouldn’t have been clipped (bad purity).

Fortunately there is a good way to benefit from the best of both worlds. Recall that in
the numbers image of the MAD-clipping output, the wrongly clipped pixels were randomly
distributed are barely connected. On the other hand, those that covered the circle were
nicely connected, with un-clipped pixels scattered within it. Therefore, using their spatial
distribution, we can improve the completeness (not have any “holes” within the masked
circle) and purity (remove the false clips). This is done through the madclip-maskfilled

operator:

1. MAD-clipping is applied (σ-clipping is also possible, but less affective).

2. A binary image is created for each input: any outlying pixel of each input is set to 1
(foreground); the rest are set to 0 (background). Mathematical morphology operators
are then used in prepartion to filling the holes (to close the boudary of the contiguous
outlier):

• For 2D images (were each pixel has 8 neighbors) the foreground pixels are dilated
with a “connectivity” of 1 (only the nearest neighbors: 4-connectivity in a 2D
image).

• For 1D arrays (where each element only has two neighbors), the foreground is
eroded. This is necessary because the next step (where the holes are filled), two
pixels that have been clipped purely due to noise with a large distance between
them can wrongly mask a very large range of the input data.

3. Any background pixel that is fully surrounded by the foreground (or a “hole”) is filled
(given a value of 1: becoming a foreground pixel).

4. One step of 8-connected opening (an erosion, followed by a dilation) is applied to remove
(set to background) any non-contiguous foreground pixel of each input.

5. All the foreground pixels of the binary images are set to NaN in the respective input
data (that the binary image corresponds to).

Let’s have a look at the output of this process with the first command below. Note that
because madclip-maskfilled returns its main input operands back to the stack, we need
to call Arithmetic with --writeall (which will produce a multi-HDU output file). With
the second, open the output in DS9:

$ astarithmetic build/in-*.fits 9 4.5 0.01 madclip-maskfilled \

-g1 --writeall --output=inputs-masked.fits

$ astscript-fits-view inputs-masked.fits



Chapter 2: Tutorials 210

In the small “Cube” window, you will see that 9 HDUs are present in inputs-

masked.fits. Click on the “Next” button to see each input. When you get to the last
(9th) HDU, you will notice that the circle has been masked there (it is filled with NaN
values). Now that all the contiguous outlier(s) of the inputs are masked, we can use more
pure stacking operators (like σ-clipping) to remove any strong, single-pixel outlier:

$ astarithmetic build/in-*.fits 9 4.5 0.01 madclip-maskfilled \

9 5 0.1 sigclip-mean \

-g1 --writeall --output=stack-good.fits

$ astscript-fits-view stack-good.fits --ds9scale=minmax

You see a clean noisy stack in the first HDU (note that we used the σ-clipped mean here;
which was strongly affected by outliers as we saw before in Section 2.10.2 [Sigma clipping],
page 200). When you go to the next HDU, you see that over the circle only 8 images
were used and that there are no “holes” there. But the operator that was most affected
by outliers was the standard deviation. To test it, repeat the first command above and use
sigclip-std instead of sigclip-mean and have a look at the output: again, you don’t see
any footprint of the circle.

Of course, if the potential outlier signal can become weaker, there are some solutions:
use more inputs if you can (to decrease the noise), or decrease the multiple MAD in the
madclip-maskfilled call above: it will decrease your purity, but to some level, this may
be fine (depends on your usage of the stack).
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3 Installation

The latest released version of Gnuastro source code is always available at the following URL:

http://ftpmirror.gnu.org/gnuastro/gnuastro-latest.tar.gz

Section 1.1 [Quick start], page 1, describes the commands necessary to configure, build,
and install Gnuastro on your system. This chapter will be useful in cases where the simple
procedure above is not sufficient, for example, your system lacks a mandatory/optional
dependency (in other words, you cannot pass the $ ./configure step), or you want greater
customization, or you want to build and install Gnuastro from other random points in its
history, or you want a higher level of control on the installation. Thus if you were happy
with downloading the tarball and following Section 1.1 [Quick start], page 1, then you can
safely ignore this chapter and come back to it in the future if you need more customization.

Section 3.1 [Dependencies], page 211, describes the mandatory, optional and bootstrap-
ping dependencies of Gnuastro. Only the first group are required/mandatory when you are
building Gnuastro using a tarball (see Section 3.2.1 [Release tarball], page 225), they are
very basic and low-level tools used in most astronomical software, so you might already
have them installed, if not they are very easy to install as described for each. Section 3.2
[Downloading the source], page 225, discusses the two methods you can obtain the source
code: as a tarball (a significant snapshot in Gnuastro’s history), or the full history1. The
latter allows you to build Gnuastro at any random point in its history (for example, to get
bug fixes or new features that are not released as a tarball yet).

The building and installation of Gnuastro is heavily customizable, to learn more about
them, see Section 3.3 [Build and install], page 230. This section is essentially a thorough
explanation of the steps in Section 1.1 [Quick start], page 1. It discusses ways you can
influence the building and installation. If you encounter any problems in the installation
process, it is probably already explained in Section 3.3.5 [Known issues], page 244. In
Appendix A [Other useful software], page 959, the installation and usage of some other free
software that are not directly required by Gnuastro but might be useful in conjunction with
it is discussed.

3.1 Dependencies

A minimal set of dependencies are mandatory for building Gnuastro from the standard
tarball release. If they are not present you cannot pass Gnuastro’s configuration step. The
mandatory dependencies are therefore very basic (low-level) tools which are easy to obtain,
build and install, see Section 3.1.1 [Mandatory dependencies], page 212, for a full discussion.

If you have the packages of Section 3.1.2 [Optional dependencies], page 214, Gnuastro
will have additional functionality (for example, converting FITS images to JPEG or PDF).
If you are installing from a tarball as explained in Section 1.1 [Quick start], page 1, you
can stop reading after this section. If you are cloning the version controlled source (see
Section 3.2.2 [Version controlled source], page 226), an additional bootstrapping step is
required before configuration and its dependencies are explained in Section 3.1.3 [Boot-
strapping dependencies], page 217.

1 Section 3.1.3 [Bootstrapping dependencies], page 217, are required if you clone the full history.

http://ftpmirror.gnu.org/gnuastro/gnuastro-latest.tar.gz
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Your operating system’s package manager is an easy and convenient way to download
and install the dependencies that are already pre-built for your operating system. In Sec-
tion 3.1.4 [Dependencies from package managers], page 220, we will list some common
operating system package manager commands to install the optional and mandatory de-
pendencies.

3.1.1 Mandatory dependencies

The mandatory Gnuastro dependencies are very basic and low-level tools. They all follow
the same basic GNU based build system (like that shown in Section 1.1 [Quick start],
page 1), so even if you do not have them, installing them should be pretty straightforward.
In this section we explain each program and any specific note that might be necessary in
the installation.

3.1.1.1 GNU Scientific Library

The GNU Scientific Library (http://www.gnu.org/software/gsl/), or GSL, is a large col-
lection of functions that are very useful in scientific applications, for example, integration,
random number generation, and Fast Fourier Transform among many others. To download
and install GSL from source, you can run the following commands.

$ wget https://ftp.gnu.org/gnu/gsl/gsl-latest.tar.gz

$ tar -xf gsl-latest.tar.gz

$ cd gsl-X.X # Replace X.X with version number.

$ ./configure CFLAGS="$CFLAGS -g0 -O3"

$ make -j8 # Replace 8 with no. CPU threads.

$ make check

$ sudo make install

3.1.1.2 CFITSIO

CFITSIO (http://heasarc.gsfc.nasa.gov/fitsio/) is the closest you can get to the
pixels in a FITS image while remaining faithful to the FITS standard (http://fits.gsfc.
nasa.gov/fits_standard.html). It is written by William Pence, the principal author of
the FITS standard2, and is regularly updated. Setting the definitions for all other software
packages using FITS images.

Some GNU/Linux distributions have CFITSIO in their package managers, if it is avail-
able and updated, you can use it. One problem that might occur is that CFITSIO might not
be configured with the --enable-reentrant option by the distribution. This option allows
CFITSIO to open a file in multiple threads, it can thus provide great speed improvements.
If CFITSIO was not configured with this option, any program which needs this capability
will warn you and abort when you ask for multiple threads (see Section 4.4 [Multi-threaded
operations], page 274).

To install CFITSIO from source, we strongly recommend that you have a look through
Chapter 2 (Creating the CFITSIO library) of the CFITSIO manual and understand the
options you can pass to $ ./configure (they are not too much). This is a very basic
package for most astronomical software and it is best that you configure it nicely with your

2 Pence, W.D. et al. Definition of the Flexible Image Transport System (FITS), version 3.0. (2010)
Astronomy and Astrophysics, Volume 524, id.A42, 40 pp.

http://www.gnu.org/software/gsl/
http://heasarc.gsfc.nasa.gov/fitsio/
http://fits.gsfc.nasa.gov/fits_standard.html
http://fits.gsfc.nasa.gov/fits_standard.html
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system. Once you download the source and unpack it, the following configure script should
be enough for most purposes. Do not forget to read chapter two of the manual though,
for example, the second option is only for 64bit systems. The manual also explains how to
check if it has been installed correctly.

CFITSIO comes with two executable files called fpack and funpack. From their manual:
they “are standalone programs for compressing and uncompressing images and tables that
are stored in the FITS (Flexible Image Transport System) data format. They are analogous
to the gzip and gunzip compression programs except that they are optimized for the types
of astronomical images that are often stored in FITS format”. The commands below will
compile and install them on your system along with CFITSIO. They are not essential for
Gnuastro, since they are just wrappers for functions within CFITSIO, but they can come
in handy. The make utils command is only available for versions above 3.39, it will build
these executable files along with several other executable test files which are deleted in the
following commands before the installation (otherwise the test files will also be installed).

The commands necessary to download the source, decompress, build and install CFIT-
SIO from source are described below.

$ urlbase=http://heasarc.gsfc.nasa.gov/FTP/software/fitsio/c

$ wget $urlbase/cfitsio_latest.tar.gz

$ tar -xf cfitsio_latest.tar.gz

$ cd cfitsio-X.XX # Replace X.XX with version

$ ./configure --prefix=/usr/local --enable-sse2 --enable-reentrant \

CFLAGS="$CFLAGS -g0 -O3"

$ make

$ make utils

$ ./testprog > testprog.lis # See below if this has an error

$ diff testprog.lis testprog.out # Should have no output

$ cmp testprog.fit testprog.std # Should have no output

$ rm cookbook fitscopy imcopy smem speed testprog

$ sudo make install

In the ./testprog > testprog.lis step, you may confront an error, complaining that
it cannot find libcfitsio.so.AAA (where AAA is an integer). This is the library that you
just built and have not yet installed. But unfortunately some versions of CFITSIO do
not account for this on some OSs. To fix the problem, you need to tell your OS to also
look into current CFITSIO build directory with the first command below, afterwards, the
problematic command (second below) should run properly.

$ export LD_LIBRARY_PATH="$(pwd):$LD_LIBRARY_PATH"

$ ./testprog > testprog.lis

Recall that the modification above is ONLY NECESSARY FOR THIS STEP. Do not
put the LD_LIBRARY_PATH modification command in a permanent place (like your bash
startup file). After installing CFITSIO, close your terminal and continue working on a new
terminal (so LD_LIBRARY_PATH has its default value). For more on LD_LIBRARY_PATH, see
Section 3.3.1.2 [Installation directory], page 233.

3.1.1.3 WCSLIB

WCSLIB (http://www.atnf.csiro.au/people/mcalabre/WCS/) is written and
maintained by one of the authors of the World Coordinate System (WCS) definition in the

http://www.atnf.csiro.au/people/mcalabre/WCS/
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FITS standard (http://fits.gsfc.nasa.gov/fits_standard.html)3, Mark Calabretta.
It might be already built and ready in your distribution’s package management system.
However, here the installation from source is explained, for the advantages of installation
from source please see Section 3.1.1 [Mandatory dependencies], page 212. To install
WCSLIB you will need to have CFITSIO already installed, see Section 3.1.1.2 [CFITSIO],
page 212.

WCSLIB also has plotting capabilities which use PGPLOT (a plotting library for C). If
you wan to use those capabilities in WCSLIB, Section A.3 [PGPLOT], page 961, provides
the PGPLOT installation instructions. However PGPLOT is old4, so its installation is not
easy, there are also many great modern WCS plotting tools (mostly in written in Python).
Hence, if you will not be using those plotting functions in WCSLIB, you can configure it
with the --without-pgplot option as shown below.

If you have the cURL library5 on your system and you installed CFITSIO version 3.42
or later, you will need to also link with the cURL library at configure time (through the
-lcurl option as shown below). CFITSIO uses the cURL library for its HTTPS (or HTTP
Secure6) support and if it is present on your system, CFITSIO will depend on it. Therefore,
if ./configure command below fails (you do not have the cURL library), then remove this
option and rerun it.

To download, configure, build, check and install WCSLIB from source, you can follow
the steps below.

## Download and unpack the source tarball

$ wget ftp://ftp.atnf.csiro.au/pub/software/wcslib/wcslib.tar.bz2

$ tar -xf wcslib.tar.bz2

## In the `cd' command, replace `X.X' with version number.

$ cd wcslib-X.X

## If `./configure' fails, remove `-lcurl' and run again.

$ ./configure LIBS="-pthread -lcurl -lm" --without-pgplot \

--disable-fortran CFLAGS="$CFLAGS -g0 -O3"

$ make

$ make check

$ sudo make install

3.1.2 Optional dependencies

The libraries listed here are only used for very specific applications, therefore they are
optional and Gnuastro can be built without them (with only those specific features disabled).
Since these are pretty low-level tools, they are not too hard to install from source, but you
can also use your operating system’s package manager to easily install all of them. For
more, see Section 3.1.4 [Dependencies from package managers], page 220.

3 Greisen E.W., Calabretta M.R. (2002) Representation of world coordinates in FITS. Astronomy and
Astrophysics, 395, 1061-1075.

4 As of early June 2016, its most recent version was uploaded in February 2001.
5 https://curl.haxx.se
6 https://en.wikipedia.org/wiki/HTTPS

http://fits.gsfc.nasa.gov/fits_standard.html
https://curl.haxx.se
https://en.wikipedia.org/wiki/HTTPS
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If the ./configure script cannot find any of these optional dependencies, it will notify
you of the operation(s) you cannot do due to not having them. If you continue the build and
request an operation that uses a missing library, Gnuastro’s programs will warn that the
optional library was missing at build-time and abort. Since Gnuastro was built without that
library, installing the library afterwards will not help. The only way is to rebuild Gnuastro
from scratch (after the library has been installed). However, for program dependencies (like
cURL or Ghostscript) things are easier: you can install them after building Gnuastro also.
This is because libraries are used to build the internal structure of Gnuastro’s executables.
However, a program dependency is called by Gnuastro’s programs at run-time and has no
effect on their internal structure. So if a dependency program becomes available later, it
will be used next time it is requested.

GNU Libtool
Libtool is a program to simplify managing of the libraries to build an executable
(a program). GNU Libtool has some added functionality compared to other im-
plementations. If GNU Libtool is not present on your system at configuration
time, a warning will be printed and Section 12.2 [BuildProgram], page 732, will
not be built or installed. The configure script will look into your search path
(PATH) for GNU Libtool through the following executable names: libtool (ac-
ceptable only if it is the GNU implementation) or glibtool. See Section 3.3.1.2
[Installation directory], page 233, for more on PATH.

GNU Libtool (the binary/executable file) is a low-level program that is prob-
ably already present on your system, and if not, is available in your operating
system package manager7. If you want to install GNU Libtool’s latest ver-
sion from source, please visit its web page (https://www.gnu.org/software/
libtool/).

Gnuastro’s tarball is shipped with an internal implementation of GNU Libtool.
Even if you have GNU Libtool, Gnuastro’s internal implementation is used for
the building and installation of Gnuastro. As a result, you can still build, install
and use Gnuastro even if you do not have GNU Libtool installed on your system.
However, this internal Libtool does not get installed. Therefore, after Gnuas-
tro’s installation, if you want to use Section 12.2 [BuildProgram], page 732, to
compile and link your own C source code which uses the Section 12.3 [Gnuastro
library], page 736, you need to have GNU Libtool available on your system
(independent of Gnuastro). See Section 12.1 [Review of library fundamentals],
page 724, to learn more about libraries.

GNU Make extension headers
GNU Make is a workflow management system that can be used to run a series
of commands in a specific order, and in parallel if you want. GNU Make offers
special features to extend it with custom functions within a dynamic library.
They are defined in the gnumake.h header. If gnumake.h can be found on
your system at configuration time, Gnuastro will build a custom library that

7 Note that we want the binary/executable Libtool program which can be run on the command-line. In
Debian-based operating systems which separate various parts of a package, you want want libtool-bin,
the libtool package will not contain the executable program.

https://www.gnu.org/software/libtool/
https://www.gnu.org/software/libtool/
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GNU Make can use for extended functionality in (astronomical) data analysis
scenarios.

libgit2 Git is one of the most common version control systems (see Section 3.2.2 [Ver-
sion controlled source], page 226). When libgit2 is present, and Gnuastro’s
programs are run within a version controlled directory, outputs will contain the
version number of the working directory’s repository for future reproducibility.
See the COMMIT keyword header in Section 4.10 [Output FITS files], page 291,
for a discussion.

libjpeg libjpeg is only used by ConvertType to read from and write to JPEG images,
see Section 5.2.2 [Recognized file formats], page 315. libjpeg (http://www.ijg.
org/) is a very basic library that provides tools to read and write JPEG im-
ages, most Unix-like graphic programs and libraries use it. Therefore you most
probably already have it installed. libjpeg-turbo (http://libjpeg-turbo.
virtualgl.org/) is an alternative to libjpeg. It uses Single instruction, multi-
ple data (SIMD) instructions for ARM based systems that significantly de-
creases the processing time of JPEG compression and decompression algo-
rithms.

libtiff libtiff is used by ConvertType and the libraries to read TIFF images, see
Section 5.2.2 [Recognized file formats], page 315. libtiff (http://www.
simplesystems.org/libtiff/) is a very basic library that provides tools to
read and write TIFF images, most Unix-like operating system graphic programs
and libraries use it. Therefore even if you do not have it installed, it must be
easily available in your package manager.

cURL cURL’s executable (curl) is called by Section 5.4 [Query], page 375, for submit-
ting queries to remote datasets and retrieving the results. It is not necessary for
the build of Gnuastro from source (only a warning will be printed if it cannot
be found at configure time), so if you do not have it at build-time there is no
problem. Just be sure to have it when you run astquery, otherwise you’ll get
an error about not finding curl.

GPL Ghostscript
GPL Ghostscript’s executable (gs) is called by ConvertType to compile a PDF
file from a source PostScript file, see Section 5.2 [ConvertType], page 314.
Therefore its headers (and libraries) are not needed.

Python3 with Numpy
Python is a high-level programming language and Numpy is the most commonly
used library within Python to add multi-dimensional arrays and matrices. If you
configure Gnuastro with --with-python and version 3 of Python is available
with a corresponding Numpy Library, Gnuastro’s library will be built with some
Python-related helper functions. Python wrappers for Gnuastro’s library (for
example, ‘pyGnuastro’) can use these functions when being built from source.
For more on Gnuastro’s Python helper functions, see Section 12.3.32 [Python
interface (python.h)], page 898.

This Python interface is only relevant if you want to build the Python wrappers
(like ‘pyGnuastro’) from source. If you install the Gnuastro Python wrapper

http://www.ijg.org/
http://www.ijg.org/
http://libjpeg-turbo.virtualgl.org/
http://libjpeg-turbo.virtualgl.org/
http://www.simplesystems.org/libtiff/
http://www.simplesystems.org/libtiff/
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from a pre-built repository like PyPI, this feature of your Gnuastro library
won’t be used. Pre-built libraries contain the full Gnuastro library that they
need within them (you don’t even need to have Gnuastro at all!).� �
Can’t find the Python3 and Numpy of a virtual environment: make sure to
set the $PYTHON variable to point to the python3 command of the virtual en-
vironment before running ./configure. Note that you don’t need to activate
the virtual env, just point PYTHON to its Python3 executable, like the example
below:

$ python3 -m venv test-env # Setting up the virtual env.

$ export PYTHON="$(pwd)/test-env/bin/python3"

$ ./configure # Gnuastro's configure script.
 	
SAO DS9 SAO DS9 (ds9) is a visualization tool for FITS images. Gnuastro’s astscript-

fits-view program calls DS9 to visualize FITS images. We have a full appen-
dix on it and how to install it in Section A.1 [SAO DS9], page 959. Since it is
a run-time dependency, it can be installed at any later time (after building and
installing Gnuastro).

TOPCAT TOPCAT (topcat) is a visualization tool for astronomical tables (most com-
monly: plotting). Gnuastro’s astscript-fits-view program calls TOPCAT
it to visualize tables. We have a full appendix on it and how to install it in
Section A.2 [TOPCAT], page 960. Since it is a run-time dependency, it can be
installed at any later time (after building and installing Gnuastro).

3.1.3 Bootstrapping dependencies

Bootstrapping is only necessary if you have decided to obtain the full version controlled his-
tory of Gnuastro, see Section 3.2.2 [Version controlled source], page 226, and Section 3.2.2.1
[Bootstrapping], page 227. Using the version controlled source enables you to always be up
to date with the most recent development work of Gnuastro (bug fixes, new functionalities,
improved algorithms, etc.). If you have downloaded a tarball (see Section 3.2 [Downloading
the source], page 225), then you can ignore this subsection.

To successfully run the bootstrapping process, there are some additional dependencies
to those discussed in the previous subsections. These are low level tools that are used by a
large collection of Unix-like operating systems programs, therefore they are most probably
already available in your system. If they are not already installed, you should be able to
easily find them in any GNU/Linux distribution package management system (apt-get,
yum, pacman, etc.). The short names in parenthesis in typewriter font after the package
name can be used to search for them in your package manager. For the GNU Portability
Library, GNU Autoconf Archive and TEX Live, it is recommended to use the instructions
here, not your operating system’s package manager.

GNU Portability Library (Gnulib)
To ensure portability for a wider range of operating systems (those that do not
include GNU C library, namely glibc), Gnuastro depends on the GNU porta-
bility library, or Gnulib. Gnulib keeps a copy of all the functions in glibc,
implemented (as much as possible) to be portable to other operating systems.
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The bootstrap script can automatically clone Gnulib (as a gnulib/ direc-
tory inside Gnuastro), however, as described in Section 3.2.2.1 [Bootstrapping],
page 227, this is not recommended.

The recommended way to bootstrap Gnuastro is to first clone Gnulib and the
Autoconf archives (see below) into a local directory outside of Gnuastro. Let’s
call it DEVDIR8 (which you can set to any directory; preferentially where you
keep your other development projects). Currently in Gnuastro, both Gnulib
and Autoconf archives have to be cloned in the same top directory9 like the
case here10:

$ DEVDIR=/home/yourname/Development ## Select any location.

$ mkdir $DEVDIR ## If it doesn't exist!

$ cd $DEVDIR

$ git clone https://git.sv.gnu.org/git/gnulib.git

$ git clone https://git.sv.gnu.org/git/autoconf-archive.git

Gnulib is a source-based dependency of Gnuastro’s bootstrapping process, so
simply having it is enough on your computer, there is no need to install, and
thus check anything.

You now have the full version controlled source of these two repositories in
separate directories. Both these packages are regularly updated, so every once
in a while, you can run $ git pull within them to get any possible updates.

GNU Automake (automake)
GNU Automake will build the Makefile.in files in each sub-directory using the
(hand-written) Makefile.am files. The Makefile.ins are subsequently used to
generate the Makefiles when the user runs ./configure before building.

To check that you have a working GNU Automake in your system, you can try
this command:

$ automake --version

GNU Autoconf (autoconf)
GNU Autoconf will build the configure script using the configurations we have
defined (hand-written) in configure.ac.

To check that you have a working GNU Autoconf in your system, you can try
this command:

$ autoconf --version

8 If you are not a developer in Gnulib or Autoconf archives, DEVDIR can be a directory that you do not
backup. In this way the large number of files in these projects will not slow down your backup process
or take bandwidth (if you backup to a remote server).

9 If you already have the Autoconf archives in a separate directory, or cannot clone it in the same directory
as Gnulib, or you have it with another directory name (not autoconf-archive/), you can follow this
short step. Set AUTOCONFARCHIVES to your desired address. Then define a symbolic link in DEVDIR with
the following command so Gnuastro’s bootstrap script can find it:
$ ln -s $AUTOCONFARCHIVES $DEVDIR/autoconf-archive.

10 If your internet connection is active, but Git complains about the network, it might be due to your
network setup not recognizing the git protocol. In that case use the following URL for the HTTP
protocol instead (for Autoconf archives, replace the name): http://git.sv.gnu.org/r/gnulib.git
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GNU Autoconf Archive
These are a large collection of tests that can be called to run at ./configure
time. See the explanation under GNU Portability Library (Gnulib) above for
instructions on obtaining it and keeping it up to date.

GNU Autoconf Archive is a source-based dependency of Gnuastro’s bootstrap-
ping process, so simply having it is enough on your computer, there is no need
to install, and thus check anything. Just do not forget that it has to be in the
same directory as Gnulib (described above).

GNU Texinfo (texinfo)
GNU Texinfo is the tool that formats this manual into the various output for-
mats. To bootstrap Gnuastro you need all of Texinfo’s command-line programs.
However, some operating systems package them separately, for example, in Fe-
dora, makeinfo is packaged in the texinfo-tex package.

To check that you have a working GNU Texinfo in your system, you can try
this command:

$ makeinfo --version

GNU Libtool (libtool)
GNU Libtool is in charge of building all the libraries in Gnuastro. The libraries
contain functions that are used by more than one program and are installed for
use in other programs. They are thus put in a separate directory (lib/).

To check that you have a working GNU Libtool in your system, you can try
this command (and from the output, make sure it is GNU’s libtool)

$ libtool --version

GNU help2man (help2man)
GNU help2man is used to convert the output of the --help option (Section 4.3.2
[--help], page 272) to the traditional Man page (Section 4.3.3 [Man pages],
page 273).

To check that you have a working GNU Help2man in your system, you can try
this command:

$ help2man --version

LATEX and some TEX packages
Some of the figures in this book are built by LATEX (using the PGF/TikZ pack-
age). The LATEX source for those figures is version controlled for easy mainte-
nance not the actual figures. So the ./boostrap script will run LATEX to build
the figures. The best way to install LATEX and all the necessary packages is
through TEX live (https://www.tug.org/texlive/) which is a package man-
ager for TEX related tools that is independent of any operating system. It is
thus preferred to the TEX Live versions distributed by your operating system.

To install TEX Live, go to the web page and download the appropriate installer
by following the “download” link. Note that by default the full package reposi-
tory will be downloaded and installed (around 4 Gigabytes) which can take very
long to download and to update later. However, most packages are not needed
by everyone, it is easier, faster and better to install only the “Basic scheme”

https://www.tug.org/texlive/
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(consisting of only the most basic TEX and LATEX packages, which is less than
200 Mega bytes)11.

After the installation, be sure to set the environment variables as suggested in
the end of the outputs. Any time you confront (need) a package you do not
have, simply install it with a command like below (similar to how you install
software from your operating system’s package manager)12. To install all the
necessary TEX packages for a successful Gnuastro bootstrap, run this command:

$ sudo su

# tlmgr install epsf jknapltx caption biblatex biber iftex \

etoolbox logreq xstring xkeyval pgf ms \

xcolor pgfplots times rsfs ps2eps epspdf

To check that you have a working LATEX executable in your system, you can
try this command (this just checks if LATEX exists, as described above, if you
have a missing package, you can easily identify it from the output and install
it with tlmgr):

$ latex --version

ImageMagick (imagemagick)
ImageMagick is a wonderful and robust program for image manipulation on the
command-line. bootstrap uses it to convert the book images into the formats
necessary for the various book formats.

Since ImageMagick version 7, it is necessary to edit the policy file
(/etc/ImageMagick-7/policy.xml) to have the following line (it maybe
present, but commented, in this case un-comment it):

<policy domain="coder" rights="read|write" pattern="{PS,PDF,XPS}"/>

If the following line is present, it is also necessary to comment/remove it.

<policy domain="delegate" rights="none" pattern="gs" />

To learn more about the ImageMagick security policy please see: https://

imagemagick.org/script/security-policy.php.

To check that you have a working ImageMagick in your system, you can try
this command:

$ convert --version

3.1.4 Dependencies from package managers

The most basic way to install a package on your system is to build the packages from source
yourself. Alternatively, you can use your operating system’s package manager to download
pre-compiled files and install them. The latter choice is easier and faster. However, we
recommend that you build the Section 3.1.1 [Mandatory dependencies], page 212, yourself
from source (all necessary commands and links are given in the respective section). Here
are some basic reasons behind this recommendation.

11 You can also download the DVD iso file at a later time to keep as a backup for when you do not have
internet connection if you need a package.

12 After running TEX, or LATEX, you might get a warning complaining about a missingfile. Run ‘tlmgr
info missingfile’ to see the package(s) containing that file which you can install.

https://imagemagick.org/script/security-policy.php
https://imagemagick.org/script/security-policy.php
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1. Your operating system’s pre-built software might not be the most recent release. For
example, Gnuastro itself is also packaged in some package managers. For the list see:
https://repology.org/project/gnuastro/versions. You will notice that Gnuas-
tro’s version in some operating systems is more than 10 versions old! It is the same for
all the dependencies of Gnuastro.

2. For each package, Gnuastro might preform better (or require) certain configuration
options that your distribution’s package managers did not add for you. If present, these
configuration options are explained during the installation of each in the sections below
(for example, in Section 3.1.1.2 [CFITSIO], page 212). When the proper configuration
has not been set, the programs should complain and inform you.

3. For the libraries, they might separate the binary file from the header files which can
cause confusion, see Section 3.3.5 [Known issues], page 244.

4. Like any other tool, the science you derive from Gnuastro’s tools highly depend on
these lower level dependencies, so generally it is much better to have a close connection
with them. By reading their manuals, installing them and staying up to date with
changes/bugs in them, your scientific results and understanding (of what is going on,
and thus how you interpret your scientific results) will also correspondingly improve.

Based on your package manager, you can use any of the following commands to install
the mandatory and optional dependencies. If your package manager is not included in the
list below, please send us the respective command, so we add it. For better archivability
and compression ratios, Gnuastro’s recommended tarball compression format is with the
Lzip (http://lzip.nongnu.org/lzip.html) program, see Section 3.2.1 [Release tarball],
page 225. Therefore, the package manager commands below also contain Lzip.

apt-get (Debian-based OSs: Debian, Ubuntu, Linux Mint, etc.)
Debian (https://en.wikipedia.org/wiki/Debian) is one of the oldest
GNU/Linux distributions13. It thus has a very extended user community
and a robust internal structure and standards. All of it is free software and
based on the work of volunteers around the world. Many distributions are
thus derived from it, for example, Ubuntu and Linux Mint. This arguably
makes Debian-based OSs the largest, and most used, class of GNU/Linux
distributions. All of them use Debian’s Advanced Packaging Tool (APT, for
example, apt-get) for managing packages.

Development features (Ubuntu or derivatives)
By default, a newly installed Ubuntu does not contain the low-level
tools that are necessary for building a software from source. There-
fore, if you are using Ubuntu, please run the following command.

$ sudo apt-get install gcc make zlib1g-dev lzip

Mandatory dependencies
Without these, Gnuastro cannot be built, they are necessary for
input/output and low-level mathematics (see Section 3.1.1 [Manda-
tory dependencies], page 212)!

$ sudo apt-get install libgsl-dev libcfitsio-dev \

wcslib-dev

13 https://en.wikipedia.org/wiki/List_of_Linux_distributions#Debian-based

https://repology.org/project/gnuastro/versions
http://lzip.nongnu.org/lzip.html
https://en.wikipedia.org/wiki/Debian
https://en.wikipedia.org/wiki/List_of_Linux_distributions#Debian-based
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Optional dependencies
If present, these libraries can be used in Gnuastro’s build for extra
features, see Section 3.1.2 [Optional dependencies], page 214.

$ sudo apt-get install ghostscript libtool-bin \

libjpeg-dev libtiff-dev \

libgit2-dev curl

Programs to view FITS images or tables
These are not used in Gnuastro’s build. They can just help in
viewing the inputs/outputs independent of Gnuastro!

$ sudo apt-get install saods9 topcat

Gnuastro is packaged (https://tracker.debian.org/pkg/gnuastro) in De-
bian (and thus some of its derivate operating systems). Just make sure it is the
most recent version.

dnf

yum (Red Hat-based OSs: Red Hat, Fedora, CentOS, Scientific Linux, etc.)
Red Hat Enterprise Linux (https://en.wikipedia.org/wiki/Red_Hat)
(RHEL) is released by Red Hat Inc. RHEL requires paid subscriptions for
use of its binaries and support. But since it is free software, many other
teams use its code to spin-off their own distributions based on RHEL. Red
Hat-based GNU/Linux distributions initially used the “Yellowdog Updated,
Modifier” (YUM) package manager, which has been replaced by “Dandified
yum” (DNF). If the latter is not available on your system, you can use yum

instead of dnf in the command below.

Mandatory dependencies
Without these, Gnuastro cannot be built, they are necessary for
input/output and low-level mathematics (see Section 3.1.1 [Manda-
tory dependencies], page 212)!

$ sudo dnf install gsl-devel cfitsio-devel \

wcslib-devel

Optional dependencies
If present, these libraries can be used in Gnuastro’s build for extra
features, see Section 3.1.2 [Optional dependencies], page 214.

$ sudo dnf install ghostscript libtool \

libjpeg-devel libtiff-devel \

libgit2-devel lzip curl

Programs to view FITS images or tables
These are not used in Gnuastro’s build. They can just help in
viewing the inputs/outputs independent of Gnuastro!

$ sudo dnf install saods9 topcat

brew (macOS)
macOS (https://en.wikipedia.org/wiki/MacOS) is the operating system
used on Apple devices. macOS does not come with a package manager
pre-installed, but several widely used, third-party package managers exist,

https://tracker.debian.org/pkg/gnuastro
https://en.wikipedia.org/wiki/Red_Hat
https://en.wikipedia.org/wiki/MacOS
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such as Homebrew or MacPorts. Both are free software. Currently we have
only tested Gnuastro’s installation with Homebrew as described below. If
not already installed, first obtain Homebrew by following the instructions at
https://brew.sh.

Mandatory dependencies
Without these, Gnuastro cannot be built, they are necessary for
input/output and low-level mathematics (see Section 3.1.1 [Manda-
tory dependencies], page 212)!

Homebrew manages packages in different ‘taps’. To install WCSLIB
via Homebrew you will need to tap into brewsci/science first (the
tap may change in the future, but can be found by calling brew

search wcslib).

$ brew tap brewsci/science

$ brew install wcslib gsl cfitsio

Optional dependencies
If present, these libraries can be used in Gnuastro’s build for extra
features, see Section 3.1.2 [Optional dependencies], page 214.

$ brew install ghostscript libtool libjpeg \

libtiff libgit2 curl lzip

Programs to view FITS images or tables
These are not used in Gnuastro’s build. They can just help in
viewing the inputs/outputs independent of Gnuastro!

$ brew install saoimageds9 topcat

pacman (Arch Linux)
Arch Linux (https://en.wikipedia.org/wiki/Arch_Linux) is a smaller
GNU/Linux distribution, which follows the KISS principle (“keep it simple,
stupid”) as a general guideline. It “focuses on elegance, code correctness,
minimalism and simplicity, and expects the user to be willing to make some
effort to understand the system’s operation”. Arch GNU/Linux uses “Package
manager” (Pacman) to manage its packages/components.

Mandatory dependencies
Without these, Gnuastro cannot be built, they are necessary for
input/output and low-level mathematics (see Section 3.1.1 [Manda-
tory dependencies], page 212)!

$ sudo pacman -S gsl cfitsio wcslib

Optional dependencies
If present, these libraries can be used in Gnuastro’s build for extra
features, see Section 3.1.2 [Optional dependencies], page 214.

$ sudo pacman -S ghostscript libtool libjpeg \

libtiff libgit2 curl lzip

Programs to view FITS images or tables
These are not used in Gnuastro’s build. They can just help in
viewing the inputs/outputs independent of Gnuastro!

https://brew.sh
https://en.wikipedia.org/wiki/Arch_Linux
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SAO DS9 and TOPCAT are not available in the standard Arch
GNU/Linux repositories. However, installing and using both is
very easy from their own web pages, as described in Section A.1
[SAO DS9], page 959, and Section A.2 [TOPCAT], page 960.

zypper (openSUSE and SUSE Linux Enterprise Server)
SUSE Linux Enterprise Server14 (SLES) is the commercial offering which shares
code and tools. Many additional packages are offered in the Build Service15.
openSUSE and SLES use zypper (cli) and YaST (GUI) for managing reposito-
ries and packages.

Configuration
When building Gnuastro, run the configure script with the following
CPPFLAGS environment variable:

$ ./configure CPPFLAGS="-I/usr/include/cfitsio"

Mandatory dependencies
Without these, Gnuastro cannot be built, they are necessary for
input/output and low-level mathematics (see Section 3.1.1 [Manda-
tory dependencies], page 212)!

$ sudo zypper install gsl-devel cfitsio-devel \

wcslib-devel

Optional dependencies
If present, these libraries can be used in Gnuastro’s build for extra
features, see Section 3.1.2 [Optional dependencies], page 214.

$ sudo zypper install ghostscript_any libtool \

pkgconfig libcurl-devel \

libgit2-devel \

libjpeg62-devel \

libtiff-devel curl

Programs to view FITS images or tables
These are not used in Gnuastro’s build. They can just help in
viewing the inputs/outputs independent of Gnuastro!

$ sudo zypper install ds9 topcat

Usually, when libraries are installed by operating system package managers, there should
be no problems when configuring and building other programs from source (that depend on
the libraries: Gnuastro in this case). However, in some special conditions, problems may
pop-up during the configuration, building, or checking/running any of Gnuastro’s programs.
The most common of such problems and their solution are discussed below.

14 https://www.suse.com/products/server
15 https://build.opensuse.org

https://www.suse.com/products/server
https://build.opensuse.org
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� �
Not finding library during configuration: If a library is installed, but during Gnuastro’s
configure step the library is not found, then configure Gnuastro like the command below
(correcting /path/to/lib). For more, see Section 3.3.5 [Known issues], page 244, and
Section 3.3.1.2 [Installation directory], page 233.

$ ./configure LDFLAGS="-L/path/to/lib"
 	� �
Not finding header (.h) files while building: If a library is installed, but during Gnuastro’s
make step, the library’s header (file with a .h suffix) is not found, then configure Gnuastro
like the command below (correcting /path/to/include). For more, see Section 3.3.5
[Known issues], page 244, and Section 3.3.1.2 [Installation directory], page 233.

$ ./configure CPPFLAGS="-I/path/to/include"
 	� �
Gnuastro’s programs do not run during check or after install: If a library is installed,
but the programs do not run due to linking problems, set the LD_LIBRARY_PATH variable
like below (assuming Gnuastro is installed in /path/to/installed). For more, see Sec-
tion 3.3.5 [Known issues], page 244, and Section 3.3.1.2 [Installation directory], page 233.

$ export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/path/to/installed/lib"
 	
3.2 Downloading the source

Gnuastro’s source code can be downloaded in two ways. As a tarball, ready to be con-
figured and installed on your system (as described in Section 1.1 [Quick start], page 1),
see Section 3.2.1 [Release tarball], page 225. If you want official releases of stable versions
this is the best, easiest and most common option. Alternatively, you can clone the version
controlled history of Gnuastro, run one extra bootstrapping step and then follow the same
steps as the tarball. This will give you access to all the most recent work that will be
included in the next release along with the full project history. The process is thoroughly
introduced in Section 3.2.2 [Version controlled source], page 226.

3.2.1 Release tarball

A release tarball (commonly compressed) is the most common way of obtaining free and
open source software. A tarball is a snapshot of one particular moment in the Gnuastro
development history along with all the necessary files to configure, build, and install Gnu-
astro easily (see Section 1.1 [Quick start], page 1). It is very straightforward and needs the
least set of dependencies (see Section 3.1.1 [Mandatory dependencies], page 212). Gnuastro
has tarballs for official stable releases and pre-releases for testing. See Section 1.7 [Version
numbering], page 11, for more on the two types of releases and the formats of the version
numbers. The URLs for each type of release are given below.

Official stable releases (http://ftp.gnu.org/gnu/gnuastro):
This URL hosts the official stable releases of Gnuastro. Always use the most
recent version (see Section 1.7 [Version numbering], page 11). By clicking on
the “Last modified” title of the second column, the files will be sorted by their

http://ftp.gnu.org/gnu/gnuastro
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date which you can also use to find the latest version. It is recommended to
use a mirror to download these tarballs, please visit http://ftpmirror.gnu.
org/gnuastro/ and see below.

Pre-release tarballs (http://alpha.gnu.org/gnu/gnuastro):
This URL contains unofficial pre-release versions of Gnuastro. The pre-release
versions of Gnuastro here are for enthusiasts to try out before an official release.
If there are problems, or bugs then the testers will inform the developers to fix
before the next official release. See Section 1.7 [Version numbering], page 11,
to understand how the version numbers here are formatted. If you want to re-
main even more up-to-date with the developing activities, please clone the ver-
sion controlled source as described in Section 3.2.2 [Version controlled source],
page 226.

Gnuastro’s official/stable tarball is released with two formats: Gzip (with suffix .tar.gz)
and Lzip (with suffix .tar.lz). The pre-release tarballs (after version 0.3) are released only
as an Lzip tarball. Gzip is a very well-known and widely used compression program created
by GNU and available in most systems. However, Lzip provides a better compression ratio
and more robust archival capacity. For example, Gnuastro 0.3’s tarball was 2.9MB and
4.3MB with Lzip and Gzip respectively, see the Lzip web page (http://www.nongnu.org/
lzip/lzip.html) for more. Lzip might not be pre-installed in your operating system, if so,
installing it from your operating system’s package manager or from source is very easy and
fast (it is a very small program).

The GNU FTP server is mirrored (has backups) in various locations on the globe
(http://www.gnu.org/order/ftp.html). You can use the closest mirror to your loca-
tion for a more faster download. Note that only some mirrors keep track of the pre-release
(alpha) tarballs. Also note that if you want to download immediately after and announce-
ment (see Section 1.11 [Announcements], page 18), the mirrors might need some time to
synchronize with the main GNU FTP server.

3.2.2 Version controlled source

The publicly distributed Gnuastro tarball (for example, gnuastro-X.X.tar.gz) does not
contain the revision history, it is only a snapshot of the source code at one significant instant
of Gnuastro’s history (specified by the version number, see Section 1.7 [Version numbering],
page 11), ready to be configured and built. To be able to develop successfully, the revision
history of the code can be very useful to track when something was added or changed, also
some updates that are not yet officially released might be in it.

We use Git for the version control of Gnuastro. For those who are not familiar with
it, we recommend the ProGit book (https://git-scm.com/book/en). The whole book is
publicly available for online reading and downloading and does a wonderful job at explaining
the concepts and best practices.

Let’s assume you want to keep Gnuastro in the TOPGNUASTRO directory (can be any
directory, change the value below). The full version controlled history of Gnuastro can be
cloned in TOPGNUASTRO/gnuastro by running the following commands16:

16 If your internet connection is active, but Git complains about the network, it might be due to your
network setup not recognizing the Git protocol. In that case use the following URL which uses the
HTTP protocol instead: http://git.sv.gnu.org/r/gnuastro.git

http://ftpmirror.gnu.org/gnuastro/
http://ftpmirror.gnu.org/gnuastro/
http://alpha.gnu.org/gnu/gnuastro
http://www.nongnu.org/lzip/lzip.html
http://www.nongnu.org/lzip/lzip.html
http://www.gnu.org/order/ftp.html
https://git-scm.com/book/en
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$ TOPGNUASTRO=/home/yourname/Research/projects/

$ cd $TOPGNUASTRO

$ git clone git://git.sv.gnu.org/gnuastro.git

The $TOPGNUASTRO/gnuastro directory will contain hand-written (version controlled)
source code for Gnuastro’s programs, libraries, this book and the tests. All are divided
into sub-directories with standard and very descriptive names. The version controlled files
in the top cloned directory are either mainly in capital letters (for example, THANKS and
README) or mainly written in small-caps (for example, configure.ac and Makefile.am).
The former are non-programming, standard writing for human readers containing
high-level information about the whole package. The latter are instructions to customize
the GNU build system for Gnuastro. For more on Gnuastro’s source code structure, please
see Chapter 13 [Developing], page 928. We will not go any deeper here.

The cloned Gnuastro source cannot immediately be configured, compiled, or installed
since it only contains hand-written files, not automatically generated or imported files which
do all the hard work of the build process. See Section 3.2.2.1 [Bootstrapping], page 227,
for the process of generating and importing those files (it is not too hard!). Once you have
bootstrapped Gnuastro, you can run the standard procedures (in Section 1.1 [Quick start],
page 1). Very soon after you have cloned it, Gnuastro’s main master branch will be updated
on the main repository (since the developers are actively working on Gnuastro), for the best
practices in keeping your local history in sync with the main repository see Section 3.2.2.2
[Synchronizing], page 229.

3.2.2.1 Bootstrapping

The version controlled source code lacks the source files that we have not written or are
automatically built. These automatically generated files are included in the distributed
tarball for each distribution (for example, gnuastro-X.X.tar.gz, see Section 1.7 [Version
numbering], page 11) and make it easy to immediately configure, build, and install Gnuastro.
However from the perspective of version control, they are just bloatware and sources of
confusion (since they are not changed by Gnuastro developers).

The process of automatically building and importing necessary files into the cloned
directory is known as bootstrapping. After bootstrapping is done you are ready to follow
the default GNU build steps that you normally run on the tarball (./configure && make

for example, described more in Section 1.1 [Quick start], page 1). Some known issues with
bootstrapping may occur during the process, to see how to fix them, please see Section 3.3.5
[Known issues], page 244.

All the instructions for an automatic bootstrapping are available in bootstrap and
configured using bootstrap.conf. bootstrap and COPYING (which contains the software
copyright notice) are the only files not written by Gnuastro developers but under version
control to enable simple bootstrapping and legal information on usage immediately after
cloning. bootstrap.conf is maintained by the GNU Portability Library (Gnulib) and this
file is an identical copy, so do not make any changes in this file since it will be replaced
when Gnulib releases an update. Make all your changes in bootstrap.conf.

The bootstrapping process has its own separate set of dependencies, the full list is given in
Section 3.1.3 [Bootstrapping dependencies], page 217. They are generally very low-level and
used by a very large set of commonly used programs, so they are probably already installed
on your system. The simplest way to bootstrap Gnuastro is to simply run the bootstrap
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script within your cloned Gnuastro directory as shown below. However, please read the
next paragraph before doing so (see Section 3.2.2 [Version controlled source], page 226, for
TOPGNUASTRO).

$ cd TOPGNUASTRO/gnuastro

$ ./bootstrap # Requires internet connection

Without any options, bootstrap will clone Gnulib within your cloned Gnuastro directory
(TOPGNUASTRO/gnuastro/gnulib) and download the necessary Autoconf archives macros.
So if you run bootstrap like this, you will need an internet connection every time you decide
to bootstrap. Also, Gnulib is a large package and cloning it can be slow. It will also keep the
full Gnulib repository within your Gnuastro repository, so if another one of your projects
also needs Gnulib, and you insist on running bootstrap like this, you will have two copies.
In case you regularly backup your important files, Gnulib will also slow down the backup
process. Therefore while the simple invocation above can be used with no problem, it is
not recommended. To do better, see the next paragraph.

The recommended way to get these two packages is thoroughly discussed in Section 3.1.3
[Bootstrapping dependencies], page 217, (in short: clone them in the separate DEVDIR/

directory). The following commands will take you into the cloned Gnuastro directory and
run the bootstrap script, while telling it to copy some files (instead of making symbolic
links, with the --copy option, this is not mandatory17) and where to look for Gnulib (with
the --gnulib-srcdir option). Please note that the address given to --gnulib-srcdir has
to be an absolute address (so do not use ~ or ../ for example).

$ cd $TOPGNUASTRO/gnuastro

$ ./bootstrap --copy --gnulib-srcdir=$DEVDIR/gnulib

Since Gnulib and Autoconf archives are now available in your local directories, you do
not need an internet connection every time you decide to remove all un-tracked files and
redo the bootstrap (see box below). You can also use the same command on any other
project that uses Gnulib. All the necessary GNU C library functions, Autoconf macros and
Automake inputs are now available along with the book figures. The standard GNU build
system (Section 1.1 [Quick start], page 1) will do the rest of the job.� �
Undoing the bootstrap: During the development, it might happen that you want to remove
all the automatically generated and imported files. In other words, you might want to
reverse the bootstrap process. Fortunately Git has a good program for this job: git

clean. Run the following command and every file that is not version controlled will be
removed.

git clean -fxd

It is best to commit any recent change before running this command. You might have
created new files since the last commit and if they have not been committed, they will
all be gone forever (using rm). To get a list of the non-version controlled files instead of
deleting them, add the n option to git clean, so it becomes -fxdn.
 	

Besides the bootstrap and bootstrap.conf, the bootstrapped/ directory and README-

hacking file are also related to the bootstrapping process. The former hosts all the imported

17 The --copy option is recommended because some backup systems might do strange things with symbolic
links.
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(bootstrapped) directories. Thus, in the version controlled source, it only contains a README
file, but in the distributed tarball it also contains sub-directories filled with all bootstrapped
files. README-hacking contains a summary of the bootstrapping process discussed in this
section. It is a necessary reference when you have not built this book yet. It is thus not
distributed in the Gnuastro tarball.

3.2.2.2 Synchronizing

The bootstrapping script (see Section 3.2.2.1 [Bootstrapping], page 227) is not regularly
needed: you mainly need it after you have cloned Gnuastro (once) and whenever you want
to re-import the files from Gnulib, or Autoconf archives18 (not too common). However,
Gnuastro developers are constantly working on Gnuastro and are pushing their changes
to the official repository. Therefore, your local Gnuastro clone will soon be out-dated.
Gnuastro has two mailing lists dedicated to its developing activities (see Section 13.11
[Developing mailing lists], page 950). Subscribing to them can help you decide when to
synchronize with the official repository.

To pull all the most recent work in Gnuastro, run the following command from the top
Gnuastro directory. If you do not already have a built system, ignore make distclean. The
separate steps are described in detail afterwards.

$ make distclean && git pull && autoreconf -f

You can also run the commands separately:

$ make distclean

$ git pull

$ autoreconf -f

If Gnuastro was already built in this directory, you do not want some outputs from the
previous version being mixed with outputs from the newly pulled work. Therefore, the first
step is to clean/delete all the built files with make distclean. Fortunately the GNU build
system allows the separation of source and built files (in separate directories). This is a
great feature to keep your source directory clean and you can use it to avoid the cleaning
step. Gnuastro comes with a script with some useful options for this job. It is useful if
you regularly pull recent changes, see Section 3.3.2 [Separate build and source directories],
page 240.

After the pull, we must re-configure Gnuastro with autoreconf -f (part of GNU Auto-
conf). It will update the ./configure script and all the Makefile.in19 files based on the
hand-written configurations (in configure.ac and the Makefile.am files). After running
autoreconf -f, a warning about TEXI2DVI might show up, you can ignore that.

The most important reason for rebuilding Gnuastro’s build system is to generate/update
the version number for your updated Gnuastro snapshot. This generated version number
will include the commit information (see Section 1.7 [Version numbering], page 11). The
version number is included in nearly all outputs of Gnuastro’s programs, therefore it is vital
for reproducing an old result.

18 https://savannah.gnu.org/task/index.php?13993 is defined for you to check if significant (for Gnu-
astro) updates are made in these repositories, since the last time you pulled from them.

19 In the GNU build system, ./configure will use the Makefile.in files to create the necessary Makefile

files that are later read by make to build the package.

https://savannah.gnu.org/task/index.php?13993
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As a summary, be sure to run ‘autoreconf -f’ after every change in the Git history. This
includes synchronization with the main server or even a commit you have made yourself.

If you would like to see what has changed since you last synchronized your local clone,
you can take the following steps instead of the simple command above (do not type anything
after #):

$ git checkout master # Confirm if you are on master.

$ git fetch origin # Fetch all new commits from server.

$ git log master..origin/master # See all the new commit messages.

$ git merge origin/master # Update your master branch.

$ autoreconf -f # Update the build system.

By default git log prints the most recent commit first, add the --reverse option to see
the changes chronologically. To see exactly what has been changed in the source code along
with the commit message, add a -p option to the git log.

If you want to make changes in the code, have a look at Chapter 13 [Developing],
page 928, to get started easily. Be sure to commit your changes in a separate branch (keep
your master branch to follow the official repository) and re-run autoreconf -f after the
commit. If you intend to send your work to us, you can safely use your commit since it will
be ultimately recorded in Gnuastro’s official history. If not, please upload your separate
branch to a public hosting service, for example, Codeberg (https://codeberg.org), and
link to it in your report/paper. Alternatively, run make distcheck and upload the output
gnuastro-X.X.X.XXXX.tar.gz to a publicly accessible web page so your results can be
considered scientific (reproducible) later.

3.3 Build and install

This section is basically a longer explanation to the sequence of commands given in Sec-
tion 1.1 [Quick start], page 1. If you did not have any problems during the Section 1.1
[Quick start], page 1, steps, you want to have all the programs of Gnuastro installed in your
system, you do not want to change the executable names during or after installation, you
have root access to install the programs in the default system wide directory, the Letter
paper size of the print book is fine for you or as a summary you do not feel like going into
the details when everything is working, you can safely skip this section.

If you have any of the above problems or you want to understand the details for a better
control over your build and install, read along. The dependencies which you will need prior
to configuring, building and installing Gnuastro are explained in Section 3.1 [Dependen-
cies], page 211. The first three steps in Section 1.1 [Quick start], page 1, need no extra
explanation, so we will skip them and start with an explanation of Gnuastro specific config-
uration options and a discussion on the installation directory in Section 3.3.1 [Configuring],
page 230, followed by some smaller subsections: Section 3.3.3 [Tests], page 243, Section 3.3.4
[A4 print book], page 243, and Section 3.3.5 [Known issues], page 244, which explains the
solutions to known problems you might encounter in the installation steps and ways you
can solve them.

3.3.1 Configuring

The $ ./configure step is the most important step in the build and install process. All
the required packages, libraries, headers and environment variables are checked in this step.

https://codeberg.org
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The behaviors of make and make install can also be set through command-line options to
this command.

The configure script accepts various arguments and options which enable the final user
to highly customize whatever she is building. The options to configure are generally very
similar to normal program options explained in Section 4.1.1 [Arguments and options],
page 248. Similar to all GNU programs, you can get a full list of the options along with a
short explanation by running

$ ./configure --help

A complete explanation is also included in the INSTALL file. Note that this file was written by
the authors of GNU Autoconf (which builds the configure script), therefore it is common
for all programs which use the $ ./configure script for building and installing, not just
Gnuastro. Here we only discuss cases where you do not have superuser access to the system
and if you want to change the executable names. But before that, a review of the options
to configure that are particular to Gnuastro are discussed.

3.3.1.1 Gnuastro configure options

Most of the options to configure (which are to do with building) are similar for every program
which uses this script. Here the options that are particular to Gnuastro are discussed. The
next topics explain the usage of other configure options which can be applied to any program
using the GNU build system (through the configure script).

--enable-debug

Compile/build Gnuastro with debugging information, no optimization and
without shared libraries.

In order to allow more efficient programs when using Gnuastro (after the in-
stallation), by default Gnuastro is built with a 3rd level (a very high level)
optimization and no debugging information. By default, libraries are also built
for static and shared linking (see Section 12.1.2 [Linking], page 728). However,
when there are crashes or unexpected behavior, these three features can hinder
the process of localizing the problem. This configuration option is identical to
manually calling the configuration script with CFLAGS="-g -O0" --disable-

shared.

In the (rare) situations where you need to do your debugging on the shared
libraries, do not use this option. Instead run the configure script by explicitly
setting CFLAGS like this:

$ ./configure CFLAGS="-g -O0"

--enable-check-with-valgrind

Do the make check tests through Valgrind. Therefore, if any crashes or
memory-related issues (segmentation faults in particular) occur in the tests,
the output of Valgrind will also be put in the tests/test-suite.log file
without having to manually modify the check scripts. This option will also
activate Gnuastro’s debug mode (see the --enable-debug configure-time
option described above).

Valgrind is free software. It is a program for easy checking of memory-related
issues in programs. It runs a program within its own controlled environment
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and can thus identify the exact line-number in the program’s source where a
memory-related issue occurs. However, it can significantly slow-down the tests.
So this option is only useful when a segmentation fault is found during make

check.

--enable-progname

Only build and install progname along with any other program that is enabled
in this fashion. progname is the name of the executable without the ast, for
example, crop for Crop (with the executable name of astcrop).

Note that by default all the programs will be installed. This option (and the
--disable-progname options) are only relevant when you do not want to install
all the programs. Therefore, if this option is called for any of the programs in
Gnuastro, any program which is not explicitly enabled will not be built or
installed.

--disable-progname

--enable-progname=no

Do not build or install the program named progname. This is very similar to the
--enable-progname, but will build and install all the other programs except
this one.� �
Note: If some programs are enabled and some are disabled, it is equivalent
to simply enabling those that were enabled. Listing the disabled programs is
redundant.
 	

--enable-gnulibcheck

Enable checks on the GNU Portability Library (Gnulib). Gnulib is used by
Gnuastro to enable users of non-GNU based operating systems (that do not
use GNU C library or glibc) to compile and use the advanced features that this
library provides. We make extensive use of such functions. If you give this
option to $ ./configure, when you run $ make check, first the functions in
Gnulib will be tested, then the Gnuastro executables. If your operating system
does not support glibc or has an older version of it and you have problems in the
build process ($ make), you can give this flag to configure to see if the problem
is caused by Gnulib not supporting your operating system or Gnuastro, see
Section 3.3.5 [Known issues], page 244.

--disable-guide-message

--enable-guide-message=no

Do not print a guiding message during the GNU Build process of Section 1.1
[Quick start], page 1. By default, after each step, a message is printed guiding
the user what the next command should be. Therefore, after ./configure, it
will suggest running make. After make, it will suggest running make check and
so on. If Gnuastro is configured with this option, for example

$ ./configure --disable-guide-message

Then these messages will not be printed after any step (like most programs).
For people who are not yet fully accustomed to this build system, these guide-
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lines can be very useful and encouraging. However, if you find those messages
annoying, use this option.

--without-libgit2

Build Gnuastro without libgit2 (for including Git commit hashes in output
files), see Section 3.1.2 [Optional dependencies], page 214. libgit2 is an optional
dependency, with this option, Gnuastro will ignore any possibly existing libgit2
that may already be on the system.

--without-libjpeg

Build Gnuastro without libjpeg (for reading/writing to JPEG files), see Sec-
tion 3.1.2 [Optional dependencies], page 214. libjpeg is an optional dependency,
with this option, Gnuastro will ignore any possibly existing libjpeg that may
already be on the system.

--without-libtiff

Build Gnuastro without libtiff (for reading/writing to TIFF files), see Sec-
tion 3.1.2 [Optional dependencies], page 214. libtiff is an optional dependency,
with this option, Gnuastro will ignore any possibly existing libtiff that may
already be on the system.

--with-python

Build the Python interface within Gnuastro’s dynamic library. This interface
can be used for easy communication with Python wrappers (for example, the
pyGnuastro package).

When you install the pyGnuastro package from PyPI, the correct configuration
of the Gnuastro Library is already packaged with it (with the Python interface)
and that is independent of your Gnuastro installation. The Python interface
is only necessary if you want to build pyGnuastro from source (which is only
necessary for developers). Therefore it has to be explicitly activated at configure
time with this option. For more on the interface functions, see Section 12.3.32
[Python interface (python.h)], page 898.

The tests of some programs might depend on the outputs of the tests of other programs.
For example, MakeProfiles is one the first programs to be tested when you run $ make

check. MakeProfiles’ test outputs (FITS images) are inputs to many other programs (which
in turn provide inputs for other programs). Therefore, if you do not install MakeProfiles for
example, the tests for many the other programs will be skipped. To avoid this, in one run,
you can install all the programs and run the tests but not install. If everything is working
correctly, you can run configure again with only the programs you want. However, do not
run the tests and directly install after building.

3.3.1.2 Installation directory

One of the most commonly used options to ./configure is --prefix, it is used to define
the directory that will host all the installed files (or the “prefix” in their final absolute file
name). For example, when you are using a server and you do not have administrator or
root access. In this example scenario, if you do not use the --prefix option, you will not
be able to install the built files and thus access them from anywhere without having to
worry about where they are installed. However, once you prepare your startup file to look
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into the proper place (as discussed thoroughly below), you will be able to easily use this
option and benefit from any software you want to install without having to ask the system
administrators or install and use a different version of a software that is already installed
on the server.

The most basic way to run an executable is to explicitly write its full file name (including
all the directory information) and run it. One example is running the configuration script
with the $ ./configure command (see Section 1.1 [Quick start], page 1). By giving a
specific directory (the current directory or ./), we are explicitly telling the shell to look
in the current directory for an executable file named ‘configure’. Directly specifying the
directory is thus useful for executables in the current (or nearby) directories. However,
when the program (an executable file) is to be used a lot, specifying all those directories
will become a significant burden. For example, the ls executable lists the contents in a given
directory and it is (usually) installed in the /usr/bin/ directory by the operating system
maintainers. Therefore, if using the full address was the only way to access an executable,
each time you wanted a listing of a directory, you would have to run the following command
(which is very inconvenient, both in writing and in remembering the various directories).

$ /usr/bin/ls

To address this problem, we have the PATH environment variable. To understand it
better, we will start with a short introduction to the shell variables. Shell variable values
are basically treated as strings of characters. For example, it does not matter if the value
is a name (string of alphabetic characters), or a number (string of numeric characters), or
both. You can define a variable and a value for it by running

$ myvariable1=a_test_value

$ myvariable2="a test value"

As you see above, if the value contains white space characters, you have to put the whole
value (including white space characters) in double quotes ("). You can see the value it
represents by running

$ echo $myvariable1

$ echo $myvariable2

If a variable has no value or it was not defined, the last command will only print an empty
line. A variable defined like this will be known as long as this shell or terminal is running.
Other terminals will have no idea it existed. The main advantage of shell variables is that
if they are exported20, subsequent programs that are run within that shell can access their
value. So by changing their value, you can change the “environment” of a program which
uses them. The shell variables which are accessed by programs are therefore known as
“environment variables”21. You can see the full list of exported variables that your shell
recognizes by running:

$ printenv

HOME is one commonly used environment variable, it is any user’s (the one that is logged
in) top directory. Try finding it in the command above. It is used so often that the shell
has a special expansion (alternative) for it: ‘~’. Whenever you see file names starting with

20 By running $ export myvariable=a_test_value instead of the simpler case in the text
21 You can use shell variables for other actions too, for example, to temporarily keep some names or run

loops on some files.
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the tilde sign, it actually represents the value to the HOME environment variable, so ~/doc

is the same as $HOME/doc.

Another one of the most commonly used environment variables is PATH, it is a list of
directories to search for executable names. Its value is a list of directories (separated by a
colon, or ‘:’). When the address of the executable is not explicitly given (like ./configure
above), the system will look for the executable in the directories specified by PATH. If you
have a computer nearby, try running the following command to see which directories your
system will look into when it is searching for executable (binary) files, one example is printed
here (notice how /usr/bin, in the ls example above, is one of the directories in PATH):

$ echo $PATH

/usr/local/sbin:/usr/local/bin:/usr/bin

By default PATH usually contains system-wide directories, which are readable (but not
writable) by all users, like the above example. Therefore if you do not have root (or admin-
istrator) access, you need to add another directory to PATH which you actually have write
access to. The standard directory where you can keep installed files (not just executables)
for your own user is the ~/.local/ directory. The names of hidden files start with a ‘.’
(dot), so it will not show up in your common command-line listings, or on the graphical
user interface. You can use any other directory, but this is the most recognized.

The top installation directory will be used to keep all the package’s components: pro-
grams (executables), libraries, include (header) files, shared data (like manuals), or configu-
ration files (see Section 12.1 [Review of library fundamentals], page 724, for a thorough in-
troduction to headers and linking). So it commonly has some of the following sub-directories
for each class of installed components respectively: bin/, lib/, include/ man/, share/,
etc/. Since the PATH variable is only used for executables, you can add the ~/.local/bin
directory (which keeps the executables/programs or more generally, “binary” files) to PATH

with the following command. As defined below, first the existing value of PATH is used, then
your given directory is added to its end and the combined value is put back in PATH (run
‘$ echo $PATH’ afterwards to check if it was added).

$ PATH=$PATH:~/.local/bin

Any executable that you installed in ~/.local/bin will now be usable without having
to remember and write its full address. However, as soon as you leave/close your current
terminal session, this modified PATH variable will be forgotten. Adding the directories which
contain executables to the PATH environment variable each time you start a terminal is also
very inconvenient and prone to errors. Fortunately, there are standard ‘startup files’ defined
by your shell precisely for this (and other) purposes. There is a special startup file for every
significant starting step:

/etc/profile and everything in /etc/profile.d/

These startup scripts are called when your whole system starts (for example,
after you turn on your computer). Therefore you need administrator or root
privileges to access or modify them.

~/.bash_profile

If you are using (GNU) Bash as your shell, the commands in this file are run,
when you log in to your account through Bash. Most commonly when you login
through the virtual console (where there is no graphic user interface).
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~/.bashrc

If you are using (GNU) Bash as your shell, the commands here will be run each
time you start a terminal and are already logged in. For example, when you
open your terminal emulator in the graphic user interface.

For security reasons, it is highly recommended to directly type in your HOME directory
value by hand in startup files instead of using variables. So in the following, let’s assume
your user name is ‘name’ (so ~ may be replaced with /home/name). To add ~/.local/bin

to your PATH automatically on any startup file, you have to “export” the new value of PATH
in the startup file that is most relevant to you by adding this line:

export PATH=$PATH:/home/name/.local/bin

Now that you know your system will look into ~/.local/bin for executables, you can
tell Gnuastro’s configure script to install everything in the top ~/.local directory using the
--prefix option. When you subsequently run $ make install, all the install-able files will
be put in their respective directory under ~/.local/ (the executables in ~/.local/bin, the
compiled library files in ~/.local/lib, the library header files in ~/.local/include and
so on, to learn more about these different files, please see Section 12.1 [Review of library
fundamentals], page 724). Note that tilde (‘~’) expansion will not happen if you put a
‘=’ between --prefix and ~/.local22, so we have avoided the = character here which is
optional in GNU-style options, see Section 4.1.1.2 [Options], page 249.

$ ./configure --prefix ~/.local

You can install everything (including libraries like GSL, CFITSIO, or WCSLIB which are
Gnuastro’s mandatory dependencies, see Section 3.1.1 [Mandatory dependencies], page 212)
locally by configuring them as above. However, recall that PATH is only for executable files,
not libraries and that libraries can also depend on other libraries. For example, WCSLIB
depends on CFITSIO and Gnuastro needs both. Therefore, when you installed a library in
a non-recognized directory, you have to guide the program that depends on them to look
into the necessary library and header file directories. To do that, you have to define the
LDFLAGS and CPPFLAGS environment variables respectively. This can be done while calling
./configure as shown below:

$ ./configure LDFLAGS=-L/home/name/.local/lib \

CPPFLAGS=-I/home/name/.local/include \

--prefix ~/.local

It can be annoying/buggy to do this when configuring every software that depends on
such libraries. Hence, you can define these two variables in the most relevant startup file
(discussed above). The convention on using these variables does not include a colon to
separate values (as PATH-like variables do). They use white space characters and each value
is prefixed with a compiler option23. Note the -L and -I above (see Section 4.1.1.2 [Options],
page 249), for -I see Section 12.1.1 [Headers], page 725, and for -L, see Section 12.1.2
[Linking], page 728. Therefore we have to keep the value in double quotation signs to keep
the white space characters and adding the following two lines to the startup file of choice:

export LDFLAGS="$LDFLAGS -L/home/name/.local/lib"

22 If you insist on using ‘=’, you can use --prefix=$HOME/.local.
23 These variables are ultimately used as options while building the programs. Therefore every value has

be an option name followed be a value as discussed in Section 4.1.1.2 [Options], page 249.
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export CPPFLAGS="$CPPFLAGS -I/home/name/.local/include"

Dynamic libraries are linked to the executable every time you run a program that depends
on them (see Section 12.1.2 [Linking], page 728, to fully understand this important concept).
Hence dynamic libraries also require a special path variable called LD_LIBRARY_PATH (same
formatting as PATH). To use programs that depend on these libraries, you need to add
~/.local/lib to your LD_LIBRARY_PATH environment variable by adding the following line
to the relevant start-up file:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/name/.local/lib

If you also want to access the Info (see Section 4.3.4 [Info], page 273) and man pages
(see Section 4.3.3 [Man pages], page 273) documentations add ~/.local/share/info and
~/.local/share/man to your INFOPATH24 and MANPATH environment variables respectively.

A final note is that order matters in the directories that are searched for all the variables
discussed above. In the examples above, the new directory was added after the system
specified directories. So if the program, library or manuals are found in the system wide
directories, the user directory is no longer searched. If you want to search your local
installation first, put the new directory before the already existing list, like the example
below.

export LD_LIBRARY_PATH=/home/name/.local/lib:$LD_LIBRARY_PATH

This is good when a library, for example, CFITSIO, is already present on the system,
but the system-wide install was not configured with the correct configuration flags (see
Section 3.1.1.2 [CFITSIO], page 212), or you want to use a newer version and you do not
have administrator or root access to update it on the whole system/server. If you update
LD_LIBRARY_PATH by placing ~/.local/lib first (like above), the linker will first find the
CFITSIO you installed for yourself and link with it. It thus will never reach the system-wide
installation.

There are important security problems with using local installations first: all important
system-wide executables and libraries (important executables like ls and cp, or libraries
like the C library) can be replaced by non-secure versions with the same file names and put
in the customized directory (~/.local in this example). So if you choose to search in your
customized directory first, please be sure to keep it clean from executables or libraries with
the same names as important system programs or libraries.

24 Info has the following convention: “If the value of INFOPATH ends with a colon [or it is not defined] ..., the
initial list of directories is constructed by appending the build-time default to the value of INFOPATH.”
So when installing in a non-standard directory and if INFOPATH was not initially defined, add a colon
to the end of INFOPATH as shown below. Otherwise Info will not be able to find system-wide installed
documentation:
echo 'export INFOPATH=$INFOPATH:/home/name/.local/share/info:' >> ~/.bashrc

Note that this is only an internal convention of Info: do not use it for other *PATH variables.



Chapter 3: Installation 238

� �
Summary: When you are using a server which does not give you administrator/root access
AND you would like to give priority to your own built programs and libraries, not the
version that is (possibly already) present on the server, add these lines to your startup
file. See above for which startup file is best for your case and for a detailed explanation on
each. Do not forget to replace ‘/YOUR-HOME-DIR’ with your home directory (for example,
‘/home/your-id’):

export PATH="/YOUR-HOME-DIR/.local/bin:$PATH"

export LDFLAGS="-L/YOUR-HOME-DIR/.local/lib $LDFLAGS"

export MANPATH="/YOUR-HOME-DIR/.local/share/man/:$MANPATH"

export CPPFLAGS="-I/YOUR-HOME-DIR/.local/include $CPPFLAGS"

export INFOPATH="/YOUR-HOME-DIR/.local/share/info/:$INFOPATH"

export LD_LIBRARY_PATH="/YOUR-HOME-DIR/.local/lib:$LD_LIBRARY_PATH"

Afterwards, you just need to add an extra --prefix=/YOUR-HOME-DIR/.local to the
./configure command of the software that you intend to install. Everything else will be
the same as a standard build and install, see Section 1.1 [Quick start], page 1.
 	
3.3.1.3 Executable names

At first sight, the names of the executables for each program might seem to be uncommonly
long, for example, astnoisechisel or astcrop. We could have chosen terse (and cryptic)
names like most programs do. We chose this complete naming convention (something like
the commands in TEX) so you do not have to spend too much time remembering what the
name of a specific program was. Such complete names also enable you to easily search for
the programs.

To facilitate typing the names in, we suggest using the shell auto-complete. With this
facility you can find the executable you want very easily. It is very similar to file name
completion in the shell. For example, simply by typing the letters below (where [TAB]

stands for the Tab key on your keyboard)

$ ast[TAB][TAB]

you will get the list of all the available executables that start with ast in your PATH envi-
ronment variable directories. So, all the Gnuastro executables installed on your system will
be listed. Typing the next letter for the specific program you want along with a Tab, will
limit this list until you get to your desired program.

In case all of this does not convince you and you still want to type short names, some
suggestions are given below. You should have in mind though, that if you are writing a shell
script that you might want to pass on to others, it is best to use the standard name because
other users might not have adopted the same customization. The long names also serve as
a form of documentation in such scripts. A similar reasoning can be given for option names
in scripts: it is good practice to always use the long formats of the options in shell scripts,
see Section 4.1.1.2 [Options], page 249.

The simplest solution is making a symbolic link to the actual executable. For example,
let’s assume you want to type ic to run Crop instead of astcrop. Assuming you installed
Gnuastro executables in /usr/local/bin (default) you can do this simply by running the
following command as root:
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# ln -s /usr/local/bin/astcrop /usr/local/bin/ic

In case you update Gnuastro and a new version of Crop is installed, the default executable
name is the same, so your custom symbolic link still works.

The installed executable names can also be set using options to $ ./configure, see
Section 3.3.1 [Configuring], page 230. GNU Autoconf (which configures Gnuastro for your
particular system), allows the builder to change the name of programs with the three options
--program-prefix, --program-suffix and --program-transform-name. The first two
are for adding a fixed prefix or suffix to all the programs that will be installed. This will
actually make all the names longer! You can use it to add versions of program names to
the programs in order to simultaneously have two executable versions of a program.

The third configure option allows you to set the executable name at install time using
the SED program. SED is a very useful ‘stream editor’. There are various resources on
the internet to use it effectively. However, we should caution that using configure options
will change the actual executable name of the installed program and on every re-install (an
update for example), you have to also add this option to keep the old executable name
updated. Also note that the documentation or configuration files do not change from their
standard names either.

For example, let’s assume that typing ast on every invocation of every program is really
annoying you! You can remove this prefix from all the executables at configure time by
adding this option:

$ ./configure --program-transform-name='s/ast/ /'

3.3.1.4 Configure and build in RAM

Gnuastro’s configure and build process (the GNU build system) involves the creation, read-
ing, and modification of a large number of files (input/output, or I/O). Therefore file I/O
issues can directly affect the work of developers who need to configure and build Gnuastro
numerous times. Some of these issues are listed below:

• I/O will cause wear and tear on both the HDDs (mechanical failures) and SSDs (de-
creasing the lifetime).

• Having the built files mixed with the source files can greatly affect backing up (syn-
chronization) of source files (since it involves the management of a large number of
small files that are regularly changed. Backup software can of course be configured to
ignore the built files and directories. However, since the built files are mixed with the
source files and can have a large variety, this will require a high level of customization.

One solution to address both these problems is to use the tmpfs file system (https://
en.wikipedia.org/wiki/Tmpfs). Any file in tmpfs is actually stored in the RAM (and
possibly SWAP), not on HDDs or SSDs. The RAM is built for extensive and fast I/O.
Therefore the large number of file I/Os associated with configuring and building will not
harm the HDDs or SSDs. Due to the volatile nature of RAM, files in the tmpfs file-system
will be permanently lost after a power-off. Since all configured and built files are derivative
files (not files that have been directly written by hand) there is no problem in this and this
feature can be considered as an automatic cleanup.

The modern GNU C library (and thus the Linux kernel) defines the /dev/shm directory
for this purpose in the RAM (POSIX shared memory). To build in it, you can use the

https://en.wikipedia.org/wiki/Tmpfs
https://en.wikipedia.org/wiki/Tmpfs


Chapter 3: Installation 240

GNU build system’s ability to build in a separate directory (not necessarily in the source
directory) as shown below. Just set SRCDIR as the address of Gnuastro’s top source directory
(for example, where there is the unpacked tarball).

$ SRCDIR=/home/username/gnuastro

$ mkdir /dev/shm/tmp-gnuastro-build

$ cd /dev/shm/tmp-gnuastro-build

$ $SRCDIR/configure --srcdir=$SRCDIR

$ make

Gnuastro comes with a script to simplify this process of configuring and building in a
different directory (a “clean” build), for more see Section 3.3.2 [Separate build and source
directories], page 240.

3.3.2 Separate build and source directories

The simple steps of Section 1.1 [Quick start], page 1, will mix the source and built files.
This can cause inconvenience for developers or enthusiasts following the most recent work
(see Section 3.2.2 [Version controlled source], page 226). The current section is mainly
focused on this later group of Gnuastro users. If you just install Gnuastro on major releases
(following Section 1.11 [Announcements], page 18), you can safely ignore this section.

When it is necessary to keep the source (which is under version control), but not the
derivative (built) files (after checking or installing), the best solution is to keep the source
and the built files in separate directories. One application of this is already discussed in
Section 3.3.1.4 [Configure and build in RAM], page 239.

To facilitate this process of configuring and building in a separate directory, Gnuastro
comes with the developer-build script. It is available in the top source directory and is
not installed. It will make a directory under a given top-level directory (given to --top-

build-dir) and build Gnuastro there. It thus keeps the source completely separated from
the built files. For easy access to the built files, it also makes a symbolic link to the built
directory in the top source files called build.

When running the developer-build script without any options in the Gnuastro’s top
source directory, default values will be used for its configuration. As with Gnuastro’s
programs, you can inspect the default values with -P (or --printparams, the output just
looks a little different here). The default top-level build directory is /dev/shm: the shared
memory directory in RAM on GNU/Linux systems as described in Section 3.3.1.4 [Configure
and build in RAM], page 239.

Besides these, it also has some features to facilitate the job of developers or bleeding edge
users like the --debug option to do a fast build, with debug information, no optimization,
and no shared libraries. Here is the full list of options you can feed to this script to configure
its operations.� �
Not all Gnuastro’s common program behavior usable here: developer-build is just a
non-installed script with a very limited scope as described above. It thus does not have
all the common option behaviors or configuration files for example.
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� �
White space between option and value: developer-build does not accept an = sign
between the options and their values. It also needs at least one character between the
option and its value. Therefore -n 4 or --numthreads 4 are acceptable, while -n4, -n=4,
or --numthreads=4 are not. Finally multiple short option names cannot be merged: for
example, you can say -c -n 4, but unlike Gnuastro’s programs, -cn4 is not acceptable.
 	� �
Reusable for other packages: This script can be used in any software which is configured
and built using the GNU Build System. Just copy it in the top source directory of that
software and run it from there.
 	� �
Example usage: See Section 13.12.4 [Forking tutorial], page 955, for an example usage of
this script in some scenarios.
 	
-b STR

--top-build-dir STR

The top build directory to make a directory for the build. If this option is
not called, the top build directory is /dev/shm (only available in GNU/Linux
operating systems, see Section 3.3.1.4 [Configure and build in RAM], page 239).

-V

--version

Print the version string of Gnuastro that will be used in the build. This string
will be appended to the directory name containing the built files.

-a

--autoreconf

Run autoreconf -f before building the package. In Gnuastro, this is necessary
when a new commit has been made to the project history. In Gnuastro’s build
system, the Git description will be used as the version, see Section 1.7 [Version
numbering], page 11, and Section 3.2.2.2 [Synchronizing], page 229.

-c

--clean Delete the contents of the build directory (clean it) before starting the config-
uration and building of this run.

This is useful when you have recently pulled changes from the main Git reposi-
tory, or committed a change yourself and ran autoreconf -f, see Section 3.2.2.2
[Synchronizing], page 229. After running GNU Autoconf, the version will be
updated and you need to do a clean build.

-d

--debug Build with debugging flags (for example, to use in GNU Debugger, also known
as GDB, or Valgrind), disable optimization and also the building of shared
libraries. Similar to running the configure script of below

$ ./configure --enable-debug
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Besides all the debugging advantages of building with this option, it will also
be significantly speed up the build (at the cost of slower built programs). So
when you are testing something small or working on the build system itself, it
will be much faster to test your work with this option.

-v

--valgrind

Build all make check tests within Valgrind. For more, see the description
of --enable-check-with-valgrind in Section 3.3.1.1 [Gnuastro configure op-
tions], page 231.

-j INT

--jobs INT

The maximum number of threads/jobs for Make to build at any moment. As
the name suggests (Make has an identical option), the number given to this
option is directly passed on to any call of Make with its -j option.

-C

--check After finishing the build, also run make check. By default, make check is not
run because the developer usually has their own checks to work on (for example,
defined in tests/during-dev.sh).

-i

--install

After finishing the build, also run make install.

-D

--dist Run make dist-lzip pdf to build a distribution tarball (in .tar.lz format)
and a PDF manual. This can be useful for archiving, or sending to colleagues
who do not use Git for an easy build and manual.

-u STR

--upload STR

Activate the --dist (-D) option, then use secure copy (scp, part of the SSH
tools) to copy the tarball and PDF to the src and pdf sub-directories of the
specified server and its directory (value to this option). For example, --upload
my-server:dir, will copy the tarball in the dir/src, and the PDF manual
in dir/pdf of my-server server. It will then make a symbolic link in the top
server directory to the tarball that is called gnuastro-latest.tar.lz.

-p STR

--publish=STR

Clean, bootstrap, build, check and upload the checked tarball and PDF of the
book to the URL given as STR. This option is just a wrapper for --autoreconf
--clean --debug --check --upload STR. --debug is added because it will
greatly speed up the build. --debug will have no effect on the produced tarball
(people who later download will be building with the default optimized, and
non-debug mode). This option is good when you have made a commit and are
ready to publish it on your server (if nothing crashes). Recall that if any of the
previous steps fail the script aborts.
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-I

--install-archive

Short for --autoreconf --clean --check --install --dist. This is useful
when you actually want to install the commit you just made (if the build and
checks succeed). It will also produce a distribution tarball and PDF manual for
easy access to the installed tarball on your system at a later time.

Ideally, Gnuastro’s Git version history makes it easy for a prepared system to
revert back to a different point in history. But Gnuastro also needs to bootstrap
files and also your collaborators might (usually do!) find it too much of a burden
to do the bootstrapping themselves. So it is convenient to have a tarball and
PDF manual of the version you have installed (and are using in your research)
handily available.

-h

--help

-P

--printparams

Print a description of this script along with all the options and their current
values.

3.3.3 Tests

After successfully building (compiling) the programs with the $ make command you can
check the installation before installing. To run the tests, run

$ make check

For every program some tests are designed to check some possible operations. Running
the command above will run those tests and give you a final report. If everything is OK
and you have built all the programs, all the tests should pass. In case any of the tests fail,
please have a look at Section 3.3.5 [Known issues], page 244, and if that still does not fix
your problem, look that the ./tests/test-suite.log file to see if the source of the error is
something particular to your system or more general. If you feel it is general, please contact
us because it might be a bug. Note that the tests of some programs depend on the outputs
of other program’s tests, so if you have not installed them they might be skipped or fail.
Prior to releasing every distribution all these tests are checked. If you have a reasonably
modern terminal, the outputs of the successful tests will be colored green and the failed
ones will be colored red.

These scripts can also act as a good set of examples for you to see how the programs are
run. All the tests are in the tests/ directory. The tests for each program are shell scripts
(ending with .sh) in a sub-directory of this directory with the same name as the program.
See Section 13.7 [Test scripts], page 942, for more detailed information about these scripts
in case you want to inspect them.

3.3.4 A4 print book

The default print version of this book is provided in the letter paper size. If you would like
to have the print version of this book on paper and you are living in a country which uses
A4, then you can rebuild the book. The great thing about the GNU build system is that
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the book source code which is in Texinfo is also distributed with the program source code,
enabling you to do such customization (hacking).

In order to change the paper size, you will need to have GNU Texinfo installed. Open
doc/gnuastro.texi with any text editor. This is the source file that created this book. In
the first few lines you will see this line:

@c@afourpaper

In Texinfo, a line is commented with @c. Therefore, un-comment this line by deleting the
first two characters such that it changes to:

@afourpaper

Save the file and close it. You can now run the following command

$ make pdf

and the new PDF book will be available in SRCdir/doc/gnuastro.pdf. By changing the
pdf in $ make pdf to ps or dvi you can have the book in those formats. Note that you can
do this for any book that is in Texinfo format, they might not have @afourpaper line, so
you can add it close to the top of the Texinfo source file.

3.3.5 Known issues

Depending on your operating system and the version of the compiler you are using, you
might confront some known problems during the configuration ($ ./configure), compila-
tion ($ make) and tests ($ make check). Here, their solutions are discussed.

• $ ./configure: Configure complains about not finding a library even though you have
installed it. The possible solution is based on how you installed the package:

• From your distribution’s package manager. Most probably this is because your
distribution has separated the header files of a library from the library parts.
Please also install the ‘development’ packages for those libraries too. Just add a
-dev or -devel to the end of the package name and re-run the package manager.
This will not happen if you install the libraries from source. When installed from
source, the headers are also installed.

• From source. Then your linker is not looking where you installed the library. If
you followed the instructions in this chapter, all the libraries will be installed in
/usr/local/lib. So you have to tell your linker to look in this directory. To do
so, configure Gnuastro like this:

$ ./configure LDFLAGS="-L/usr/local/lib"

If you want to use the libraries for your other programming projects, then export
this environment variable in a start-up script similar to the case for LD_LIBRARY_
PATH explained below, also see Section 3.3.1.2 [Installation directory], page 233.

• $ make: Complains about an unknown function on a non-GNU based operating system.
In this case, please run $ ./configure with the --enable-gnulibcheck option to see if
the problem is from the GNU Portability Library (Gnulib) not supporting your system
or if there is a problem in Gnuastro, see Section 3.3.1.1 [Gnuastro configure options],
page 231. If the problem is not in Gnulib and after all its tests you get the same
complaint from make, then please contact us at bug-gnuastro@gnu.org. The cause is
probably that a function that we have used is not supported by your operating system
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and we did not included it along with the source tarball. If the function is available in
Gnulib, it can be fixed immediately.

• $ make: Cannot find the headers (.h files) of installed libraries. Your C preprocessor
(CPP) is not looking in the right place. To fix this, configure Gnuastro with an addi-
tional CPPFLAGS like below (assuming the library is installed in /usr/local/include:

$ ./configure CPPFLAGS="-I/usr/local/include"

If you want to use the libraries for your other programming projects, then export
this environment variable in a start-up script similar to the case for LD_LIBRARY_PATH
explained below, also see Section 3.3.1.2 [Installation directory], page 233.

• $ make check: Only the first couple of tests pass, all the rest fail or get skipped. It is
highly likely that when searching for shared libraries, your system does not look into the
/usr/local/lib directory (or wherever you installed Gnuastro or its dependencies). To
make sure it is added to the list of directories, add the following line to your ~/.bashrc
file and restart your terminal. Do not forget to change /usr/local/lib if the libraries
are installed in other (non-standard) directories.

export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/usr/local/lib"

You can also add more directories by using a colon ‘:’ to separate them. See Sec-
tion 3.3.1.2 [Installation directory], page 233, and Section 12.1.2 [Linking], page 728,
to learn more on the PATH variables and dynamic linking respectively.

• $ make check: The tests relying on external programs (for example, fitstopdf.sh

fail.) This is probably due to the fact that the version number of the external programs
is too old for the tests we have preformed. Please update the program to a more recent
version. For example, to create a PDF image, you will need GPL Ghostscript, but older
versions do not work, we have successfully tested it on version 9.15. Older versions
might cause a failure in the test result.

• $ make pdf: The PDF book cannot be made. To make a PDF book, you need to have
the GNU Texinfo program (like any program, the more recent the better). A working
TEX program is also necessary, which you can get from Tex Live25.

• After make check: do not copy the programs’ executables to another (for example,
the installation) directory manually (using cp, or mv for example). In the default
configuration26, the program binaries need to link with Gnuastro’s shared library which
is also built and installed with the programs. Therefore, to run successfully before and
after installation, linking modifications need to be made by GNU Libtool at installation
time. make install does this internally, but a simple copy might give linking errors
when you run it. If you need to copy the executables, you can do so after installation.

• $ make (when bootstrapping): After you have bootstrapped Gnuastro from the version-
controlled source, you may confront the following (or a similar) error when converting
images (for more on bootstrapping, see Section 3.2.2.1 [Bootstrapping], page 227):

convert: attempt to perform an operation not allowed by the

security policy `gs' error/delegate.c/ExternalDelegateCommand/378.

25 https://www.tug.org/texlive/
26 If you configure Gnuastro with the --disable-shared option, then the libraries will be statically linked

to the programs and this problem will not exist, see Section 12.1.2 [Linking], page 728.

https://www.tug.org/texlive/
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This error is a known issue27 with ImageMagick security policies in some operating
systems. In short, imagemagick uses Ghostscript for PDF, EPS, PS and XPS parsing.
However, because some security vulnerabilities have been found in Ghostscript28, by
default, ImageMagick may be compiled without Ghostscript library. In such cases, if
allowed, ImageMagick will fall back to the external gs command instead of the library.
But this may be disabled with the following (or a similar) lines in /etc/ImageMagick-

7/policy.xml (anything related to PDF, PS, or Ghostscript).

<policy domain="delegate" rights="none" pattern="gs" />

<policy domain="module" rights="none" pattern="{PS,PDF,XPS}" />

To fix this problem, simply comment such lines (by placing a <!-- before each state-
ment/line and --> at the end of that statement/line).

If your problem was not listed above, please file a bug report (Section 1.9 [Report a bug],
page 15).

27 https://wiki.archlinux.org/title/ImageMagick
28 https://security.archlinux.org/package/ghostscript

https://wiki.archlinux.org/title/ImageMagick
https://security.archlinux.org/package/ghostscript
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4 Common program behavior

All the programs in Gnuastro share a set of common behavior mainly to do with user
interaction to facilitate their usage and development. This includes how to feed input
datasets into the programs, how to configure them, specifying the outputs, numerical data
types, treating columns of information in tables, etc. This chapter is devoted to describing
this common behavior in all programs. Because the behaviors discussed here are common
to several programs, they are not repeated in each program’s description.

In Section 4.1 [Command-line], page 247, a very general description of running the
programs on the command-line is discussed, like difference between arguments and options,
as well as options that are common/shared between all programs. None of Gnuastro’s
programs keep any internal configuration value (values for their different operational steps),
they read their configuration primarily from the command-line, then from specific files in
directory, user, or system-wide settings. Using these configuration files can greatly help
reproducible and robust usage of Gnuastro, see Section 4.2 [Configuration files], page 268,
for more.

It is not possible to always have the different options and configurations of each program
on the top of your head. It is very natural to forget the options of a program, their current
default values, or how it should be run and what it did. Gnuastro’s programs have multiple
ways to help you refresh your memory in multiple levels (just an option name, a short
description, or fast access to the relevant section of the manual. See Section 4.3 [Getting
help], page 271, for more for more on benefiting from this very convenient feature.

Many of the programs use the multi-threaded character of modern CPUs, in Section 4.4
[Multi-threaded operations], page 274, we will discuss how you can configure this behavior,
along with some tips on making best use of them. In Section 4.5 [Numeric data types],
page 277, we will review the various types to store numbers in your datasets: setting the
proper type for the usage context1 can greatly improve the file size and also speed of reading,
writing or processing them.

We will then look into the recognized table formats in Section 4.7 [Tables], page 282,
and how large datasets are broken into tiles, or mesh grid in Section 4.8 [Tessellation],
page 289. Finally, we will take a look at the behavior regarding output files: Section 4.9
[Automatic output], page 290, describes how the programs set a default name for their
output when you do not give one explicitly (using --output). When the output is a FITS
file, all the programs also store some very useful information in the header that is discussed
in Section 4.10 [Output FITS files], page 291.

4.1 Command-line

Gnuastro’s programs are customized through the standard Unix-like command-line envi-
ronment and GNU style command-line options. Both are very common in many Unix-like
operating system programs. In Section 4.1.1 [Arguments and options], page 248, we will
start with the difference between arguments and options and elaborate on the GNU style

1 For example, if the values in your dataset can only be integers between 0 or 65000, store them in a
unsigned 16-bit type, not 64-bit floating point type (which is the default in most systems). It takes four
times less space and is much faster to process.
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of options. Afterwards, in Section 4.1.2 [Common options], page 251, we will go into the
detailed list of all the options that are common to all the programs in Gnuastro.

4.1.1 Arguments and options

When you type a command on the command-line, it is passed onto the shell (a generic name
for the program that manages the command-line) as a string of characters. As an example,
see the “Invoking ProgramName” sections in this manual for some examples of commands
with each program, like Section 5.3.5 [Invoking Table], page 359, Section 5.1.1 [Invoking
Fits], page 297, or Section 7.1.5 [Invoking Statistics], page 525.

The shell then brakes up your string into separate tokens or words using any metachar-
acters (like white-space, tab, |, > or ;) that are in the string. On the command-line, the
first thing you usually enter is the name of the program you want to run. After that, you
can specify two types of tokens: arguments and options. In the GNU-style, arguments are
those tokens that are not preceded by any hyphens (-, see Section 4.1.1.1 [Arguments],
page 249). Here is one example:

$ astcrop --center=53.162551,-27.789676 -w10/3600 --mode=wcs udf.fits

In the example above, we are running Section 6.1 [Crop], page 385, to crop a region of
width 10 arc-seconds centered at the given RA and Dec from the input Hubble Ultra-Deep
Field (UDF) FITS image. Here, the argument is udf.fits. Arguments are most commonly
the input file names containing your data. Options start with one or two hyphens, followed
by an identifier for the option (the option’s name, for example, --center, -w, --mode

in the example above) and its value (anything after the option name, or the optional =
character). Through options you can configure how the program runs (interprets the data
you provided).

Arguments can be mandatory and optional and unlike options, they do not have any
identifiers. Hence, when there multiple arguments, their order might also matter (for exam-
ple, in cp which is used for copying one file to another location). The outputs of --usage
and --help shows which arguments are optional and which are mandatory, see Section 4.3.1
[--usage], page 271.

As their name suggests, options can be considered to be optional and most of the time,
you do not have to worry about what order you specify them in. When the order does mat-
ter, or the option can be invoked multiple times, it is explicitly mentioned in the “Invoking
ProgramName” section of each program (this is a very important aspect of an option).

If there is only one such character, you can use a backslash (\) before it. If there are
multiple, it might be easier to simply put your whole argument or option value inside of
double quotes ("). In such cases, everything inside the double quotes will be seen as one
token or word.

For example, let’s say you want to specify the header data unit (HDU) of your FITS file
using a complex expression like ‘3; images(exposure > 100)’. If you simply add these after
the --hdu (-h) option, the programs in Gnuastro will read the value to the HDU option as
‘3’ and run. Then, the shell will attempt to run a separate command ‘images(exposure >

100)’ and complain about a syntax error. This is because the semicolon (;) is an ‘end of
command’ character in the shell. To solve this problem you can simply put double quotes
around the whole string you want to pass to --hdu as seen below:

$ astcrop --hdu="3; images(exposure > 100)" image.fits



Chapter 4: Common program behavior 249

4.1.1.1 Arguments

In Gnuastro, arguments are almost exclusively used as the input data file names. Please
consult the first few paragraph of the “Invoking ProgramName” section for each program
for a description of what it expects as input, how many arguments, or input data, it accepts,
or in what order. Everything particular about how a program treats arguments, is explained
under the “Invoking ProgramName” section for that program.

Generally, if there is a standard file name suffix for a particular format, that filename
extension is checked to identify their format. In astronomy (and thus Gnuastro), FITS is the
preferred format for inputs and outputs, so the focus here and throughout this book is on
FITS. However, other formats are also accepted in special cases, for example, Section 5.2
[ConvertType], page 314, also accepts JPEG or TIFF inputs, and writes JPEG, EPS or
PDF files. The recognized suffixes for these formats are listed there.

The list below shows the recognized suffixes for FITS data files in Gnuastro’s programs.
However, in some scenarios FITS writers may not append a suffix to the file, or use a non-
recognized suffix (not in the list below). Therefore if a FITS file is expected, but it does not
have any of these suffixes, Gnuastro programs will look into the contents of the file and if it
does conform with the FITS standard, the file will be used. Just note that checking about
5 characters at the end of a name string is much more efficient than opening and checking
the contents of a file, so it is generally recommended to have a recognized FITS suffix.

• .fits: The standard file name ending of a FITS image.

• .fit: Alternative (3 character) FITS suffix.

• .fits.Z: A FITS image compressed with compress.

• .fits.gz: A FITS image compressed with GNU zip (gzip).

• .fits.fz: A FITS image compressed with fpack.

• .imh: IRAF format image file.

Throughout this book and in the command-line outputs, whenever we want to generalize
all such astronomical data formats in a text place-holder, we will use ASTRdata and assume
that the extension is also part of this name. Any file ending with these names is directly
passed on to CFITSIO to read. Therefore you do not necessarily have to have these files on
your computer, they can also be located on an FTP or HTTP server too, see the CFITSIO
manual for more information.

CFITSIO has its own error reporting techniques, if your input file(s) cannot be opened,
or read, those errors will be printed prior to the final error by Gnuastro.

4.1.1.2 Options

Command-line options allow configuring the behavior of a program in all GNU/Linux ap-
plications for each particular execution on a particular input data. A single option can be
called in two ways: long or short. All options in Gnuastro accept the long format which has
two hyphens an can have many characters (for example, --hdu). Short options only have
one hyphen (-) followed by one character (for example, -h). You can see some examples in
the list of options in Section 4.1.2 [Common options], page 251, or those for each program’s
“Invoking ProgramName” section. Both formats are shown for those which support both.
First the short is shown then the long.
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Usually, the short options are handy when you are writing on the command-line and
want to save keystrokes and time. The long options are good for shell scripts, where you
are not usually rushing. Long options provide a level of documentation, since they are more
descriptive and less cryptic. Usually after a few months of not running a program, the short
options will be forgotten and reading your previously written script will not be easy.

Some options need to be given a value if they are called and some do not. You can
think of the latter type of options as on/off options. These two types of options can be
distinguished using the output of the --help and --usage options, which are common to all
GNU software, see Section 4.3 [Getting help], page 271. In Gnuastro we use the following
strings to specify when the option needs a value and what format that value should be
in. More specific tests will be done in the program and if the values are out of range (for
example, negative when the program only wants a positive value), an error will be reported.

INT The value is read as an integer.

FLT The value is read as a float. There are generally two types, depending on the
context. If they are for fractions, they will have to be less than or equal to
unity.

STR The value is read as a string of characters. For example, column names in a
table, or HDU names in a multi-extension FITS file. Other examples include
human-readable settings by some programs like the --domain option of the
Convolve program that can be either spatial or frequency (to specify the
type of convolution, see Section 6.3 [Convolve], page 469).

FITS or FITS/TXT
The value should be a file (most commonly FITS). In many cases, other formats
may also be accepted (for example, input tables can be FITS or plain-text, see
Section 4.7.1 [Recognized table formats], page 283).

To specify a value in the short format, simply put the value after the option. Note that since
the short options are only one character long, you do not have to type anything between
the option and its value. For the long option you either need white space or an = sign, for
example, -h2, -h 2, --hdu 2 or --hdu=2 are all equivalent.

The short format of on/off options (those that do not need values) can be concatenated
for example, these two hypothetical sequences of options are equivalent: -a -b -c4 and
-abc4. As an example, consider the following command to run Crop:

$ astcrop -Dr3 --wwidth 3 catalog.txt --deccol=4 ASTRdata

The $ is the shell prompt, astcrop is the program name. There are two arguments
(catalog.txt and ASTRdata) and four options, two of them given in short format (-D,
-r) and two in long format (--width and --deccol). Three of them require a value and
one (-D) is an on/off option.

If an abbreviation is unique between all the options of a program, the long option names
can be abbreviated. For example, instead of typing --printparams, typing --print or
maybe even --pri will be enough, if there are conflicts, the program will warn you and show
you the alternatives. Finally, if you want the argument parser to stop parsing arguments
beyond a certain point, you can use two dashes: --. No text on the command-line beyond
these two dashes will be parsed.
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Gnuastro has two types of options with values, those that only take a single value are the
most common type. If these options are repeated or called more than once on the command-
line, the value of the last time it was called will be assigned to it. This is very useful when
you are testing/experimenting. Let’s say you want to make a small modification to one
option value. You can simply type the option with a new value in the end of the command
and see how the script works. If you are satisfied with the change, you can remove the
original option for human readability. If the change was not satisfactory, you can remove
the one you just added and not worry about forgetting the original value. Without this
capability, you would have to memorize or save the original value somewhere else, run the
command and then change the value again which is not at all convenient and is potentially
cause lots of bugs.

On the other hand, some options can be called multiple times in one run of a program
and can thus take multiple values (for example, see the --column option in Section 5.3.5
[Invoking Table], page 359. In these cases, the order of stored values is the same order that
you specified on the command-line.

Gnuastro’s programs do not keep any internal default values, so some options are manda-
tory and if they do not have a value, the program will complain and abort. Most programs
have many such options and typing them by hand on every call is impractical. To facili-
tate the user experience, after parsing the command-line, Gnuastro’s programs read special
configuration files to get the necessary values for the options you have not identified on the
command-line. These configuration files are fully described in Section 4.2 [Configuration
files], page 268.� �
CAUTION: In specifying a file address, if you want to use the shell’s tilde expansion
(~) to specify your home directory, leave at least one space between the option name and
your value. For example, use -o ~/test, --output ~/test or --output= ~/test. Calling
them with -o~/test or --output=~/test will disable shell expansion.
 	� �
CAUTION: If you forget to specify a value for an option which requires one, and that
option is the last one, Gnuastro will warn you. But if it is in the middle of the command,
it will take the text of the next option or argument as the value which can cause undefined
behavior.
 	� �
NOTE: In some contexts Gnuastro’s counting starts from 0 and in others 1. You can
assume by default that counting starts from 1, if it starts from 0 for a special option, it
will be explicitly mentioned.
 	
4.1.2 Common options

To facilitate the job of the users and developers, all the programs in Gnuastro share some
basic command-line options for the options that are common to many of the programs.
The full list is classified as Section 4.1.2.1 [Input/Output options], page 252, Section 4.1.2.2
[Processing options], page 255, and Section 4.1.2.3 [Operating mode options], page 257. In
some programs, some of the options are irrelevant, but still recognized (you will not get an
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unrecognized option error, but the value is not used). Unless otherwise mentioned, these
options are identical between all programs.

4.1.2.1 Input/Output options

These options are to do with the input and outputs of the various programs.

--stdintimeout

Number of micro-seconds to wait for writing/typing in the first line of standard
input from the command-line (see Section 4.1.4 [Standard input], page 264).
This is only relevant for programs that also accept input from the standard
input, and you want to manually write/type the contents on the terminal.
When the standard input is already connected to a pipe (output of another
program), there will not be any waiting (hence no timeout, thus making this
option redundant).

If the first line-break (for example, with the ENTER key) is not provided before
the timeout, the program will abort with an error that no input was given.
Note that this time interval is only for the first line that you type. Once the
first line is given, the program will assume that more data will come and accept
rest of your inputs without any time limit. You need to specify the ending of
the standard input, for example, by pressing CTRL-D after a new line.

Note that any input you write/type into a program on the command-line with
Standard input will be discarded (lost) once the program is finished. It is only
recoverable manually from your command-line (where you actually typed) as
long as the terminal is open. So only use this feature when you are sure that
you do not need the dataset (or have a copy of it somewhere else).

-h STR/INT

--hdu=STR/INT

The name or number of the desired Header Data Unit, or HDU, in the FITS
image. A FITS file can store multiple HDUs or extensions, each with either
an image or a table or nothing at all (only a header). Note that counting of
the extensions starts from 0(zero), not 1(one). Counting from 0 is forced on
us by CFITSIO which directly reads the value you give with this option (see
Section 3.1.1.2 [CFITSIO], page 212). When specifying the name, case is not
important so IMAGE, image or ImAgE are equivalent.

CFITSIO has many capabilities to help you find the extension you want, far
beyond the simple extension number and name. See CFITSIO manual’s “HDU
Location Specification” section for a very complete explanation with several
examples. A # is appended to the string you specify for the HDU2 and the result
is put in square brackets and appended to the FITS file name before calling
CFITSIO to read the contents of the HDU for all the programs in Gnuastro.

2 With the # character, CFITSIO will only read the desired HDU into your memory, not all the existing
HDUs in the fits file.
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� �
Default HDU is HDU number 1 (counting from 0): by default, Gnuastro’s
programs assume that their (main/first) input is in HDU number 1 (counting
from zero). So if you don’t specify the HDU number, the program will read
the input from this HDU. For programs that can take multiple FITS datasets
as input (like Section 6.2 [Arithmetic], page 399) this default HDU applies to
the first input, you still need to call --hdu for the other inputs. Generally,
all Gnuastro’s programs write their outputs in HDU number 1 (HDU 0 is
reserved for metadata like the configuration parameters that the program was
run with). For more on this, see Section 5.1 [Fits], page 295.
 	

-s STR

--searchin=STR

Where to match/search for columns when the column identifier was not a num-
ber, see Section 4.7.3 [Selecting table columns], page 287. The acceptable values
are name, unit, or comment. This option is only relevant for programs that take
table columns as input.

-I

--ignorecase

Ignore case while matching/searching column meta-data (in the field specified
by the --searchin). The FITS standard suggests to treat the column names as
case insensitive, which is strongly recommended here also but is not enforced.
This option is only relevant for programs that take table columns as input.

This option is not relevant to Section 12.2 [BuildProgram], page 732, hence in
that program the short option -I is used for include directories, not to ignore
case.

-o STR

--output=STR

The name of the output file or directory. With this option the automatic output
names explained in Section 4.9 [Automatic output], page 290, are ignored.

-T STR

--type=STR

The data type of the output depending on the program context. This option
is not applicable to some programs like Section 5.1 [Fits], page 295, and will
be ignored by them. The different acceptable values to this option are fully
described in Section 4.5 [Numeric data types], page 277.

-D

--dontdelete

By default, if the output file already exists, Gnuastro’s programs will silently
delete it and put their own outputs in its place. When this option is activated,
if the output file already exists, the programs will not delete it, will warn you,
and will abort.



Chapter 4: Common program behavior 254

-K

--keepinputdir

In automatic output names, do not remove the directory information of the
input file names. As explained in Section 4.9 [Automatic output], page 290,
if no output name is specified (with --output), then the output name will be
made in the existing directory based on your input’s file name (ignoring the
directory of the input). If you call this option, the directory information of the
input will be kept and the automatically generated output name will be in the
same directory as the input (usually with a suffix added). Note that his is only
relevant if you are running the program in a different directory than the input
data.

-t STR

--tableformat=STR

The output table’s type. This option is only relevant when the output is a table
and its format cannot be deduced from its filename. For example, if a name
ending in .fits was given to --output, then the program knows you want a
FITS table. But there are two types of FITS tables: FITS ASCII, and FITS
binary. Thus, with this option, the program is able to identify which type you
want. The currently recognized values to this option are:

--wcslinearmatrix=STR

Select the linear transformation matrix of the output’s WCS. This option only
takes two values: pc (for the PCi_j formalism) and cd (for CDi_j). For more on
the different formalisms, please see Section 8.1 of the FITS standard3, version
4.0.

In short, in the PCi_j formalism, we only keep the linear rotation matrix in these
keywords and put the scaling factor (or the pixel scale in astronomical imaging)
in the CDELTi keywords. In the CDi_j formalism, we blend the scaling into the
rotation into a single matrix and keep that matrix in these FITS keywords.
By default, Gnuastro uses the PCi_j formalism, because it greatly helps in
human readability of the raw keywords and is also the default mode of WCSLIB.
However, in some circumstances it may be necessary to have the keywords in
the CD format; for example, when you need to feed the outputs into other
software that do not follow the full FITS standard and only recognize the CDi_
j formalism.

txt A plain text table with white-space characters between the columns
(see Section 4.7.2 [Gnuastro text table format], page 285).

fits-ascii

A FITS ASCII table (see Section 4.7.1 [Recognized table formats],
page 283).

fits-binary

A FITS binary table (see Section 4.7.1 [Recognized table formats],
page 283).

3 https://fits.gsfc.nasa.gov/standard40/fits_standard40aa-le.pdf

https://fits.gsfc.nasa.gov/standard40/fits_standard40aa-le.pdf
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--outfitsnoconfig

Do not write any of the program’s metadata (option values or versions and
dates) into the 0-th HDU of the output FITS file, see Section 4.10 [Output
FITS files], page 291.

--outfitsnodate

Do not write the DATE or DATEUTC keywords into the 0-th HDU of the output
FITS file, see Section 4.10 [Output FITS files], page 291.

--outfitsnocommit

Do not write the COMMIT keyword into the 0-th HDU of the output FITS file,
see Section 4.10 [Output FITS files], page 291.

--outfitsnoversions

Do not write the versions of any dependency software into the 0-th HDU of the
output FITS file, see Section 4.10 [Output FITS files], page 291.

4.1.2.2 Processing options

Some processing steps are common to several programs, so they are defined as common
options to all programs. Note that this class of common options is thus necessarily less
common between all the programs than those described in Section 4.1.2.1 [Input/Output
options], page 252, or Section 4.1.2.3 [Operating mode options], page 257, options. Also,
if they are irrelevant for a program, these options will not display in the --help output of
the program.

--minmapsize=INT

The minimum size (in bytes) to memory-map a processing/internal array as
a file (on the non-volatile HDD/SSD), and not use the system’s RAM. Before
using this option, please read Section 4.6 [Memory management], page 279. By
default processing arrays will only be memory-mapped to a file when the RAM
is full. With this option, you can force the memory-mapping, even when there
is enough RAM. To ensure this default behavior, the pre-defined value to this
option is an extremely large value (larger than any existing RAM).

Please note that using a non-volatile file (in the HDD/SDD) instead of RAM can
significantly increase the program’s running time, especially on HDDs (where
read/write is slower). Also, note that the number of memory-mapped files that
your kernel can support is limited. So when this option is necessary, it is best to
give it values larger than 1 megabyte (--minmapsize=1000000). You can then
decrease it for a specific program’s invocation on a large input after you see
memory issues arise (for example, an error, or the program not aborting and
fully consuming your memory). If you see randomly named files remaining in
this directory when the program finishes normally, please send us a bug report
so we address the problem, see Section 1.9 [Report a bug], page 15.� �
Limited number of memory-mapped files: The operating system kernels usu-
ally support a limited number of memory-mapped files. Therefore never set
--minmapsize to zero or a small number of bytes (so too many files are cre-
ated). If the kernel capacity is exceeded, the program will crash.
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--quietmmap

Do not print any message when an array is stored in non-volatile memory
(HDD/SSD) and not RAM, see the description of --minmapsize (above) for
more.

-Z INT[,INT[,...]]

--tilesize=[,INT[,...]]

The size of regular tiles for tessellation, see Section 4.8 [Tessellation], page 289.
For each dimension an integer length (in units of data-elements or pixels) is
necessary. If the number of input dimensions is different from the number of
values given to this option, the program will stop with an error. Values must be
separated by commas (,) and can also be fractions (for example, 4/2). If they
are fractions, the result must be an integer, otherwise an error will be printed.

-M INT[,INT[,...]]

--numchannels=INT[,INT[,...]]

The number of channels for larger input tessellation, see Section 4.8 [Tessel-
lation], page 289. The number and types of acceptable values are similar to
--tilesize. The only difference is that instead of length, the integers values
given to this option represent the number of channels, not their size.

-F FLT

--remainderfrac=FLT

The fraction of remainder size along all dimensions to add to the first tile. See
Section 4.8 [Tessellation], page 289, for a complete description. This option is
only relevant if --tilesize is not exactly divisible by the input dataset’s size
in a dimension. If the remainder size is larger than this fraction (compared to
--tilesize), then the remainder size will be added with one regular tile size
and divided between two tiles at the start and end of the given dimension.

--workoverch

Ignore the channel borders for the high-level job of the given application. As a
result, while the channel borders are respected in defining the small tiles (such
that no tile will cross a channel border), the higher-level program operation will
ignore them, see Section 4.8 [Tessellation], page 289.

--checktiles

Make a FITS file with the same dimensions as the input but each pixel is
replaced with the ID of the tile that it is associated with. Note that the tile
IDs start from 0. See Section 4.8 [Tessellation], page 289, for more on Tiling
an image in Gnuastro.

--oneelempertile

When showing the tile values (for example, with --checktiles, or when the
program’s output is tessellated) only use one element for each tile. This can be
useful when only the relative values given to each tile compared to the rest are
important or need to be checked. Since the tiles usually have a large number
of pixels within them the output will be much smaller, and so easier to read,
write, store, or send.

Note that when the full input size in any dimension is not exactly divisible by
the given --tilesize in that dimension, the edge tile(s) will have different sizes
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(in units of the input’s size), see --remainderfrac. But with this option, all
displayed values are going to have the (same) size of one data-element. Hence,
in such cases, the image proportions are going to be slightly different with this
option.

If your input image is not exactly divisible by the tile size and you want one
value per tile for some higher-level processing, all is not lost though. You can
see how many pixels were within each tile (for example, to weight the values
or discard some for later processing) with Gnuastro’s Statistics (see Section 7.1
[Statistics], page 508) as shown below. The output FITS file is going to have
two extensions, one with the median calculated on each tile and one with the
number of elements that each tile covers. You can then use the where operator
in Section 6.2 [Arithmetic], page 399, to set the values of all tiles that do not
have the regular area to a blank value.

$ aststatistics --median --number --ontile input.fits \

--oneelempertile --output=o.fits

$ REGULAR_AREA=1600 # Check second extension of `o.fits'.

$ astarithmetic o.fits o.fits $REGULAR_AREA ne nan where \

-h1 -h2

Note that if input.fits also has blank values, then the median on tiles with
blank values will also be ignored with the command above (which is desirable).

--inteponlyblank

When values are to be interpolated, only change the values of the blank ele-
ments, keep the non-blank elements untouched.

--interpmetric=STR

The metric to use for finding nearest neighbors. Currently it only accepts
the Manhattan (or taxicab) metric with manhattan, or the radial metric with
radial.

The Manhattan distance between two points is defined with |Δx|+ |Δy|. Thus
the Manhattan metric has the advantage of being fast, but at the expense of
being less accurate. The radial distance is the standard definition of distance
in a Euclidean space:

√
Δx2 +Δy2. It is accurate, but the multiplication and

square root can slow down the processing.

--interpnumngb=INT

The number of nearby non-blank neighbors to use for interpolation.

4.1.2.3 Operating mode options

Another group of options that are common to all the programs in Gnuastro are those to do
with the general operation of the programs. The explanation for those that are not only
limited to Gnuastro but are common to all GNU programs start with (GNU option).

-- (GNU option) Stop parsing the command-line. This option can be useful in
scripts or when using the shell history. Suppose you have a long list of options,
and want to see if removing some of them (to read from configuration files, see
Section 4.2 [Configuration files], page 268) can give a better result. If the ones
you want to remove are the last ones on the command-line, you do not have to
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delete them, you can just add -- before them and if you do not get what you
want, you can remove the -- and get the same initial result.

--usage (GNU option) Only print the options and arguments and abort. This is very
useful for when you know the what the options do, and have just forgot their
long/short identifiers, see Section 4.3.1 [--usage], page 271.

-?

--help (GNU option) Print all options with an explanation and abort. Adding this
option will print all the options in their short and long formats, also displaying
which ones need a value if they are called (with an = after the long format fol-
lowed by a string specifying the format, see Section 4.1.1.2 [Options], page 249).
A short explanation is also given for what the option is for. The program will
quit immediately after the message is printed and will not do any form of pro-
cessing, see Section 4.3.2 [--help], page 272.

-V

--version

(GNU option) Print a short message, showing the full name, version, copyright
information and program authors and abort. On the first line, it will print
the official name (not executable name) and version number of the program.
Following this is a blank line and a copyright information. The program will
not run.

-q

--quiet Do not report steps. All the programs in Gnuastro that have multiple major
steps will report their steps for you to follow while they are operating. If you do
not want to see these reports, you can call this option and only error/warning
messages will be printed. If the steps are done very fast (depending on the
properties of your input) disabling these reports will also decrease running time.

--cite Print all necessary information to cite and acknowledge Gnuastro in your pub-
lished papers. With this option, the programs will print the BibTEX entry to
include in your paper for Gnuastro in general, and the particular program’s
paper (if that program comes with a separate paper). It will also print the
necessary acknowledgment statement to add in the respective section of your
paper and it will abort. For a more complete explanation, please see Section 1.13
[Acknowledgments], page 19.

Citations and acknowledgments are vital for the continued work on Gnuastro.
Gnuastro started, and is continued, based on separate research projects. So
if you find any of the tools offered in Gnuastro to be useful in your research,
please use the output of this command to cite and acknowledge the program
(and Gnuastro) in your research paper. Thank you.

Gnuastro is still new, there is no separate paper only devoted to Gnuastro yet.
Therefore currently the paper to cite for Gnuastro is the paper for NoiseChisel
which is the first published paper introducing Gnuastro to the astronomical
community. Upon reaching a certain point, a paper completely devoted to
describing Gnuastro’s many functionalities will be published, see Section 1.7.1
[GNU Astronomy Utilities 1.0], page 12.
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-P

--printparams

With this option, Gnuastro’s programs will read your command-line options and
all the configuration files. If there is no problem (like a missing parameter or a
value in the wrong format or range) and immediately before actually running,
the programs will print the full list of option names, values and descriptions,
sorted and grouped by context and abort. They will also report the version
number, the date they were configured on your system and the time they were
reported.

As an example, you can give your full command-line options and even the input
and output file names and finally just add -P to check if all the parameters are
finely set. If everything is OK, you can just run the same command (easily
retrieved from the shell history, with the top arrow key) and simply remove the
last two characters that showed this option.

No program will actually start its processing when this option is called. The
otherwise mandatory arguments for each program (for example, input image or
catalog files) are no longer required when you call this option.

--config=STR

Parse STR as a configuration file name, immediately when this option is con-
fronted (see Section 4.2 [Configuration files], page 268). The --config op-
tion can be called multiple times in one run of any Gnuastro program on the
command-line or in the configuration files. In any case, it will be immediately
read (before parsing the rest of the options on the command-line, or lines in a
configuration file). If the given file does not exist or cannot be read for any rea-
son, the program will print a warning and continue its processing. The warning
can be suppressed with --quiet.

Note that by definition, options on the command-line still take precedence over
those in any configuration file, including the file(s) given to this option if they
are called before it. Also see --lastconfig and --onlyversion on how this op-
tion can be used for reproducible results. You can use --checkconfig (below)
to check/confirm the parsing of configuration files.

--checkconfig

Print options and their values, within the command-line or configuration files,
as they are parsed (see Section 4.2.2 [Configuration file precedence], page 269).
If an option has already been set, or is ignored by the program, this option
will also inform you with special values like --ALREADY-SET--. Only options
that are parsed after this option are printed, so to see the parsing of all input
options, it is recommended to put this option immediately after the program
name before any other options.

This is a very good option to confirm where the value of each option is has been
defined in scenarios where there are multiple configuration files (for debugging).

--config-prefix=STR

Accept option names in configuration files that start with the given prefix. Since
order matters when reading custom configuration files, this option should be
called before the --config option(s) that contain options with the given prefix.
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This option does not affect the options within configuration files that have the
standard name (without a prefix).

This gives unique features to Gnuastro’s configuration files, especially in large
pipelines. Let’s demonstrate this with the simple scenario below. You have
multiple configuration files for different instances of one program (let’s as-
sume nc-a.conf and nc-b.conf). At the same time, want to load all the
option names/values into your shell as environment variables (for example with
source). This happens when you want to use the options as shell variables in
other parts of the your pipeline.

If the two configuration files have different values for the same option (as shown
below), and you don’t use --config-prefix, the shell will over-write the com-
mon option values between the configuration files. But thanks to --config-

prefix, you can give a different prefix for the different instances of the same
option in different configuration files.

$ cat nc-a.conf

a_tilesize=20,20

$ cat nc-b.conf

b_tilesize=40,40

## Load configuration files as shell scripts (to define the

## option name and values as shell variables with values).

## Just note that 'source' only takes one file at a time.

$ for c in nc-*.conf; do source $c; done

$ astnoisechisel img.fits \

--config=nc-a.conf --config-prefix=a_

$ echo "NoiseChisel run with --tilesize=$a_tilesize"

$ astnoisechisel img.fits \

--config=nc-b.conf --config-prefix=b_

$ echo "NoiseChisel run with --tilesize=$b_tilesize"

-S

--setdirconf

Update the current directory configuration file for the Gnuastro program and
quit. The full set of command-line and configuration file options will be parsed
and options with a value will be written in the current directory configuration
file for this program (see Section 4.2 [Configuration files], page 268). If the
configuration file or its directory does not exist, it will be created. If a config-
uration file exists it will be replaced (after it, and all other configuration files
have been read). In any case, the program will not run.

This is the recommended method4 to edit/set the configuration file for all future
calls to Gnuastro’s programs. It will internally check if your values are in
the correct range and type and save them according to the configuration file

4 Alternatively, you can use your favorite text editor.
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format, see Section 4.2.1 [Configuration file format], page 268. So if there are
unreasonable values to some options, the program will notify you and abort
before writing the final configuration file.

When this option is called, the otherwise mandatory arguments, for example
input image or catalog file(s), are no longer mandatory (since the program will
not run).

-U

--setusrconf

Update the user configuration file and quit (see Section 4.2 [Configuration files],
page 268). See explanation under --setdirconf for more details.

--lastconfig

This is the last configuration file that must be read. When this option is
confronted in any stage of reading the options (on the command-line or in a
configuration file), no other configuration file will be parsed, see Section 4.2.2
[Configuration file precedence], page 269, and Section 4.2.3 [Current directory
and User wide], page 270. Like all on/off options, on the command-line, this
option does not take any values. But in a configuration file, it takes the values
of 0 or 1, see Section 4.2.1 [Configuration file format], page 268. If it is present
in a configuration file with a value of 0, then all later occurrences of this option
will be ignored.

--onlyversion=STR

Only run the program if Gnuastro’s version is exactly equal to STR (see Sec-
tion 1.7 [Version numbering], page 11). Note that it is not compared as a
number, but as a string of characters, so 0, or 0.0 and 0.00 are different. If
the running Gnuastro version is different, then this option will report an error
and abort as soon as it is confronted on the command-line or in a configuration
file. If the running Gnuastro version is the same as STR, then the program will
run as if this option was not called.

This is useful if you want your results to be exactly reproducible and not mis-
takenly run with an updated/newer or older version of the program. Besides
internal algorithmic/behavior changes in programs, the existence of options or
their names might change between versions (especially in these earlier versions
of Gnuastro).

Hence, when using this option (probably in a script or in a configuration file),
be sure to call it before other options. The benefit is that, when the version
differs, the other options will not be parsed and you, or your collaborators/users,
will not get errors saying an option in your configuration does not exist in the
running version of the program.

Here is one example of how this option can be used in conjunction with the
--lastconfig option. Let’s assume that you were satisfied with the results
of this command: astnoisechisel image.fits --snquant=0.95 (along with
various options set in various configuration files). You can save the state of
NoiseChisel and reproduce that exact result on image.fits later by following
these steps (the extra spaces, and \, are only for easy readability, if you want
to try it out, only one space between each token is enough).
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$ echo "onlyversion X.XX" > reproducible.conf

$ echo "lastconfig 1" >> reproducible.conf

$ astnoisechisel image.fits --snquant=0.95 -P \

>> reproducible.conf

--onlyversion was available from Gnuastro 0.0, so putting it immediately
at the start of a configuration file will ensure that later, you (or others using
different version) will not get a non-recognized option error in case an option
was added/removed. --lastconfig will inform the installed NoiseChisel to not
parse any other configuration files. This is done because we do not want the
user’s user-wide or system wide option values affecting our results. Finally, with
the third command, which has a -P (short for --printparams), NoiseChisel will
print all the option values visible to it (in all the configuration files) and the shell
will append them to reproduce.conf. Hence, you do not have to worry about
remembering the (possibly) different options in the different configuration files.

Afterwards, if you run NoiseChisel as shown below (telling it to read this con-
figuration file with the --config option). You can be sure that there will either
be an error (for version mismatch) or it will produce exactly the same result
that you got before.

$ astnoisechisel --config=reproducible.conf

--log Some programs can generate extra information about their outputs in a log file.
When this option is called in those programs, the log file will also be printed.
If the program does not generate a log file, this option is ignored.� �
--log is not thread-safe: The log file usually has a fixed name. Therefore if
two simultaneous calls (with --log) of a program are made in the same direc-
tory, the program will try to write to he same file. This will cause problems
like unreasonable log file, undefined behavior, or a crash.
 	

-N INT

--numthreads=INT

Use INT CPU threads when running a Gnuastro program (see Section 4.4 [Multi-
threaded operations], page 274). If the value is zero (0), or this option is not
given on the command-line or any configuration file, the value will be deter-
mined at run-time: the maximum number of threads available to the system
when you run a Gnuastro program.

Note that multi-threaded programming is only relevant to some programs. In
others, this option will be ignored.

4.1.3 Shell TAB completion (highly customized)
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� �
Under development: Gnuastro’s TAB completion in Bash already greatly improves usage
of Gnuastro on the command-line, but still under development and not yet complete. If
you are interested to try it out, please go ahead and activate it (as described below), we
encourage this. But please have in mind that there are known issues5 and you may find
new issues. If you do, please get in touch with us as described in Section 1.9 [Report a
bug], page 15. TAB completion is currently only implemented in the following programs:
Arithmetic, BuildProgram, ConvertType, Convolve, CosmicCalculator, Crop, Fits and
Table. For progress on this task, please see Task 157996.
 	

Bash provides a built-in feature called programmable completion7 to help increase inter-
active workflow efficiency and minimize the number of keystrokes and the need to memorize
things. It is also known as TAB completion, bash completion, auto-completion, or word
completion. Completion is activated by pressing [TAB] while you are typing a command.
For file arguments this is the default behavior already and you have probably used it a lot
with any command-line program.

Besides this simple/default mode, Bash also enables a high level of customization features
for its completion. These features have been extensively used in Gnuastro to improve
your work efficiency8. For example, if you are running asttable (which only accepts files
containing a table), and you press [TAB], it will only suggest files containing tables. As
another example, if an option needs image HDUs within a FITS file, pressing [TAB] will
only suggest the image HDUs (and not other possibly existing HDUs that contain tables, or
just metadata). Just note that the file name has to be already given on the command-line
before reaching such options (that look into the contents of a file).

But TAB completion is not limited to file types or contents. Arguments/Options that
take certain fixed string values will directly suggest those strings with TAB, and completely
ignore the file structure (for example, spectral line names in Section 9.1.3 [Invoking Cosmic-
Calculator], page 659)! As another example, the option --numthreads option (to specify
the number of threads to use by the program), will find the number of available threads on
the system, and suggest the possible numbers with a TAB!

To activate Gnuastro’s custom TAB completion in Bash, you need to put the following
line in one of your Bash startup files (for example, ~/.bashrc). If you installed Gnuastro
using the steps of Section 1.1 [Quick start], page 1, you should have already done this (the
command just after sudo make install). For a list of (and discussion on) Bash startup
files and installation directories see Section 3.3.1.2 [Installation directory], page 233. Of
course, if Gnuastro was installed in a custom location, replace the ‘/usr/local’ part of the
line below to the value that was given to --prefix during Gnuastro’s configuration9.

# Enable Gnuastro's TAB completion

5 http://savannah.gnu.org/bugs/index.php?group=gnuastro&category_id=128

6 https://savannah.gnu.org/task/?15799
7 https://www.gnu.org/software/bash/manual/html_node/Programmable-Completion.html
8 To learn how Gnuastro implements TAB completion in Bash, see Section 13.8 [Bash programmable

completion], page 943.
9 In case you do not know the installation directory of Gnuastro on your system, you can find out with

this command: which astfits | sed -e"s|/bin/astfits||"

http://savannah.gnu.org/bugs/index.php?group=gnuastro&category_id=128
https://savannah.gnu.org/task/?15799
https://www.gnu.org/software/bash/manual/html_node/Programmable-Completion.html
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source /usr/local/share/gnuastro/completion.bash

After adding the line above in a Bash startup file, TAB completion will always be
activated in any new terminal. To see if it has been activated, try it out with asttable

[TAB][TAB] and astarithmetic [TAB][TAB] in a directory that contains tables and images.
The first will only suggest the files with a table, and the second, only those with an image.� �
TAB completion only works with long option names: As described above, short options
are much more complex to generalize, therefore TAB completion is only available for long
options. But do not worry! TAB completion also involves option names, so if you just
type --a[TAB][TAB], you will get the list of options that start with an --a. Therefore as
a side-effect of TAB completion, your commands will be far more human-readable with
minimal key strokes.
 	
4.1.4 Standard input

The most common way to feed the primary/first input dataset into a program is to give its
filename as an argument (discussed in Section 4.1.1.1 [Arguments], page 249). When you
want to run a series of programs in sequence, this means that each will have to keep the
output of each program in a separate file and re-type that file’s name in the next command.
This can be very slow and frustrating (mis-typing a file’s name).

To solve the problem, the founders of Unix defined pipes to directly feed the output of
one program (its “Standard output” stream) into the “standard input” of a next program.
This removes the need to make temporary files between separate processes and became one
of the best demonstrations of the Unix-way, or Unix philosophy.

Every program has three streams identifying where it reads/writes non-file
inputs/outputs: Standard input, Standard output, and Standard error. When a program is
called alone, all three are directed to the terminal that you are using. If it needs an input,
it will prompt you for one and you can type it in. Or, it prints its results in the terminal
for you to see.

For example, say you have a FITS table/catalog containing the B and V band magnitudes
(MAG_B and MAG_V columns) of a selection of galaxies along with many other columns. If
you want to see only these two columns in your terminal, can use Gnuastro’s Section 5.3
[Table], page 340, program like below:

$ asttable cat.fits -cMAG_B,MAG_V

Through the Unix pipe mechanism, when the shell confronts the pipe character (|), it
connects the standard output of the program before the pipe, to the standard input of the
program after it. So it is literally a “pipe”: everything that you would see printed by the
first program on the command (without any pipe), is now passed to the second program
(and not seen by you).

To continue the previous example, let’s say you want to see the B-V color. To do this,
you can pipe Table’s output to AWK (a wonderful tool for processing things like plain text
tables):

$ asttable cat.fits -cMAG_B,MAG_V | awk '{print $1-$2}'

But understanding the distribution by visually seeing all the numbers under each other
is not too useful! You can therefore feed this single column information into Section 7.1
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[Statistics], page 508, to give you a general feeling of the distribution with the same com-
mand:

$ asttable cat.fits -cMAG_B,MAG_V | awk '{print $1-$2}' | aststatistics

Gnuastro’s programs that accept input from standard input, only look into the Standard
input stream if there is no first argument. In other words, arguments take precedence over
Standard input. When no argument is provided, the programs check if the standard input
stream is already full or not (output from another program is waiting to be used). If data
is present in the standard input stream, it is used.

When the standard input is empty, the program will wait --stdintimeoutmicro-seconds
for you to manually enter the first line (ending with a new-line character, or the ENTER key,
see Section 4.1.2.1 [Input/Output options], page 252). If it detects the first line in this time,
there is no more time limit, and you can manually write/type all the lines for as long as it
takes. To inform the program that Standard input has finished, press CTRL-D after a new
line. If the program does not catch the first line before the time-out finishes, it will abort
with an error saying that no input was provided.� �
Manual input in Standard input is discarded: Be careful that when you manually fill the
Standard input, the data will be discarded once the program finishes and reproducing the
result will be impossible. Therefore this form of providing input is only good for temporary
tests.
 	� �
Standard input currently only for plain text: Currently Standard input only works for
plain text inputs like the example above. We will later allow FITS files into the programs
through standard input also.
 	
4.1.5 Shell tips

Gnuastro’s programs are primarily meant to be run on the command-line shell environment.
In this section, we will review some useful tips and tricks that can be helpful in the pipelines
that you run.

4.1.5.1 Separate shell variables for multiple outputs

Sometimes your commands print multiple values and you want to use them as different shell
variables. Let’s describe the problem (shown in the box below) with an example (that you
can reproduce without any external data).

With the commands below, we’ll first make a noisy (σ = 5) image (100 × 100 pixels)
using Section 6.2 [Arithmetic], page 399. Then, we’ll measure10 its mean and standard
deviation using Section 7.1 [Statistics], page 508.

$ astarithmetic 100 100 2 makenew 5 mknoise-sigma -oimg.fits

$ aststatistics img.fits --mean --std

10 The actual printed values by aststatistics may slightly differ for you. This is because of a different
random number generator seed used in astarithmetic. To get an exactly reproducible result, see
Section 6.2.3.4 [Generating random numbers], page 406
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-3.10938611484039e-03 4.99607077069093e+00� �
THE PROBLEM: you want the first number printed above to be stored in a shell variable
called my_mean and the second number to be stored as the my_std shell variable (you are
free to choose any name!).
 	
The first thing that may come to mind is to run Statistics two times, and write the output
into separate variables like below:

$ my_std=$(aststatistics img.fits --std) ## NOT SOLUTION! ##

$ my_mean=$(aststatistics img.fits --mean) ## NOT SOLUTION! ##

But this is not a good solution because as img.fits becomes larger (more pixels), the
time it takes for Statistics to simply load the data into memory can be significant. This will
slow down your pipeline and besides wasting your time, it contributes to global warming (by
spending energy on an un-necessary action; take this seriously because your pipeline may
scale up to involve thousands of large datasets)! Furthermore, besides loading of the input
data, Statistics (and Gnuastro in general) is designed to do multiple measurements in one
pass over the data as much as possible (to further decrease Gnuastro’s carbon footprint).
So when given --mean --std, it will measure both in one pass over the pixels (not two
passes!). In other words, in this case, you get the two measurements for the cost of one.

How do you separate the values from the first aststatistics command above? One
ugly way is to write the two-number output string into a single shell variable and then
separate, or tokenize, the string with two subsequent commands like below:

$ meanstd=$(aststatistics img.fits --mean --std) ## NOT SOLUTION! ##

$ my_mean=$(echo $meanstd | awk '{print $1}') ## NOT SOLUTION! ##

$ my_std=$(echo $meanstd | awk '{print $2}') ## NOT SOLUTION! ##� �
SOLUTION: The solution is to formatted-print (printf) the numbers as shell variables
definitions in a string, and evaluate (eval) that string as a command:

$ eval "$(aststatistics img.fits --mean --std \

| xargs printf "my_mean=%s; my_std=%s")"
 	
Let’s review the solution (in more detail):

1. We pipe the output into xargs11 (extended arguments) which puts the two numbers it
gets from the pipe, as arguments for printf (formatted print; because printf doesn’t
take input from pipes).

2. Within the printf call, we write the values after putting a variable name and equal-
sign, and in between them we put a ; (as if it was a shell command). The %s tells
printf to print each input as a string (not to interpret it as a number and loose
precision). Here is the output of this phase:

$ aststatistics img.fits --mean --std \

11 For more on xargs, see https://en.wikipedia.org/wiki/Xargs. It will take the standard input (from
the pipe in this scenario) and put it as arguments of the next program (printf in this scenario). In
other words, it is good for programs that don’t take input from standard input (printf in this case; but
also includes others like cp, rm, or echo).

https://en.wikipedia.org/wiki/Xargs
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| xargs printf "my_mean=%s; my_std=%s"

my_mean=-3.10938611484039e-03; my_std=4.99607077069093e+00

3. But the output above is a string! To evaluate this string as a command, we give it to
the eval command like above.

After the solution above, you will have the two my_mean and my_std variables to use sepa-
rately in your pipeline:

$ echo $my_mean

-3.10938611484039e-03

$ echo $my_std

4.99607077069093e+00

This eval-based solution has been tested in in GNU Bash, Dash and Zsh and it works
nicely in them (is “portable”). This is because the constructs used here are pretty low-level
(and widely available).

For examples usages of this technique, see the following sections: Section 2.5.6 [Extract-
ing a single spectrum and plotting it], page 147, and Section 2.5.7 [Pseudo narrow-band
images], page 149.

4.1.5.2 Truncating start of long string FITS keyword values

When you want to put a string (not a number, for example a file name) into the keyword
value, if it is longer than 68 characters, CFITSIO is going to truncate the end of the string.
The number 68 is the maximum allowable sting keyword length in the FITS standard12.
A robust way to solve this problem is to break the keyword into multiple keywords and
continue the file name there. However, especially when dealing with file names, it is usually
the last few characters that you want to preserve (the first ones are usually just basic
operating system locations).

Below, you can see the three necessary commands to optionally (when the length is too
long) truncate such long strings in GNU Bash. When truncation is necessary, to inform the
reader that the value has been truncated, we’ll put ‘...’ at the start of the string.

$ fname="/a/very/long/file/location"

$ if [ ${#fname} -gt 68 ]; then value="...${fname: -65}"; \

else value=$fname; \

fi

$ astfits image.fits --write=KEYNAME,"$value"

Here are the core handy constructs of Bash that we are using here:

${#fname}

Returns the length of the value given to the fname variable.

${fname: -65}

Returns the last 65 characters in the value of the fname variable.

12 In the FITS standard, the full length of a keyword (including its name) is 80 characters. The keyword
name occupies 8 characters, which is followed by an = (1 character). For strings, we need one SPACE
after the =, and the string should be enclosed in two single quotes. Accounting for all of these, we get
80− 8− 1− 1− 2 = 68 available characters.
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4.2 Configuration files

Each program needs a certain number of parameters to run. Supplying all the necessary
parameters each time you run the program is very frustrating and prone to errors. There-
fore all the programs read the values for the necessary options you have not given in the
command-line from one of several plain text files (which you can view and edit with any
text editor). These files are known as configuration files and are usually kept in a directory
named etc/ according to the file system hierarchy standard13.

The thing to have in mind is that none of the programs in Gnuastro keep any internal
default value. All the values must either be stored in one of the configuration files or
explicitly called in the command-line. In case the necessary parameters are not given
through any of these methods, the program will print a missing option error and abort.
The only exception to this is --numthreads, whose default value is determined at run-
time using the number of threads available to your system, see Section 4.4 [Multi-threaded
operations], page 274. Of course, you can still provide a default value for the number of
threads at any of the levels below, but if you do not, the program will not abort. Also note
that through automatic output name generation, the value to the --output option is also
not mandatory on the command-line or in the configuration files for all programs which do
not rely on that value as an input14, see Section 4.9 [Automatic output], page 290.

4.2.1 Configuration file format

The configuration files for each program have the standard program executable name with
a ‘.conf’ suffix. When you download the source code, you can find them in the same
directory as the source code of each program, see Section 13.4 [Program source], page 935.

Any line in the configuration file whose first non-white character is a # is considered
to be a comment and is ignored. An empty line is also similarly ignored. The long name
of the option should be used as an identifier. The option name and option value should
be separated by any number of ‘white-space’ characters (space, tab or vertical tab) or an
equal (=). By default several space characters are used. If the value of an option has
space characters (most commonly for the hdu option), then the full value can be enclosed in
double quotation signs (", similar to the example in Section 4.1.1 [Arguments and options],
page 248). If it is an option without a value in the --help output (on/off option, see
Section 4.1.1.2 [Options], page 249), then the value should be 1 if it is to be ‘on’ and 0

otherwise.

In each non-commented and non-blank line, any text after the first two words (option
identifier and value) is ignored. If an option identifier is not recognized in the configuration
file, the name of the file, the line number of the unrecognized option, and the unrecognized
identifier name will be reported and the program will abort. If a parameter is repeated
more more than once in the configuration files, accepts only one value, and is not set on
the command-line, then only the first value will be used, the rest will be ignored.

You can build or edit any of the directories and the configuration files yourself using
any text editor. However, it is recommended to use the --setdirconf and --setusrconf

13 http://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard
14 One example of a program that uses the value given to --output as an input is ConvertType, this value

specifies the type of the output through the value to --output, see Section 5.2.5 [Invoking ConvertType],
page 329.

http://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard
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options to set default values for the current directory or this user, see Section 4.1.2.3 [Op-
erating mode options], page 257. With these options, the values you give will be checked
before writing in the configuration file. They will also print a set of commented lines guiding
the reader and will also classify the options based on their context and write them in their
logical order to be more understandable.

4.2.2 Configuration file precedence

The option values in all the programs of Gnuastro will be filled in the following order. If an
option only takes one value which is given in an earlier step, any value for that option in a
later step will be ignored. Note that if the lastconfig option is specified in any step below,
no other configuration files will be parsed (see Section 4.1.2.3 [Operating mode options],
page 257).

1. Command-line options, for a particular run of ProgramName.

2. .gnuastro/astprogname.conf is parsed by ProgramName in the current directory.

3. .gnuastro/gnuastro.conf is parsed by all Gnuastro programs in the current directory.

4. $HOME/.local/etc/gnuastro/astprogname.conf is parsed by ProgramName in the
user’s home directory (see Section 4.2.3 [Current directory and User wide], page 270).

5. $HOME/.local/etc/gnuastro/gnuastro.conf is parsed by all Gnuastro programs
in the user’s home directory (see Section 4.2.3 [Current directory and User wide],
page 270).

6. prefix/etc/gnuastro/astprogname.conf is parsed by ProgramName in the system-
wide installation directory (see Section 4.2.4 [System wide], page 270, for prefix).

7. prefix/etc/gnuastro/gnuastro.conf is parsed by all Gnuastro programs in the
system-wide installation directory (see Section 4.2.4 [System wide], page 270, for
prefix).

The basic idea behind setting this progressive state of checking for parameter values is
that separate users of a computer or separate folders in a user’s file system might need
different values for some parameters.� �
Checking the order: You can confirm/check the order of parsing configuration files using
the --checkconfig option with any Gnuastro program, see Section 4.1.2.3 [Operating
mode options], page 257. Just be sure to place this option immediately after the program
name, before any other option.
 	

As you see above, there can also be a configuration file containing the common options
in all the programs: gnuastro.conf (see Section 4.1.2 [Common options], page 251). If
options specific to one program are specified in this file, there will be unrecognized option
errors, or unexpected behavior if the option has different behavior in another program. On
the other hand, there is no problem with astprogname.conf containing common options15.

15 As an example, the --setdirconf and --setusrconf options will also write the common options they
have read in their produced astprogname.conf.
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� �
Manipulating the order: You can manipulate this order or add new files with the following
two options which are fully described in Section 4.1.2.3 [Operating mode options], page 257:

--config Allows you to define any file to be parsed as a configuration file on the
command-line or within the any other configuration file. Recall that the file
given to --config is parsed immediately when this option is confronted (on
the command-line or in a configuration file).

--lastconfig

Allows you to stop the parsing of subsequent configuration files. Note that if
this option is given in a configuration file, it will be fully read, so its position
in the configuration does not matter (unlike --config).
 	

One example of benefiting from these configuration files can be this: raw telescope images
usually have their main image extension in the second FITS extension, while processed FITS
images usually only have one extension. If your system-wide default input extension is 0
(the first), then when you want to work with the former group of data you have to explicitly
mention it to the programs every time. With this progressive state of default values to check,
you can set different default values for the different directories that you would like to run
Gnuastro in for your different purposes, so you will not have to worry about this issue any
more.

The same can be said about the gnuastro.conf files: by specifying a behavior in this
single file, all Gnuastro programs in the respective directory, user, or system-wide steps will
behave similarly. For example, to keep the input’s directory when no specific output is given
(see Section 4.9 [Automatic output], page 290), or to not delete an existing file if it has the
same name as a given output (see Section 4.1.2.1 [Input/Output options], page 252).

4.2.3 Current directory and User wide

For the current (local) and user-wide directories, the configuration files are stored in the
hidden sub-directories named .gnuastro/ and $HOME/.local/etc/gnuastro/ respectively.
Unless you have changed it, the $HOME environment variable should point to your home
directory. You can check it by running $ echo $HOME. Each time you run any of the
programs in Gnuastro, this environment variable is read and placed in the above address.
So if you suddenly see that your home configuration files are not being read, probably you
(or some other program) has changed the value of this environment variable.

Although it might cause confusions like above, this dependence on the HOME environ-
ment variable enables you to temporarily use a different directory as your home directory.
This can come in handy in complicated situations. To set the user or current directory
configuration files based on your command-line input, you can use the --setdirconf or
--setusrconf, see Section 4.1.2.3 [Operating mode options], page 257.

4.2.4 System wide

When Gnuastro is installed, the configuration files that are shipped with the distribution are
copied into the (possibly system wide) prefix/etc/gnuastro directory. For more details on
prefix, see Section 3.3.1.2 [Installation directory], page 233, (by default it is: /usr/local).
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This directory is the final place (with the lowest priority) that the programs in Gnuastro
will check to retrieve parameter values.

If you remove an option and its value from the system wide configuration files, you either
have to specify it in more immediate configuration files or set it each time in the command-
line. Recall that none of the programs in Gnuastro keep any internal default values and
will abort if they do not find a value for the necessary parameters (except the number of
threads and output file name). So even though you might never expect to use an optional
option, it safe to have it available in this system-wide configuration file even if you do not
intend to use it frequently.

Note that in case you install Gnuastro from your distribution’s repositories, prefix will
either be set to / (the root directory) or /usr, so you can find the system wide configu-
ration variables in /etc/gnuastro/ or /usr/etc/gnuastro/. The prefix of /usr/local/
is conventionally used for programs you install from source by yourself as in Section 1.1
[Quick start], page 1.

4.3 Getting help

Probably the first time you read this book, it is either in the PDF or HTML formats. These
two formats are very convenient for when you are not actually working, but when you are
only reading. Later on, when you start to use the programs and you are deep in the middle
of your work, some of the details will inevitably be forgotten. Going to find the PDF file
(printed or digital) or the HTML web page is a major distraction.

GNU software have a very unique set of tools for aiding your memory on the command-
line, where you are working, depending how much of it you need to remember. In the past,
such command-line help was known as “online” help, because they were literally provided
to you ‘on’ the command ‘line’. However, nowadays the word “online” refers to something
on the internet, so that term will not be used. With this type of help, you can resume your
exciting research without taking your hands off the keyboard.

Another major advantage of such command-line based help routines is that they are
installed with the software in your computer, therefore they are always in sync with the
executable you are actually running. Three of them are actually part of the executable.
You do not have to worry about the version of the book or program. If you rely on external
help (a PDF in your personal print or digital archive or HTML from the official web page)
you have to check to see if their versions fit with your installed program.

If you only need to remember the short or long names of the options, --usage is advised.
If it is what the options do, then --help is a great tool. Man pages are also provided for
those who are use to this older system of documentation. This full book is also available
to you on the command-line in Info format. If none of these seems to resolve the problems,
there is a mailing list which enables you to get in touch with experienced Gnuastro users.
In the subsections below each of these methods are reviewed.

4.3.1 --usage

If you give this option, the program will not run. It will only print a very concise message
showing the options and arguments. Everything within square brackets ([]) is optional.
For example, here are the first and last two lines of Crop’s --usage is shown:

$ astcrop --usage
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Usage: astcrop [-Do?IPqSVW] [-d INT] [-h INT] [-r INT] [-w INT]

[-x INT] [-y INT] [-c INT] [-p STR] [-N INT] [--deccol=INT]

....

[--setusrconf] [--usage] [--version] [--wcsmode]

[ASCIIcatalog] FITSimage(s).fits

There are no explanations on the options, just their short and long names shown sepa-
rately. After the program name, the short format of all the options that do not require a
value (on/off options) is displayed. Those that do require a value then follow in separate
brackets, each displaying the format of the input they want, see Section 4.1.1.2 [Options],
page 249. Since all options are optional, they are shown in square brackets, but arguments
can also be optional. For example, in this example, a catalog name is optional and is only
required in some modes. This is a standard method of displaying optional arguments for
all GNU software.

4.3.2 --help

If the command-line includes this option, the program will not be run. It will print a
complete list of all available options along with a short explanation. The options are also
grouped by their context. Within each context, the options are sorted alphabetically. Since
the options are shown in detail afterwards, the first line of the --help output shows the
arguments and if they are optional or not, similar to Section 4.3.1 [--usage], page 271.

In the --help output of all programs in Gnuastro, the options for each program are
classified based on context. The first two contexts are always options to do with the input
and output respectively. For example, input image extensions or supplementary input files
for the inputs. The last class of options is also fixed in all of Gnuastro, it shows operating
mode options. Most of these options are already explained in Section 4.1.2.3 [Operating
mode options], page 257.

The help message will sometimes be longer than the vertical size of your terminal. If
you are using a graphical user interface terminal emulator, you can scroll the terminal with
your mouse, but we promised no mice distractions! So here are some suggestions:

• Shift + PageUP to scroll up and Shift + PageDown to scroll down. For most help
output this should be enough. The problem is that it is limited by the number of lines
that your terminal keeps in memory and that you cannot scroll by lines, only by whole
screens.

• Pipe to less. A pipe is a form of shell re-direction. The less tool in Unix-like systems
was made exactly for such outputs of any length. You can pipe (|) the output of any
program that is longer than the screen to it and then you can scroll through (up and
down) with its many tools. For example:

$ astnoisechisel --help | less

Once you have gone through the text, you can quit less by pressing the q key.

• Redirect to a file. This is a less convenient way, because you will then have to open
the file in a text editor! You can do this with the shell redirection tool (>):

$ astnoisechisel --help > filename.txt

In case you have a special keyword you are looking for in the help, you do not have to
go through the full list. GNU Grep is made for this job. For example, if you only want
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the list of options whose --help output contains the word “axis” in Crop, you can run the
following command:

$ astcrop --help | grep axis

If the output of this option does not fit nicely within the confines of your terminal, GNU
does enable you to customize its output through the environment variable ARGP_HELP_FMT,
you can set various parameters which specify the formatting of the help messages. For
example, if your terminals are wider than 70 spaces (say 100) and you feel there is too
much empty space between the long options and the short explanation, you can change
these formats by giving values to this environment variable before running the program
with the --help output. You can define this environment variable in this manner:

$ export ARGP_HELP_FMT=rmargin=100,opt-doc-col=20

This will affect all GNU programs using GNU C library’s argp.h facilities as long as the
environment variable is in memory. You can see the full list of these formatting parameters
in the “Argp User Customization” part of the GNU C library manual. If you are more
comfortable to read the --help outputs of all GNU software in your customized format,
you can add your customization (similar to the line above, without the $ sign) to your
~/.bashrc file. This is a standard option for all GNU software.

4.3.3 Man pages

Man pages were the Unix method of providing command-line documentation to a program.
With GNU Info, see Section 4.3.4 [Info], page 273, the usage of this method of documentation
is highly discouraged. This is because Info provides a much more easier to navigate and
read environment.

However, some operating systems require a man page for packages that are installed
and some people are still used to this method of command-line help. So the programs
in Gnuastro also have Man pages which are automatically generated from the outputs of
--version and --help using the GNU help2man program. So if you run

$ man programname

You will be provided with a man page listing the options in the standard manner.

4.3.4 Info

Info is the standard documentation format for all GNU software. It is a very useful
command-line document viewing format, fully equipped with links between the various
pages and menus and search capabilities. As explained before, the best thing about it is
that it is available for you the moment you need to refresh your memory on any command-
line tool in the middle of your work without having to take your hands off the keyboard.
This complete book is available in Info format and can be accessed from anywhere on the
command-line.

To open the Info format of any installed programs or library on your system which has
an Info format book, you can simply run the command below (change executablename to
the executable name of the program or library):

$ info executablename

In case you are not already familiar with it, run $ info info. It does a fantastic job in
explaining all its capabilities itself. It is very short and you will become sufficiently fluent



Chapter 4: Common program behavior 274

in about half an hour. Since all GNU software documentation is also provided in Info, your
whole GNU/Linux life will significantly improve.

Once you’ve become an efficient navigator in Info, you can go to any part of this book or
any other GNU software or library manual, no matter how long it is, in a matter of seconds.
It also blends nicely with GNU Emacs (a text editor) and you can search manuals while
you are writing your document or programs without taking your hands off the keyboard,
this is most useful for libraries like the GNU C library. To be able to access all the Info
manuals installed in your GNU/Linux within Emacs, type Ctrl-H + i.

To see this whole book from the beginning in Info, you can run

$ info gnuastro

If you run Info with the particular program executable name, for example astcrop or
astnoisechisel:

$ info astprogramname

you will be taken to the section titled “Invoking ProgramName” which explains the inputs
and outputs along with the command-line options for that program. Finally, if you run Info
with the official program name, for example, Crop or NoiseChisel:

$ info ProgramName

you will be taken to the top section which introduces the program. Note that in all cases,
Info is not case sensitive.

4.3.5 help-gnuastro mailing list

Gnuastro maintains the help-gnuastro mailing list for users to ask any questions related to
Gnuastro. The experienced Gnuastro users and some of its developers are subscribed to this
mailing list and your email will be sent to them immediately. However, when contacting
this mailing list please have in mind that they are possibly very busy and might not be able
to answer immediately.

To ask a question from this mailing list, send a mail to help-gnuastro@gnu.org. Any-
one can view the mailing list archives at http://lists.gnu.org/archive/html/

help-gnuastro/. It is best that before sending a mail, you search the archives to see
if anyone has asked a question similar to yours. If you want to make a suggestion or report
a bug, please do not send a mail to this mailing list. We have other mailing lists and tools
for those purposes, see Section 1.9 [Report a bug], page 15, or Section 1.10 [Suggest new
feature], page 17.

4.4 Multi-threaded operations

Some of the programs benefit significantly when you use all the threads your computer’s
CPU has to offer to your operating system. The number of threads available can be larger
than the number of physical (hardware) cores in the CPU (also known as Simultaneous
multithreading). For example, in Intel’s CPUs (those that implement its Hyper-threading
technology) the number of threads is usually double the number of physical cores in your
CPU. On a GNU/Linux system, the number of threads available can be found with the
command $ nproc command (part of GNU Coreutils).

Gnuastro’s programs can find the number of threads available to your system inter-
nally at run-time (when you execute the program). However, if a value is given to the

http://lists.gnu.org/archive/html/help-gnuastro/
http://lists.gnu.org/archive/html/help-gnuastro/
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--numthreads option, the given number will be used, see Section 4.1.2.3 [Operating mode
options], page 257, and Section 4.2 [Configuration files], page 268, for ways to use this op-
tion. Thus --numthreads is the only common option in Gnuastro’s programs with a value
that does not have to be specified anywhere on the command-line or in the configuration
files.

4.4.1 A note on threads

Spinning off threads is not necessarily the most efficient way to run an application. Creating
a new thread is not a cheap operation for the operating system. It is most useful when the
input data are fixed and you want the same operation to be done on parts of it. For example,
one input image to Crop and multiple crops from various parts of it. In this fashion, the
image is loaded into memory once, all the crops are divided between the number of threads
internally and each thread cuts out those parts which are assigned to it from the same image.
On the other hand, if you have multiple images and you want to crop the same region(s)
out of all of them, it is much more efficient to set --numthreads=1 (so no threads spin off)
and run Crop multiple times simultaneously, see Section 4.4.2 [How to run simultaneous
operations], page 276.

You can check the boost in speed by first running a program on one of the data sets with
the maximum number of threads and another time (with everything else the same) and only
using one thread. You will notice that the wall-clock time (reported by most programs at
their end) in the former is longer than the latter divided by number of physical CPU cores
(not threads) available to your operating system. Asymptotically these two times can be
equal (most of the time they are not). So limiting the programs to use only one thread and
running them independently on the number of available threads will be more efficient.

Note that the operating system keeps a cache of recently processed data, so usually, the
second time you process an identical data set (independent of the number of threads used),
you will get faster results. In order to make an unbiased comparison, you have to first clean
the system’s cache with the following command between the two runs.

$ sync; echo 3 | sudo tee /proc/sys/vm/drop_caches� �
SUMMARY: Should I use multiple threads? Depends:

• If you only have one data set (image in most cases!), then yes, the more threads you
use (with a maximum of the number of threads available to your OS) the faster you
will get your results.

• If you want to run the same operation on multiple data sets, it is best to set the
number of threads to 1 and use Make, or GNU Parallel, as explained in Section 4.4.2
[How to run simultaneous operations], page 276.
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4.4.2 How to run simultaneous operations

There are two16 approaches to simultaneously execute a program: using GNU Parallel or
Make (GNU Make is the most common implementation). The first is very useful when you
only want to do one job multiple times and want to get back to your work without actually
keeping the command you ran. The second is usually for more important operations, with
lots of dependencies between the different products (for example, a full scientific research).

GNU Parallel
When you only want to run multiple instances of a command on different
threads and get on with the rest of your work, the best method is to use GNU
parallel. Surprisingly GNU Parallel is one of the few GNU packages that has
no Info documentation but only a Man page, see Section 4.3.4 [Info], page 273.
So to see the documentation after installing it please run

$ man parallel

As an example, let’s assume we want to crop a region fixed on the pixels (500,
600) with the default width from all the FITS images in the ./data directory
ending with sci.fits to the current directory. To do this, you can run:

$ parallel astcrop --numthreads=1 --xc=500 --yc=600 ::: \

./data/*sci.fits

GNU Parallel can help in many more conditions, this is one of the simplest, see
the man page for lots of other examples. For absolute beginners: the backslash
(\) is only a line breaker to fit nicely in the page. If you type the whole command
in one line, you should remove it.

Make Make is a program for building “targets” (e.g., files) using “recipes” (a set of
operations) when their known “prerequisites” (other files) have been updated.
It elegantly allows you to define dependency structures for building your final
output and updating it efficiently when the inputs change. It is the most
common infra-structure to build software today.

Scientific research methodology is very similar to software development: you
start by testing a hypothesis on a small sample of objects/targets with a simple
set of steps. As you are able to get promising results, you improve the method
and use it on a larger, more general, sample. In the process, you will confront
many issues that have to be corrected (bugs in software development jargon).
Make is a wonderful tool to manage this style of development.

Besides the raw data analysis pipeline, Make has been used to for producing
reproducible papers, for example, see the reproduction pipeline (https://
gitlab.com/makhlaghi/NoiseChisel-paper) of the paper introducing
Section 7.2 [NoiseChisel], page 541, (one of Gnuastro’s programs). In fact the
NoiseChisel paper’s Make-based workflow was the foundation of a parallel
project called Maneage (http://maneage.org) (Managing data lineage):
http://maneage.org that is described more fully in Akhlaghi et al. 2021

16 A third way would be to open multiple terminal emulator windows in your GUI, type the commands
separately on each and press Enter once on each terminal, but this is far too frustrating, tedious and
prone to errors. It’s therefore not a realistic solution when tens, hundreds or thousands of operations
(your research targets, multiplied by the operations you do on each) are to be done.

https://gitlab.com/makhlaghi/NoiseChisel-paper
https://gitlab.com/makhlaghi/NoiseChisel-paper
http://maneage.org
http://maneage.org
https://arxiv.org/abs/2006.03018
https://arxiv.org/abs/2006.03018
https://arxiv.org/abs/2006.03018
https://arxiv.org/abs/2006.03018
https://arxiv.org/abs/2006.03018
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(https://arxiv.org/abs/2006.03018). Therefore, it is a very useful tool for
complex scientific workflows.

GNU Make17 is the most common implementation which (similar to nearly all
GNU programs, comes with a wonderful manual18). Make is very basic and
simple, and thus the manual is short (the most important parts are in the first
roughly 100 pages) and easy to read/understand.

Make comes with a --jobs (-j) option which allows you to specify the maxi-
mum number of jobs that can be done simultaneously. For example, if you have
8 threads available to your operating system. You can run:

$ make -j8

With this command, Make will process your Makefile and create all the targets
(can be thousands of FITS images for example) simultaneously on 8 threads,
while fully respecting their dependencies (only building a file/target when its
prerequisites are successfully built). Make is thus strongly recommended for
managing scientific research where robustness, archiving, reproducibility and
speed19 are important.

4.5 Numeric data types

At the lowest level, the computer stores everything in terms of 1 or 0. For example, each
program in Gnuastro, or each astronomical image you take with the telescope is actually a
string of millions of these zeros and ones. The space required to keep a zero or one is the
smallest unit of storage, and is known as a bit. However, understanding and manipulating
this string of bits is extremely hard for most people. Therefore, different standards are
defined to package the bits into separate types with a fixed interpretation of the bits in each
package.

To store numbers, the most basic standard/type is for integers (...,−2,−1, 0, 1, 2, ...).
The common integer types are 8, 16, 32, and 64 bits wide (more bits will give larger limits).
Each bit corresponds to a power of 2 and they are summed to create the final number.
In the integer types, for each width there are two standards for reading the bits: signed
and unsigned. In the ‘signed’ convention, one bit is reserved for the sign (stating that the
integer is positive or negative). The ‘unsigned’ integers use that bit in the actual number
and thus contain only positive numbers (starting from zero).

Therefore, at the same number of bits, both signed and unsigned integers can allow the
same number of integers, but the positive limit of the unsigned types is double their signed
counterparts with the same width (at the expense of not having negative numbers). When
the context of your work does not involve negative numbers (for example, counting, where
negative is not defined), it is best to use the unsigned types. For the full numerical range
of all integer types, see below.

17 https://www.gnu.org/software/make/
18 https://www.gnu.org/software/make/manual/
19 Besides its multi-threaded capabilities, Make will only rebuild those targets that depend on a change you

have made, not the whole work. For example, if you have set the prerequisites properly, you can easily
test the changing of a parameter on your paper’s results without having to re-do everything (which is
much faster). This allows you to be much more productive in easily checking various ideas/assumptions
of the different stages of your research and thus produce a more robust result for your exciting science.

https://arxiv.org/abs/2006.03018
https://arxiv.org/abs/2006.03018
https://www.gnu.org/software/make/
https://www.gnu.org/software/make/manual/
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Another standard of converting a given number of bits to numbers is the floating point
standard, this standard can approximately store any real number with a given precision.
There are two common floating point types: 32-bit and 64-bit, for single and double preci-
sion floating point numbers respectively. The former is sufficient for data with less than 8
significant decimal digits (most astronomical data), while the latter is good for less than 16
significant decimal digits. The representation of real numbers as bits is much more complex
than integers. If you are interested to learn more about it, you can start with the Wikipedia
article (https://en.wikipedia.org/wiki/Floating_point).

Practically, you can use Gnuastro’s Arithmetic program to convert/change the type of
an image/datacube (see Section 6.2 [Arithmetic], page 399), or Gnuastro Table program to
convert a table column’s data type (see Section 5.3.3 [Column arithmetic], page 346). Con-
version of a dataset’s type is necessary in some contexts. For example, the program/library,
that you intend to feed the data into, only accepts floating point values, but you have an
integer image/column. Another situation that conversion can be helpful is when you know
that your data only has values that fit within int8 or uint16. However it is currently
formatted in the float64 type.

The important thing to consider is that operations involving wider, floating point, or
signed types can be significantly slower than smaller-width, integer, or unsigned types re-
spectively. Note that besides speed, a wider type also requires much more storage space (by
4 or 8 times). Therefore, when you confront such situations that can be optimized and want
to store/archive/transfer the data, it is best to use the most efficient type. For example, if
your dataset (image or table column) only has positive integers less than 65535, store it as
an unsigned 16-bit integer for faster processing, faster transfer, and less storage space.

The short and long names for the recognized numeric data types in Gnuastro are listed
below. Both short and long names can be used when you want to specify a type. For
example, as a value to the common option --type (see Section 4.1.2.1 [Input/Output op-
tions], page 252), or in the information comment lines of Section 4.7.2 [Gnuastro text table
format], page 285. The ranges listed below are inclusive.

u8

uint8 8-bit unsigned integers, range:
[0 to 28 − 1] or [0 to 255].

i8

int8 8-bit signed integers, range:
[−27 to 27 − 1] or [−128 to 127].

u16

uint16 16-bit unsigned integers, range:
[0 to 216 − 1] or [0 to 65535].

i16

int16 16-bit signed integers, range:
[−215 to 215 − 1] or [−32768 to 32767].

u32

uint32 32-bit unsigned integers, range:
[0 to 232 − 1] or [0 to 4294967295].

https://en.wikipedia.org/wiki/Floating_point
https://en.wikipedia.org/wiki/Floating_point
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i32

int32 32-bit signed integers, range:
[−231 to 231 − 1] or [−2147483648 to 2147483647].

u64

uint64 64-bit unsigned integers, range
[0 to 264 − 1] or [0 to 18446744073709551615].

i64

int64 64-bit signed integers, range:
[−263 to 263 − 1] or [−9223372036854775808 to 9223372036854775807].

f32

float32 32-bit (single-precision) floating point types. The maximum (minimum is its
negative) possible value is 3.402823× 1038. Single-precision floating points can
accurately represent a floating point number up to ∼ 7.2 significant decimals.
Given the heavy noise in astronomical data, this is usually more than sufficient
for storing results. For more, see Section 5.3.1 [Printing floating point numbers],
page 341.

f64

float64 64-bit (double-precision) floating point types. The maximum (minimum is its
negative) possible value is ∼ 10308. Double-precision floating points can accu-
rately represent a floating point number ∼ 15.9 significant decimals. This is
usually good for processing (mixing) the data internally, for example, a sum of
single precision data (and later storing the result as float32). For more, see
Section 5.3.1 [Printing floating point numbers], page 341.� �

Some file formats do not recognize all types. for example, the FITS standard (see Sec-
tion 5.1 [Fits], page 295) does not define uint64 in binary tables or images. When a type
is not acceptable for output into a given file format, the respective Gnuastro program or
library will let you know and abort. On the command-line, you can convert the numer-
ical type of an image, or table column into another type with Section 6.2 [Arithmetic],
page 399, or Section 5.3 [Table], page 340, respectively. If you are writing your own pro-
gram, you can use the gal_data_copy_to_new_type() function in Gnuastro’s library, see
Section 12.3.6.4 [Copying datasets], page 762.
 	
4.6 Memory management

In this section we will review how Gnuastro manages your input data in your system’s mem-
ory. Knowing this can help you optimize your usage (in speed and memory consumption)
when the data volume is large and approaches, or exceeds, your available RAM (usually in
various calls to multiple programs simultaneously). But before diving into the details, let’s
have a short basic introduction to memory in general and in particular the types of memory
most relevant to this discussion.

Input datasets (that are later fed into programs for analysis) are commonly first stored
in non-volatile memory. This is a type of memory that does not need a constant power
supply to keep the data and is therefore primarily aimed for long-term storage, like HDDs
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or SSDs. So data in this type of storage is preserved when you turn off your computer. But
by its nature, non-volatile memory is much slower, in reading or writing, than the speeds
that CPUs can process the data. Thus relying on this type of memory alone would create
a bad bottleneck in the input/output (I/O) phase of any processing.

The first step to decrease this bottleneck is to have a faster storage space, but with a
much limited storage volume. For this type of storage, computers have a Random Access
Memory (or RAM). RAM is classified as a volatile memory because it needs a constant flow
of electricity to keep the information. In other words, the moment power is cut-off, all the
stored information in your RAM is gone (hence the “volatile” name). But thanks to that
constant supply of power, it can access any random address with equal (and very high!)
speed.

Hence, the general/simplistic way that programs deal with memory is the following (this
is general to almost all programs, not just Gnuastro’s): 1) Load/copy the input data from
the non-volatile memory into RAM. 2) Use the copy of the data in RAM as input for
all the internal processing as well as the intermediate data that is necessary during the
processing. 3) Finally, when the analysis is complete, write the final output data back
into non-volatile memory, and free/delete all the used space in the RAM (the initial copy
and all the intermediate data). Usually the RAM is most important for the data of the
intermediate steps (that you never see as a user of a program!).

When the input dataset(s) to a program are small (compared to the available space in
your system’s RAM at the moment it is run) Gnuastro’s programs and libraries follow the
standard series of steps above. The only exception is that deleting the intermediate data is
not only done at the end of the program. As soon as an intermediate dataset is no longer
necessary for the next internal steps, the space it occupied is deleted/freed. This allows
Gnuastro programs to minimize their usage of your system’s RAM over the full running
time.

The situation gets complicated when the datasets are large (compared to your available
RAM when the program is run). For example, if a dataset is half the size of your system’s
available RAM, and the program’s internal analysis needs three or more intermediately
processed copies of it at one moment in its analysis. There will not be enough RAM to
keep those higher-level intermediate data. In such cases, programs that do not do any
memory management will crash. But fortunately Gnuastro’s programs do have a memory
management plans for such situations.

When the necessary amount of space for an intermediate dataset cannot be allocated in
the RAM, Gnuastro’s programs will not use the RAM at all. They will use the “memory-
mapped file” concept in modern operating systems to create a randomly-named file in your
non-volatile memory and use that instead of the RAM. That file will have the exact size (in
bytes) of that intermediate dataset. Any time the program needs that intermediate dataset,
the operating system will directly go to that file, and bypass your RAM. As soon as that
file is no longer necessary for the analysis, it will be deleted. But as mentioned above, non-
volatile memory has much slower I/O speed than the RAM. Hence in such situations, the
programs will become noticeably slower (sometimes by factors of 10 times slower, depending
on your non-volatile memory speed).

Because of the drop in I/O speed (and thus the speed of your running program), the
moment that any to-be-allocated dataset is memory-mapped, Gnuastro’s programs and li-
braries will notify you with a descriptive statement like below (can happen in any phase of
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their analysis). It shows the location of the memory-mapped file, its size, complemented
with a small description of the cause, a pointer to this section of the book for more infor-
mation on how to deal with it (if necessary), and what to do to suppress it.

astarithmetic: ./gnuastro_mmap/Fu7Dhs: temporary memory-mapped file

(XXXXXXXXXXX bytes) created for intermediate data that is not stored

in RAM (see the "Memory management" section of Gnuastro's manual for

optimizing your project's memory management, and thus speed). To

disable this warning, please use the option '--quiet-mmap'

Finally, when the intermediate dataset is no longer necessary, the program will automatically
delete it and notify you with a statement like this:

astarithmetic: ./gnuastro_mmap/Fu7Dhs: deleted

To disable these messages, you can run the program with --quietmmap, or set the quietmmap
variable in the allocating library function to be non-zero.

An important component of these messages is the name of the memory-mapped file.
Knowing that the file has been deleted is important for the user if the program crashes
for any reason: internally (for example, a parameter is given wrongly) or externally (for
example, you mistakenly kill the running job). In the event of a crash, the memory-mapped
files will not be deleted and you have to manually delete them because they are usually
large and they may soon fill your full storage if not deleted in a long time due to successive
crashes.

This brings us to managing the memory-mapped files in your non-volatile memory. In
other words: knowing where they are saved, or intentionally placing them in different places
of your file system, or deleting them when necessary. As the examples above show, memory-
mapped files are stored in a sub-directory of the running directory called gnuastro_mmap. If
this directory does not exist, Gnuastro will automatically create it when memory mapping
becomes necessary. Alternatively, it may happen that the gnuastro_mmap sub-directory
exists and is not writable, or it cannot be created. In such cases, the memory-mapped file
for each dataset will be created in the running directory with a gnuastro_mmap_ prefix.

Therefore one easy way to delete all memory-mapped files in case of a crash, is to delete
everything within the sub-directory (first command below), or all files stating with this
prefix:

rm -f gnuastro_mmap/*

rm -f gnuastro_mmap_*

A much more common issue when dealing with memory-mapped files is their location.
For example, you may be running a program in a partition that is hosted by an HDD.
But you also have another partition on an SSD (which has much faster I/O). So you want
your memory-mapped files to be created in the SSD to speed up your processing. In this
scenario, you want your project source directory to only contain your plain-text scripts and
you want your project’s built products (even the temporary memory-mapped files) to be
built in a different location because they are large; thus I/O speed becomes important.

To host the memory-mapped files in another location (with fast I/O), you can set
(gnuastro_mmap) to be a symbolic link to it. For example, let’s assume you want your
memory-mapped files to be stored in /path/to/dir/for/mmap. All you have to do is to
run the following command before your Gnuastro analysis command(s).

ln -s /path/to/dir/for/mmap gnuastro_mmap
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The programs will delete a memory-mapped file when it is no longer needed, but they
will not delete the gnuastro_mmap directory that hosts them. So if your project involves
many Gnuastro programs (possibly called in parallel) and you want your memory-mapped
files to be in a different location, you just have to make the symbolic link above once at the
start, and all the programs will use it if necessary.

Another memory-management scenario that may happen is this: you do not want a
Gnuastro program to allocate internal datasets in the RAM at all. For example, the speed
of your Gnuastro-related project does not matter at that moment, and you have higher-
priority jobs that are being run at the same time which need to have RAM available. In
such cases, you can use the --minmapsize option that is available in all Gnuastro programs
(see Section 4.1.2.2 [Processing options], page 255). Any intermediate dataset that has a
size larger than the value of this option will be memory-mapped, even if there is space
available in your RAM. For example, if you want any dataset larger than 100 megabytes to
be memory-mapped, use --minmapsize=100000000 (8 zeros!).

You should not set the value of --minmapsize to be too small, otherwise even small in-
termediate values (that are usually very numerous) in the program will be memory-mapped.
However the kernel can only host a limited number of memory-mapped files at every mo-
ment (by all running programs combined). For example, in the default20 Linux kernel on
GNU/Linux operating systems this limit is roughly 64000. If the total number of memory-
mapped files exceeds this number, all the programs using them will crash. Gnuastro’s
programs will warn you if your given value is too small and may cause a problem later.

Actually, the default behavior for Gnuastro’s programs (to only use memory-mapped
files when there is not enough RAM) is a side-effect of --minmapsize. The pre-defined
value to this option is an extremely large value in the lowest-level Gnuastro configuration
file (the installed gnuastro.conf described in Section 4.2.2 [Configuration file precedence],
page 269). This value is larger than the largest possible available RAM. You can check by
running any Gnuastro program with a -P option. Because no dataset will be larger than
this, by default the programs will first attempt to use the RAM for temporary storage. But
if writing in the RAM fails (for any reason, mainly due to lack of available space), then a
memory-mapped file will be created.

4.7 Tables

“A table is a collection of related data held in a structured format within a database. It
consists of columns, and rows.” (from Wikipedia). Each column in the table contains
the values of one property and each row is a collection of properties (columns) for one
target object. For example, let’s assume you have just ran MakeCatalog (see Section 7.4
[MakeCatalog], page 572) on an image to measure some properties for the labeled regions
(which might be detected galaxies for example) in the image. For each labeled region
(detected galaxy), there will be a row which groups its measured properties as columns,
one column for each property. One such property can be the object’s magnitude, which is
the sum of pixels with that label, or its center can be defined as the light-weighted average
value of those pixels. Many such properties can be derived from the raw pixel values and
their position, see Section 7.4.7 [Invoking MakeCatalog], page 608, for a long list.

20 If you need to host more memory-mapped files at one moment, you need to build your own customized
Linux kernel.
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As a summary, for each labeled region (or, galaxy) we have one row and for each mea-
sured property we have one column. This high-level structure is usually the first step for
higher-level analysis, for example, finding the stellar mass or photometric redshift from
magnitudes in multiple colors. Thus, tables are not just outputs of programs, in fact it is
much more common for tables to be inputs of programs. For example, to make a mock
galaxy image, you need to feed in the properties of each galaxy into Section 8.1 [MakePro-
files], page 629, for it do the inverse of the process above and make a simulated image from
a catalog, see Section 2.4 [Sufi simulates a detection], page 124. In other cases, you can
feed a table into Section 6.1 [Crop], page 385, and it will crop out regions centered on the
positions within the table, see Section 2.1.19 [Reddest clumps, cutouts and parallelization],
page 64. So to end this relatively long introduction, tables play a very important role in
astronomy, or generally all branches of data analysis.

In Section 4.7.1 [Recognized table formats], page 283, the currently recognized table
formats in Gnuastro are discussed. You can use any of these tables as input or ask for them
to be built as output. The most common type of table format is a simple plain text file
with each row on one line and columns separated by white space characters, this format is
easy to read/write by eye/hand. To give it the full functionality of more specific table types
like the FITS tables, Gnuastro has a special convention which you can use to give each
column a name, type, unit, and comments, while still being readable by other plain text
table readers. This convention is described in Section 4.7.2 [Gnuastro text table format],
page 285.

When tables are input to a program, the program reading it needs to know which
column(s) it should use for its desired purposes. Gnuastro’s programs all follow a similar
convention, on the way you can select columns in a table. They are thoroughly discussed
in Section 4.7.3 [Selecting table columns], page 287.

4.7.1 Recognized table formats

The list of table formats that Gnuastro can currently read from and write to are described
below. Each has their own advantage and disadvantages, so a short review of the format is
also provided to help you make the best choice based on how you want to define your input
tables or later use your output tables.

Plain text table
This is the most basic and simplest way to create, view, or edit the table by
hand on a text editor. The other formats described below are less eye-friendly
and have a more formal structure (for easier computer readability). It is fully
described in Section 4.7.2 [Gnuastro text table format], page 285.

FITS ASCII tables
The FITS ASCII table extension is fully in ASCII encoding and thus easily
readable on any text editor (assuming it is the only extension in the FITS
file). If the FITS file also contains binary extensions (for example, an image or
binary table extensions), then there will be many hard to print characters. The
FITS ASCII format does not have new line characters to separate rows. In the
FITS ASCII table standard, each row is defined as a fixed number of characters
(value to the NAXIS1 keyword), so to visually inspect it properly, you would
have to adjust your text editor’s width to this value. All columns start at given
character positions and have a fixed width (number of characters).
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Numbers in a FITS ASCII table are printed into ASCII format, they are not
in binary (that the CPU uses). Hence, they can take a larger space in memory,
loose their precision, and take longer to read into memory. If you are dealing
with integer type columns (see Section 4.5 [Numeric data types], page 277),
another issue with FITS ASCII tables is that the type information for the col-
umn will be lost (there is only one integer type in FITS ASCII tables). One
problem with the binary format on the other hand is that it is not portable
(different CPUs/compilers) have different standards for translating the zeros
and ones. But since ASCII characters are defined on a byte and are well rec-
ognized, they are better for portability on those various systems. Gnuastro’s
plain text table format described below is much more portable and easier to
read/write/interpret by humans manually.

Generally, as the name implies, this format is useful for when your table mainly
contains ASCII columns (for example, file names, or descriptions). They can
be useful when you need to include columns with structured ASCII information
along with other extensions in one FITS file. In such cases, you can also consider
header keywords (see Section 5.1 [Fits], page 295).

FITS binary tables
The FITS binary table is the FITS standard’s solution to the issues discussed
with keeping numbers in ASCII format as described under the FITS ASCII
table title above. Only columns defined as a string type (a string of ASCII
characters) are readable in a text editor. The portability problem with binary
formats discussed above is mostly solved thanks to the portability of CFITSIO
(see Section 3.1.1.2 [CFITSIO], page 212) and the very long history of the FITS
format which has been widely used since the 1970s.

In the case of most numbers, storing them in binary format is more memory
efficient than ASCII format. For example, to store -25.72034 in ASCII for-
mat, you need 9 bytes/characters. But if you keep this same number (to the
approximate precision possible) as a 4-byte (32-bit) floating point number, you
can keep/transmit it with less than half the amount of memory. When catalogs
contain thousands/millions of rows in tens/hundreds of columns, this can lead
to significant improvements in memory/band-width usage. Moreover, since the
CPU does its operations in the binary formats, reading the table in and writing
it out is also much faster than an ASCII table.

When you are dealing with integer numbers, the compression ratio can be even
better, for example, if you know all of the values in a column are positive and
less than 255, you can use the unsigned char type which only takes one byte!
If they are between -128 and 127, then you can use the (signed) char type. So
if you are thoughtful about the limits of your integer columns, you can greatly
reduce the size of your file and also the speed at which it is read/written. This
can be very useful when sharing your results with collaborators or publishing
them. To decrease the file size even more you can name your output as ending
in .fits.gz so it is also compressed after creation. Just note that compres-
sion/decompressing is CPU intensive and can slow down the writing/reading of
the file.
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Fortunately the FITS Binary table format also accepts ASCII strings as column
types (along with the various numerical types). So your dataset can also contain
non-numerical columns.

4.7.2 Gnuastro text table format

Plain text files are the most generic, portable, and easiest way to (manually) create, (visu-
ally) inspect, or (manually) edit a table. In this format, the ending of a row is defined by
the new-line character (a line on a text editor). So when you view it on a text editor, every
row will occupy one line. The delimiters (or characters separating the columns) are white
space characters (space, horizontal tab, vertical tab) and a comma (,). The only further
requirement is that all rows/lines must have the same number of columns.

The columns do not have to be exactly under each other and the rows can be arbitrarily
long with different lengths. For example, the following contents in a file would be interpreted
as a table with 4 columns and 2 rows, with each element interpreted as a 64-bit floating
point type (see Section 4.5 [Numeric data types], page 277).

1 2.234948 128 39.8923e8

2 , 4.454 792 72.98348e7

However, the example above has no other information about the columns (it is just raw
data, with no meta-data). To use this table, you have to remember what the numbers in
each column represent. Also, when you want to select columns, you have to count their
position within the table. This can become frustrating and prone to bad errors (getting the
columns wrong in your scientific project!) especially as the number of columns increase. It
is also bad for sending to a colleague, because they will find it hard to remember/use the
columns properly.

To solve these problems in Gnuastro’s programs/libraries you are not limited to using the
column’s number, see Section 4.7.3 [Selecting table columns], page 287. If the columns have
names, units, or comments you can also select your columns based on searches/matches in
these fields, for example, see Section 5.3 [Table], page 340. Also, in this manner, you cannot
guide the program reading the table on how to read the numbers. As an example, the first
and third columns above can be read as integer types: the first column might be an ID and
the third can be the number of pixels an object occupies in an image. So there is no need
to read these to columns as a 64-bit floating point type (which takes more memory, and is
slower).

In the bare-minimum example above, you also cannot use strings of characters, for ex-
ample, the names of filters, or some other identifier that includes non-numerical characters.
In the absence of any information, only numbers can be read robustly. Assuming we read
columns with non-numerical characters as string, there would still be the problem that the
strings might contain space (or any delimiter) character for some rows. So, each ‘word’ in
the string will be interpreted as a column and the program will abort with an error that
the rows do not have the same number of columns.

To correct for these limitations, Gnuastro defines the following convention for storing
the table meta-data along with the raw data in one plain text file. The format is primarily
designed for ease of reading/writing by eye/fingers, but is also structured enough to be read
by a program.
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When the first non-white character in a line is #, or there are no non-white characters
in it, then the line will not be considered as a row of data in the table (this is a pretty
standard convention in many programs, and higher level languages). In the first case (when
the first character of the line is #), the line is interpreted as a comment.

If the comment line starts with ‘# Column N:’, then it is assumed to contain information
about column N (a number, counting from 1). Comment lines that do not start with this
pattern are ignored and you can use them to include any further information you want to
store with the table in the text file. The most generic column information comment line
has the following format:

# Column N: NAME [UNIT, TYPE(NUM), BLANK] COMMENT

Any sequence of characters between ‘:’ and ‘[’ will be interpreted as the column name (so
it can contain anything except the ‘[’ character). Anything between the ‘]’ and the end of
the line is defined as a comment. Within the brackets, anything before the first ‘,’ is the
units (physical units, for example, km/s, or erg/s), anything before the second ‘,’ is the
short type identifier (see below, and Section 4.5 [Numeric data types], page 277).

If the type identifier is not recognized, the default 64-bit floating point type will be
used. The type identifier can optionally be followed by an integer within parenthesis. If
the parenthesis is present and the integer is larger than 1, the column is assumed to be
a “vector column” (which can have multiple values, for more see Section 5.3.2 [Vector
columns], page 343).

Finally (still within the brackets), any non-white characters after the second ‘,’ are
interpreted as the blank value for that column (see Section 6.1.3 [Blank pixels], page 388).
The blank value can either be in the same type as the column (for example, -99 for a signed
integer column), or any string (for example, NaN in that same column). In both cases, the
values will be stored in memory as Gnuastro’s fixed blank values for each type. For floating
point types, Gnuastro’s internal blank value is IEEE NaN (Not-a-Number). For signed
integers, it is the smallest possible value and for unsigned integers its the largest possible
value.

When a formatting problem occurs, or when the column was already given meta-data
in a previous comment, or when the column number is larger than the actual number of
columns in the table (the non-commented or empty lines), then the comment information
line will be ignored.

When a comment information line can be used, the leading and trailing white space
characters will be stripped from all of the elements. For example, in this line:

# Column 5: column name [km/s, f32,-99] Redshift as speed

The NAME field will be ‘column name’ and the TYPE field will be ‘f32’. Note how all
the white space characters before and after strings are not used, but those in the middle
remained. Also, white space characters are not mandatory. Hence, in the example above,
the BLANK field will be given the value of ‘-99’.

Except for the column number (N), the rest of the fields are optional. Also, the column
information comments do not have to be in order. In other words, the information for
column N + m (m > 0) can be given in a line before column N . Furthermore, you do
not have to specify information for all columns. Those columns that do not have this
information will be interpreted with the default settings (like the case above: values are
double precision floating point, and the column has no name, unit, or comment). So these
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lines are all acceptable for any table (the first one, with nothing but the column number is
redundant):

# Column 5:

# Column 1: ID [,i8] The Clump ID.

# Column 3: mag_f160w [AB mag, f32] Magnitude from the F160W filter

The data type of the column should be specified with one of the following values:

• For a numeric column, you can use any of the numeric types (and their recognized
identifiers) described in Section 4.5 [Numeric data types], page 277.

• ‘strN’: for strings. The N value identifies the length of the string (how many characters
it has). The start of the string on each row is the first non-delimiter character of the
column that has the string type. The next N characters will be interpreted as a string
and all leading and trailing white space will be removed.

If the next column’s characters, are closer than N characters to the start of the string
column in that line/row, they will be considered part of the string column. If there is a
new-line character before the ending of the space given to the string column (in other
words, the string column is the last column), then reading of the string will stop, even
if the N characters are not complete yet. See tests/table/table.txt for one example.
Therefore, the only time you have to pay attention to the positioning and spaces given
to the string column is when it is not the last column in the table.

The only limitation in this format is that trailing and leading white space characters will
be removed from the columns that are read. In most cases, this is the desired behavior,
but if trailing and leading white-spaces are critically important to your analysis, define
your own starting and ending characters and remove them after the table has been read.
For example, in the sample table below, the two ‘|’ characters (which are arbitrary)
will remain in the value of the second column and you can remove them manually later.
If only one of the leading or trailing white spaces is important for your work, you can
only use one of the ‘|’s.

# Column 1: ID [label, u8]

# Column 2: Notes [no unit, str50]

1 leading and trailing white space is ignored here 2.3442e10

2 | but they will be preserved here | 8.2964e11

Note that the FITS binary table standard does not define the unsigned int and
unsigned long types, so if you want to convert your tables to FITS binary tables, use
other types. Also, note that in the FITS ASCII table, there is only one integer type (long).
So if you convert a Gnuastro plain text table to a FITS ASCII table with the Section 5.3
[Table], page 340, program, the type information for integers will be lost. Conversely if
integer types are important for you, you have to manually set them when reading a FITS
ASCII table (for example, with the Table program when reading/converting into a file, or
with the gnuastro/table.h library functions when reading into memory).

4.7.3 Selecting table columns

At the lowest level, the only defining aspect of a column in a table is its number, or position.
But selecting columns purely by number is not very convenient and, especially when the
tables are large it can be very frustrating and prone to errors. Hence, table file formats
(for example, see Section 4.7.1 [Recognized table formats], page 283) have ways to store
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additional information about the columns (meta-data). Some of the most common pieces
of information about each column are its name, the units of data in it, and a comment for
longer/informal description of the column’s data.

To facilitate research with Gnuastro, you can select columns by matching, or searching
in these three fields, besides the low-level column number. To view the full list of informa-
tion on the columns in the table, you can use the Table program (see Section 5.3 [Table],
page 340) with the command below (replace table-file with the filename of your table,
if its FITS, you might also need to specify the HDU/extension which contains the table):

$ asttable --information table-file

Gnuastro’s programs need the columns for different purposes, for example, in Crop,
you specify the columns containing the central coordinates of the crop centers with the
--coordcol option (see Section 6.1.4.1 [Crop options], page 390). On the other hand, in
MakeProfiles, to specify the column containing the profile position angles, you must use the
--pcol option (see Section 8.1.4.1 [MakeProfiles catalog], page 637). Thus, there can be
no unified common option name to select columns for all programs (different columns have
different purposes). However, when the program expects a column for a specific context,
the option names end in the col suffix like the examples above. These options accept values
in integer (column number), or string (metadata match/search) format.

If the value can be parsed as a positive integer, it will be seen as the low-level column
number. Note that column counting starts from 1, so if you ask for column 0, the respective
program will abort with an error. When the value cannot be interpreted as an a integer
number, it will be seen as a string of characters which will be used to match/search in
the table’s meta-data. The meta-data field which the value will be compared with can
be selected through the --searchin option, see Section 4.1.2.1 [Input/Output options],
page 252. --searchin can take three values: name, unit, comment. The matching will be
done following this convention:

• If the value is enclosed in two slashes (for example, -x/RA_/, or --coordcol=/RA_

/, see Section 6.1.4.1 [Crop options], page 390), then it is assumed to be a regular
expression with the same convention as GNU AWK. GNU AWK has a very well writ-
ten chapter (https://www.gnu.org/software/gawk/manual/html_node/Regexp.
html) describing regular expressions, so we will not continue discussing them here.
Regular expressions are a very powerful tool in matching text and useful in many
contexts. We thus strongly encourage reviewing this chapter for greatly improving
the quality of your work in many cases, not just for searching column meta-data in
Gnuastro.

• When the string is not enclosed between ‘/’s, any column that exactly matches the
given value in the given field will be selected.

Note that in both cases, you can ignore the case of alphabetic characters with the
--ignorecase option, see Section 4.1.2.1 [Input/Output options], page 252. Also, in both
cases, multiple columns may be selected with one call to this function. In this case, the
order of the selected columns (with one call) will be the same order as they appear in the
table.

https://www.gnu.org/software/gawk/manual/html_node/Regexp.html
https://www.gnu.org/software/gawk/manual/html_node/Regexp.html
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4.8 Tessellation

It is sometimes necessary to classify the elements in a dataset (for example, pixels in an
image) into a grid of individual, non-overlapping tiles. For example, when background sky
gradients are present in an image, you can define a tile grid over the image. When the tile
sizes are set properly, the background’s variation over each tile will be negligible, allowing
you to measure (and subtract) it. In other cases (for example, spatial domain convolution
in Gnuastro, see Section 6.3 [Convolve], page 469), it might simply be for speed of process-
ing: each tile can be processed independently on a separate CPU thread. In the arts and
mathematics, this process is formally known as tessellation (https://en.wikipedia.org/
wiki/Tessellation).

The size of the regular tiles (in units of data-elements, or pixels in an image) can be de-
fined with the --tilesize option. It takes multiple numbers (separated by a comma)
which will be the length along the respective dimension (in FORTRAN/FITS dimen-
sion order). Divisions are also acceptable, but must result in an integer. For example,
--tilesize=30,40 can be used for an image (a 2D dataset). The regular tile size along the
first FITS axis (horizontal when viewed in SAO DS9) will be 30 pixels and along the second
it will be 40 pixels. Ideally, --tilesize should be selected such that all tiles in the image
have exactly the same size. In other words, that the dataset length in each dimension is
divisible by the tile size in that dimension.

However, this is not always possible: the dataset can be any size and every pixel in it
is valuable. In such cases, Gnuastro will look at the significance of the remainder length,
if it is not significant (for example, one or two pixels), then it will just increase the size of
the first tile in the respective dimension and allow the rest of the tiles to have the required
size. When the remainder is significant (for example, one pixel less than the size along that
dimension), the remainder will be added to one regular tile’s size and the large tile will be
cut in half and put in the two ends of the grid/tessellation. In this way, all the tiles in the
central regions of the dataset will have the regular tile sizes and the tiles on the edge will be
slightly larger/smaller depending on the remainder significance. The fraction which defines
the remainder significance along all dimensions can be set through --remainderfrac.

The best tile size is directly related to the spatial properties of the property you want
to study (for example, gradient on the image). In practice we assume that the gradient is
not present over each tile. So if there is a strong gradient (for example, in long wavelength
ground based images) or the image is of a crowded area where there is not too much blank
area, you have to choose a smaller tile size. A larger mesh will give more pixels and so the
scatter in the results will be less (better statistics).

For raw image processing, a single tessellation/grid is not sufficient. Raw images are
the unprocessed outputs of the camera detectors. Modern detectors usually have multiple
readout channels each with its own amplifier. For example, the Hubble Space Telescope
Advanced Camera for Surveys (ACS) has four amplifiers over its full detector area dividing
the square field of view to four smaller squares. Ground based image detectors are not
exempt, for example, each CCD of Subaru Telescope’s Hyper Suprime-Cam camera (which
has 104 CCDs) has four amplifiers, but they have the same height of the CCD and divide
the width by four parts.

The bias current on each amplifier is different, and initial bias subtraction is not perfect.
So even after subtracting the measured bias current, you can usually still identify the

https://en.wikipedia.org/wiki/Tessellation
https://en.wikipedia.org/wiki/Tessellation
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boundaries of different amplifiers by eye. See Figure 11(a) in Akhlaghi and Ichikawa (2015)
for an example. This results in the final reduced data to have non-uniform amplifier-shaped
regions with higher or lower background flux values. Such systematic biases will then
propagate to all subsequent measurements we do on the data (for example, photometry and
subsequent stellar mass and star formation rate measurements in the case of galaxies).

Therefore an accurate analysis requires a two layer tessellation: the top layer con-
tains larger tiles, each covering one amplifier channel. For clarity we will call these larger
tiles “channels”. The number of channels along each dimension is defined through the
--numchannels. Each channel is then covered by its own individual smaller tessellation
(with tile sizes determined by the --tilesize option). This will allow independent analy-
sis of two adjacent pixels from different channels if necessary. If the image is processed or
the detector only has one amplifier, you can set the number of channels in both dimension
to 1.

The final tessellation can be inspected on the image with the --checktiles option that
is available to all programs which use tessellation for localized operations. When this option
is called, a FITS file with a _tiled.fits suffix will be created along with the outputs, see
Section 4.9 [Automatic output], page 290. Each pixel in this image has the number of the
tile that covers it. If the number of channels in any dimension are larger than unity, you
will notice that the tile IDs are defined such that the first channels is covered first, then
the second and so on. For the full list of processing-related common options (including
tessellation options), please see Section 4.1.2.2 [Processing options], page 255.

4.9 Automatic output

All the programs in Gnuastro are designed such that specifying an output file or direc-
tory (based on the program context) is optional. When no output name is explicitly given
(with --output, see Section 4.1.2.1 [Input/Output options], page 252), the programs will
automatically set an output name based on the input name(s) and what the program does.
For example, when you are using ConvertType to save FITS image named dataset.fits

to a JPEG image and do not specify a name for it, the JPEG output file will be name
dataset.jpg. When the input is from the standard input (for example, a pipe, see Sec-
tion 4.1.4 [Standard input], page 264), and --output is not given, the output name will be
the program’s name (for example, converttype.jpg).

Another very important part of the automatic output generation is that all the directory
information of the input file name is stripped off of it. This feature can be disabled with
the --keepinputdir option, see Section 4.1.2.1 [Input/Output options], page 252. It is the
default because astronomical data are usually very large and organized specially with special
file names. In some cases, the user might not have write permissions in those directories21.

Let’s assume that we are working on a report and want to process the FITS images from
two projects (ABC and DEF), which are stored in the sub-directories named ABCproject/

and DEFproject/ of our top data directory (/mnt/data). The following shell commands
show how one image from the former is first converted to a JPEG image through Convert-
Type and then the objects from an image in the latter project are detected using NoiseChisel.
The text after the # sign are comments (not typed!).

21 In fact, even if the data is stored on your own computer, it is advised to only grant write permissions to
the super user or root. This way, you will not accidentally delete or modify your valuable data!
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$ pwd # Current location

/home/usrname/research/report

$ ls # List directory contents

ABC01.jpg

$ ls /mnt/data/ABCproject # Archive 1

ABC01.fits ABC02.fits ABC03.fits

$ ls /mnt/data/DEFproject # Archive 2

DEF01.fits DEF02.fits DEF03.fits

$ astconvertt /mnt/data/ABCproject/ABC02.fits --output=jpg # Prog 1

$ ls

ABC01.jpg ABC02.jpg

$ astnoisechisel /mnt/data/DEFproject/DEF01.fits # Prog 2

$ ls

ABC01.jpg ABC02.jpg DEF01_detected.fits

4.10 Output FITS files

The output of many of Gnuastro’s programs are (or can be) FITS files. The FITS format
has many useful features for storing scientific datasets (cubes, images and tables) along with
a robust features for archivability. For more on this standard, please see Section 5.1 [Fits],
page 295.

As a community convention described in Section 5.1 [Fits], page 295, the first extension of
all FITS files produced by Gnuastro’s programs only contains the meta-data that is intended
for the file’s extension(s). For a Gnuastro program, this generic meta-data (that is stored
as FITS keyword records) is its configuration when it produced this dataset: file name(s)
of input(s) and option names, values and comments. You can use the --outfitsnoconfig
option to stop the programs from writing these keywords into the first extension of their
output.

When the configuration is too trivial (only input filename, for example, the program
Section 5.3 [Table], page 340) no meta-data is written in this extension. FITS keywords
have the following limitations in regards to generic option names and values which are
described below:

• If a keyword (option name) is longer than 8 characters, the first word in the record (80
character line) is HIERARCH which is followed by the keyword name.

• Values can be at most 75 characters, but for strings, this changes to 73 (because of
the two extra ’ characters that are necessary). However, if the value is a file name,
containing slash (/) characters to separate directories, Gnuastro will break the value
into multiple keywords.

• Keyword names ignore case, therefore they are all in capital letters. Therefore, if you
want to use Grep to inspect these keywords, use the -i option, like the example below.

$ astfits image_detected.fits -h0 | grep -i snquant

The keywords above are classified (separated by an empty line and title) as a group
titled “ProgramName configuration”. This meta-data extension also contains a final group
of keywords to keep the basic date and version information of Gnuastro, its dependencies
and the pipeline that is using Gnuastro (if it is under version control); they are listed below.
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DATE The creation time of the FITS file. This date is written directly by CFITSIO
and is in UT format.

While the date can be a good metadata in most scenarios, it does have a
caveat: when everything else in your output is the same between multiple runs,
the date will be different! If exact reproducibility is important for you, this can
be annoying! To stop any Gnuastro program from writing the DATE keyword,
you can use the --outfitsnodate (see Section 4.1.2.1 [Input/Output options],
page 252).

DATEUTC If the date in the DATE keyword is in UTC (https://en.wikipedia.org/wiki/
Coordinated_Universal_Time), this keyword will have a value of 1; otherwise,
it will have a value of 0. If DATE is not written, this is also ignored.

COMMIT Git’s commit description from the running directory of Gnuastro’s programs.
If the running directory is not version controlled or libgit2 is not installed
(see Section 3.1.2 [Optional dependencies], page 214) then this keyword will
not be present. The printed value is equivalent to the output of the following
command:

git describe --dirty --always

If the running directory contains non-committed work, then the stored value
will have a ‘-dirty’ suffix. This can be very helpful to let you know that the
data is not ready to be shared with collaborators or submitted to a journal. You
should only share results that are produced after all your work is committed
(safely stored in the version controlled history and thus reproducible).

At first sight, version control appears to be mainly a tool for software devel-
opers. However progress in a scientific research is almost identical to progress
in software development: first you have a rough idea that starts with handful
of easy steps. But as the first results appear to be promising, you will have
to extend, or generalize, it to make it more robust and work in all the situ-
ations your research covers, not just your first test samples. Slowly you will
find wrong assumptions or bad implementations that need to be fixed (‘bugs’
in software development parlance). Finally, when you submit the research to
your collaborators or a journal, many comments and suggestions will come in,
and you have to address them.

Software developers have created version control systems precisely for this kind
of activity. Each significant moment in the project’s history is called a “com-
mit”, see Section 3.2.2 [Version controlled source], page 226. A snapshot of the
project in each “commit” is safely stored away, so you can revert back to it at
a later time, or check changes/progress. This way, you can be sure that your
work is reproducible and track the progress and history. With version control,
experimentation in the project’s analysis is greatly facilitated, since you can
easily revert back if a brainstorm test procedure fails.

One important feature of version control is that the research result
(FITS image, table, report or paper) can be stamped with the unique
commit information that produced it. This information will enable
you to exactly reproduce that same result later, even if you have made
changes/progress. For one example of a research paper’s reproduction pipeline,

https://en.wikipedia.org/wiki/Coordinated_Universal_Time
https://en.wikipedia.org/wiki/Coordinated_Universal_Time
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please see the reproduction pipeline (https://gitlab.com/makhlaghi/
NoiseChisel-paper) of Akhlaghi and Ichikawa 2015 (https://arxiv.org/
abs/1505.01664) describing Section 7.2 [NoiseChisel], page 541.

In case you don’t want the COMMIT keyword in the first extension of your out-
put FITS file, you can use the --outfitsnocommit option (see Section 4.1.2.1
[Input/Output options], page 252).

CFITSIO The version of CFITSIO used (see Section 3.1.1.2 [CFITSIO], page 212). This
can be disabled with --outfitsnoversions (see Section 4.1.2.1 [Input/Output
options], page 252).

WCSLIB The version of WCSLIB used (see Section 3.1.1.3 [WCSLIB], page 213). Note
that older versions of WCSLIB do not report the version internally. So this is
only available if you are using more recent WCSLIB versions. This can be dis-
abled with --outfitsnoversions (see Section 4.1.2.1 [Input/Output options],
page 252).

GSL The version of GNU Scientific Library that was used, see Section 3.1.1.1 [GNU
Scientific Library], page 212. This can be disabled with --outfitsnoversions

(see Section 4.1.2.1 [Input/Output options], page 252).

GNUASTRO The version of Gnuastro used (see Section 1.7 [Version numbering], page 11).
This can be disabled with --outfitsnoversions (see Section 4.1.2.1
[Input/Output options], page 252).

4.11 Numeric locale

If your system locale (https://en.wikipedia.org/wiki/Locale_(computer_software))
is not English, it may happen that the ‘.’ is not used as the decimal separator of basic
command-line tools for input or output. For example, in Spanish and some other languages
the decimal separator (symbol used to separate the integer and fractional part of a number),
is a comma. Therefore in such systems, some programs may print 0.5 as as ‘0,5’ (instead of
‘0.5’). This mainly happens in some core operating system tools like awk or seq depend on
the locale. This can cause problems for other programs (like those in Gnuastro that expect
a ‘.’ as the decimal separator).

To see the effect, please try the commands below. The first one will print 0.5 in your
default locale’s format. The second set will use the Spanish locale for printing numbers
(which will put a comma between the 0 and the 5). The third will use the English (US)
locale for printing numbers (which will put a point between the 0 and the 5).

$ seq 0.5 1

$ export LC_NUMERIC=es_ES.utf8

$ seq 0.5 1

$ export LC_NUMERIC=en_US.utf8

$ seq 0.5 1

With the simple command below, you can check your current locale environment variables
for specifying the formats of various things like date, time, monetary, telephone, numbers,
etc. You can change any of these, by simply giving different values to the respective variable

https://gitlab.com/makhlaghi/NoiseChisel-paper
https://gitlab.com/makhlaghi/NoiseChisel-paper
https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1505.01664
https://en.wikipedia.org/wiki/Locale_(computer_software)
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like above. For a more complete explanation on each variable, see https://www.baeldung.
com/linux/locale-environment-variables.

$ locale

To avoid these kinds of locale-specific problems (for example, another program not being
able to read ‘0,5’ as half of unity), you can change the locale by giving the value of C to the
LC_NUMERIC environment variable (or the lower-level/generic LC_ALL). You will notice that
C is not a human-language and country identifier like en_US, it is the programming locale,
which is well recognized by programmers in all countries and is available on all Unix-like
operating systems (others may not be pre-defined and may need installation). You can set
the LC_NUMERIC only for a single command (the first one below: simply defining the variable
in the same line), or all commands within the running session (the second command below,
or “exporting” it to all subsequent commands):

## Change the numeric locale, only for this 'seq' command.

$ LC_NUMERIC=C seq 0.5 1

## Change the locale to the standard, for all commands after it.

$ export LC_NUMERIC=C

If you want to change it generally for all future sessions, you can put the second command
in your shell’s startup file. For more on startup files, please see Section 3.3.1.2 [Installation
directory], page 233.

https://www.baeldung.com/linux/locale-environment-variables
https://www.baeldung.com/linux/locale-environment-variables
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5 Data containers

The most low-level and basic property of a dataset is how it is stored. To process, archive and
transmit the data, you need a container to store it first. From the start of the computer age,
different formats have been defined to store data, optimized for particular applications. One
format/container can never be useful for all applications: the storage defines the application
and vice-versa. In astronomy, the Flexible Image Transport System (FITS) standard has
become the most common format of data storage and transmission. It has many useful
features, for example, multiple sub-containers (also known as extensions or header data
units, HDUs) within one file, or support for tables as well as images. Each HDU can store
an independent dataset and its corresponding meta-data. Therefore, Gnuastro has one
program (see Section 5.1 [Fits], page 295) specifically designed to manipulate FITS HDUs
and the meta-data (header keywords) in each HDU.

Your astronomical research does not just involve data analysis (where the FITS format is
very useful). For example, you want to demonstrate your raw and processed FITS images or
spectra as figures within slides, reports, or papers. The FITS format is not defined for such
applications. Thus, Gnuastro also comes with the ConvertType program (see Section 5.2
[ConvertType], page 314) which can be used to convert a FITS image to and from (where
possible) other formats like plain text and JPEG (which allow two way conversion), along
with EPS and PDF (which can only be created from FITS, not the other way round).

Finally, the FITS format is not just for images, it can also store tables. Binary tables in
particular can be very efficient in storing catalogs that have more than a few tens of columns
and rows. However, unlike images (where all elements/pixels have one data type), tables
contain multiple columns and each column can have different properties: independent data
types (see Section 4.5 [Numeric data types], page 277) and meta-data. In practice, each
column can be viewed as a separate container that is grouped with others in the table. The
only shared property of the columns in a table is thus the number of elements they contain.
To allow easy inspection/manipulation of table columns, Gnuastro has the Table program
(see Section 5.3 [Table], page 340). It can be used to select certain table columns in a FITS
table and see them as a human readable output on the command-line, or to save them into
another plain text or FITS table.

5.1 Fits

The “Flexible Image Transport System”, or FITS, is by far the most common data con-
tainer format in astronomy and in constant use since the 1970s. Archiving (future usage,
simplicity) has been one of the primary design principles of this format. In the last few
decades it has proved so useful and robust that the Vatican Library has also chosen FITS
for its “long-term digital preservation” project1.

Although the full name of the standard invokes the idea that it is only for images, it also
contains complete and robust features for tables. It started off in the 1970s and was formally
published as a standard in 1981, it was adopted by the International Astronomical Union
(IAU) in 1982 and an IAU working group to maintain its future was defined in 1988. The
FITS 2.0 and 3.0 standards were approved in 2000 and 2008 respectively, and the 4.0 draft
has also been released recently, please see the FITS standard document web page (https://

1 https://www.vaticanlibrary.va/home.php?pag=progettodigit

https://fits.gsfc.nasa.gov/fits_standard.html
https://fits.gsfc.nasa.gov/fits_standard.html
https://www.vaticanlibrary.va/home.php?pag=progettodigit
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fits.gsfc.nasa.gov/fits_standard.html) for the full text of all versions. Also see the
FITS 3.0 standard paper (https://doi.org/10.1051/0004-6361/201015362) for a nice
introduction and history along with the full standard.

Many common image formats, for example, a JPEG, only have one image/dataset per
file, however one great advantage of the FITS standard is that it allows you to keep multiple
datasets (images or tables along with their separate meta-data) in one file. In the FITS
standard, each data + metadata is known as an extension, or more formally a header data
unit or HDU. The HDUs in a file can be completely independent: you can have multiple
images of different dimensions/sizes or tables as separate extensions in one file. However,
while the standard does not impose any constraints on the relation between the datasets, it
is strongly encouraged to group data that are contextually related with each other in one
file. For example, an image and the table/catalog of objects and their measured properties
in that image. Other examples can be images of one patch of sky in different colors (filters),
or one raw telescope image along with its calibration data (tables or images).

As discussed above, the extensions in a FITS file can be completely independent. To
keep some information (meta-data) about the group of extensions in the FITS file, the
community has adopted the following convention: put no data in the first extension, so
it is just meta-data. This extension can thus be used to store Meta-data regarding the
whole file (grouping of extensions). Subsequent extensions may contain data along with
their own separate meta-data. All of Gnuastro’s programs also follow this convention: the
main output dataset(s) are placed in the second (or later) extension(s). The first extension
contains no data the program’s configuration (input file name, along with all its option
values) are stored as its meta-data, see Section 4.10 [Output FITS files], page 291.

The meta-data contain information about the data, for example, which region of the
sky an image corresponds to, the units of the data, what telescope, camera, and filter
the data were taken with, it observation date, or the software that produced it and its
configuration. Without the meta-data, the raw dataset is practically just a collection of
numbers and really hard to understand, or connect with the real world (other datasets). It
is thus strongly encouraged to supplement your data (at any level of processing) with as
much meta-data about your processing/science as possible.

The meta-data of a FITS file is in ASCII format, which can be easily viewed or edited
with a text editor or on the command-line. Each meta-data element (known as a keyword
generally) is composed of a name, value, units and comments (the last two are optional).
For example, below you can see three FITS meta-data keywords for specifying the world
coordinate system (WCS, or its location in the sky) of a dataset:

LATPOLE = -27.805089 / [deg] Native latitude of celestial pole

RADESYS = 'FK5' / Equatorial coordinate system

EQUINOX = 2000.0 / [yr] Equinox of equatorial coordinates

However, there are some limitations which discourage viewing/editing the keywords with
text editors. For example, there is a fixed length of 80 characters for each keyword (its name,
value, units and comments) and there are no new-line characters, so on a text editor all
the keywords are seen in one line. Also, the meta-data keywords are immediately followed
by the data which are commonly in binary format and will show up as strange looking
characters on a text editor, and significantly slowing down the processor.

https://fits.gsfc.nasa.gov/fits_standard.html
https://fits.gsfc.nasa.gov/fits_standard.html
https://doi.org/10.1051/0004-6361/201015362


Chapter 5: Data containers 297

Gnuastro’s Fits program was designed to allow easy manipulation of FITS extensions and
meta-data keywords on the command-line while conforming fully with the FITS standard.
For example, you can copy or cut (copy and remove) HDUs/extensions from one FITS file
to another, or completely delete them. It also has features to delete, add, or edit meta-data
keywords within one HDU.

5.1.1 Invoking Fits

Fits can print or manipulate the FITS file HDUs (extensions), meta-data keywords in a
given HDU. The executable name is astfits with the following general template

$ astfits [OPTION...] ASTRdata

One line examples:

## View general information about every extension:

$ astfits image.fits

## Print the header keywords in the second HDU (counting from 0):

$ astfits image.fits -h1

## Only print header keywords that contain `NAXIS':

$ astfits image.fits -h1 | grep NAXIS

## Only print the WCS standard PC matrix elements

$ astfits image.fits -h1 | grep 'PC._.'

## Copy a HDU from input.fits to out.fits:

$ astfits input.fits --copy=hdu-name --output=out.fits

## Update the OLDKEY keyword value to 153.034:

$ astfits --update=OLDKEY,153.034,"Old keyword comment"

## Delete one COMMENT keyword and add a new one:

$ astfits --delete=COMMENT --comment="Anything you like ;-)."

## Write two new keywords with different values and comments:

$ astfits --write=MYKEY1,20.00,"An example keyword" --write=MYKEY2,fd

## Inspect individual pixel area taken based on its WCS (in degree^2).

## Then convert the area to arcsec^2 with the Arithmetic program.

$ astfits input.fits --pixelareaonwcs -o pixarea.fits

$ astarithmetic pixarea.fits 3600 3600 x x -o pixarea_arcsec2.fits

When no action is requested (and only a file name is given), Fits will print a list of
information about the extension(s) in the file. This information includes the HDU number,
HDU name (EXTNAME keyword), type of data (see Section 4.5 [Numeric data types], page 277,
and the number of data elements it contains (size along each dimension for images and table
rows and columns). Optionally, a comment column is printed for special situations (like a
2D HEALPix grid that is usually stored as a 1D dataset/table). You can use this to get a
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general idea of the contents of the FITS file and what HDU to use for further processing,
either with the Fits program or any other Gnuastro program.

Here is one example of information about a FITS file with four extensions: the first
extension has no data, it is a purely meta-data HDU (commonly used to keep meta-data
about the whole file, or grouping of extensions, see Section 5.1 [Fits], page 295). The second
extension is an image with name IMAGE and single precision floating point type (float32,
see Section 4.5 [Numeric data types], page 277), it has 4287 pixels along its first (horizontal)
axis and 4286 pixels along its second (vertical) axis. The third extension is also an image
with name MASK. It is in 2-byte integer format (int16) which is commonly used to keep
information about pixels (for example, to identify which ones were saturated, or which ones
had cosmic rays and so on), note how it has the same size as the IMAGE extension. The
third extension is a binary table called CATALOG which has 12371 rows and 5 columns (it
probably contains information about the sources in the image).

GNU Astronomy Utilities X.X

Run on Day Month DD HH:MM:SS YYYY

-----

HDU (extension) information: `image.fits'.

Column 1: Index (counting from 0).

Column 2: Name (`EXTNAME' in FITS standard).

Column 3: Image data type or `table' format (ASCII or binary).

Column 4: Size of data in HDU.

-----

0 n/a uint8 0

1 IMAGE float32 4287x4286

2 MASK int16 4287x4286

3 CATALOG table_binary 12371x5

If a specific HDU is identified on the command-line with the --hdu (or -h option) and
no operation requested, then the full list of header keywords in that HDU will be printed
(as if the --printallkeys was called, see below). It is important to remember that this
only occurs when --hdu is given on the command-line. The --hdu value given in a config-
uration file will only be used when a specific operation on keywords requested. Therefore
as described in the paragraphs above, when no explicit call to the --hdu option is made
on the command-line and no operation is requested (on the command-line or configuration
files), the basic information of each HDU/extension is printed.

The operating mode and input/output options to Fits are similar to the other programs
and fully described in Section 4.1.2 [Common options], page 251. The options particular to
Fits can be divided into three groups: 1) those related to modifying HDUs or extensions
(see Section 5.1.1.1 [HDU information and manipulation], page 299), and 2) those related
to viewing/modifying meta-data keywords (see Section 5.1.1.2 [Keyword inspection and
manipulation], page 302). 3) those related to creating meta-images where each pixel shows
values for a specific property of the image (see Section 5.1.1.3 [Pixel information images],
page 313). These three classes of options cannot be called together in one run: you can either
work on the extensions, meta-data keywords in any instance of Fits, or create meta-images
where each pixel shows a particular information about the image itself.
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5.1.1.1 HDU information and manipulation

Each FITS file header data unit, or HDU (also known as an extension) is an independent
dataset (data + meta-data). Multiple HDUs can be stored in one FITS file, see Section 5.1
[Fits], page 295. The general HDU-related options to the Fits program are listed below as
two general classes: the first group below focus on HDU information while the latter focus
on manipulating (moving or deleting) the HDUs.

The options below print information about the given HDU on the command-line. Thus
they cannot be called together in one command (each has its own independent output).

-n

--numhdus

Print the number of extensions/HDUs in the given file. Note that this option
must be called alone and will only print a single number. It is thus useful in
scripts, for example, when you need to do check the number of extensions in a
FITS file.

For a complete list of basic meta-data on the extensions in a FITS file, do not use
any of the options in this section or in Section 5.1.1.2 [Keyword inspection and
manipulation], page 302. For more, see Section 5.1.1 [Invoking Fits], page 297.

--hastablehdu

Print 1 (on standard output) if at least one table HDU (ASCII or binary) exists
in the FITS file. Otherwise (when no table HDU exists in the file), print 0.

--listtablehdus

Print the names or numbers (when a name does not exist, counting from zero)
of HDUs that contain a table (ASCII or Binary) on standard output, one per
line. Otherwise (when no table HDU exists in the file) nothing will be printed.

--hasimagehdu

Print 1 (on standard output) if at least one image HDU exists in the FITS file.
Otherwise (when no image HDU exists in the file), print 0.

In the FITS standard, any array with any dimensions is called an “image”,
therefore this option includes 1, 3 and 4 dimensional arrays too. However, an
image HDU with zero dimensions (which is usually the first extension and only
contains metadata) is not counted here.

--listimagehdus

Print the names or numbers (when a name does not exist, counting from zero)
of HDUs that contain an image on standard output, one per line. Otherwise
(when no image HDU exists in the file) nothing will be printed.

In the FITS standard, any array with any dimensions is called an “image”,
therefore this option includes 1, 3 and 4 dimensional arrays too. However, an
image HDU with zero dimensions (which is usually the first extension and only
contains metadata) is not counted here.

--listallhdus

Print the names or numbers (when a name does not exist, counting from zero)
of all HDUs within the input file on the standard output, one per line.
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--pixelscale

Print the HDU’s pixel-scale (change in world coordinate for one pixel along
each dimension) and pixel area or voxel volume. Without the --quiet option,
the output of --pixelscale has multiple lines and explanations, thus being
more human-friendly. It prints the file/HDU name, number of dimensions, and
the units along with the actual pixel scales. Also, when any of the units are
in degrees, the pixel scales and area/volume are also printed in units of arc-
seconds. For 3D datasets, the pixel area (on each 2D slice of the 3D cube) is
printed as well as the voxel volume. If you only want the pixel area of a 2D
image in units of arcsec2 you can use --pixelareaarcsec2 described below.

However, in scripts (that are to be run automatically), this human-friendly
format is annoying, so when called with the --quiet option, only the pixel-
scale value(s) along each dimension is(are) printed in one line. These numbers
are followed by the pixel area (in the raw WCS units). For 3D datasets, this
will be area on each 2D slice. Finally, for 3D datasets, a final number (the
voxel volume) is printed. As a summary, in --quiet mode, for 2D datasets
three numbers are printed and for 3D datasets, 5 numbers are printed. If the
dataset has more than 3 dimensions, only the pixel-scale values are printed (no
area or volume will be printed).

--pixelareaarcsec2

Print the HDU’s pixel area in units of arcsec2. This option only works on 2D
images, that have WCS coordinates in units of degrees. For lower-level infor-
mation about the pixel scale in each dimension, see --pixelscale (described
above).

--skycoverage

Print the rectangular area (or 3D cube) covered by the given image/datacube
HDU over the Sky in the WCS units. The covered area is reported in two ways:
1) the center and full width in each dimension, 2) the minimum and maximum
sky coordinates in each dimension. This is option is thus useful when you want
to get a general feeling of a new image/dataset, or prepare the inputs to query
external databases in the region of the image (for example, with Section 5.4
[Query], page 375).

If run without the --quiet option, the values are given with a human-friendly
description. For example, here is the output of this option on an image taken
near the star Castor:

$ astfits castor.fits --skycoverage

Input file: castor.fits (hdu: 1)

Sky coverage by center and (full) width:

Center: 113.9149075 31.93759664

Width: 2.41762045 2.67945253

Sky coverage by range along dimensions:

RA 112.7235592 115.1411797

DEC 30.59262123 33.27207376
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With the --quiet option, the values are more machine-friendly (easy to parse).
It has two lines, where the first line contains the center/width values and the
second line shows the coordinate ranges in each dimension.

$ astfits castor.fits --skycoverage --quiet

113.9149075 31.93759664 2.41762045 2.67945253

112.7235592 115.1411797 30.59262123 33.27207376

Note that this is a simple rectangle (cube in 3D) definition, so if the image is
rotated in relation to the celestial coordinates a general polygon is necessary
to exactly describe the coverage. Hence when there is rotation, the reported
area will be larger than the actual area containing data, you can visually see
the area with the --pixelareaonwcs option of Section 5.1 [Fits], page 295.

Currently this option only supports images that are less than 180 degrees in
width (which is usually the case!). This requirement has been necessary to
account for images that cross the RA=0 hour circle on the sky. Please get in
touch with us at mailto:bug-gnuastro@gnu.org if you have an image that is
larger than 180 degrees so we try to find a solution based on need.

--datasum

Calculate and print the given HDU’s "datasum" to stdout. The given HDU
is specified with the --hdu (or -h) option. This number is calculated by pars-
ing all the bytes of the given HDU’s data records (excluding keywords). This
option ignores any possibly existing DATASUM keyword in the HDU. For more
on DATASUM in the FITS standard, see Section 5.1.1.2 [Keyword inspection and
manipulation], page 302, (under the checksum component of --write).

You can use this option to confirm that the data in two different HDUs (possi-
bly with different keywords) is identical. Its advantage over --write=datasum
(which writes the DATASUM keyword into the given HDU) is that it does not
require write permissions.

--datasum-encoded

Similar to --datasum, except that the output will be an encoded string of num-
bers and small-caps alphabetic characters. This is the same encoding algorithm
that is used for the CHECKSUM keyword, but applied to the value of the DATASUM
result. In some scenarios, this string can be more useful than the raw integer.

The following options manipulate (move/delete) the HDUs in one FITS file or to an-
other FITS file. These options may be called multiple times in one run. If so, the extensions
will be copied from the input FITS file to the output FITS file in the given order (on the
command-line and also in configuration files, see Section 4.2.2 [Configuration file prece-
dence], page 269). If the separate classes are called together in one run of Fits, then first
--copy is run (on all specified HDUs), followed by --cut (again on all specified HDUs),
and then --remove (on all specified HDUs).

The --copy and --cut options need an output FITS file (specified with the --output

option). If the output file exists, then the specified HDU will be copied following the last
extension of the output file (the existing HDUs in it will be untouched). Thus, after Fits
finishes, the copied HDU will be the last HDU of the output file. If no output file name
is given, then automatic output will be used to store the HDUs given to this option (see
Section 4.9 [Automatic output], page 290).

mailto:bug-gnuastro@gnu.org
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-C STR

--copy=STR

Copy the specified extension into the output file, see explanations above.

-k STR

--cut=STR

Cut (copy to output, remove from input) the specified extension into the output
file, see explanations above.

-R STR

--remove=STR

Remove the specified HDU from the input file.

The first (zero-th) HDU cannot be removed with this option. Consider using
--copy or --cut in combination with primaryimghdu to not have an empty
zero-th HDU. From CFITSIO: “In the case of deleting the primary array (the
first HDU in the file) then [it] will be replaced by a null primary array containing
the minimum set of required keywords and no data.”. So in practice, any
existing data (array) and meta-data in the first extension will be removed,
but the number of extensions in the file will not change. This is because of the
unique position the first FITS extension has in the FITS standard (for example,
it cannot be used to store tables).

--primaryimghdu

Copy or cut an image HDU to the zero-th HDU/extension a file that does not
yet exist. This option is thus irrelevant if the output file already exists or the
copied/cut extension is a FITS table. For example, with the commands below,
first we make sure that out.fits does not exist, then we copy the first extension
of in.fits to the zero-th extension of out.fits.

$ rm -f out.fits

$ astfits in.fits --copy=1 --primaryimghdu --output=out.fits

If we had not used --primaryimghdu, then the zero-th extension of out.fits
would have no data, and its second extension would host the copied image (just
like any other output of Gnuastro).

5.1.1.2 Keyword inspection and manipulation

The meta-data in each header data unit, or HDU (also known as extension, see Section 5.1
[Fits], page 295) is stored as “keyword”s. Each keyword consists of a name, value, unit, and
comments. The Fits program (see Section 5.1 [Fits], page 295) options related to viewing
and manipulating keywords in a FITS HDU are described below.

First, let’s review the --keyvalue option which should be called separately from the rest
of the options described in this section. Also, unlike the rest of the options in this section,
with --keyvalue, you can give more than one input file.

-l STR[,STR[,...]

--keyvalue=STR[,STR[,...]

Only print the value of the requested keyword(s): the STRs. --keyvalue can be
called multiple times, and each call can contain multiple comma-separated key-
words. If more than one file is given, this option uses the same HDU/extension
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for all of them (value to --hdu). For example, you can get the number of di-
mensions of the three FITS files in the running directory, as well as the length
along each dimension, with this command:

$ astfits *.fits --keyvalue=NAXIS,NAXIS1 --keyvalue=NAXIS2

image-a.fits 2 774 672

image-b.fits 2 774 672

image-c.fits 2 387 336

If only one input is given, and the --quiet option is activated, the file name is
not printed on the first column, only the values of the requested keywords.

$ astfits image-a.fits --keyvalue=NAXIS,NAXIS1 \

--keyvalue=NAXIS2 --quiet

2 774 672� �
Argument list too long: if the list of input files are too long, the shell is going
to complain with the Argument list too long error! To avoid this problem,
you can put the list of files in a plain-text file and give that plain-text file to
the Fits program through the --arguments option discussed below.
 	
The output is internally stored (and finally printed) as a table (with one
column per keyword). Therefore just like the Table program, you can use
--colinfoinstdout to print the metadata like the example below (also see
Section 5.3.5 [Invoking Table], page 359). The keyword metadata (comments
and units) are extracted from the comments and units of the keyword in the
input files (first file that has a comment or unit). Hence if the keyword does
not have units or comments in any of the input files, they will be empty. For
more on Gnuastro’s plain-text metadata format, see Section 4.7.2 [Gnuastro
text table format], page 285.

$ astfits *.fits --keyvalue=NAXIS,NAXIS1,NAXIS2 \

--colinfoinstdout

# Column 1: FILENAME [name,str10,] Name of input file.

# Column 2: NAXIS [ ,u8 ,] number of data axes

# Column 3: NAXIS1 [ ,u16 ,] length of data axis 1

# Column 4: NAXIS2 [ ,u16 ,] length of data axis 2

image-a.fits 2 774 672

image-b.fits 2 774 672

image-c.fits 2 387 336

Another advantage of a table output is that you can directly write the table to a
file. For example, if you add --output=fileinfo.fits, the information above
will be printed into a FITS table. You can also pipe it into Section 5.3 [Table],
page 340, to select files based on certain properties, to sort them based on
another property, or any other operation that can be done with Table (including
Section 5.3.3 [Column arithmetic], page 346). For example, with the command
below, you can select all the files that have a size larger than 500 pixels in both
dimensions.

$ astfits *.fits --keyvalue=NAXIS,NAXIS1,NAXIS2 \
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--colinfoinstdout \

| asttable --range=NAXIS1,500,inf \

--range=NAXIS2,500,inf -cFILENAME

image-a.fits

image-b.fits

Note that --colinfoinstdout is necessary to use column names when piping
to other programs (like asttable above). Also, with the -cFILENAME option,
we are asking Table to only print the final file names (we do not need the sizes
any more).

The commands with multiple files above used *.fits, which is only useful when
all your FITS files are in the same directory. However, in many cases, your FITS
files will be scattered in multiple sub-directories of a certain top-level directory,
or you may only want those with more particular file name patterns. A more
powerful way to list the input files to --keyvalue is to use the find program
in Unix-like operating systems. For example, with the command below you can
search all the FITS files in all the sub-directories of /TOP/DIR.

astfits $(find /TOP/DIR/ -name "*.fits") --keyvalue=NAXIS2

--arguments=STR

A plain-text file containing the list of input files that will be used in --keyvalue.
Each word (group of characters separated by SPACE or new-line) is assumed
to be the name of the separate input file. This option is only relevant when no
input files are given as arguments on the command-line: if any arguments are
given, this option is ignored.

This is necessary when the list of input files are very long; causing the shell to
abort with an Argument list too long error. In such cases, you can put the
list into a plain-text file and use this option like below:

$ ls $(path)/*.fits > list.txt

$ astfits --arguments=list.txt --keyvalue=NAXIS1

-O

--colinfoinstdout

Print column information (or metadata) above the column values when writing
keyword values to standard output with --keyvalue. You can read this option
as column-information-in-standard-output.

Below we will discuss the options that can be used to manipulate keywords. To see the
full list of keywords in a FITS HDU, you can use the --printallkeys option. If any of
the keyword modification options below are requested (for example, --update), the headers
of the input file/HDU will be changed first, then printed. Keyword modification is done
within the input file. Therefore, if you want to keep the original FITS file or HDU intact,
it is easiest to create a copy of the file/HDU first and then run Fits on that (for copying a
HDU to another file, see Section 5.1.1.1 [HDU information and manipulation], page 299. In
the FITS standard, keywords are always uppercase. So case does not matter in the input
or output keyword names you specify.
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� �
CHECKSUM automatically updated, when present: the keyword modification options will
change the contents of the HDU. Therefore, if a CHECKSUM is present in the HDU, after
all the keyword modification options have been complete, Fits will also update CHECKSUM
before closing the file.
 	

Most of the options can accept multiple instances in one command. For example, you
can add multiple keywords to delete by calling --delete multiple times, since repeated
keywords are allowed, you can even delete the same keyword multiple times. The action of
such options will start from the top most keyword.

The precedence of operations are described below. Note that while the order within each
class of actions is preserved, the order of individual actions is not. So irrespective of what
order you called --delete and --update. First, all the delete operations are going to take
effect then the update operations.

1. --delete

2. --rename

3. --update

4. --write

5. --asis

6. --history

7. --comment

8. --date

9. --printallkeys

10. --verify

11. --copykeys

All possible syntax errors will be reported before the keywords are actually written. FITS
errors during any of these actions will be reported, but Fits will not stop until all the
operations are complete. If --quitonerror is called, then Fits will immediately stop upon
the first error.

If you want to inspect only a certain set of header keywords, it is easiest to pipe the
output of the Fits program to GNU Grep. Grep is a very powerful and advanced tool to
search strings which is precisely made for such situations. for example, if you only want to
check the size of an image FITS HDU, you can run:

$ astfits input.fits | grep NAXIS� �
FITS STANDARDKEYWORDS: Some header keywords are necessary for later operations
on a FITS file, for example, BITPIX or NAXIS, see the FITS standard for their full list.
If you modify (for example, remove or rename) such keywords, the FITS file extension
might not be usable any more. Also be careful for the world coordinate system keywords,
if you modify or change their values, any future world coordinate system (like RA and
Dec) measurements on the image will also change.
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The keyword related options to the Fits program are fully described below.

-d STR

--delete=STR

Delete one instance of the STR keyword from the FITS header. Multiple in-
stances of --delete can be given (possibly even for the same keyword, when
its repeated in the meta-data). All keywords given will be removed from the
headers in the same given order. If the keyword does not exist, Fits will give a
warning and return with a non-zero value, but will not stop. To stop as soon
as an error occurs, run with --quitonerror.

-r STR,STR

--rename=STR,STR

Rename a keyword to a new value (for example, --rename=OLDNAME,NEWNAME.
STR contains both the existing and new names, which should be separated by
either a comma (,) or a space character. Note that if you use a space character,
you have to put the value to this option within double quotation marks (") so
the space character is not interpreted as an option separator. Multiple instances
of --rename can be given in one command. The keywords will be renamed in
the specified order. If the keyword does not exist, Fits will give a warning and
return with a non-zero value, but will not stop. To stop as soon as an error
occurs, run with --quitonerror.

-u STR

--update=STR

Update a keyword, its value, its comments and its units in the format described
below. If there are multiple instances of the keyword in the header, they will
be changed from top to bottom (with multiple --update options).

The format of the values to this option can best be specified with an example:

--update=KEYWORD,value,"comments for this keyword",unit

If there is a writing error, Fits will give a warning and return with a non-
zero value, but will not stop. To stop as soon as an error occurs, run with
--quitonerror.

The value can be any numerical or string value2. Other than the KEYWORD, all
the other values are optional. To leave a given token empty, follow the preceding
comma (,) immediately with the next. If any space character is present around
the commas, it will be considered part of the respective token. So if more than
one token has space characters within it, the safest method to specify a value
to this option is to put double quotation marks around each individual token
that needs it. Note that without double quotation marks, space characters will
be seen as option separators and can lead to undefined behavior.

2 Some tricky situations arise with values like ‘87095e5’, if this was intended to be a number it will be kept
in the header as 8709500000 and there is no problem. But this can also be a shortened Git commit hash.
In the latter case, it should be treated as a string and stored as it is written. Commit hashes are very
important in keeping the history of a file during your research and such values might arise without you
noticing them in your reproduction pipeline. One solution is to use git describe instead of the short
hash alone. A less recommended solution is to add a space after the commit hash and Fits will write
the value as ‘87095e5 ’ in the header. If you later compare the strings on the shell, the space character
will be ignored by the shell in the latter solution and there will be no problem.
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-w STR

--write=STR

Write a keyword to the header. For the possible value input formats, comments
and units for the keyword, see the --update option above. The special names
(first string) below will cause a special behavior:

/ Write a “title” to the list of keywords. A title consists of one blank
line and another which is blank for several spaces and starts with
a slash (/). The second string given to this option is the “title”
or string printed after the slash. For example, with the command
below you can add a “title” of ‘My keywords’ after the existing
keywords and add the subsequent K1 and K2 keywords under it
(note that keyword names are not case sensitive).

$ astfits test.fits -h1 --write=/,"My keywords" \

--write=k1,1.23,"My first keyword" \

--write=k2,4.56,"My second keyword"

$ astfits test.fits -h1

[[[ ... truncated ... ]]]

/ My keywords

K1 = 1.23 / My first keyword

K2 = 4.56 / My second keyword

END

Adding a “title” before each contextually separate group of header
keywords greatly helps in readability and visual inspection of the
keywords. So generally, when you want to add new FITS keywords,
it is good practice to also add a title before them.

The reason you need to use / as the keyword name for setting a
title is that / is the first non-white character.

The title(s) is(are) written into the FITS with the same order that
--write is called. Therefore in one run of the Fits program, you
can specify many different titles (with their own keywords under
them). For example, the command below that builds on the pre-
vious example and adds another group of keywords named A1 and
A2.

$ astfits test.fits -h1 --write=/,"My keywords" \

--write=k1,1.23,"My first keyword" \

--write=k2,4.56,"My second keyword" \

--write=/,"My second group of keywords" \

--write=a1,7.89,"First keyword" \

--write=a2,0.12,"Second keyword"

checksum When nothing is given afterwards, the header integrity keywords
DATASUM and CHECKSUM will be calculated and written/updated.
The calculation and writing is done fully by CFITSIO, therefore
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they comply with the FITS standard 4.03 that defines these key-
words (its Appendix J).

If a value is given (e.g., --write=checksum,MyOwnCheckSum), then
CFITSIO will not be called to calculate these two keywords and
the value (as well as possible comment and unit) will be written
just like any other keyword. This is generally not recommended
since CHECKSUM is a reserved FITS standard keyword. If you want
to calculate the checksum with another hashing standard manually
and write it into the header, it is recommended to use another
keyword name.

In the FITS standard, CHECKSUM depends on the HDU’s data and
header keywords, it will therefore not be valid if you make any
further changes to the header after writing the CHECKSUM keyword.
This includes any further keyword modification options in the same
call to the Fits program. However, DATASUM only depends on the
data section of the HDU/extension, so it is not changed when you
add, remove or update the header keywords. Therefore, it is rec-
ommended to write these keywords as the last keywords that are
written/modified in the extension. You can use the --verify op-
tion (described below) to verify the values of these two keywords.

datasum Similar to checksum, but only write the DATASUM keyword (that
does not depend on the header keywords, only the data).

-a STR

--asis=STR

Write the given STR exactly as it is, into the given FITS file header with no
modifications. If the contents of STR does not conform to the FITS standard
for keywords, then it may (most probably: it will!) corrupt your file and you
may not be able to open it any more. So please be very careful with this option
(its your responsibility to make sure that the string conforms with the FITS
standard for keywords).

If you want to define the keyword from scratch, it is best to use the --write

option (see below) and let CFITSIO worry about complying with the FITS
standard. Also, you want to copy keywords from one FITS file to another,
you can use --copykeys that is described below. Through these high-level
instances, you don’t have to worry about low-level issues.

One common usage of --asis occurs when you are given the contents of a FITS
header (many keywords) as a plain-text file (so the format of each keyword line
conforms with the FITS standard, just the file is plain-text, and you have
one keyword per line when you open it in a plain-text editor). In that case,
Gnuastro’s Fits program won’t be able to parse it (it doesn’t conform to the
FITS standard, which doesn’t have a new-line character!). With the command
below, you can insert those headers in headers.txt into img.fits (its HDU
number 1, the default; you can change the HDU to modify with --hdu).

$ cat headers.txt \

3 https://fits.gsfc.nasa.gov/standard40/fits_standard40aa-le.pdf

https://fits.gsfc.nasa.gov/standard40/fits_standard40aa-le.pdf
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| while read line; do \

astfits img.fits --asis="$line"; \

done� �
Don’t forget a title: Since the newly added headers in the example above
weren’t originally in the file, they are probably some form of high-level meta-
data. The raw example above will just append the new keywords after the
last one. Making it hard for human readability (its not clear what this new
group of keywords signify, where they start, and where this group of keywords
end). To help the human readability of the header, add a title for this group of
keywords before writing them. To do that, run the following command before
the cat ... command above (replace Imported keys with any title that best
describes this group of new keywords based on their context):

$ astfits img.fits --write=/,"Imported keys"
 	
-H STR

--history STR

Add a HISTORY keyword to the header with the given value. A new HISTORY

keyword will be created for every instance of this option. If the string given
to this option is longer than 70 characters, it will be separated into multiple
keyword cards. If there is an error, Fits will give a warning and return with a
non-zero value, but will not stop. To stop as soon as an error occurs, run with
--quitonerror.

-c STR

--comment STR

Add a COMMENT keyword to the header with the given value. Similar to the
explanation for --history above.

-t

--date Put the current date and time in the header. If the DATE keyword already exists
in the header, it will be updated. If there is a writing error, Fits will give a
warning and return with a non-zero value, but will not stop. To stop as soon
as an error occurs, run with --quitonerror.

-p

--printallkeys

Print the full metadata (keywords, values, units and comments) in the specified
FITS extension (HDU). If this option is called along with any of the other
keyword editing commands, as described above, all other editing commands
take precedence to this. Therefore, it will print the final keywords after all the
editing has been done.

--printkeynames

Print only the keyword names of the specified FITS extension (HDU), one line
per name. This option must be called alone.



Chapter 5: Data containers 310

-v

--verify Verify the DATASUM and CHECKSUM data integrity keywords of the FITS standard.
See the description under the checksum (under --write, above) for more on
these keywords.

This option will print Verified for both keywords if they can be verified.
Otherwise, if they do not exist in the given HDU/extension, it will print NOT-
PRESENT, and if they cannot be verified it will print INCORRECT. In the latter
case (when the keyword values exist but cannot be verified), the Fits program
will also return with a failure.

By default this function will also print a short description of the DATASUM AND
CHECKSUM keywords. You can suppress this extra information with --quiet

option.

--copykeys=INT:INT/STR,STR[,STR]

Copy the desired set of the input’s keyword records, to the to the output (spec-
ified with the --output and --outhdu for the filename and HDU/extension
respectively). The keywords to copy can be given either as a range (in the
format of INT:INT, inclusive) or a list of keyword names as comma-separated
strings (STR,STR), the list can have any number of keyword names. More details
and examples of the two forms are given below:

Range The given string to this option must be two integers separated
by a colon (:). The first integer must be positive (counting of the
keyword records starts from 1). The second integer may be negative
(zero is not acceptable) or an integer larger than the first.

A negative second integer means counting from the end. So -1 is
the last copy-able keyword (not including the END keyword).

To see the header keywords of the input with a number before them,
you can pipe the output of the Fits program (when it prints all the
keywords in an extension) into the cat program like below:

$ astfits input.fits -h1 | cat -n

List of names
The given string to this option must be a comma separated list of
keyword names. For example, see the command below:

$ astfits input.fits -h1 --copykeys=KEY1,KEY2 \

--output=output.fits --outhdu=1

Please consider the notes below when copying keywords with
names:

• If the number of characters in the name is more than 8, CFIT-
SIO will place a HIERARCH before it. In this case simply give
the name and do not give the HIERARCH (which is a constant
and not considered part of the keyword name).

• If your keyword name is composed only of digits, do not give
it as the first name given to --copykeys. Otherwise, it will
be confused with the range format above. You can safely give
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an only-digit keyword name as the second, or third requested
keywords.

• If the keyword is repeated more than once in the header, cur-
rently only the first instance will be copied. In other words,
even if you call --copykeys multiple times with the same key-
word name, its first instance will be copied. If you need to
copy multiple instances of the same keyword, please get in
touch with us at bug-gnuastro@gnu.org.

--outhdu The HDU/extension to write the output keywords of --copykeys.

-Q

--quitonerror

Quit if any of the operations above are not successful. By default if an error
occurs, Fits will warn the user of the faulty keyword and continue with the rest
of actions.

-s STR

--datetosec STR

Interpret the value of the given keyword in the FITS date format (most gener-
ally: YYYY-MM-DDThh:mm:ss.ddd...) and return the corresponding Unix epoch
time (number of seconds that have passed since 00:00:00 Thursday, January 1st,
1970). The Thh:mm:ss.ddd... section (specifying the time of day), and also
the .ddd... (specifying the fraction of a second) are optional. The value to
this option must be the FITS keyword name that contains the requested date,
for example, --datetosec=DATE-OBS.

This option can also interpret the older FITS date format
(DD/MM/YYThh:mm:ss.ddd...) where only two characters are given to
the year. In this case (following the GNU C Library), this option will make
the following assumption: values 68 to 99 correspond to the years 1969 to
1999, and values 0 to 68 as the years 2000 to 2068.

This is a very useful option for operations on the FITS date values, for example,
sorting FITS files by their dates, or finding the time difference between two
FITS files. The advantage of working with the Unix epoch time is that you do
not have to worry about calendar details (for example, the number of days in
different months, or leap years).

--wcscoordsys=STR

Convert the coordinate system of the image’s world coordinate system (WCS)
to the given coordinate system (STR) and write it into the file given to --output
(or an automatically named file if no --output has been given).

For example, with the command below, img-eq.fits will have an identical
dataset (pixel values) as image.fits. However, the WCS coordinate system of
img-eq.fits will be the equatorial coordinate system in the Julian calendar
epoch 2000 (which is the most common epoch used today). Fits will automat-
ically extract the current coordinate system of image.fits and as long as it is
one of the recognized coordinate systems listed below, it will do the conversion.

$ astfits image.fits --wcscoordsys=eq-j2000 \
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--output=img-eq.fits

The currently recognized coordinate systems are listed below (the most common
one today is eq-j2000):

eq-j2000 2000.0 (Julian-year) equatorial coordinates. This is also known as
FK5 (short for “Fundamental Katalog No 5” which was the source
of the star coordinates used to define it).

This coordinate system is based on the motion of the Sun and has
epochs when the mean equator was used (for example eq-b1950

below). Furthermore, the definition of year is different: either the
Besselian year in 1950.0, or the Julian year in 2000. For more
on their difference and links for further reading about epochs in
astronomy, please see the description in Wikipedia (https://en.
wikipedia.org/wiki/Epoch_(astronomy)).

Because of these difficulties, the equatorial J2000.0 coordinate sys-
tem has been deprecated by the IAU in favor of International Ce-
lestial Refernece System (ICRS) but is still used extensively. ICRS
is defined based on extra-galactic quasars, so it does not depend
on the dynamics of the solar system any more. But to enable his-
torical continuity, ICRS has been defined to be equivalent to the
equatorial J2000.0 within its accepted error bars of the latter (tens
of milli-arcseconds). This justifies the reason that moving to ICRS
has been relatively slow.

eq-b1950 1950.0 (Besselian-year) equatorial coordinates.

ec-j2000 2000.0 (Julian-year) ecliptic coordinates.

ec-b1950 1950.0 (Besselian-year) ecliptic coordinates.

galactic Galactic coordinates.

supergalactic

Supergalactic coordinates.

--wcsdistortion=STR

If the argument has a WCS distortion, the output (file given with the --output
option) will have the distortion given to this option (for example, SIP, TPV).
The output will be a new file (with a copy of the image, and the new WCS),
so if it already exists, the file will be delete (unless you use the --dontdelete

option, see Section 4.1.2.1 [Input/Output options], page 252).

With this option, the Fits program will read the minimal set of keywords from
the input HDU and the HDU data. It will then write them into the file given
to the --output option but with a newly created set of WCS-related keywords
corresponding to the desired distortion standard.

If no --output file is specified, an automatically generated output name will
be used which is composed of the input’s name but with the -DDD.fits suffix,
see Section 4.9 [Automatic output], page 290. Where DDD is the value given to
this option (desired output distortion).

https://en.wikipedia.org/wiki/Epoch_(astronomy)
https://en.wikipedia.org/wiki/Epoch_(astronomy)
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Note that all possible conversions between all standards are not yet supported.
If the requested conversion is not supported, an informative error message will
be printed. If this happens, please let us know and we will try our best to add
the respective conversions.

For example, with the command below, you can be sure that if in.fits has a
distortion in its WCS, the distortion of out.fits will be in the SIP standard.

$ astfits in.fits --wcsdistortion=SIP --output=out.fits

5.1.1.3 Pixel information images

In Section 5.1.1.2 [Keyword inspection and manipulation], page 302, options like
--pixelscale were introduced for information on the pixels from the keywords. But that
only provides a single value for all the pixels! This will not be sufficient in some scenarios;
for example due to distortion, different regions of the image will have different pixel areas
when projected onto the sky.

The options in this section provide such “meta” images: images where the pixel values
are information about the pixel itself. Such images can be useful in understanding the
underlying pixel grid with the same tools that you study the astronomical objects within
the image (like Section A.1 [SAO DS9], page 959). After all, nothing beats visual inspection
with tools you are familiar with.

--pixelareaonwcs

Create a meta-image where each pixel’s value shows its area in the WCS units
(usually degrees squared). The output is therefore the same size as the input.

This option uses the same “pixel mixing” or “area resampling” concept that is
described in Section 6.4.3 [Resampling], page 495, (as part of the Warp pro-
gram). Similar to Warp, its sampling can be tuned with the --edgesampling

that is described below.

One scenario where this option becomes handy is when you are debugging
aligned images using the Warp program (see Section 6.4 [Warp], page 492).
You may observe gradients after warping and can check if they caused by the
distortion of the instrument or not. Such gradients can happen due to distor-
tions because the detectors pixels are measuring photons from different areas on
the sky (or the type of projection you’re seeing). This effect is more pronounced
in images covering larger portions of the sky, for instance, the TESS images4.

Here is an example usage of the --pixelareaonwcs option:

# Check the area each 'input.fits' pixel takes in sky

$ astfits input.fits -h1 --pixelareaonwcs -o pixarea.fits

# Convert each pixel's area to arcsec^2

$ astarithmetic pixarea.fits 3600 3600 x x \

--output=pixarea_arcsec2.fits

# Compare area relative to the actual reported pixel scale

$ pixarea=$(astfits input.fits --pixelscale -q \

4 https://www.nasa.gov/tess-transiting-exoplanet-survey-satellite

https://www.nasa.gov/tess-transiting-exoplanet-survey-satellite
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| awk '{print $3}')

$ astarithmetic pixarea.fits $pixarea / -o pixarea_rel.fits

--edgesampling=INT

Extra sampling along the pixel edges for --pixelareaonwcs. The default value
is 0, meaning that only the pixel vertices are used. Values greater than zero
improve the accuracy in the expense of greater time and memory consumption.
With that said, the default value of zero usually has a good precision unless
the given image has extreme distortions that produce irregular pixel shapes.
For more, see Section 6.4.4.1 [Align pixels with WCS considering distortions],
page 499).� �
Caution: This option does not “oversample” the output image! Rather, it
makes Warp use more points to calculate the input pixel area. To oversample
the output image, set a reasonable --cdelt value.
 	

5.2 ConvertType

The FITS format used in astronomy was defined mainly for archiving, transmission, and
processing. In other situations, the data might be useful in other formats. For example,
when you are writing a paper or report, or if you are making slides for a talk, you cannot
use a FITS image. Other image formats should be used. In other cases you might want
your pixel values in a table format as plain text for input to other programs that do not
recognize FITS. ConvertType is created for such situations. The various types will increase
with future updates and based on need.

The conversion is not only one way (from FITS to other formats), but two ways (except
the EPS and PDF formats5). So you can also convert a JPEG image or text file into a
FITS image. Basically, other than EPS/PDF, you can use any of the recognized formats as
different color channel inputs to get any of the recognized outputs.

Before explaining the options and arguments (in Section 5.2.5 [Invoking ConvertType],
page 329), we will start with a short discussion on the difference between raster and vector
graphics in Section 5.2.1 [Raster and Vector graphics], page 314. In ConvertType, vector
graphics are used to add markers over your originally rasterized data, producing high quality
images, ready to be used in your exciting papers. We will continue with a description of
the recognized files types in Section 5.2.2 [Recognized file formats], page 315, followed a
short introduction to digital color in Section 5.2.3 [Color], page 318. A tutorial on how to
add markers over an image is then given in Section 2.1.21 [Marking objects for publication],
page 70, and we conclude with a LATEX based solution to add coordinates over an image.

5.2.1 Raster and Vector graphics

Images that are produced by a hardware (for example, the camera in your phone, or the
camera connected to a telescope) provide pixelated data. Such data are therefore stored
in a Raster graphics (https://en.wikipedia.org/wiki/Raster_graphics) format which
has discrete, independent, equally spaced data elements. For example, this is the format
used FITS (see Section 5.1 [Fits], page 295), JPEG, TIFF, PNG and other image formats.

5 Because EPS and PDF are vector, not raster/pixelated formats

https://en.wikipedia.org/wiki/Raster_graphics
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On the other hand, when something is generated by the computer (for example, a dia-
gram, plot or even adding a cross over a camera image to highlight something there), there
is no “observation” or connection with nature! Everything is abstract! For such things, it
is much easier to draw a mathematical line (with infinite resolution). Therefore, no matter
how much you zoom-in, it will never get pixelated. This is the realm of Vector graphics
(https://en.wikipedia.org/wiki/Vector_graphics). If you open the Gnuastro man-
ual in PDF format (https://www.gnu.org/software/gnuastro/manual/gnuastro.pdf)
You can see such graphics in the Gnuastro manual, for example, in Section 6.3.2.2 [Cir-
cles and the complex plane], page 474, or Section 9.1.1 [Distance on a 2D curved space],
page 654. The most common vector graphics format is PDF for document sharing or SVG
for web-based applications.

The pixels of a raster image can be shown as vector-based squares with different shades,
so vector graphics can generally also support raster graphics. This is very useful when you
want to add some graphics over an image to help your discussion (for example a + over your
object of interest). However, vector graphics is not optimized for rasterized data (which are
usually also noisy!), and can either not display nicely, or result in much larger file volume (in
bytes). Therefore, if it is not necessary to add any marks over a FITS image, for example,
it may be better to store it in a rasterized format.

The distinction between the vector and raster graphics is also the primary theme behind
Gnuastro’s logo, see Section 1.5 [Logo of Gnuastro], page 10.

5.2.2 Recognized file formats

The various standards and the file name extensions recognized by ConvertType are listed
below. For a review on the difference between Raster and Vector graphics, see Section 5.2.1
[Raster and Vector graphics], page 314. For a review on the concept of color and channels,
see Section 5.2.3 [Color], page 318. Currently, except for the FITS format, Gnuastro uses
the file name’s suffix to identify the format, so if the file’s name does not end with one of
the suffixes mentioned below, it will not be recognized.

FITS or IMH
Astronomical data are commonly stored in the FITS format (or the older data
IRAF .imh format), a list of file name suffixes which indicate that the file is in
this format is given in Section 4.1.1.1 [Arguments], page 249. FITS is a raster
graphics format.

Each image extension of a FITS file only has one value per pixel/element.
Therefore, when used as input, each input FITS image contributes as one color
channel. If you want multiple extensions in one FITS file for different color
channels, you have to repeat the file name multiple times and use the --hdu,
--hdu2, --hdu3 or --hdu4 options to specify the different extensions.

JPEG The JPEG standard was created by the Joint photographic experts group. It is
currently one of the most commonly used image formats. Its major advantage
is the compression algorithm that is defined by the standard. Like the FITS
standard, this is a raster graphics format, which means that it is pixelated.

A JPEG file can have 1 (for gray-scale), 3 (for RGB) and 4 (for CMYK) color
channels. If you only want to convert one JPEG image into other formats, there
is no problem, however, if you want to use it in combination with other input

https://en.wikipedia.org/wiki/Vector_graphics
https://en.wikipedia.org/wiki/Vector_graphics
https://www.gnu.org/software/gnuastro/manual/gnuastro.pdf
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files, make sure that the final number of color channels does not exceed four. If
it does, then ConvertType will abort and notify you.

The file name endings that are recognized as a JPEG file for input are: .jpg,
.JPG, .jpeg, .JPEG, .jpe, .jif, .jfif and .jfi.

TIFF TIFF (or Tagged Image File Format) was originally designed as a common
format for scanners in the early 90s and since then it has grown to become
very general. In many aspects, the TIFF standard is similar to the FITS image
standard: it can allow data of many types (see Section 4.5 [Numeric data types],
page 277), and also allows multiple images to be stored in a single file (like
a FITS extension: each image in the file is called a ‘directory’ in the TIFF
standard). However, unlike FITS, it can only store images, it has no constructs
for tables. Also unlike FITS, each ‘directory’ of a TIFF file can have a multi-
channel (e.g., RGB) image. Another (inconvenient) difference with the FITS
standard is that keyword names are stored as numbers, not human-readable
text.

However, outside of astronomy, because of its support of different numeric data
types, many fields use TIFF images for accurate (for example, 16-bit integer or
floating point for example) imaging data.

EPS The Encapsulated PostScript (EPS) format is essentially a one page PostScript
file which has a specified size. Postscript is used to store a full document like
this whole Gnuastro book. PostScript therefore also includes non-image data,
for example, lines and texts. It is a fully functional programming language to
describe a document. A PostScript file is a plain text file that can be edited
like any program source with any plain-text editor. Therefore in ConvertType,
EPS is only an output format and cannot be used as input. Contrary to the
FITS or JPEG formats, PostScript is not a raster format, but is categorized as
vector graphics.

With these features in mind, you can see that when you are compiling a docu-
ment with TEX or LATEX, using an EPS file is much more low level than a JPEG
and thus you have much greater control and therefore quality. Since it also in-
cludes vector graphic lines we also use such lines to make a thin border around
the image to make its appearance in the document much better. Furthermore,
through EPS, you can add marks over the image in many shapes and colors.
No matter the resolution of the display or printer, these lines will always be
clear and not pixelated. However, this can be done better with tools within
TEX or LATEX such as PGF/Tikz6.

If the final input image (possibly after all operations on the flux explained be-
low) is a binary image or only has two colors of black and white (in segmentation
maps for example), then PostScript has another great advantage compared to
other formats. It allows for 1 bit pixels (pixels with a value of 0 or 1), this
can decrease the output file size by 8 times. So if a gray-scale image is bi-
nary, ConvertType will exploit this property in the EPS and PDF (see below)
outputs.

6 http://sourceforge.net/projects/pgf/

http://sourceforge.net/projects/pgf/
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The standard formats for an EPS file are .eps, .EPS, .epsf and .epsi. The
EPS outputs of ConvertType have the .eps suffix.

PDF The Portable Document Format (PDF) is currently the most common format
for documents. It is a vector graphics format, allowing abstract constructs like
marks or borders.

The PDF format is based on Postscript, so it shares all the features mentioned
above for EPS. To be able to display it is programmed content or print, a
Postscript file needs to pass through a processor or compiler. A PDF file can
be thought of as the processed output of the PostScript compiler. PostScript,
EPS and PDF were created and are registered by Adobe Systems.

As explained under EPS above, a PDF document is a static document descrip-
tion format, viewing its result is therefore much faster and more efficient than
PostScript. To create a PDF output, ConvertType will make an EPS file and
convert that to PDF using GPL Ghostscript. The suffixes recognized for a PDF
file are: .pdf, .PDF. If GPL Ghostscript cannot be run on the PostScript file,
The EPS will remain and a warning will be printed (see Section 3.1.2 [Optional
dependencies], page 214).

blank This is not actually a file type! But can be used to fill one color channel with a
blank value. If this argument is given for any color channel, that channel will
not be used in the output.

Plain text The value of each pixel in a 2D image can be written as a 2D matrix in a
plain-text file. Therefore, for the purpose of ConvertType, plain-text files are
a single-channel raster graphics file format.

Plain text files have the advantage that they can be viewed with any text editor
or on the command-line. Most programs also support input as plain text files.
As input, each plain text file is considered to contain one color channel.

In ConvertType, the recognized extensions for plain text files are .txt and
.dat. As described in Section 5.2.5 [Invoking ConvertType], page 329, if you
just give these extensions, (and not a full filename) as output, then automatic
output will be preformed to determine the final output name (see Section 4.9
[Automatic output], page 290). Besides these, when the format of a file cannot
be recognized from its name, ConvertType will fall back to plain text mode.
So you can use any name (even without an extension) for a plain text input or
output. Just note that when the suffix is not recognized, automatic output will
not be preformed.

The basic input/output on plain text images is very similar to how tables
are read/written as described in Section 4.7.2 [Gnuastro text table format],
page 285. Simply put, the restrictions are very loose, and there is a conven-
tion to define a name, units, data type (see Section 4.5 [Numeric data types],
page 277), and comments for the data in a commented line. The only difference
is that as a table, a text file can contain many datasets (columns), but as a
2D image, it can only contain one dataset. As a result, only one information
comment line is necessary for a 2D image, and instead of the starting ‘# Column

N’ (N is the column number), the information line for a 2D image must start
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with ‘# Image 1’. When ConvertType is asked to output to plain text file, this
information comment line is written before the image pixel values.

When converting an image to plain text, consider the fact that if the image
is large, the number of columns in each line will become very large, possibly
making it very hard to open in some text editors.

Standard output (command-line)
This is very similar to the plain text output, but instead of creating a file to
keep the printed values, they are printed on the command-line. This can be
very useful when you want to redirect the results directly to another program
in one command with no intermediate file. The only difference is that only the
pixel values are printed (with no information comment line). To print to the
standard output, set the output name to ‘stdout’.

5.2.3 Color

Color is generally defined after mixing various data “channels”. The values for each channel
usually come a filter that is placed in the optical path. Filters, only allow a certain window
of the spectrum to pass (for example, the SDSS r filter only allows light from about 5500 to
7000 Angstroms). In digital monitors or common digital cameras, a different set of filters
are used: Red, Green and Blue (commonly known as RGB) that are more optimized to the
eye’s perception. On the other hand, when printing on paper, standard printers use the
cyan, magenta, yellow and key (CMYK, key=black) color space.

5.2.3.1 Pixel colors

As discussed in Section 5.2.3 [Color], page 318, for each displayed/printed pixel of a color
image, the dataset/image has three or four values. To store/show the three values for each
pixel, cameras and monitors allocate a certain fraction of each pixel’s area to red, green and
blue filters. These three filters are thus built into the hardware at the pixel level.

However, because measurement accuracy is very important in scientific instruments, and
we want to do measurements (take images) with various/custom filters (without having to
order a new expensive detector!), scientific detectors use the full area of the pixel to store
one value for it in a single/mono channel dataset. To make measurements in different filters,
we just place a filter in the light path before the detector. Therefore, the FITS format that
is used to store astronomical datasets is inherently a mono-channel format (see Section 5.2.2
[Recognized file formats], page 315, or Section 5.1 [Fits], page 295).

When a subject has been imaged in multiple filters, you can feed each different filter into
the red, green and blue channels of your monitor and obtain a false-colored visualization.
The reason we say “false-color” (or pseudo color) is that generally, the three data channels
you provide are not from the same Red, Green and Blue filters of your monitor! So the
observed color on your monitor does not correspond the physical “color” that you would
have seen if you looked at the object by eye. Nevertheless, it is good (and sometimes
necessary) for visualization (of special features).

In ConvertType, you can do this by giving each separate single-channel dataset (for
example, in the FITS image format) as an argument (in the proper order), then asking for
the output in a format that supports multi-channel datasets (for example, see the command
below, or Section 5.2.5.1 [ConvertType input and output], page 329).
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$ astconvertt r.fits g.fits b.fits --output=color.jpg

5.2.3.2 Colormaps for single-channel pixels

As discussed in Section 5.2.3.1 [Pixel colors], page 318, color is not defined when a
dataset/image contains a single value for each pixel. However, we interact with scientific
datasets through monitors or printers. They allow multiple channels (independent values)
per pixel and produce color with them (on monitors, this is usually with three channels:
Red, Green and Blue). As a result, there is a lot of freedom in visualizing a single-channel
dataset.

The mapping of single-channel values to multi-channel colors is called called a “color
map”. Since more information can be put in multiple channels, this usually results in better
visualizing the dynamic range of your single-channel data. In ConvertType, you can use
the --colormap option to choose between different mappings of mono-channel inputs, see
Section 5.2.5 [Invoking ConvertType], page 329. Below, we will review two of the basic color
maps, please see the description of --colormap in Section 5.2.5 [Invoking ConvertType],
page 329, for the full list.

• The most basic colormap is shades of black (because of its strong contrast with white).
This scheme is called Grayscale (https://en.wikipedia.org/wiki/Grayscale). But
ultimately, the black is just one color, so with Grayscale, you are not using the full
dynamic range of the three-channel monitor effectively. To help in visualization, more
complex mappings can be defined.

• A slightly more complex color map can be defined when you scale the values to a range
of 0 to 360, and use as it as the “Hue” term of the Hue-Saturation-Value (https://en.
wikipedia.org/wiki/HSL_and_HSV) (HSV) color space (while fixing the “Saturation”
and “Value” terms). The increased usage of the monitor’s 3-channel color space is
indeed better, but the resulting images can be un-”natural” to the eye.

Since grayscale is a commonly used mapping of single-valued datasets, we will continue
with a closer look at how it is stored. One way to represent a gray-scale image in different
color spaces is to use the same proportions of the primary colors in each pixel. This is the
common way most FITS image viewers work: for each pixel, they fill all the channels with
the single value. While this is necessary for displaying a dataset, there are downsides when
storing/saving this type of grayscale visualization (for example, in a paper).

• Three (for RGB) or four (for CMYK) values have to be stored for every pixel, this
makes the output file very heavy (in terms of bytes).

• If printing, the printing errors of each color channel can make the printed image slightly
more blurred than it actually is.

To solve both these problems when storing grayscale visualization, the best way is to
save a single-channel dataset into the black channel of the CMYK color space. The JPEG
standard is the only common standard that accepts CMYK color space.

The JPEG and EPS standards set two sizes for the number of bits in each channel: 8-bit
and 12-bit. The former is by far the most common and is what is used in ConvertType.
Therefore, each channel should have values between 0 to 28 − 1 = 255. From this we see
how each pixel in a gray-scale image is one byte (8 bits) long, in an RGB image, it is 3 bytes
long and in CMYK it is 4 bytes long. But thanks to the JPEG compression algorithms,

https://en.wikipedia.org/wiki/Grayscale
https://en.wikipedia.org/wiki/HSL_and_HSV
https://en.wikipedia.org/wiki/HSL_and_HSV
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when all the pixels of one channel have the same value, that channel is compressed to one
pixel. Therefore a Grayscale image and a CMYK image that has only the K-channel filled
are approximately the same file size.

5.2.3.3 Vector graphics colors

When creating vector graphics, ConvertType recognizes the extended web colors (https://
en.wikipedia.org/wiki/Web_colors#Extended_colors) that are the result of merging
the colors in the HTML 4.01, CSS 2.0, SVG 1.0 and CSS3 standards. They are all shown
with their standard name in Figure 5.1. The names are not case sensitive so you can use
them in any form (for example, turquoise is the same as Turquoise or TURQUOISE).

On the command-line, you can also get the list of colors with the --listcolors option
to CovertType, like below. In particular, if your terminal is 24-bit or "true color", in
the last column, you will see each color. This greatly helps in selecting the best color for
our purpose easily on the command-line (without taking your hands off the keyboard and
getting distracted).

$ astconvertt --listcolors

mediumvioletred (1)

deeppink (2)

palevioletred (3)

hotpink (4)

lightpink (5)

pink (6)

darkred (7)

red (8)

firebrick (9)

crimson (10)

indianred (11)

lightcoral (12)

salmon (13)

darksalmon (14)

lightsalmon (15)

orangered (16)

tomato (17)

darkorange (18)

coral (19)

orange (20)

darkkhaki (21)

gold (22)

khaki (23)

peachpuff (24)

yellow (25)

palegoldenrod (26)

moccasin (27)

papayawhip (28)

lightgoldenrodyellow
(29)
lemonchiffon (30)

lightyellow (31)

maroon (32)

brown (33)

saddlebrown (34)

sienna (35)

chocolate (36)

darkgoldenrod (37)

peru (38)

rosybrown (39)

goldenrod (40)

sandybrown (41)

tan (42)

burlywood (43)

wheat (44)

navajowhite (45)

bisque (46)

blanchedalmond (47)

cornsilk (48)

darkgreen (49)

green (50)

darkolivegreen (51)

forestgreen (52)

seagreen (53)

olive (54)

olivedrab (55)

mediumseagreen (56)

limegreen (57)

lime (58)

springgreen (59)

mediumspringgreen
(60)

darkseagreen (61)

mediumaquamarine (62)

yellowgreen (63)

lawngreen (64)

chartreuse (65)

lightgreen (66)

greenyellow (67)

palegreen (68)

teal (69)

darkcyan (70)

lightseagreen (71)

cadetblue (72)

darkturquoise (73)

mediumturquoise (74)

turquoise (75)

aqua (76)

cyan (77)

aquamarine (78)

paleturquoise (79)

lightcyan (80)

midnightblue (81)

navy (82)

darkblue (83)

mediumblue (84)

blue (85)

royalblue (86)

steelblue (87)

dodgerblue (88)

deepskyblue (89)

cornflowerblue (90)

skyblue (91)

lightskyblue (92)

lightsteelblue (93)

lightblue (94)

powderblue (95)

indigo (96)

purple (97)

darkmagenta (98)

darkviolet (99)

darkslateblue (100)

blueviolet (101)

darkorchid (102)

fuchsia (103)

magenta (104)

slateblue (105)

mediumslateblue (106)

mediumorchid (107)

mediumpurple (108)

orchid (109)

violet (110)

plum (111)

thistle (112)

lavender (113)

mistyrose (114)

antiquewhite (115)

linen (116)

beige (117)

whitesmoke (118)

lavenderblush (119)

oldlace (120)

aliceblue (121)

seashell (122)

ghostwhite (123)

honeydew (124)

floralwhite (125)

azure (126)

mintcream (127)

snow (128)

ivory (129)

white (130)

black (131)

darkslategray (132)

dimgray (133)

slategray (134)

gray (135)

lightslategray (136)

darkgray (137)

silver (138)

lightgray (139)

gainsboro (140)

Figure 5.1: Recognized color names in Gnuastro, shown with their numerical identifiers.

5.2.4 Annotations for figure in paper

To make a nice figure from your FITS images, it is important to show more than merely
the raw image (converted to a printer friendly format like PDF or JPEG). Annotations (or
visual metadata) over the raw image greatly help the readers clearly see your argument and
put the image/result in a larger context. Examples include:

• Coordinates (Right Ascension and Declination) on the edges of the image, so viewers of
your paper or presentation slides can get a physical feeling of the field’s sky coverage.

• Thick line that has a fixed tangential size (for example, in kilo parsecs) at the red-
shift/distance of interest.

https://en.wikipedia.org/wiki/Web_colors#Extended_colors
https://en.wikipedia.org/wiki/Web_colors#Extended_colors
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• Contours over the image to show radio/X-ray emission, over an optical image for ex-
ample.

• Text, arrows, etc., over certain parts of the image.

Because of the modular philosophy of Gnuastro, ConvertType is only focused on con-
verting your FITS images to printer friendly formats like JPEG or PDF. But to present
your results in a slide or paper, you will often need to annotate the raw JPEG or PDF
with some of the features above. The good news is that there are many powerful plotting
programs that you can use to add such annotations. As a result, there is no point in making
a new one, specific to Gnuastro. In this section, we will demonstrate this using the very
powerful PGFPlots7 package of LATEX.� �
Single script for easy running: In this section we are reviewing the reason and details of
every step which is good for educational purposes. But when you know the steps already,
these separate code blocks can be annoying. Therefore the full script (except for the
data download step) is available in Section 5.2.4.1 [Full script of annotations on figure],
page 327.
 	

PGFPlots uses the same LATEX graphic engine that typesets your paper/slide. There-
fore when you build your plots and figures using PGFPlots (and its underlying package
PGF/TiKZ8) your plots will blend beautifully within your text: same fonts, same colors,
same line properties, etc. Since most papers (and presentation slides9) are made with LATEX,
PGFPlots is therefore the best tool for those who use LATEX to create documents. PGFPlots
also does not need any extra dependencies beyond a basic/minimal TEX-live installation,
so it is much more reliable than tools like Matplotlib in Python that have hundreds of
fast-evolving dependencies10.

To demonstrate this, we will create a surface brightness image of a galaxy in the F160W
filter of the ABYSS survey11. In the code-block below, let’s make a “build” directory to
keep intermediate files and avoid populating the source. Afterwards, we will download the
full image and crop out a 20 arcmin wide image around the galaxy with the commands
below. You can run these commands in an empty directory.

$ mkdir build

$ wget http://cdsarc.u-strasbg.fr/ftp/J/A+A/621/A133/fits/ah_f160w.fits

$ astcrop ah_f160w.fits --center=53.1616278,-27.7802446 --mode=wcs \

--width=20/3600 --output=build/crop.fits

To better show the low surface brightness (LSB) outskirts, we will warp the image,
then convert the pixel units to surface brightness with the commands below. It is very
important that the warping is done before the conversion to surface brightness (in units of
mag/arcsec2), because the definition of surface brightness is non-linear. For more, see the

7 http://mirrors.ctan.org/graphics/pgf/contrib/pgfplots/doc/pgfplots.pdf
8 http://mirrors.ctan.org/graphics/pgf/base/doc/pgfmanual.pdf
9 To build slides, LATEX has packages like Beamer, see http://mirrors.ctan.org/macros/latex/contrib/
beamer/doc/beameruserguide.pdf

10 See Figure 1 of Alliez et al. 2019 (https://arxiv.org/abs/1905.11123).
11 http://research.iac.es/proyecto/abyss

http://mirrors.ctan.org/graphics/pgf/contrib/pgfplots/doc/pgfplots.pdf
http://mirrors.ctan.org/graphics/pgf/base/doc/pgfmanual.pdf
http://mirrors.ctan.org/macros/latex/contrib/beamer/doc/beameruserguide.pdf
http://mirrors.ctan.org/macros/latex/contrib/beamer/doc/beameruserguide.pdf
https://arxiv.org/abs/1905.11123
http://research.iac.es/proyecto/abyss
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surface brightness topic of Section 7.4.2 [Brightness, Flux, Magnitude and Surface bright-
ness], page 574, and for a more complete tutorial, see Section 2.1.20 [FITS images in a
publication], page 66.

$ zeropoint=25.94

$ astwarp build/crop.fits --centeroncorner --scale=1/3 \

--output=build/scaled.fits

$ pixarea=$(astfits build/scaled.fits --pixelareaarcsec2)

$ astarithmetic build/scaled.fits $zeropoint $pixarea counts-to-sb \

--output=build/sb.fits

We are now ready to convert the surface brightness image into a PDF. To better show
the LSB features, we will also limit the color range with the --fluxlow and --fluxhigh

options: all pixels with a surface brightness brighter than 22 mag/arcsec2 will be shown as
black, and all pixels with a surface brightness fainter than 30 mag/arcsec2 will be white.
These thresholds are being defined as variables, because we will also need them below (to
pass into PGFPlots). We will also set --borderwidth=0, because the coordinate system
we will add over the image will effectively be a border for the image (separating it from the
background).

$ sblow=22

$ sbhigh=30

$ astconvertt build/sb.fits --colormap=gray --borderwidth=0 \

--fluxhigh=$sbhigh --fluxlow=$sblow --output=build/sb.pdf

Please open sb.pdf and have a look. Also, please open sb.fits in DS9 (or any other
FITS viewer) and play with the color range. Can the surface brightness limits be changed
to better show the LSB structure? If so, you are free to change the limits above.

We now have the printable PDF representation of the image, but as discussed above,
it is not enough for a paper. We will add 1) a thick line showing the size of 20 kpc (kilo
parsecs) at the redshift of the central galaxy, 2) coordinates and 3) a color bar, showing the
surface brightness level of each grayscale level.

To get the first job done, we first need to know the redshift of the central galaxy. To
do this, we can use Gnuastro’s Query program to look into all the objects in NED within
this image (only asking for the RA, Dec and redshift columns). We will then use the Match
program to find the NED entry that corresponds to our galaxy.

$ astquery ned --dataset=objdir --overlapwith=build/sb.fits \

--column=ra,dec,z --output=ned.fits

$ astmatch ned.fits -h1 --coord=53.1616278,-27.7802446 \

--ccol1=RA,Dec --aperture=1/3600

$ redshift=$(asttable ned_matched.fits -cz)

$ echo $redshift

Now that we know the redshift of the central object, we can define the coordinates of
the thick line that will show the length of 20 kpc at that redshift. It will be a horizontal
line (fixed Declination) across a range of RA. The start of this thick line will be located at
the top edge of the image (at the 95-percent of the width and height of the image). With
the commands below we will find the three necessary parameters (one declination and two
RAs). Just note that in astronomical images, RA increases to the left/east, which is the
reason we are using the minimum and + to find the RA starting point.
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$ scalelineinkpc=20

$ coverage=$(astfits build/sb.fits --skycoverage --quiet | awk 'NR==2')

$ scalelinedec=$(echo $coverage | awk '{print $4-($4-$3)*0.05}')

$ scalelinerastart=$(echo $coverage | awk '{print $1+($2-$1)*0.05}')

$ scalelineraend=$(astcosmiccal --redshift=$redshift --arcsectandist \

| awk '{start='$scalelinerastart'; \

width='$scalelineinkpc'/$1/3600; \

print start+width}')

To draw coordinates over the image, we need to feed these values into PGFPlots. But
manually entering numbers into the PGFPlots source will be very frustrating and prone to
many errors! Fortunately there is an easy way to do this: LATEX macros. New macros are
defined by this LATEX command:

\newcommand{\macroname}{value}

Anywhere that LATEX confronts \macroname, it will replace value when building the output.
We will have one file called macros.tex in the build directory and define macros based on
those values. We will use the shell’s printf command to write these macro definition lines
into the macro file. We just have to use double backslashes in the printf command, because
backslash is a meaningful character for printf, but we want to keep one of them. Also, we
put a \n at the end of each line, otherwise, all the commands will go into a single line of the
macro file. We will also place the random ‘ma’ string at the start of all our LATEX macros
to help identify the macros for this plot.

$ macros=build/macros.tex

$ printf '\\newcommand{\\maScaleDec}'"{$scalelinedec}\n" > $macros

$ printf '\\newcommand{\\maScaleRAa}'"{$scalelinerastart}\n" >> $macros

$ printf '\\newcommand{\\maScaleRAb}'"{$scalelineraend}\n" >> $macros

$ printf '\\newcommand{\\maScaleKpc}'"{$scalelineinkpc}\n" >> $macros

$ printf '\\newcommand{\\maCenterZ}'"{$redshift}\n" >> $macros

Please open the macros file after these commands and have a look to see if they do
conform to the expected format above. Another set of macros we will need to feed into
PGFPlots is the coordinates of the image corners. Fortunately the coverage variable
found above is also useful here. We just need to extract each item before feeding it into the
macros. To do this, we will use AWK and keep each value with the temporary shell variable
‘v’.

$ v=$(echo $coverage | awk '{print $1}')

$ printf '\\newcommand{\\maCropRAMin}'"{$v}\n" >> $macros

$ v=$(echo $coverage | awk '{print $2}')

$ printf '\\newcommand{\\maCropRAMax}'"{$v}\n" >> $macros

$ v=$(echo $coverage | awk '{print $3}')

$ printf '\\newcommand{\\maCropDecMin}'"{$v}\n" >> $macros

$ v=$(echo $coverage | awk '{print $4}')

$ printf '\\newcommand{\\maCropDecMax}'"{$v}\n" >> $macros

Finally, we also need to pass some other numbers to PGFPlots: 1) the major tick distance
(in the coordinate axes that will be printed on the edge of the image). We will assume 7
ticks for this image. 2) The minimum and maximum surface brightness values that we gave
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to ConvertType when making the PDF; PGFPlots will define its color-bar based on these
two values.

$ v=$(echo $coverage | awk '{print ($2-$1)/7}')

$ printf '\\newcommand{\\maTickDist}'"{$v}\n" >> $macros

$ printf '\\newcommand{\\maSBlow}'"{$sblow}\n" >> $macros

$ printf '\\newcommand{\\maSBhigh}'"{$sbhigh}\n" >> $macros

All the necessary numbers are now ready. Please copy the contents below into a file
called my-figure.tex. This is the PGFPlots source for this particular plot. Besides the
coordinates and scale-line, we will also add some text over the image and an orange arrow
pointing to the central object with its redshift printed over it. The parameters are generally
human-readable, so you should be able to get a good feeling of every line. There are also
comments which will show up as a different color when you copy this into a plain-text editor.

\begin{tikzpicture}

%% Define the coordinates and colorbar

\begin{axis}[

at={(0,0)},

axis on top,

x dir=reverse,

scale only axis,

width=\linewidth,

height=\linewidth,

minor tick num=10,

xmin=\maCropRAMin,

xmax=\maCropRAMax,

ymin=\maCropDecMin,

ymax=\maCropDecMax,

enlargelimits=false,

every tick/.style={black},

xtick distance=\maTickDist,

ytick distance=\maTickDist,

yticklabel style={rotate=90},

ylabel={Declination (degrees)},

xlabel={Right Ascension (degrees)},

ticklabel style={font=\small,

/pgf/number format/.cd, precision=4,/tikz/.cd},

x label style={at={(axis description cs:0.5,0.02)},

anchor=north,font=\small},

y label style={at={(axis description cs:0.07,0.5)},

anchor=south,font=\small},

colorbar,

colormap name=gray,

point meta min=\maSBlow,

point meta max=\maSBhigh,

colorbar style={

at={(1.01,1)},
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ylabel={Surface brightness (mag/arcsec$^2$)},

yticklabel style={

/pgf/number format/.cd, precision=1, /tikz/.cd},

y label style={at={(axis description cs:5.3,0.5)},

anchor=south,font=\small},

},

]

%% Put the image in the proper positions of the plot.

\addplot graphics[ xmin=\maCropRAMin, xmax=\maCropRAMax,

ymin=\maCropDecMin, ymax=\maCropDecMax]

{sb.pdf};

%% Draw the scale factor.

\addplot[black, line width=5, name=scaleline] coordinates

{(\maScaleRAa,\maScaleDec) (\maScaleRAb,\maScaleDec)}

node [anchor=north west] {\large $\maScaleKpc$ kpc};

\end{axis}

%% Add some text anywhere over the plot. The text is added two

%% times: the first time with a white background (that with a

%% certain opacity), the second time just the text with opacity.

\node[anchor=south west, fill=white, opacity=0.5]

at (0.01\linewidth,0.01\linewidth)

{(a) Text can be added here};

\node[anchor=south west]

at (0.01\linewidth,0.01\linewidth)

{(a) Text can be added here};

%% Add an arrow to highlight certain structures.

\draw [->, red!70!yellow, line width=5]

(0.35\linewidth,0.35\linewidth)

-- node [anchor=south, rotate=45]{$z=\maCenterZ$}

(0.45\linewidth,0.45\linewidth);

\end{tikzpicture}

Finally, we need another simple LATEX source for the main PDF “report” that will host
this figure. This can actually be your paper or slides for example. Here, we will suffice to
the minimal working example.

\documentclass{article}

%% Import the TiKZ package and activate its "external" feature.

\usepackage{tikz}

\usetikzlibrary{external}

\tikzexternalize

%% PGFPlots (which uses TiKZ).
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\usepackage{pgfplots}

\pgfplotsset{axis line style={thick}}

\pgfplotsset{

/pgfplots/colormap={gray}{rgb255=(0,0,0) rgb255=(255,255,255)}

}

%% Import the macros.

\input{macros.tex}

%% Start document.

\begin{document}

You can write anything here.

%% Add the figure and its caption.

\begin{figure}

\input{my-figure.tex}

\caption{A demo image.}

\end{figure}

%% Finish the document.

\end{document}

You are now ready to create the PDF. But LATEX creates many temporary files, so to
avoid populating our top-level directory, we will copy the two .tex files into the build direc-
tory, go there and run LATEX. Before running it though, we will first delete all the files that
have the name pattern *-figure0*, these are “external” files created by TiKZ+PGFPlots,
including the actual PDF of the figure.

$ cp report.tex my-figure.tex build

$ cd build

$ rm -f *-figure0*

$ pdflatex -shell-escape -halt-on-error report.tex

You now have the full “report” in report.pdf. Try adding some extra text on top of
the figure, or in the caption and re-running the last four commands. Also try changing the
20kpc scale line length to 50kpc, or try changing the redshift, to see how the length and
text of the thick scale-line will automatically change. But the good news is that you also
have the raw PDF of the figure that you can use in other places. You can see that file in
report-figure0.pdf.

In a larger paper, you can add multiple such figures (with different .tex files that are
placed in different figure environments with different captions). Each figure will get a
number in the build directory. TiKZ also allows setting a file name for each “external”
figure (to avoid such numbers that can be annoying if the image orders are changed).
PGFPlots is also highly customizable, you can make a lot of changes and customizations.
Both TiKZ12 and PGFPLots13 have wonderful manuals, so have a look trough them.

12 http://mirrors.ctan.org/graphics/pgf/base/doc/pgfmanual.pdf
13 http://mirrors.ctan.org/graphics/pgf/contrib/pgfplots/doc/pgfplots.pdf

http://mirrors.ctan.org/graphics/pgf/base/doc/pgfmanual.pdf
http://mirrors.ctan.org/graphics/pgf/contrib/pgfplots/doc/pgfplots.pdf
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5.2.4.1 Full script of annotations on figure

In Section 5.2.4 [Annotations for figure in paper], page 320, we each one of the steps to
add annotations over an image were described in detail. So if you have understood the
steps, but need to add annotations over an image, repeating those steps individually will be
annoying. Therefore in this section, we will summarize all the steps in a single script that
you can simply copy-paste into a text editor, configure, and run.� �
Necessary files: To run this script, you will need an image to crop your object from (here
assuming it is called ah_f160w.fits with a certain zero point) and two my-figure.tex

and report.tex files that were fully included in Section 5.2.4 [Annotations for figure in
paper], page 320. Also, we have brought the redshift as a parameter here. But if the
center of your image always points to your main object, you can also include the Query
command to automatically find the object’s redshift from NED. Alternatively, your image
may already be cropped, in this case, you can remove the cropping step and
 	
# Parameters.

sblow=22 # Minimum surface brightness.

sbhigh=30 # Maximum surface brightness.

bdir=build # Build directory location on filesystem.

numticks=7 # Number of major ticks in each axis.

redshift=0.619 # Redshift of object of interest.

zeropoint=25.94 # Zero point of input image.

scalelineinkpc=20 # Length of scale-line (in kilo parsecs).

input=ah_f160w.fits # Name of input (to crop).

# Stop the script in case of a crash.

set -e

# Build directory

if ! [ -d $bdir ]; then mkdir $bdir; fi

# Crop out the desired region.

crop=$bdir/crop.fits

astcrop $input --center=53.1616278,-27.7802446 --mode=wcs \

--width=20/3600 --output=$crop

# Warp the image to larger pixels to show surface brightness better.

scaled=$bdir/scaled.fits

astwarp $crop --centeroncorner --scale=1/3 --output=$scaled

# Calculate the pixel area and convert image to Surface brightness.

sb=$bdir/sb.fits

pixarea=$(astfits $scaled --pixelareaarcsec2)

astarithmetic $scaled $zeropoint $pixarea counts-to-sb \

--output=$sb
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# Convert the surface brightness image into PDF.

sbpdf=$bdir/sb.pdf

astconvertt $sb --colormap=gray --borderwidth=0 \

--fluxhigh=$sbhigh --fluxlow=$sblow --output=$sbpdf

# Specify the coordinates of the scale line (specifying a certain

# width in kpc). We will put it on the top-right side of the image (5%

# of the full width of the image away from the edge).

coverage=$(astfits $sb --skycoverage --quiet | awk 'NR==2')

scalelinedec=$(echo $coverage | awk '{print $4-($4-$3)*0.05}')

scalelinerastart=$(echo $coverage | awk '{print $1+($2-$1)*0.05}')

scalelineraend=$(astcosmiccal --redshift=$redshift --arcsectandist \

| awk '{start='$scalelinerastart'; \

width='$scalelineinkpc'/$1/3600; \

print start+width}')

# Write the LaTeX macros to use in plot. Start with the thick line

# showing tangential distance.

macros=$bdir/macros.tex

printf '\\newcommand{\\maScaleDec}'"{$scalelinedec}\n" > $macros

printf '\\newcommand{\\maScaleRAa}'"{$scalelinerastart}\n" >> $macros

printf '\\newcommand{\\maScaleRAb}'"{$scalelineraend}\n" >> $macros

printf '\\newcommand{\\maScaleKpc}'"{$scalelineinkpc}\n" >> $macros

printf '\\newcommand{\\maCenterZ}'"{$redshift}\n" >> $macros

# Add image extrema for the coordinates.

v=$(echo $coverage | awk '{print $1}')

printf '\\newcommand{\maCropRAMin}'"{$v}\n" >> $macros

v=$(echo $coverage | awk '{print $2}')

printf '\\newcommand{\maCropRAMax}'"{$v}\n" >> $macros

v=$(echo $coverage | awk '{print $3}')

printf '\\newcommand{\maCropDecMin}'"{$v}\n" >> $macros

v=$(echo $coverage | awk '{print $4}')

printf '\\newcommand{\maCropDecMax}'"{$v}\n" >> $macros

# Distance between each tick value.

v=$(echo $coverage | awk '{print ($2-$1)/'$numticks'}')

printf '\\newcommand{\maTickDist}'"{$v}\n" >> $macros

printf '\\newcommand{\maSBlow}'"{$sblow}\n" >> $macros

printf '\\newcommand{\maSBhigh}'"{$sbhigh}\n" >> $macros

# Copy the LaTeX source into the build directory and go there to run

# it and have all the temporary LaTeX files there.

cp report.tex my-figure.tex $bdir

cd $bdir

rm -f *-figure0*

pdflatex -shell-escape -halt-on-error report.tex
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5.2.5 Invoking ConvertType

ConvertType will convert any recognized input file type to any specified output type. The
executable name is astconvertt with the following general template

$ astconvertt [OPTION...] InputFile [InputFile2] ... [InputFile4]

One line examples:

## Convert an image in FITS to PDF:

$ astconvertt image.fits --output=pdf

## Similar to before, but use the Viridis color map:

$ astconvertt image.fits --colormap=viridis --output=pdf

## Add markers to to highlight parts of the image

## ('marks.fits' is a table containing coordinates)

$ astconvertt image.fits --marks=marks.fits --output=pdf

## Convert an image in JPEG to FITS (with multiple extensions

## if it has color):

$ astconvertt image.jpg -oimage.fits

## Use three 2D arrays to create an RGB JPEG output (two are

## plain-text, the third is FITS, but all have the same size).

$ astconvertt f1.txt f2.txt f3.fits -o.jpg

## Use two images and one blank for an RGB EPS output:

$ astconvertt M31_r.fits M31_g.fits blank -oeps

## Directly pass input from output of another program through Standard

## input (not a file).

$ cat 2darray.txt | astconvertt -oimg.fits

In the sub-sections below various options that are specific to ConvertType are grouped
in different categories. Please see those sections for a detailed discussion on each group and
its options. Besides those, ConvertType also shares the Section 4.1.2 [Common options],
page 251, with other Gnuastro programs. The common options are not repeated here.

5.2.5.1 ConvertType input and output

At most four input files (one for each color channel for formats that allow it) are allowed
in ConvertType. When there is only one input channel (grayscale), the input can either
be given as a file name (as an argument on the command-line) or through Section 4.1.4
[Standard input], page 264, (a pipe for example: only when no input file is specified).
Therefore, if an input file is given, the standard input will not be checked.

The order of multiple input files is important. After reading the input file(s) the number
of color channels in all the inputs will be used to define which color space to use for the
outputs and how each color channel is interpreted: 1 (for grayscale), 3 (for RGB) and 4 (for
CMYK) input channels. For more on pixel color channels, see Section 5.2.3.1 [Pixel colors],
page 318. Depending on the format of the input(s), the number of input files can differ.
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For example, if you plan to build an RGB PDF and your three channels are in the first
HDU of r.fits, g.fits and b.fits, then you can simply call MakeProfiles like this:

$ astconvertt r.fits g.fits b.fits -g1 --output=rgb.pdf

However, if the three color channels are in three extensions (assuming the HDUs are re-
spectively named R, G and B) of a single file (assuming channels.fits), you should run it
like this:

$ astconvertt channels.fits -hR -hG -hB --output=rgb.pdf

On the other hand, if the channels are already in a multi-channel format (like JPEG), you
can simply provide that file:

$ astconvertt image.jpg --output=rgb.pdf

If multiple channels are given as input, and the output format does not support multiple
color channels (for example, FITS), ConvertType will put the channels in different HDUs,
like the example below. After running the astfits command, if your JPEG file was not
grayscale (single channel), you will see multiple HDUs in channels.fits.

$ astconvertt image.jpg --output=channels.fits

$ astfits channels.fits

As shown above, the output’s file format will be interpreted from the name given to
the --output option (as a common option to all Gnuastro programs, for the description of
--output, see Section 4.1.2.1 [Input/Output options], page 252). It can either be given on
the command-line or in any of the configuration files (see Section 4.2 [Configuration files],
page 268). When the output suffix is not recognized, it will default to plain text format,
see Section 5.2.2 [Recognized file formats], page 315.

If there is one input dataset (color channel) the output will be gray-scale. When three
input datasets (color channels) are given, they are respectively considered to be the red,
green and blue color channels. Finally, if there are four color channels they will be cyan,
magenta, yellow and black (CMYK colors).

The value to --output (or -o) can be either a full file name or just the suffix of the
desired output format. In the former case (full name), it will be directly used for the
output’s file name. In the latter case, the name of the output file will be set based on
the automatic output guidelines, see Section 4.9 [Automatic output], page 290. Note that
the suffix name can optionally start with a . (dot), so for example, --output=.jpg and
--output=jpg are equivalent. See Section 5.2.2 [Recognized file formats], page 315.

The relevant options for input/output formats are described below:

-h STR/INT

--hdu=STR/INT

Input HDU name or counter (counting from 0) for each input FITS file. If the
same HDU should be used from all the FITS files, you can use the --globalhdu
option described below. In ConvertType, it is possible to call the HDU option
multiple times for the different input FITS or TIFF files in the same order that
they are called on the command-line. Note that in the TIFF standard, one
‘directory’ (similar to a FITS HDU) may contain multiple color channels (for
example, when the image is in RGB).

Except for the fact that multiple calls are possible, this option is identical to
the common --hdu in Section 4.1.2.1 [Input/Output options], page 252. The
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number of calls to this option cannot be less than the number of input FITS
or TIFF files, but if there are more, the extra HDUs will be ignored, note
that they will be read in the order described in Section 4.2.2 [Configuration file
precedence], page 269.

Unlike CFITSIO, libtiff (which is used to read TIFF files) only recognizes num-
bers (counting from zero, similar to CFITSIO) for ‘directory’ identification.
Hence the concept of names is not defined for the directories and the values to
this option for TIFF files must be numbers.

-g STR/INT

--globalhdu=STR/INT

Use the value given to this option (a HDU name or a counter, starting from 0)
for the HDU identifier of all the input FITS files. This is useful when all the
inputs are distributed in different files, but have the same HDU in those files.

-w FLT

--widthincm=FLT

The width of the output in centimeters. This is only relevant for those formats
that accept such a width as metadata (not FITS or plain-text for example), see
Section 5.2.2 [Recognized file formats], page 315. For most digital purposes,
the number of pixels is far more important than the value to this parameter
because you can adjust the absolute width (in inches or centimeters) in your
document preparation program.

-x

--hex Use Hexadecimal encoding in creating EPS output. By default the ASCII85
encoding is used which provides a much better compression ratio. When con-
verted to PDF (or included in TEX or LATEX which is finally saved as a PDF
file), an efficient binary encoding is used which is far more efficient than both
of them. The choice of EPS encoding will thus have no effect on the final PDF.

So if you want to transfer your EPS files (for example, if you want to submit your
paper to arXiv or journals in PostScript), their storage might become important
if you have large images or lots of small ones. By default ASCII85 encoding is
used which offers a much better compression ratio (nearly 40 percent) compared
to Hexadecimal encoding.

-u INT

--quality=INT

The quality (compression) of the output JPEG file with values from 0 to 100
(inclusive). For other formats the value to this option is ignored. Note that
only in gray-scale (when one input color channel is given) will this actually be
the exact quality (each pixel will correspond to one input value). If it is in color
mode, some degradation will occur. While the JPEG standard does support
loss-less graphics, it is not commonly supported.

5.2.5.2 Pixel visualization

The main goal of ConvertType is to visualize pixels to/from print or web friendly formats.
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Astronomical data usually have a very large dynamic range (difference between maximum
and minimum value) and different subjects might be better demonstrated with a limited
flux range.

--colormap=STR[,FLT,...]

The color map to visualize a single channel. The first value given to this option
is the name of the color map, which is shown below. Some color maps can be
configured. In this case, the configuration parameters are optionally given as
numbers following the name of the color map for example, see hsv. The table
below contains the usable names of the color maps that are currently supported:

gray

grey Grayscale color map. This color map does not have any parameters.
The full dataset range will be scaled to 0 and 28 − 1 = 255 to be
stored in the requested format.

hsv Hue, Saturation, Value14 color map. If no values are given after
the name (--colormap=hsv), the dataset will be scaled to 0
and 360 for hue covering the full spectrum of colors. However,
you can limit the range of hue (to show only a special color
range) by explicitly requesting them after the name (for example,
--colormap=hsv,20,240).

The mapping of a single-channel dataset to HSV is done through
the Hue and Value elements: Lower dataset elements have lower
“value” and lower “hue”. This creates darker colors for fainter
parts, while also respecting the range of colors.

viridis Viridis is the default colormap of the popular Matplotlib module of
Python and available in many other visualization tools like PGF-
Plots.

sls The SLS color range, taken from the commonly used SAO DS9
(http://ds9.si.edu). The advantage of this color range is that
it starts with black, going into dark blue and finishes with the
brighter colors of red and white. So unlike the HSV color range, it
includes black and white and brighter colors (like yellow, red) show
the larger values.

sls-inverse

The inverse of the SLS color map (see above), where the lowest
value corresponds to white and the highest value is black. While
SLS is good for visualizing on the monitor, SLS-inverse is good for
printing.

--rgbtohsv

When there are three input channels and the output is in the FITS format,
interpret the three input channels as red, green and blue channels (RGB) and
convert them to the hue, saturation, value (HSV) color space.

14 https://en.wikipedia.org/wiki/HSL_and_HSV

http://ds9.si.edu
http://ds9.si.edu
https://en.wikipedia.org/wiki/HSL_and_HSV
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The currently supported output formats of ConvertType do not have native
support for HSV. Therefore this option is only supported when the output is
in FITS format and each of the hue, saturation and value arrays can be saved
as one FITS extension in the output for further analysis (for example, to select
a certain color).

-c STR

--change=STR

(=STR) Change pixel values with the following format "from1:to1,

from2:to2,...". This option is very useful in displaying labeled pixels (not
actual data images which have noise) like segmentation maps. In labeled
images, usually a group of pixels have a fixed integer value. With this option,
you can manipulate the labels before the image is displayed to get a better
output for print or to emphasize on a particular set of labels and ignore the
rest. The labels in the images will be changed in the same order given. By
default first the pixel values will be converted then the pixel values will be
truncated (see --fluxlow and --fluxhigh).

You can use any number for the values irrespective of your final output, your
given values are stored and used in the double precision floating point format.
So for example, if your input image has labels from 1 to 20000 and you only
want to display those with labels 957 and 11342 then you can run ConvertType
with these options:

$ astconvertt --change=957:50000,11342:50001 --fluxlow=5e4 \

--fluxhigh=1e5 segmentationmap.fits --output=jpg

While the output JPEG format is only 8 bit, this operation is done in an
intermediate step which is stored in double precision floating point. The pixel
values are converted to 8-bit after all operations on the input fluxes have been
complete. By placing the value in double quotes you can use as many spaces
as you like for better readability.

-C

--changeaftertrunc

Change pixel values (with --change) after truncation of the flux values, by
default it is the opposite.

-L FLT

--fluxlow=FLT

The minimum flux (pixel value) to display in the output image, any pixel value
below this value will be set to this value in the output. If the value to this option
is the same as --fluxhigh, then no flux truncation will be applied. Note that
when multiple channels are given, this value is used for all the color channels.

-H FLT

--fluxhigh=FLT

The maximum flux (pixel value) to display in the output image, see --fluxlow.

-m INT

--maxbyte=INT

This is only used for the JPEG and EPS output formats which have an 8-bit
space for each channel of each pixel. The maximum value in each pixel can
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therefore be 28 − 1 = 255. With this option you can change (decrease) the
maximum value. By doing so you will decrease the dynamic range. It can be
useful if you plan to use those values for other purposes.

-A

--forcemin

Enforce the value of --fluxlow (when it is given), even if it is smaller than
the minimum of the dataset and the output is format supporting color. This is
particularly useful when you are converting a number of images to a common
image format like JPEG or PDF with a single command and want them all
to have the same range of colors, independent of the contents of the dataset.
Note that if the minimum value is smaller than --fluxlow, then this option is
redundant.

By default, when the dataset only has two values, and the output format is
PDF or EPS, ConvertType will use the PostScript optimization that allows
setting the pixel values per bit, not byte (Section 5.2.2 [Recognized file formats],
page 315). This can greatly help reduce the file size. However, when --fluxlow

or --fluxhigh are called, this optimization is disabled: even though there are
only two values (is binary), the difference between them does not correspond
to the full contrast of black and white.

-B

--forcemax

Similar to --forcemin, but for the maximum.

-i

--invert For 8-bit output types (JPEG, EPS, and PDF for example) the final value that
is stored is inverted so white becomes black and vice versa. The reason for this
is that astronomical images usually have a very large area of blank sky in them.
The result will be that a large are of the image will be black. Note that this
behavior is ideal for gray-scale images, if you want a color image, the colors are
going to be mixed up.

5.2.5.3 Drawing with vector graphics

With the options described in this section, you can draw marks over your to-be-published
images (for example, in PDF). Each mark can be highly customized so they can have
different shapes, colors, line widths, text, text size, etc. The properties of the marks should
be stored in a table that is given to the --marks option described below. A fully working
demo on adding marks is provided in Section 2.1.21 [Marking objects for publication],
page 70.

An important factor to consider when drawing vector graphics is that vector graphics
standards (the PostScript standard in this case) use a “point” as the primary unit of line
thickness or font size. Such that 72 points correspond to 1 inch (or 2.54 centimeters). In
other words, there are roughly 3 PostScript points in every millimeter. On the other hand,
the pixels of the images you plan to show as the background do not have any real size!
Pixels are abstract and can be associated with any print-size.

In ConvertType, the print-size of your final image is set with the --widthincm option
(see Section 5.2.5.1 [ConvertType input and output], page 329). The value to --widthincm
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is the to-be width of the image in centimeters. It therefore defines the thickness of lines
or font sizes for your vector graphics features (like the image border or marks). Just recall
that we are not talking about resolution! Vector graphics have infinite resolution! We are
talking about the relative thickness of the lines (or font sizes) in relation to the pixels in
your background image.

-b INT

--borderwidth=INT

The width of the border to be put around the EPS and PDF outputs in units
of PostScript points. If you are planning on adding a border, its thickness in
relation to your image pixel sizes is highly correlated with the value you give
to the --widthincm parameter. See the description at the start of this section
for more.

Unfortunately in the document structuring convention of the PostScript lan-
guage, the “bounding box” has to be in units of PostScript points with no
fractions allowed. So the border values only have to be specified in integers. To
have a final border that is thinner than one PostScript point in your document,
you can ask for a larger width in ConvertType and then scale down the output
EPS or PDF file in your document preparation program. For example, by set-
ting width in your includegraphics command in TEX or LATEX to be larger
than the value to --widthincm. Since it is vector graphics, the changes of size
have no effect on the quality of your output (pixels do not get different values).

--bordercolor=STR

The name of the color to use for border that will be put around the EPS
and PDF outputs. The list of available colors, along with their name and
an example can be seen with the following command (also see Section 5.2.3.3
[Vector graphics colors], page 320):

$ astconvertt --listcolors

This option only accepts the name of the color, not the numeric identifier.

--marks=STR

Draw vector graphics (infinite resolution) marks over the image. The value to
this option should be the file name of a table containing the mark information.
The table given to this option can have various properties for each mark in each
column. You can specify which column contains which property of the marks
using the options below that start with --mark. Only two property columns
are mandatory (--markcoords), the rest are optional.

The table can be in any of the Gnuastro’s Section 4.7.1 [Recognized table for-
mats], page 283. For more on the difference between vector and raster graphics,
see Section 5.2.1 [Raster and Vector graphics], page 314. For example, if your
table with mark information is called my-marks.fits, you can use the com-
mand below to draw red circles of radius 5 pixels over the coordinates.

$ astconvertt image.fits --output=image.pdf \

--marks=marks.fits --mode=wcs \

--markcoords=RA,DEC
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You can highly customize each mark with different columns in marks.fits

using the --mark* options below (for example, using different colors, different
shapes, different sizes, text, and the rest on each mark).

--markshdu=STR/INT

The HDU (or extension) name or number of the table containing mark prop-
erties (file given to --marks). This is only relevant if the table is in the FITS
format and there is more than one HDU in the FITS file.

-r STR,STR

--markcoords=STR,STR

The column names (or numbers) containing the coordinates of each mark (in
table given to --marks). Only two values should be given to this option (one for
each coordinate). They can either be given to one call (--markcoords=RA,DEC)
or in separate calls (--markcoords=RA --markcoords=DEC).

When --mode=image the columns will be associated to the horizontal/vertical
coordinates of the image, and interpreted in units of pixels. In --mode=wcs, the
columns will be associated to the WCS coordinates (typically Right Ascension
and Declination, in units of degrees).

-O STR

--mode=STR

The coordinate mode for interpreting the values in the columns given to the
--markcoord1 and --markcoord2 options. The acceptable values are either
img (for image or pixel coordinates), and wcs for World Coordinate System
(typically RA and Dec). For the WCS-mode, the input image should have the
necessary WCS keywords, otherwise ConvertType will crash.

--markshape=STR/INT

The column name(s), or number(s), containing the shapes of each mark (in
table given to --marks). The shapes can either be identified by their name, or
their numerical identifier. If identifying them by name in a plain-text table, you
need to define a string column (see Section 4.7.2 [Gnuastro text table format],
page 285). The full list of names is shown below, with their numerical identifier
in parenthesis afterwards. For each shape, you can also specify properties such
as the size, line width, rotation, and color. See the description of the relevant
--mark* option below.

circle (1)

A circular circumference. It’s radius is defined by a single size
element (the first column given to --marksize). Any value in the
second size column (if given for other shapes in the same call) are
ignored by this shape.

plus (2) The plus sign (+). The length of its lines is defined by a single
size element (the first column given to --marksize). Such that the
intersection of its lines is on the central coordinate of the mark.
Any value in the second size column (if given for other shapes in
the same call) are ignored by this shape.
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cross (3) A multiplication sign (×). The length of its lines is defined by a
single size element (the first column given to --marksize). Such
that the intersection of its lines is on the central coordinate of the
mark. Any value in the second size column (if given for other shapes
in the same call) are ignored by this shape.

ellipse (4)

An elliptical circumference. Its major axis radius is defined by the
first size element (first column given to --marksize), and its axis
ratio is defined through the second size element (second column
given to --marksize).

point (5) A point (or a filled circle). Its radius is defined by a single size
element (the first column given to --marksize). Any value in the
second size column (if given for other shapes in the same call) are
ignored by this shape.

This filled circle mark is defined as a “point” because it is usually
relevant as a small size (or point in the whole image). But there is
no limit on its size, so it can be arbitrarily large.

square (6)

A square circumference. Its edge length is defined by a single size
element (the first column given to --marksize). Any value in the
second size column (if given for other shapes in the same call) are
ignored by this shape.

rectangle (7)

A rectangular circumference. Its length along the horizontal im-
age axis is defined by first size element (first column given to
--marksize), and its length along the vertical image axis is de-
fined through the second size element (second column given to
--marksize).

line (8) A line. The line’s length is defined by a single size element (the
first column given to --marksize. The line will be centered on the
given coordinate. Like all shapes, you can rotate the line about its
center using the --markrotate column. Any value in the second
size column (if given for other shapes in the same call) are ignored
by this shape.

--markrotate=STR/INT

Column name or number that contains the mark’s rotation angle. The rotation
angle should be in degrees and be relative to the horizontal axis of the image.

--marksize=STR[,STR]

The column name(s), or number(s), containing the size(s) of each mark (in
table given to --marks). All shapes need at least one “size” parameter and
some need two. For the interpretation of the size column(s) for each shape,
see the --markshape option’s description. Since the size column(s) is (are)
optional, when not specified, default values will be used (which may be too
small in larger images, so you need to change them).
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By default, the values in the size column are assumed to be in the same units
as the coordinates (defined by the --mode option, described above). However,
when the coordinates are in WCS-mode, some special cases may occur for the
size.

• The native WCS units (usually degrees) can be too large, and it may be
more convenient for the values in the size column(s) to be in arc-seconds.
In this case, you can use the --sizeinarcsec option.

• Similar to above, but in units of arc-minutes. In this case, you can use the
--sizeinarcmin option.

• Your sizes may be in units of pixels, not the WCS units. In this case, you
can use the --sizeinpix option.

--sizeinpix

In WCS-mode, assume that the sizes are in units of pixels. By default, when in
WCS-mode, the sizes are assumed to be in the units of the WCS coordinates
(usually degrees).

--sizeinarcsec

In WCS-mode, assume that the sizes are in units of arc-seconds. By default,
when in WCS-mode, the sizes are assumed to be in the units of the WCS
coordinates (usually degrees).

--sizeinarcmin

In WCS-mode, assume that the sizes are in units of arc-seconds. By default,
when in WCS-mode, the sizes are assumed to be in the units of the WCS
coordinates (usually degrees).

--marklinewidth=STR/INT

Column containing the width (thickness) of the line to draw each mark. The
line width is measured in units of “points” (where 72 points is one inch), and it
can be any positive floating point number. Therefore, the thickness (in relation
to the pixels of your image) depends on --widthincm option. For more, see the
description at the start of this section.

--markcolor=STR/INT

Column containing the color of the mark. This column can be either a string
or an integer. As a string, the color name can be written directly in your
table (this greatly helps in human readability). For more on string columns see
Section 4.7.2 [Gnuastro text table format], page 285. As an integer, you can
simply use the numerical identifier of the column. You can see the list of colors
with their names and numerical identifiers in Gnuastro by running ConvertType
with --listcolors, or see Section 5.2.3.3 [Vector graphics colors], page 320.

--listcolors

The list of acceptable color names, their codes and their representation can
be seen with the --listcolors option. By “representation” we mean that
the color will be shown on the terminal as the background in that column.
But this will only be properly visible with “true color” or 24-bit terminals,
see ANSI escape sequence standard (https://en.wikipedia.org/wiki/

https://en.wikipedia.org/wiki/ANSI_escape_code
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ANSI_escape_code). Most modern GNU/Linux terminals support 24-bit col-
ors natively, and no modification is necessary. For macOS, see the box below.

The printed text in standard output is in the Section 4.7.2 [Gnuastro text table
format], page 285, so if you want to store this table, you can simply pipe the
output to Gnuastro’s Table program and store it as a FITS table:

$ astconvertt --listcolors | astttable -ocolors.fits� �
macOS terminal colors: as of August 2022, the default macOS terminal
(iTerm) does not support 24-bit colors! The output of --listlines therefore
does not display the actual colors (you can only use the color names). One
tested solution is to install and use iTerm2 (https://iterm2.com), which is
free software and available in Homebrew (https://formulae.brew.sh/cask/
iterm2). iTerm2 is described as a successor for iTerm and works on macOS
10.14 (released in September 2018) or newer.
 	

--marktext=STR/INT

Column name or number that contains the text that should be printed under
the mark. If the column is numeric, the number will be printed under the mark
(for example, if you want to write the magnitude or redshift of the object under
the mark showing it). For the precision of writing floating point columns, see
--marktextprecision. But if the column has a string format (for example,
the name of the object like an NGC1234), you need to define the column as a
string column (see Section 4.7.2 [Gnuastro text table format], page 285).

For text with different lengths, set the length in the definition of the column
to the maximum length of the strings to be printed. If there are some rows
or marks that don’t require text, set the string in this column to n/a (not
applicable; the blank value for strings in Gnuastro). When having strings with
different lengths, make sure to have enough white spaces (for the shorter strings)
so the adjacent columns are not taken as part of the string (see Section 4.7.2
[Gnuastro text table format], page 285).

--marktextprecision=INT

The number of decimal digits to print after the floating point. This is only
relevant when --marktext is given, and the selected column has a floating
point format.

--markfont=STR/INT

Column name or number that contains the font for the displayed text under
the mark. This is only relevant if --marktext is called. The font should be
accessible by Ghostscript.

If you are not familiar with the available fonts on your system’s Ghostscript,
you can use the --showfonts option to see all the fonts in a custom PDF file
(one page per font). If you are already familiar with the font you want, but
just want to make sure about its presence (or spelling!), you can get a list (on
standard output) of all the available fonts with the --listfonts option. Both
are described below.

https://en.wikipedia.org/wiki/ANSI_escape_code
https://en.wikipedia.org/wiki/ANSI_escape_code
https://iterm2.com
https://formulae.brew.sh/cask/iterm2
https://formulae.brew.sh/cask/iterm2
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It is possible to add custom fonts to Ghostscript as described in the Fonts sec-
tion (https://ghostscript.com/doc/current/Fonts.htm) of the Ghostscript
manual.

--markfontsize=STR/INT

Column name or number that contains the font size to use. This is only relevant
if a text column has been defined (with --marktext, described above). The font
size is in units of “point”s, see description at the start of this section for more.

--showfonts

Create a special PDF file that shows the name and shape of all available fonts
in your system’s Ghostscript. You can use this for selecting the best font to put
in the --markfonts column. The available fonts can differ from one system to
another (depending on how Ghostscript was configured in that system). The
PDF file’s name is constructed by appending a -fonts.pdf to the file name
given to the --output option.

The PDF file will have one page for each font, and the sizes of the pages are
customized for showing the fonts (each page is horizontally elongated). This
helps to better check the files by disable “continuous” mode in your PDF viewer,
and setting the zoom such that the width of the page corresponds to the width
of your PDF viewer. Simply pressing the left/right keys will then nicely show
each fonts separately.

--listfonts

Print (to standard output) the names of all available fonts in Ghostscript that
you can use for the --markfonts column. The available fonts can differ from
one system to another (depending on how Ghostscript was configured in that
system). If you are not already familiar with the shape of each font, please use
--showfonts (described above).

5.3 Table

Tables are the high-level products of processing on low-leveler data like images or spectra.
For example, in Gnuastro, MakeCatalog will process the pixels over an object and produce
a catalog (or table) with the properties of each object such as magnitudes and positions
(see Section 7.4 [MakeCatalog], page 572). Each one of these properties is a column in its
output catalog (or table) and for each input object, we have a row.

When there are only a small number of objects (rows) and not too many properties
(columns), then a simple plain text file is mainly enough to store, transfer, or even use the
produced data. However, to be more efficient, astronomers have defined the FITS binary
table standard to store data in a binary format (which cannot be seen in a text editor text).
This can offer major advantages: the file size will be greatly reduced and the reading and
writing will also be faster (because the RAM and CPU also work in binary). The acceptable
table formats are fully described in Section 4.7 [Tables], page 282.

Binary tables are not easily readable with basic plain-text editors. There is no
fixed/unified standard on how the zero and ones should be interpreted. Unix-like operating
systems have flourished because of a simple fact: communication between the various tools

https://ghostscript.com/doc/current/Fonts.htm
https://ghostscript.com/doc/current/Fonts.htm
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is based on human readable characters15. So while the FITS table standards are very
beneficial for the tools that recognize them, they are hard to use in the vast majority of
available software. This creates limitations for their generic use.

Table is Gnuastro’s solution to this problem. Table has a large set of operations that you
can directly do on any recognized table (such as selecting certain rows and doing arithmetic
on the columns). For operations that Table does not do internally, FITS tables (ASCII or
binary) are directly accessible to the users of Unix-like operating systems (in particular those
working the command-line or shell, see Section 1.8.1 [Command-line interface], page 14).
With Table, a FITS table (in binary or ASCII formats) is only one command away from
AWK (or any other tool you want to use). Just like a plain text file that you read with
the cat command. You can pipe the output of Table into any other tool for higher-level
processing, see the examples in Section 5.3.5 [Invoking Table], page 359, for some simple
examples.

In the sections below we describe how to effectively use the Table program. We start
with Section 5.3.3 [Column arithmetic], page 346, where the basic concept and methods
of applying arithmetic operations on one or more columns are discussed. Afterwards, in
Section 5.3.4 [Operation precedence in Table], page 354, we review the various types of
operations available and their precedence in an instance of calling Table. This is a good
place to get a general feeling of all the things you can do with Table. Finally, in Section 5.3.5
[Invoking Table], page 359, we give some examples and describe each option in Table.

5.3.1 Printing floating point numbers

Many of the columns containing astronomical data will contain floating point numbers
(those that aren’t an integer, like 1.23 or 4.56× 10−7). However, printing (for human read-
ability) of floating point numbers has some intricacies that we will explain in this section.
For a basic introduction to different types of integers or floating points, see Section 4.5
[Numeric data types], page 277.

It may be tempting to simply use 64-bit floating points all the time and avoid this section
over all. But have in mind that compared to 32-bit floating point type, a 64-bit floating
point type will consume double the storage, double the RAM and will take almost double
the time for processing. So when the statistical precision of your numbers is less than that
offered by 32-bit floating point precision, it is much better to store them in this format.

Within almost all commonly used CPUs of today, numbers (including integers or floating
points) are stored in binary base-2 format (where the only digits that can be used to
represent the number are 0 and 1). However, we (humans) are use to numbers in base-10
(where we have 10 digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9). For integers, there is a one-to-one
correspondence between a base-2 and base-10 representation. Therefore, converting a base-
10 integer (that you will be giving as an option value when running a Gnuastro program,
for example) to base-2 (that the computer will store in memory), or vice-versa, will not
cause any loss of information for integers.

The problem is that floating point numbers don’t have such a one-to-one correspondence
between the two notations. The full discussion on how floating point numbers are stored in

15 In “The art of Unix programming”, Eric Raymond makes this suggestion to programmers: “When you
feel the urge to design a complex binary file format, or a complex binary application protocol, it is
generally wise to lie down until the feeling passes.”. This is a great book and strongly recommended,
give it a look if you want to truly enjoy your work/life in this environment.



Chapter 5: Data containers 342

binary format is beyond the scope of this book. But please have a look at the correspond-
ing Wikipedia article (https://en.wikipedia.org/wiki/Floating-point_arithmetic)
to get a rough feeling about the complexity. Of course, if you are interested in the details,
that Wikipedia article should be a good starting point for further reading.

The most common convention for storing floating point numbers in digital storage is
IEEE Standard for Floating-Point Arithmetic; IEEE 754 (https://en.wikipedia.org/
wiki/IEEE_754). In short, the full width (in bits) assigned to that type (for example the 32
bits allocated for 32-bit floating point types) is divided into separate components: The first
bit is the “sign” (specifying if the number is negative or positive). In 32-bit floats, the next
8 bits are the “exponent” and finally (again, in 32-bit floats), the “fraction” is stored in
the next 23 bits. For example see this image on Wikipedia (https://commons.wikimedia.
org/wiki/File:Float_example.svg).

In IEEE 754, around zero, the base-2 and base-10 representations approximately match.
However, as we go away from 0, you will loose precision. The important concept in un-
derstanding the precision of floating point numbers is “decimal digits”, or the number of
digits in the number, independent of where the decimal point is. For example 1.23 has three
decimal digits and 4.5678× 109 has 5 decimal digits. According to IEEE 75416, 32-bit and
64-bit floating point numbers can accurately (statistically) represent a floating point with
7.22 and 15.95 decimal digits respectively.� �
Should I store my columns as 32-bit or 64-bit floating point type? If your floating point
numbers have 7 decimal digits or less (for example noisy image pixel values, measured star
or galaxy magnitudes, and anything that is derived from them like galaxy mass and etc),
you can safely use 32-bit precision (the statistical error on the measurements is usually
significantly larger than 7 digits!). However, some columns require more digits; thus 64-bit
precision. For example, RA or Dec with more than one arcsecond accuracy: the degrees
can have 3 digits, and 1 arcsecond is 1/3600 ∼ 0.0003 of a degree, requiring 4 more
digits). You can use the Section 6.2.4.15 [Numerical type conversion operators], page 442,
of Section 5.3.3 [Column arithmetic], page 346, to convert your columns to a certain type
for storage.
 	

The discussion above was for the storage of floating point numbers. When printing
floating point numbers in a human-friendly format (for example, in a plain-text file or
on standard output in the command-line), the computer has to convert its internal base-
2 representation to a base-10 representation. This second conversion may cause a small
discrepancy between the stored and printed values.� �
Use FITS tables as output of measurement programs: When you are doing a measurement
to produce a catalog (for example with Section 7.4 [MakeCatalog], page 572) set the output
to be a FITS table (for example --output=mycatalog.fits). A FITS binary table will
store the same the base-2 number that was measured by the CPU. However, if you choose to
store the output table as a plain-text table, you risk loosing information due to the human
friendly base-10 floating point conversion (which is necessary in a plain-text output).
 	
16 https://en.wikipedia.org/wiki/IEEE_754#Basic_and_interchange_formats

https://en.wikipedia.org/wiki/Floating-point_arithmetic
https://en.wikipedia.org/wiki/IEEE_754
https://en.wikipedia.org/wiki/IEEE_754
https://commons.wikimedia.org/wiki/File:Float_example.svg
https://commons.wikimedia.org/wiki/File:Float_example.svg
https://en.wikipedia.org/wiki/IEEE_754#Basic_and_interchange_formats
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To customize how columns containing floating point values are printed (in a plain-
text output file, or in the standard output in your terminal), Table has four options
for the two different types: --txtf32format, --txtf32precision, --txtf64format and
--txtf64precision. They are fully described in Section 5.3.5 [Invoking Table], page 359.� �
Summary: it is therefore recommended to always store your tables as FITS (binary) tables.
To view the contents of the table on the command-line or to feed it to a program that
doesn’t recognize FITS tables, you can use the four options above for a custom base-10
conversion that will not cause any loss of data.
 	
5.3.2 Vector columns

In its most common format, each column of a table only has a single value in each row. For
example, we usually have one column for the magnitude, another column for the RA (Right
Ascension) and yet another column for the DEC (Declination) of a set of galaxies/stars
(where each galaxy is represented by one row in the table). This common single-valued
column format is sufficient in many scenarios. However, in some situations (like those
below) it would help to have multiple values for each row in each column, not just one.

• Conceptually: the various numbers are “connected” to each other. In other words, their
order and position in relation to each other matters. Common examples in astronomy
are the radial profiles of each galaxy in your catalog, or their spectrum. For example,
each MUSE17 spectra has 3681 points (with a sampling of of 1.25 Angstroms).

Dealing with this many separate measurements as separate columns in your table is
very annoying and prone to error: you don’t want to forget moving some of them in an
output table for further analysis, mistakenly change their order, or do some operation
only on a sub-set of them.

• Technically: in the FITS standard, you can only store a maximum of 999 columns in
a FITS table. Therefore, if you have more than 999 data points for each galaxy (like
the MUSE spectra example above), it is impossible to store each point in one table as
separate columns.

To address these problems, the FITS standard has defined the concept of “vector”
columns in its Binary table format (ASCII FITS tables don’t support vector columns, but
Gnuastro’s plain-text format does, as described here). Within each row of a single vector
column, we can store any number of data points (like the MUSE spectra above or the full
radial profile of each galaxy). All the values in a vector column have to have the same
Section 4.5 [Numeric data types], page 277, and the number of elements within each vector
column is the same for all rows.

By grouping conceptually similar data points (like a spectrum) in one vector column,
we can significantly reduce the number of columns and make it much more manageable,
without loosing any information! To demonstrate the vector column features of Gnuastro’s
Table program, let’s start with a randomly generated small (5 rows and 3 columns) catalog.
This will allows us to show the outputs of each step here, but you can apply the same
concept to vectors with any number of columns.

17 https://www.eso.org/sci/facilities/develop/instruments/muse.html

https://www.eso.org/sci/facilities/develop/instruments/muse.html
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With the command below, we use seq to generate a single-column table that is piped to
Gnuastro’s Table program. Table then uses column arithmetic to generate three columns
with random values from that column (for more, see Section 5.3.3 [Column arithmetic],
page 346). Each column becomes noisy, with standard deviations of 2, 5 and 10. Finally,
we will add metadata to each column, giving each a different name (using names is always
the best way to work with columns):

$ seq 1 5 \

| asttable -c'arith $1 2 mknoise-sigma f32' \

-c'arith $1 5 mknoise-sigma f32' \

-c'arith $1 10 mknoise-sigma f32' \

--colmetadata=1,abc,none,"First column." \

--colmetadata=2,def,none,"Second column." \

--colmetadata=3,ghi,none,"Third column." \

--output=table.fits

With the command below, let’s have a look at the table. When you run it, you will have
a different random number generator seed, so the numbers will be slightly different. For
making reproducible random numbers, see Section 6.2.3.4 [Generating random numbers],
page 406. The -Y option is used for more easily readable numbers (without it, floating point
numbers are written in scientific notation, for more see Section 5.3.1 [Printing floating point
numbers], page 341) and with the -O we are asking Table to also print the metadata. For
more on Table’s options, see Section 5.3.5 [Invoking Table], page 359, and for seeing how
the short options can be merged (such that -Y -O is identical to -YO), see Section 4.1.1.2
[Options], page 249.

$ asttable table.fits -YO

# Column 1: abc [none,f32,] First column.

# Column 2: def [none,f32,] Second column.

# Column 3: ghi [none,f32,] Third column.

1.074 5.535 -4.464

0.606 -2.011 15.397

1.475 1.811 5.687

2.248 7.663 -7.789

6.355 17.374 6.767

We see that indeed, it has three columns, with our given names. Now, let’s assume
that you want to make a two-element vector column from the values in the def and ghi

columns. To do that, you can use the --tovector option like below. As the name suggests,
--tovector will merge the rows of the two columns into one vector column with multiple
values in each row.

$ asttable table.fits -YO --tovector=def,ghi

# Column 1: abc [none,f32 ,] First column.

# Column 2: def-VECTOR [none,f32(2),] Vector by merging multiple cols.

1.074 5.535 -4.464

0.606 -2.011 15.397

1.475 1.811 5.687

2.248 7.663 -7.789

6.355 17.374 6.767
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If you ignore the metadata, this doesn’t seem to have changed anything! You see that
each line of numbers still has three “tokens” (to distinguish them from “columns”). But
once you look at the metadata, you only see metadata for two columns, not three. If
you look closely, the numeric data type of the newly added fourth column is ‘f32(2)’
(look above; previously it was f32). The (2) shows that the second column contains two
numbers/tokens not one. If your vector column consisted of 3681 numbers, this would be
f32(3681). Looking again at the metadata, we see that --tovector has also created a new
name and comments for the new column. This is done all the time to avoid confusion with
the old columns.

Let’s confirm that the newly added column is indeed a single column but with two values.
To do this, with the command below, we’ll write the output into a FITS table. In the same
command, let’s also give a more suitable name for the new merged/vector column). We can
get a first confirmation by looking at the table’s metadata in the second command below:

$ asttable table.fits -YO --tovector=def,ghi --output=vec.fits \

--colmetadata=2,vector,nounits,"New vector column."

$ asttable vec.fits -i

--------

vec.fits (hdu: 1)

------- ----- ---- -------

No.Name Units Type Comment

------- ----- ---- -------

1 abc none float32 First column.

2 vector nounits float32(2) New vector column.

--------

Number of rows: 5

--------

A more robust confirmation would be to print the values in the newly added vector column.
As expected, asking for a single column with --column (or -c) will given us two numbers
per row/line (instead of one!).

$ asttable vec.fits -c vector -YO

# Column 1: vector [nounits,f32(2),] New vector column.

5.535 -4.464

-2.011 15.397

1.811 5.687

7.663 -7.789

17.374 6.767

If you want to keep the original single-valued columns that went into the vector column,
you can use the --keepvectfin option (read it as “KEEP VECtor To/From Inputs”):

$ asttable table.fits -YO --tovector=def,ghi --keepvectfin \

--colmetadata=4,vector,nounits,"New vector column."

# Column 1: abc [none ,f32 ,] First column.

# Column 2: def [none ,f32 ,] Second column.

# Column 3: ghi [none ,f32 ,] Third column.

# Column 4: vector [nounits,f32(2),] New vector column.
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1.074 5.535 -4.464 5.535 -4.464

0.606 -2.011 15.397 -2.011 15.397

1.475 1.811 5.687 1.811 5.687

2.248 7.663 -7.789 7.663 -7.789

6.355 17.374 6.767 17.374 6.767

Now that you know how to create vector columns, let’s assume you have the inverse
scenario: you want to extract one of the values of a vector column into a separate single-
valued column. To do this, you can use the --fromvector option. The --fromvector

option takes the name (or counter) of a vector column, followed by any number of inte-
ger counters (counting from 1). It will extract those elements into separate single-valued
columns. For example, let’s assume you want to extract the second element of the defghi

column in the file you made before:

$ asttable vec.fits --fromvector=vector,2 -YO

# Column 1: abc [none ,f32,] First column.

# Column 2: vector-2 [nounits,f32,] New vector column.

1.074 -4.464

0.606 15.397

1.475 5.687

2.248 -7.789

6.355 6.767

Just like the case with --tovector above, if you want to keep the input vector column,
use --keepvectfin. This feature is useful in scenarios where you want to select some rows
based on a single element (or multiple) of the vector column.� �
Vector columns and FITS ASCII tables: As mentioned above, the FITS standard only
recognizes vector columns in its Binary table format (the default FITS table format in
Gnuastro). You can still use the --tableformat=fits-ascii option to write your tables
in the FITS ASCII format (see Section 4.1.2.1 [Input/Output options], page 252). In this
case, if a vector column is present, it will be written as separate single-element columns
to avoid loosing information (as if you run called --fromvector on all the elements of the
vector column). A warning is printed if this occurs.
 	

For an application of the vector column concepts introduced here on MUSE data, see the
3D data cube tutorial and in particular these two sections: Section 2.5.5 [3D measurements
and spectra], page 143, and Section 2.5.6 [Extracting a single spectrum and plotting it],
page 147.

5.3.3 Column arithmetic

In many scenarios, you want to apply some kind of operation on the columns and save them
in another table or feed them into another program. With Table you can do a rich set of
operations on the contents of one or more columns in a table, and save the resulting values
as new column(s) in the output table. For seeing the precedence of Column arithmetic
in relation to other Table operators, see Section 5.3.4 [Operation precedence in Table],
page 354.
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To enable column arithmetic, the first 6 characters of the value to --column (-c) should
be the activation word ‘arith ’ (note the space character in the end, after ‘arith’). After
the activation word, you can use reverse polish notation to identify the operators and their
operands, see Section 6.2.1 [Reverse polish notation], page 399. Just note that white-space
characters are used between the tokens of the arithmetic expression and that they are
meaningful to the command-line environment. Therefore the whole expression (including
the activation word) has to be quoted on the command-line or in a shell script (see the
examples below).

To identify a column you can directly use its name, or specify its number (counting from
one, see Section 4.7.3 [Selecting table columns], page 287). When you are giving a column
number, it is necessary to prefix the number with a $, similar to AWK. Otherwise the
number is not distinguishable from a constant number to use in the arithmetic operation.

For example, with the command below, the first two columns of table.fits will be
printed along with a third column that is the result of multiplying the first column with
1010 (for example, to convert wavelength from Meters to Angstroms). Note that without the
‘$’, it is not possible to distinguish between “1” as a column-counter, or “1” as a constant
number to use in the arithmetic operation. Also note that because of the significance of $
for the command-line environment, the single-quotes are the recommended quoting method
(as in an AWK expression), not double-quotes (for the significance of using single quotes
see the box below).

$ asttable table.fits -c1,2 -c'arith $1 1e10 x'� �
Single quotes when string contains $: On the command-line, or in shell-scripts, $ is used
to expand variables, for example, echo $PATH prints the value (a string of characters) in
the variable PATH, it will not simply print $PATH. This operation is also permitted within
double quotes, so echo "$PATH" will produce the same output. This is good when printing
values, for example, in the command below, $PATH will expand to the value within it.

$ echo "My path is: $PATH"

If you actually want to return the literal string $PATH, not the value in the PATH variable
(like the scenario here in column arithmetic), you should put it in single quotes like below.
The printed value here will include the $, please try it to see for yourself and compare to
above.

$ echo 'My path is: $PATH'

Therefore, when your column arithmetic involves the $ sign (to specify columns by
number), quote your arith string with a single quotation mark. Otherwise you can use
both single or double quotes.
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� �
Manipulate all columns in one call using $_all: Usually we manipulate one column in
one call of column arithmetic. For instance, with the command below the elements of the
AWAV column will be sumed.

$ asttable table.fits -c'arith AWAV sumvalue'

But sometimes, we want to manipulate more than one column with the same expression.
For example we want to sum all the elements of all the columns. In this case we could use
the following command (assuming that the table has four different AWAV-* columns):

$ asttable table.fits -c'arith AWAV-1 sumvalue' \

-c'arith AWAV-2 sumvalue' \

-c'arith AWAV-3 sumvalue' \

-c'arith AWAV-4 sumvalue'

To avoid repetition and mistakes, instead of using column arithmetic many times, we
can use the $_all identifier. When column arithmetic confronts this special string, it will
repeat the expression for all the columns in the input table. Therefore the command above
can be written as:

$ asttable table.fits -c'arith $_all sumvalue'
 	
Alternatively, if the columns have meta-data and the first two are respectively called

AWAV and SPECTRUM, the command above is equivalent to the command below. Note that
the character ‘$’ is no longer necessary in this scenario (because names will not be confused
with numbers):

$ asttable table.fits -cAWAV,SPECTRUM -c'arith AWAV 1e10 x'

Comparison of the two commands above clearly shows why it is recommended to use
column names instead of numbers. When the columns have descriptive names, the com-
mand/script actually becomes much more readable, describing the intent of the operation.
It is also independent of the low-level table structure: for the second command, the column
numbers of the AWAV and SPECTRUM columns in table.fits is irrelevant.

Column arithmetic changes the values of the data within the column. So the old col-
umn metadata cannot be used any more. By default the output column of the arithmetic
operation will be given a generic metadata (for example, its name will be ARITH_1, which
is hardly useful!). But metadata are critically important and it is good practice to always
have short, but descriptive, names for each columns, units and also some comments for
more explanation. To add metadata to a column, you can use the --colmetadata option
that is described in Section 5.3.5 [Invoking Table], page 359, and Section 5.3.4 [Operation
precedence in Table], page 354.

Since the arithmetic expressions are a value to --column, it does not necessarily have
to be a separate option, so the commands above are also identical to the command below
(note that this only has one -c option). Just be very careful with the quoting! With
the --colmetadata option, we are also giving a name, units and a comment to the third
column.

$ asttable table.fits -cAWAV,SPECTRUM,'arith AWAV 1e10 x' \

--colmetadata=3,AWAV_A,angstrom,"Wavelength (in Angstroms)"
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In case you need to append columns from other tables (with --catcolumnfile), you
can use those extra columns in column arithmetic also. The easiest, and most robust, way
is that your columns of interest (in all files whose columns are to be merged) have different
names. In this scenario, you can simply use the names of the columns you plan to append.
If there are similar names, note that by default Table appends a -N to similar names (where
N is the file counter given to --catcolumnfile, see the description of --catcolumnfile
for more). Using column numbers can get complicated: if the number is smaller than the
main input’s number of columns, the main input’s column will be used. Otherwise (when
the requested column number is larger than the main input’s number of columns), the final
output (after appending all the columns from all the possible files) column number will be
used.

Almost all the arithmetic operators of Section 6.2.4 [Arithmetic operators], page 408, are
also supported for column arithmetic in Table. In particular, the few that are not present in
the Gnuastro library18 are not yet supported for column arithmetic. Besides the operators
in Section 6.2.4 [Arithmetic operators], page 408, several operators are only available in
Table to use on table columns.

wcs-to-img

Convert the given WCS positions to image/dataset coordinates based on the
number of dimensions in the WCS structure of --wcshdu extension/HDU in
--wcsfile. It will output the same number of columns. The first popped
operand is the last FITS dimension.

For example, the two commands below (which have the same output) will pro-
duce 5 columns. The first three columns are the input table’s ID, RA and Dec
columns. The fourth and fifth columns will be the pixel positions in image.fits

that correspond to each RA and Dec.

$ asttable table.fits -cID,RA,DEC,'arith RA DEC wcs-to-img' \

--wcsfile=image.fits

$ asttable table.fits -cID,RA -cDEC \

-c'arith RA DEC wcs-to-img' --wcsfile=image.fits

img-to-wcs

Similar to wcs-to-img, except that image/dataset coordinates are converted to
WCS coordinates.

eq-j2000-to-flat

Convert spherical RA and Dec (in Julian year 2000.0 equatorial coordinates;
which are the most common) into RA and Dec on a flat surface based on the
given reference point and projection. The full details of the operands to this
operator are given below, but let’s start with a practical example to show the
concept.

At (or very near) the reference point the output of this operator will be the
same as the input. But as you move away from the reference point, distortions
due to the particular projection will gradually cause changes in the output

18 For a list of the Gnuastro library arithmetic operators, please see the macros starting with
GAL_ARITHMETIC_OP and ending with the operator name in Section 12.3.14 [Arithmetic on datasets
(arithmetic.h)], page 828.
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(when compared to the input). For example if you simply plot RA and Dec
without this operator, a circular annulus on the sky will become elongated as the
declination of its center goes farther from the equator. For a demonstration of
the difference between curved and flat RA and Decs, see Section 2.8.5 [Pointings
that account for sky curvature], page 186, in the Tutorials chapter.

Let’s assume you want to plot a set of RA and Dec points (defined on a spherical
surface) in a paper (a flat surface) and that table.fits contains the RA and
Dec in columns that are called RA and DEC. With the command below, the
points will be converted to flat-RA and flat-Dec using the Gnomonic projection
(which is known as TAN in the FITS WSC standard; see the description of the
first popped operand below):

$ asttable table.fits \

-c'arith RA set-r DEC set-d \

r d r meanvalue d meanvalue TAN \

eq-j2000-to-flat'

As you see, the RA and Dec (r and d) are the last two operators that are
popped. Before them, the reference point’s coordinates are calculated from the
mean of the RA and Decs (‘r meanvalue’ and ‘d meanvalue’), and the first
popped operand is the projection (TAN). We are using the mean RA and Dec as
the reference point since we are assuming that this is the only set of points you
want to convert. In case you have to plot multiple sets of points in the same
plot, you should give the same reference point in each separate conversion; like
the example below:

$ ref_ra=123.45

$ ref_dec=-6.789

$ asttable table-1.fits --output=flat-1.txt \

-c'arith RA DEC '$ref_ra' '$ref_dec' TAN \

eq-j2000-to-flat'

$ asttable table-2.fits --output=flat-2.txt \

-c'arith RA DEC '$ref_ra' '$ref_dec' TAN \

eq-j2000-to-flat'

This operator takes 5 operands:

1. The first popped operand (closest to the operator) is the standard FITS
WCS projection to use; and should contain a single element (not a column).
The full list of projections can be seen in the description of the --ctype

option in Section 6.4.4.1 [Align pixels with WCS considering distortions],
page 499. The most common projection for smaller fields of view is TAN

(Gnomonic), but when your input catalog contains large portions of the sky,
projections like MOL (Mollweide) should be used. This is because distortions
caused by the TAN projection can become very significant after a couple of
degrees from the reference point.

2. The second popped operand is the reference point’s declination; and should
contain a single value (not a column).

3. The third popped operand is the reference point’s right ascension; and
should contain a single value (not a column).
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4. The fourth popped operand is the declination column of your input table
(the points that will be converted).

5. The fifth popped operand is the right ascension column of your input table
(the points that will be converted).

eq-j2000-from-flat

The inverse of eq-j2000-to-flat. In other words, you have a set of points
defined on the flat RA and Dec (after the projection from spherical to flat),
but you want to map them to spherical RA and Dec. For an example, see Sec-
tion 2.8.5 [Pointings that account for sky curvature], page 186, in the Gnuastro
tutorials.

distance-flat

Return the distance between two points assuming they are on a flat surface.
Note that each point needs two coordinates, so this operator needs four operands
(currently it only works for 2D spaces). The first and second popped operands
are considered to belong to one point and the third and fourth popped operands
to the second point.

Each of the input points can be a single coordinate or a full table column
(containing many points). In other words, the following commands are all
valid:

$ asttable table.fits \

-c'arith X1 Y1 X2 Y2 distance-flat'

$ asttable table.fits \

-c'arith X Y 12.345 6.789 distance-flat'

$ asttable table.fits \

-c'arith 12.345 6.789 X Y distance-flat'

In the first case we are assuming that table.fits has the following four columns
X1, Y1, X2, Y2. The returned column by this operator will be the difference
between two points in each row with coordinates like the following (X1, Y1) and
(X2, Y2). In other words, for each row, the distance between different points is
calculated. In the second and third cases (which are identical), it is assumed
that table.fits has the two columns X and Y. The returned column by this
operator will be the difference of each row with the fixed point at (12.345,
6.789).

distance-on-sphere

Return the spherical angular distance (along a great circle, in degrees) between
the given two points. Note that each point needs two coordinates (in degrees),
so this operator needs four operands. The first and second popped operands are
considered to belong to one point and the third and fourth popped operands to
the second point.

Each of the input points can be a single coordinate or a full table column
(containing many points). In other words, the following commands are all
valid:

$ asttable table.fits \

-c'arith RA1 DEC1 RA2 DEC2 distance-on-sphere'
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$ asttable table.fits \

-c'arith RA DEC 9.876 5.432 distance-on-sphere'

$ asttable table.fits \

-c'arith 9.876 5.432 RA DEC distance-on-sphere'

In the first case we are assuming that table.fits has the following four columns
RA1, DEC1, RA2, DEC2. The returned column by this operator will be the differ-
ence between two points in each row with coordinates like the following (RA1,
DEC1) and (RA2, DEC2). In other words, for each row, the angular distance be-
tween different points is calculated. In the second and third cases (which are
identical), it is assumed that table.fits has the two columns RA and DEC. The
returned column by this operator will be the difference of each row with the
fixed point at (9.876, 5.432).

The distance (along a great circle) on a sphere between two points is calculated
with the equation below, where r1, r2, d1 and d2 are the right ascensions and
declinations of points 1 and 2.

cos(d) = sin(d1) sin(d2) + cos(d1) cos(d2) cos(r1 − r2)

ra-to-degree

Convert the hour-wise Right Ascension (RA) string, in the sexagesimal format
of _h_m_s or _:_:_, to degrees. Note that the input column has to have a
string format. In FITS tables, string columns are well-defined. For plain-text
tables, please follow the standards defined in Section 4.7.2 [Gnuastro text table
format], page 285, otherwise the string column will not be read.

$ asttable catalog.fits -c'arith RA ra-to-degree'

$ asttable catalog.fits -c'arith $5 ra-to-degree'

dec-to-degree

Convert the sexagesimal Declination (Dec) string, in the format of _d_m_s or
_:_:_, to degrees (a single floating point number). For more details please see
the ra-to-degree operator.

degree-to-ra

Convert degrees (a column with a single floating point number) to the Right
Ascension, RA, string (in the sexagesimal format hours, minutes and seconds,
written as _h_m_s). The output will be a string column so no further math-
ematical operations can be done on it. The output file can be in any format
(for example, FITS or plain-text). If it is plain-text, the string column will be
written following the standards described in Section 4.7.2 [Gnuastro text table
format], page 285.

degree-to-dec

Convert degrees (a column with a single floating point number) to the Decli-
nation, Dec, string (in the format of _d_m_s). See the degree-to-ra for more
on the format of the output.
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date-to-sec

Return the number of seconds from the Unix epoch time (00:00:00 Thursday,
January 1st, 1970). The input (popped) operand should be a string column in
the FITS date format (most generally: YYYY-MM-DDThh:mm:ss.ddd...).

The returned operand will be named UNIXSEC (short for Unix-seconds) and will
be a 64-bit, signed integer, see Section 4.5 [Numeric data types], page 277. If
the input string has sub-second precision, it will be ignored because floating
point numbers cannot accurately store numbers with many significant digits.
To preserve sub-second precision, please use date-to-millisec.

For example, in the example below we are using this operator, in combination
with the --keyvalue option of the Fits program, to sort your desired FITS files
by observation date (value in the DATE-OBS keyword in example below):

$ astfits *.fits --keyvalue=DATE-OBS --colinfoinstdout \

| asttable -cFILENAME,'arith DATE-OBS date-to-sec' \

--colinfoinstdout \

| asttable --sort=UNIXSEC

If you do not need to see the Unix-seconds any more, you can add a -cFILENAME
(short for --column=FILENAME) at the end. For more on --keyvalue, see Sec-
tion 5.1.1.2 [Keyword inspection and manipulation], page 302.

date-to-millisec

Return the number of milli-seconds from the Unix epoch time (00:00:00 Thurs-
day, January 1st, 1970). The input (popped) operand should be a string col-
umn in the FITS date format (most generally: YYYY-MM-DDThh:mm:ss.ddd...,
where .ddd is the optional sub-second component).

The returned operand will be named UNIXMILLISEC (short for Unix milli-
seconds) and will be a 64-bit, signed integer, see Section 4.5 [Numeric data
types], page 277. The returned value is not a floating point type because for
large numbers, floating point data types loose single-digit precision (which is
important here).

Other than the units of the output, this operator behaves similarly to date-

to-sec. See the description of that operator for an example.

sorted-to-interval

Given a single column (which must be already sorted and have a numeric data
type), return two columns: the first returned column is the minimum and the
second returned column is the maximum value of the interval of each row row.
The maximum of each row is equal to the minimum of the previous row; thus
creating a contiguous interval coverage of the input column’s range in all rows.

The minimum value of the first row and maximum of the last row will be
smaller/larger than the respective row of the input (based on the distance to
the next/previous element). This is done to ensure that if your input has a
fixed interval length between all elements, the first and last intervals also have
that fixed length.

For example, with the command below, we’ll use this operator on a hypothetical
radial profile. Note how the intervals are contiguous even though the radius
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values are not equally distant (if the row with a radius of 2.5 didn’t exist, the
intervals would all be the same length). For another example of the usage of this
operator, see the example in the description of --customtable in Section 8.1.4.2
[MakeProfiles profile settings], page 641.

$ cat radial-profile.txt

# Column 1: RADIUS [pix,f32,] Distance to center in pixels.

# Column 2: MEAN [ADU,f32,] Mean value at that radius.

0 100

1 40

2 30

2.5 25

3 20

$ asttable radial-profile.txt --txtf32f=fixed --txtf32p=3 \

-c'arith RADIUS sorted-to-interval',MEAN

-0.500 0.500 100.000

0.500 1.500 40.000

1.500 2.250 30.000

2.250 2.750 25.000

2.750 3.250 20.000

Such intervals can be useful in scenarios like generating the input to
--customtable in MakeProfiles (see Section 8.1.4.2 [MakeProfiles profile
settings], page 641) from a radial profile (see Section 10.2 [Generate radial
profile], page 670).

5.3.4 Operation precedence in Table

The Table program can do many operations on the rows and columns of the input tables and
they are not always applied in the order you call the operation on the command-line. In this
section we will describe which operation is done before/after which operation. Knowing this
precedence table is important to avoid confusion when you ask for more than one operation.
For a description of each option, please see Section 5.3.5 [Invoking Table], page 359. By
default, column-based operations will be done first. You can ask for switching to row-based
operations to be done first, using the --rowfirst option.� �
Pipes for different precedence: It may happen that your desired series of operations cannot
be done with the precedence mentioned below (in one command). In this case, you can
pipe the output of one call to asttable to another asttable. Just don’t forget to give
-O (or --colinfoinstdout) to the first instance (so the column metadata are also passed
to the next instance). Without metadata, all numbers will be read as double-precision
(see Section 4.7.2 [Gnuastro text table format], page 285; recall that piping is done in
plain text format), vector columns will be broken into single-valued columns, and column
names, units and comments will be lost. At the end of this section, there is an example
of doing this.
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Input table information
The first set of operations that will be preformed (if requested) are the printing
of the input table information. Therefore, when the following options are called,
the column data are not read at all. Table simply reads the main input’s column
metadata (name, units, numeric data type and comments), and the number of
rows and prints them. Table then terminates and no other operation is done.
These can therefore be called at the end of an arbitrarily long Table command.
When you have forgot some information about the input table. You can then
delete these options and continue writing the command (using the shell’s history
to retrieve the previous command with an up-arrow key).

At any time only a single one of the options in this category may be called. The
order of checking for these options is therefore important: in the same order
that they are described below:

Column and row information (--information or -i)
Print the list of input columns and the metadata of each column in
a single row. This includes the column name, numeric data type,
units and comments of each column within a separate row of the
output. Finally, print the number of rows.

Number of columns (--info-num-cols)
Print the number of columns in the input table. Only a single
integer (number of columns) is printed before Table terminates.

Number of rows (--info-num-rows)
Print the number of rows in the input table. Only a single integer
(number of rows) is printed before Table terminates.

Column selection (--column)
When this option is given, only the columns given to this option (from the main
input) will be used for all future steps. When --column (or -c) is not given,
then all the main input’s columns will be used in the next steps.

Column-based operations
By default the following column-based operations will be done before the row-
based operations in the next item. If you need to give precedence to row-based
operations, use --rowfirst.

Column(s) from other file(s): --catcolumnfile
When column concatenation (addition) is requested, columns from
other tables (in other files, or other HDUs of the same FITS file)
will be added after the existing columns are read from the main
input. In one command, you can call --catcolumnfile multiple
times to allow addition of columns from many files.

Therefore you can merge the columns of various tables into one
table in this step (at the start), then start adding/limiting the rows,
or building vector columns, . If any of the row-based operations
below are requested in the same asttable command, they will
also be applied to the rows of the added columns. However, the
conditions to keep/reject rows can only be applied to the rows of
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the columns in main input table (not the columns that are added
with these options).

Extracting single-valued columns from vectors (--fromvector)
Once all the input columns are read into memory, if any of them
are vectors, you can extract a single-valued column from the vector
columns at this stage. For more on vector columns, see Section 5.3.2
[Vector columns], page 343.

Creating vector columns (--tovector)
After column arithmetic, there is no other way to add new columns
so the --tovector operator is applied at this stage. You can use
it to merge multiple columns that are available in this stage to a
single vector column. For more, see Section 5.3.2 [Vector columns],
page 343.

Column arithmetic
Once the final rows are selected in the requested order, column
arithmetic is done (if requested). For more on column arithmetic,
see Section 5.3.3 [Column arithmetic], page 346.

Row-based operations
Row-based operations only work within the rows of existing columns when they
are activated. By default row-based operations are activated after column-based
operations (which are mentioned above). If you need to give precedence to row-
based operations, use --rowfirst.

Rows from other file(s) (--catrowfile)
With this feature, you can import rows from other tables (in other
files, or other HDUs of the same FITS file). The same column
selection of --column is applied to the tables given to this option.
The column metadata (name, units and comments) will be taken
from the main input. Two conditions are mandatory for adding
rows:

• The number of columns used from the new tables must be
equal to the number of columns in memory, by the time control
reaches here.

• The data type of each column (see Section 4.5 [Numeric data
types], page 277) should be the same as the respective col-
umn in memory by the time control reaches here. If the data
types are different, you can use the type conversion opera-
tors of column arithmetic which has higher precedence (and
will therefore be applied before this by default). For more on
type conversion, see Section 6.2.4.15 [Numerical type conver-
sion operators], page 442, and Section 5.3.3 [Column arith-
metic], page 346).
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Row selection by value in a column
The following operations select rows based on the values in them.
A more complete description of each of these options is given in
Section 5.3.5 [Invoking Table], page 359.

• --range: only keep rows where the value in the given column
is within a certain interval.

• --inpolygon: only keep rows where the value is within the
polygon of --polygon.

• --outpolygon: only keep rows outside the polygon of
--polygon.

• --equal: only keep rows with an specified value in given col-
umn.

• --notequal: only keep rows without specified value in given
column.

• --noblank: only keep rows that are not blank in the given
column(s).

These options can be called any number of times (to limit the final
rows based on values in different columns for example). Since these
are row-rejection operations, their internal order is irrelevant. In
other words, it makes no difference if --equal is called before or
after --range for example.

As a side-effect, because NaN/blank values are defined to fail on any
condition, these operations will also remove rows with NaN/blank
values in the specified column they are checking. Also, the columns
that are used for these operations do not necessarily have to be in
the final output table (you may not need the column after doing
the selection based on it).

By default, these options are applied after merging columns from
other tables. However, currently, the column given to these options
can only come from the main input table. If you need to apply these
operations on columns from --catcolumnfile, pipe the output of
one instance of Table with --catcolumnfile into another instance
of Table as suggested in the box above this list.

These row-based operations options are applied first because the
speed of later operations can be greatly affected by the number of
rows. For example, if you also call the --sort option, and your
row selection will result in 50 rows (from an input of 10000 rows),
limiting the number of rows first will greatly speed up the sorting
in your final output.

Sorting (--sort)
Sort of the rows based on values in a certain column. The column
to sort by can only come from the main input table columns (not
columns that may have been added with --catcolumnfile).
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Row selection (by position)
• --head: keep only requested number of top rows.

• --tail: keep only requested number of bottom rows.

• --rowrandom: keep only a random number of rows.

• --rowrange: keep only rows within a certain positional inter-
val.

These options limit/select rows based on their position within the
table (not their value in any certain column).

Transpose vector columns (--transpose)
Transposing vector columns will not affect the number or metadata
of columns, it will just re-arrange them in their 2D structure. As
a result, after transposing, the number of rows changes, as well as
the number of elements in each vector column. See the description
of this option in Section 5.3.5 [Invoking Table], page 359, for more
(with an example).

Column metadata (--colmetadata)
Once the structure of the final table is set, you can set the column metadata
just before finishing.

Output row selection (--noblankend)
Only keep the output rows that do not have a blank value in the given column(s).
For example, you may need to apply arithmetic operations on the columns
(through Section 5.3.3 [Column arithmetic], page 346) before rejecting the un-
desired rows. After the arithmetic operation is done, you can use the where

operator to set the non-desired columns to NaN/blank and use --noblankend

option to remove them just before writing the output. In other scenarios,
you may want to remove blank values based on columns in another table. To
help in readability, you can also use the final column names that you set with
--colmetadata! See the example below for applying any generic value-based
row selection based on --noblankend.

As an example, let’s review how Table interprets the command below. We are assuming
that table.fits contains at least three columns: RA, DEC and PARAM and you only want the
RA and Dec of the rows where p× 2 < 5 (p is the value of each row in the PARAM column).

$ asttable table.fits -cRA,DEC --noblankend=MULTIP \

-c'arith PARAM 2 x set-i i i 5 gt nan where' \

--colmetadata=3,MULTIP,unit,"Description of column"

Due to the precedence described in this section, Table does these operations (which are
independent of the order of the operations written on the command-line):

1. At the start (with -cRA,DEC), Table reads the RA and DEC columns.

2. In between all the operations in the command above, Column arithmetic (with
-c'arith ...') has the highest precedence. So the arithmetic operation is done and
stored as a new (third) column. In this arithmetic operation, we multiply all the
values of the PARAM column by 2, then set all those with a value larger than 5 to NaN
(for more on understanding this operation, see the ‘set-’ and ‘where’ operators in
Section 6.2.4 [Arithmetic operators], page 408).
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3. Updating column metadata (with --colmetadata) is then done to give a name
(MULTIP) to the newly calculated (third) column. During the process, besides a name,
we also set a unit and description for the new column. These metadata entries are
very important, so always be sure to add metadata after doing column arithmetic.

4. The lowest precedence operation is --noblankend=MULTIP. So only rows that are not
blank/NaN in the MULTIP column are kept.

5. Finally, the output table (with three columns) is written to the command-line. If you
also want to print the column metadata, you can use the -O (or --colinfoinstdout)
option. Alternatively, if you want the output in a file, you can use the --output option
to save the table in FITS or plain-text format.

It may happen that your desired operation needs a separate precedence. In this
case you can pipe the output of Table into another call of Table and use the -O (or
--colinfoinstdout) option to preserve the metadata between the two calls.

For example, let’s assume that you want to sort the output table from the example
command above based on the new MULTIP column. Since sorting is done prior to column
arithmetic, you cannot do it in one command, but you can circumvent this limitation by
simply piping the output (including metadata) to another call to Table:

asttable table.fits -cRA,DEC --noblankend=MULTIP --colinfoinstdout \

-c'arith PARAM 2 x set-i i i 5 gt nan where' \

--colmetadata=3,MULTIP,unit,"Description of column" \

| asttable --sort=MULTIP --output=selected.fits

5.3.5 Invoking Table

Table will read/write, select, modify, or show the information of the rows and columns in
recognized Table formats (including FITS binary, FITS ASCII, and plain text table files,
see Section 4.7 [Tables], page 282). Output columns can also be determined by number or
regular expression matching of column names, units, or comments. The executable name
is asttable with the following general template

$ asttable [OPTION...] InputFile

One line examples:

## Get the table column information (name, units, or data type), and

## the number of rows:

$ asttable table.fits --information

## Print columns named RA and DEC, followed by all the columns where

## the name starts with "MAG_":

$ asttable table.fits --column=RA --column=DEC --column=/^MAG_/

## Similar to the above, but with one call to `--column' (or `-c'),

## also sort the rows by the input's photometric redshift (`Z_PHOT')

## column. To confirm the sort, you can add `Z_PHOT' to the columns

## to print.

$ asttable table.fits -cRA,DEC,/^MAG_/ --sort=Z_PHOT

## Similar to the above, but only print rows that have a photometric
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## redshift between 2 and 3.

$ asttable table.fits -cRA,DEC,/^MAG_/ --range=Z_PHOT,2:3

## Only print rows with a value in the 10th column above 100000:

$ asttable table.txt --range=10,10e5,inf

## Only print the 2nd column, and the third column multiplied by 5,

## Save the resulting two columns in `table.txt'

$ asttable table.fits -c2,'arith $2 5 x' -otable.fits

## Sort the output columns by the third column, save output:

$ asttable table.fits --sort=3 -ooutput.txt

## Subtract the first column from the second in `cat.txt' (can also

## be a FITS table) and keep the third and fourth columns.

$ asttable cat.txt -c'arith $2 $1 -',3,4 -ocat.fits

## Convert sexagesimal coordinates to degrees (same can be done in a

## large table given as argument).

$ echo "7h34m35.5498 31d53m14.352s" | asttable

## Convert RA and Dec in degrees to sexagesimal (same can be done in a

## large table given as argument).

$ echo "113.64812416667 31.88732" \

| asttable -c'arith $1 degree-to-ra $2 degree-to-dec'

## Extract columns 1 and 2, as well as all those between 12 to 58:

$ asttable table.fits -c1,2,$(seq -s',' 12 58)

Table’s input dataset can be given either as a file or from Standard input (piped from
another program, see Section 4.1.4 [Standard input], page 264). In the absence of selected
columns, all the input’s columns and rows will be written to the output. The full set of
operations Table can do are described in detail below, but for a more high-level introduction
to the various operations, and their precedence, see Section 5.3.4 [Operation precedence in
Table], page 354.

If any output file is explicitly requested (with --output) the output table will be written
in it. When no output file is explicitly requested the output table will be written to the
standard output. If the specified output is a FITS file, the type of FITS table (binary or
ASCII) will be determined from the --tabletype option. If the output is not a FITS file,
it will be printed as a plain text table (with space characters between the columns). When
the output is not binary (for example standard output or a plain-text), the --txtf32* or
--txtf64* options can be used for the formatting of floating point columns (see Section 5.3.1
[Printing floating point numbers], page 341). When the columns are accompanied by meta-
data (like column name, units, or comments), this information will also printed in the
plain text file before the table, as described in Section 4.7.2 [Gnuastro text table format],
page 285.
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For the full list of options common to all Gnuastro programs please see Section 4.1.2
[Common options], page 251. Options can also be stored in directory, user or system-wide
configuration files to avoid repeating on the command-line, see Section 4.2 [Configuration
files], page 268. Table does not follow Automatic output that is common in most Gnuastro
programs, see Section 4.9 [Automatic output], page 290. Thus, in the absence of an output
file, the selected columns will be printed on the command-line with no column information,
ready for redirecting to other tools like awk.� �
Sexagesimal coordinates as floats in plain-text tables: When a column is determined to
be a floating point type (32-bit or 64-bit) in a plain-text table, it can contain sexagesimal
values in the format of ‘_h_m_s’ (for RA) and ‘_d_m_s’ (for Dec), where the ‘_’s are place-
holders for numbers. In this case, the string will be immediately converted to a single
floating point number (in units of degrees) and stored in memory with the rest of the
column or table. Besides being useful in large tables, with this feature, conversion to
sexagesimal coordinates to degrees becomes very easy, for example:

echo "7h34m35.5498 31d53m14.352s" | asttable

The inverse can also be done with the more general column arithmetic operators:

echo "113.64812416667 31.88732" \

| asttable -c'arith $1 degree-to-ra $2 degree-to-dec'

If you want to preserve the sexagesimal contents of a column, you should store that column
as a string, see Section 4.7.2 [Gnuastro text table format], page 285.
 	
-i

--information

Only print the column information in the specified table on the command-line
and exit. Each column’s information (number, name, units, data type, and
comments) will be printed as a row on the command-line. If the column is a
multi-value (vector) a [N] is printed after the type, where N is the number of
elements within that vector.

Note that the FITS standard only requires the data type (see Section 4.5 [Nu-
meric data types], page 277), and in plain text tables, no meta-data/information
is mandatory. Gnuastro has its own convention in the comments of a plain text
table to store and transfer this information as described in Section 4.7.2 [Gnu-
astro text table format], page 285.

This option will take precedence over all other operations in Table, so when
it is called along with other operations, they will be ignored, see Section 5.3.4
[Operation precedence in Table], page 354. This can be useful if you forget the
identifier of a column after you have already typed some on the command-line.
You can simply add a -i to your already-written command (without changing
anything) and run Table, to see the whole list of column names and information.
Then you can use the shell history (with the up arrow key on the keyboard),
and retrieve the last command with all the previously typed columns present,
delete -i and add the identifier you had forgot.
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--info-num-cols

Similar to --information, but only the number of the input table’s columns
will be printed as a single integer (useful in scripts for example).

--info-num-rows

Similar to --information, but only the number of the input table’s rows will
be printed as a single integer (useful in scripts for example).

-c STR/INT

--column=STR/INT

Set the output columns either by specifying the column number, or name. For
more on selecting columns, see Section 4.7.3 [Selecting table columns], page 287.
If a value of this option starts with ‘arith ’, column arithmetic will be acti-
vated, allowing you to edit/manipulate column contents. For more on column
arithmetic see Section 5.3.3 [Column arithmetic], page 346.

To ask for multiple columns this option can be used in two ways: 1) multiple
calls to this option, 2) using a comma between each column specifier in one
call to this option. These different solutions may be mixed in one call to Table:
for example, ‘-cRA,DEC,MAG’, or ‘-cRA,DEC -cMAG’ are both equivalent to ‘-cRA
-cDEC -cMAG’. The order of the output columns will be the same order given
to the option or in the configuration files (see Section 4.2.2 [Configuration file
precedence], page 269).

This option is not mandatory, if no specific columns are requested, all the input
table columns are output. When this option is called multiple times, it is
possible to output one column more than once.� �
Sequence of columns: when dealing with a large number catalogs (hundreds
for example!), it will be frustrating, annoying and buggy to insert the columns
manually. If you want to read all the input columns, you can use the special
_all value to --column option. A more generic solution (for example if you
want every second one, or all the columns within a special range) is to use
the seq command’s features with an extra -s',' (so a comma is used as the
“separator”). For example if you want columns 1, 2 and all columns between
12 to 58 (inclusive), you can use the following command:

$ asttable table.fits -c1,2,$(seq -s',' 12 58)
 	
-w FITS

--wcsfile=FITS

FITS file that contains the WCS to be used in the wcs-to-img and img-to-

wcs operators of Section 5.3.3 [Column arithmetic], page 346. The extension
name/number within the FITS file can be specified with --wcshdu.

If the value to this option is ‘none’, no WCS will be written in the output.

-W STR

--wcshdu=STR

FITS extension/HDU in the FITS file given to --wcsfile (see the description
of --wcsfile for more).
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-L FITS/TXT

--catcolumnfile=FITS/TXT

Concatenate (or add, or append) the columns of this option’s value (a filename)
to the output columns. This option may be called multiple times (to add
columns from more than one file into the final output), the columns from each
file will be added in the same order that this option is called. The number of
rows in the file(s) given to this option has to be the same as the input table
(before any type of row-selection), see Section 5.3.4 [Operation precedence in
Table], page 354.

By default all the columns of the given file will be appended, if you only want
certain columns to be appended, use the --catcolumns option to specify their
name or number (see Section 4.7.3 [Selecting table columns], page 287). Note
that the columns given to --catcolumns must be present in all the given files
(if this option is called more than once with more than one file).

If the file given to this option is a FITS file, it is necessary to also define
the corresponding HDU/extension with --catcolumnhdu. Also note that no
operation (such as row selection and arithmetic) is applied to the table given
to this option.

If the appended columns have a name, and their name is already present in
the table before adding those columns, the column names of each file will be
appended with a -N, where N is a counter starting from 1 for each appended
table. Just note that in the FITS standard (and thus in Gnuastro), column
names are not case-sensitive.

This is done because when concatenating columns from multiple tables (more
than two) into one, they may have the same name, and it is not good practice
to have multiple columns with the same name. You can disable this feature
with --catcolumnrawname. Generally, you can use the --colmetadata option
to update column metadata in the same command, after all the columns have
been concatenated.

For example, let’s assume you have two catalogs of the same objects (same
number of rows) in different filters. Such that f160w-cat.fits has a MAGNITUDE
column that has the magnitude of each object in the F160W filter and similarly
f105w-cat.fits, also has a MAGNITUDE column, but for the F105W filter. You
can use column concatenation like below to import the MAGNITUDE column from
the F105W catalog into the F160W catalog, while giving each magnitude column
a different name:

asttable f160w-cat.fits --output=both.fits \

--catcolumnfile=f105w-cat.fits --catcolumns=MAGNITUDE \

--colmetadata=MAGNITUDE,MAG-F160W,log,"Magnitude in F160W" \

--colmetadata=MAGNITUDE-1,MAG-F105W,log,"Magnitude in F105W"

For a more complete example, see Section 2.1.15 [Working with catalogs (esti-
mating colors)], page 55.
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� �
Loading external columns with Arithmetic: an alternative way to load exter-
nal columns into your output is to use column arithmetic (Section 5.3.3 [Col-
umn arithmetic], page 346) In particular the load-col- operator described
in Section 6.2.4.18 [Loading external columns], page 456. But this operator
will load only one column per file/HDU every time it is called. So if you have
many columns to insert, it is much faster to use --catcolumnfile. Because
--catcolumnfile will load all the columns in one opening of the file, and
possibly even read them all into memory in parallel!
 	

-u STR/INT

--catcolumnhdu=STR/INT

The HDU/extension of the FITS file(s) that should be concatenated, or ap-
pended, by column with --catcolumnfile. If --catcolumn is called more
than once with more than one FITS file, it is necessary to call this option more
than once. The HDUs will be loaded in the same order as the FITS files given
to --catcolumnfile.

-C STR/INT

--catcolumns=STR/INT

The column(s) in the file(s) given to --catcolumnfile to append. When this
option is not given, all the columns will be concatenated. See --catcolumnfile
for more.

--catcolumnrawname

Do not modify the names of the concatenated (appended) columns, see descrip-
tion in --catcolumnfile.

--transpose

Transpose (as in a matrix) the given vector column(s) individually. When this
operation is done (see Section 5.3.4 [Operation precedence in Table], page 354),
only vector columns of the same data type and with the same number of ele-
ments should exist in the table. A usage of this operator is presented in the
IFU spectroscopy tutorial in Section 2.5.6 [Extracting a single spectrum and
plotting it], page 147.

As a generic example, see the commands below. The in.txt table below has
two vector columns (each with three elements) in two rows. After running
asttable with --transpose, you can see how the vector columns have two
elements per row (u8(3) has been replaced by u8(2)), and that the table now
has three rows.

$ cat in.txt

# Column 1: abc [nounits,u8(3),] First vector column.

# Column 2: def [nounits,u8(3),] Second vector column.

111 112 113 211 212 213

121 122 123 221 222 223

$ asttable in.txt --transpose -O

# Column 1: abc [nounits,u8(2),] First vector column.
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# Column 2: def [nounits,u8(2),] Second vector column.

111 121 211 221

112 122 212 222

113 123 213 223

--fromvector=STR,INT[,INT[,INT]]

Extract the given tokens/elements from the given vector column into separate
single-valued columns. The input vector column can be identified by its name
or counter, see Section 4.7.3 [Selecting table columns], page 287. After the
columns are extracted, the input vector is deleted by default. To preserve
the input vector column, you can use --keepvectfin described below. For a
complete usage scenario see Section 5.3.2 [Vector columns], page 343.

--tovector=STR/INT,STR/INT[,STR/INT]

Move the given columns into a newly created vector column. The given columns
can be identified by their name or counter, see Section 4.7.3 [Selecting table
columns], page 287. After the columns are copied, they are deleted by default.
To preserve the inputs, you can use --keepvectfin described below. For a
complete usage scenario see Section 5.3.2 [Vector columns], page 343.

-k

--keepvectfin

Do not delete the input column(s) when using --fromvector or --tovector.

-R FITS/TXT

--catrowfile=FITS/TXT

Add the rows of the given file to the output table. The selected columns in
the tables given to this option should have the same number and datatype and
the rows before control reaches this phase (after column selection and column
concatenation), for more see Section 5.3.4 [Operation precedence in Table],
page 354.

For example, if a.fits, b.fits and c.fits have the columns RA, DEC and
MAGNITUDE (possibly in different column-numbers in their respective table, along
with many more columns), the command below will add their rows into the final
output that will only have these three columns:

$ asttable a.fits --catrowfile=b.fits --catrowhdu=1 \

--catrowfile=c.fits --catrowhdu=1 \

-cRA,DEC,MAGNITUDE --output=allrows.fits� �
Provenance of each row: When merging rows from separate catalogs, it is
important to keep track of the source catalog of each row (its provenance).
To do this, you can use --catrowfile in combination with the constant

operator and Section 5.3.3 [Column arithmetic], page 346. For a working
example of this scenario, see the example within the documentation of the
constant operator in Section 6.2.4.20 [New operands], page 461.
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� �
How to avoid repetition when adding rows: this option will simply add the
rows of multiple tables into one, it does not check their contents! Therefore if
you use this option on multiple catalogs that may have some shared physical
objects in some of their rows, those rows/objects will be repeated in the final
table. In such scenarios, to avoid potential repetition, it is better to use
Section 7.5 [Match], page 618, (with --notmatched and --outcols=AAA,BBB)
instead of Table. For more on using Match for this scenario, see the description
of --outcols in Section 7.5.2 [Invoking Match], page 621.
 	

-X STR

--catrowhdu=STR

The HDU/extension of the FITS file(s) that should be concatenated, or ap-
pended, by rows with --catrowfile. If --catrowfile is called more than
once with more than one FITS file, it is necessary to call this option more than
once also (once for every FITS table given to --catrowfile). The HDUs will
be loaded in the same order as the FITS files given to --catrowfile.

-O

--colinfoinstdout

Add column metadata when the output is printed in the standard output.
Usually the standard output is used for a fast visual check, or to pipe into other
metadata-agnostic programs (like AWK) for further processing. So by default
meta-data are not included. But when piping to other Gnuastro programs
(where metadata can be interpreted and used) it is recommended to use this
option and use column names in the next program.

-r STR,FLT:FLT

--range=STR,FLT:FLT

Only output rows that have a value within the given range in the STR column
(can be a name or counter). Note that the range is only inclusive in the lower-
limit. For example, with --range=sn,5:20 the output’s columns will only
contain rows that have a value in the sn column (not case-sensitive) that is
greater or equal to 5, and less than 20. Also you can use the comma for
separating the values such as this --range=sn,5,20. For the precedence of
this operation in relation to others, see Section 5.3.4 [Operation precedence in
Table], page 354.

This option can be called multiple times (different ranges for different columns)
in one run of the Table program. This is very useful for selecting the final rows
from multiple criteria/columns.

The chosen column does not have to be in the output columns. This is good
when you just want to select using one column’s values, but do not need that
column anymore afterwards.

For one example of using this option, see the example under --sigclip-median
in Section 7.1.5 [Invoking Statistics], page 525.
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--inpolygon=STR1,STR2

Only return rows where the given coordinates are inside the polygon specified
by the --polygon option. The coordinate columns are the given STR1 and STR2

columns, they can be a column name or counter (see Section 4.7.3 [Selecting
table columns], page 287). For the precedence of this operation in relation to
others, see Section 5.3.4 [Operation precedence in Table], page 354.

Note that the chosen columns does not have to be in the output columns (which
are specified by the --column option). For example, if we want to select rows
in the polygon specified in Section 2.1.4 [Dataset inspection and cropping],
page 26, this option can be used like this (you can remove the double quotations
and write them all in one line if you remove the white-spaces around the colon
separating the column vertices):

asttable table.fits --inpolygon=RA,DEC \

--polygon="53.187414,-27.779152 \

: 53.159507,-27.759633 \

: 53.134517,-27.787144 \

: 53.161906,-27.807208" \� �
Flat/Euclidean space: The --inpolygon option assumes a flat/Euclidean
space so it is only correct for RA and Dec when the polygon size is very small
like the example above. If your polygon is a degree or larger, it may not return
correct results. Please get in touch if you need such a feature (see Section 1.10
[Suggest new feature], page 17).
 	

--outpolygon=STR1,STR2

Only return rows where the given coordinates are outside the polygon specified
by the --polygon option. This option is very similar to the --inpolygon

option, so see the description there for more.

--polygon=STR

--polygon=FLT,FLT:FLT,FLT:...

The polygon to use for the --inpolygon and --outpolygon options. This
option is parsed in an identical way to the same option in the Crop program,
so for more information on how to use it, see Section 6.1.4.1 [Crop options],
page 390.

-e STR,INT/FLT,...

--equal=STR,INT/FLT,...

Only output rows that are equal to the given number(s) in the given column.
The first argument is the column identifier (name or number, see Section 4.7.3
[Selecting table columns], page 287), after that you can specify any number
of values. For the precedence of this operation in relation to others, see Sec-
tion 5.3.4 [Operation precedence in Table], page 354.

For example, --equal=ID,5,6,8 will only print the rows that have a value of
5, 6, or 8 in the ID column. This option can also be called multiple times, so
--equal=ID,4,5 --equal=ID,6,7 has the same effect as --equal=4,5,6,7.
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� �
Equality and floating point numbers: Floating point numbers are only ap-
proximate values (see Section 4.5 [Numeric data types], page 277). In this
context, their equality depends on how the input table was originally stored
(as a plain text table or as an ASCII/binary FITS table). If you want to select
floating point numbers, it is strongly recommended to use the --range option
and set a very small interval around your desired number, do not use --equal
or --notequal.
 	
The --equal and --notequal options also work when the given column has a
string type. In this case the given value to the option will also be parsed as
a string, not as a number. When dealing with string columns, be careful with
trailing white space characters (the actual value maybe adjusted to the right,
left, or center of the column’s width). If you need to account for such white
spaces, you can use shell quoting. For example, --equal=NAME," myname ".� �
Strings with a comma (,): When your desired column values contain a comma,
you need to put a ‘\’ before the internal comma (within the value). Otherwise,
the comma will be interpreted as a delimiter between multiple values, and
anything after it will be interpreted as a separate string. For example, assume
column AB of your table.fits contains this value: ‘cd,ef’ in your desired
rows. To extract those rows, you should use the command below:

$ asttable table.fits --equal=AB,cd\,ef
 	
-n STR,INT/FLT,...

--notequal=STR,INT/FLT,...

Only output rows that are not equal to the given number(s) in the given column.
The first argument is the column identifier (name or number, see Section 4.7.3
[Selecting table columns], page 287), after that you can specify any number
of values. For example, --notequal=ID,5,6,8 will only print the rows where
the ID column does not have value of 5, 6, or 8. This option can also be called
multiple times, so --notequal=ID,4,5 --notequal=ID,6,7 has the same effect
as --notequal=4,5,6,7.

Be very careful if you want to use the non-equality with floating point numbers,
see the special note under --equal for more. This option also works when the
given column has a string type, see the description under --equal (above) for
more.

-b STR[,STR[,STR]]

--noblank=STR[,STR[,STR]]

Only output rows that are not blank in the given column of the input table. Like
above, the columns can be specified by their name or number (counting from 1).
This option can be called multiple times, so --noblank=MAG --noblank=PHOTOZ

is equivalent to --noblank=MAG,PHOTOZ. For the precedence of this operation in
relation to others, see Section 5.3.4 [Operation precedence in Table], page 354.
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For example, if table.fits has blank values (NaN in floating point types) in
the magnitude and sn columns, with --noblank=magnitude,sn, the output
will not contain any rows with blank values in these two columns.

If you want all columns to be checked, simply set the value to _all (in other
words: --noblank=_all). This mode is useful when there are many columns
in the table and you want a “clean” output table (with no blank values in
any column): entering their name or number one-by-one can be buggy and
frustrating. In this mode, no other column name should be given. For example,
if you give --noblank=_all,magnitude, then Table will assume that your table
actually has a column named _all and magnitude, and if it does not, it will
abort with an error.

If you want to change column values using Section 5.3.3 [Column arithmetic],
page 346, (and set some to blank, to later remove), or you want to select rows
based on columns that you have imported from other tables, you should use
the --noblankend option described below. Also, see Section 5.3.4 [Operation
precedence in Table], page 354.

-s STR

--sort=STR

Sort the output rows based on the values in the STR column (can be a column
name or number). By default the sort is done in ascending/increasing order, to
sort in a descending order, use --descending. For the precedence of this op-
eration in relation to others, see Section 5.3.4 [Operation precedence in Table],
page 354.

The chosen column does not have to be in the output columns. This is good
when you just want to sort using one column’s values, but do not need that
column anymore afterwards.

-d

--descending

When called with --sort, rows will be sorted in descending order.

-H INT

--head=INT

Only print the given number of rows from the top of the final table. Note
that this option only affects the output table. For example, if you use --sort,
or --range, the printed rows are the first after applying the sort sorting, or
selecting a range of the full input. This option cannot be called with --tail,
--rowrange or --rowrandom. For the precedence of this operation in relation
to others, see Section 5.3.4 [Operation precedence in Table], page 354.

If the given value to --head is 0, the output columns will not have any rows
and if it is larger than the number of rows in the input table, all the rows are
printed (this option is effectively ignored). This behavior is taken from the
head program in GNU Coreutils.
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-t INT

--tail=INT

Only print the given number of rows from the bottom of the final table. See
--head for more. This option cannot be called with --head, --rowrange or
--rowrandom.

--rowrange=INT,INT

Only return the rows within the requested positional range (inclusive on both
sides). Therefore, --rowrange=5,7 will return 3 of the input rows, row 5, 6
and 7. This option will abort if any of the given values is larger than the total
number of rows in the table. For the precedence of this operation in relation to
others, see Section 5.3.4 [Operation precedence in Table], page 354.

With the --head or --tail options you can only see the top or bottom few rows.
However, with this option, you can limit the returned rows to a contiguous set
of rows in the middle of the table. Therefore this option cannot be called with
--head, --tail, or --rowrandom.

--rowrandom=INT

Select INT rows from the input table by random (assuming a uniform distribu-
tion). This option is applied after the value-based selection options (such as
--sort, --range, and --polygon). On the other hand, only the row counters
are randomly selected, this option does not change the order. Therefore, if
--rowrandom is called together with --sort, the returned rows are still sorted.
This option cannot be called with --head, --tail, or --rowrange. For the
precedence of this operation in relation to others, see Section 5.3.4 [Operation
precedence in Table], page 354.

This option will only have an effect if INT is larger than the number of rows
when it is activated (after the value-based selection options have been applied).
When there are fewer rows, a warning is printed, saying that this option has no
effect. The warning can be disabled with the --quiet option.

Due to its nature (to be random), the output of this option differs in each
run. Therefore 5 calls to Table with --rowrandom on the same input table will
generate 5 different outputs. If you want a reproducible random selection, set
the GSL_RNG_SEED environment variable and also use the --envseed option, for
more see Section 6.2.3.4 [Generating random numbers], page 406.

--envseed

Read the random number generator seed from the GSL_RNG_SEED environment
variable for --rowrandom (instead of generating a different seed internally on ev-
ery run). This is useful if you want a reproducible random selection of the input
rows. For more, see Section 6.2.3.4 [Generating random numbers], page 406.

-E STR[,STR[,STR]]

--noblankend=STR[,STR[,STR]]

Remove all rows in the requested output columns that have a blank value. Like
above, the columns can be specified by their name or number (counting from 1).
This option can be called multiple times, so --noblank=MAG --noblank=PHOTOZ

is equivalent to --noblank=MAG,PHOTOZ. For the precedence of this operation in
relation to others, see Section 5.3.4 [Operation precedence in Table], page 354.
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for example, if your final output table (possibly after column arithmetic, or
adding new columns) has blank values (NaN in floating point types) in the
magnitude and sn columns, with --noblankend=magnitude,sn, the output
will not contain any rows with blank values in these two columns.

If you want blank values to be removed from the main input table before any
further processing (like adding columns, sorting or column arithmetic), you
should use the --noblank option. With the --noblank option, the column(s)
that is(are) given does not necessarily have to be in the output (it is just tem-
porarily used for reading the inputs and selecting rows, but does not necessarily
need to be present in the output). However, the column(s) given to this option
should exist in the output.

If you want all columns to be checked, simply set the value to _all (in other
words: --noblankend=_all). This mode is useful when there are many columns
in the table and you want a “clean” output table (with no blank values in
any column): entering their name or number one-by-one can be buggy and
frustrating. In this mode, no other column name should be given. For example,
if you give --noblankend=_all,magnitude, then Table will assume that your
table actually has a column named _all and magnitude, and if it does not, it
will abort with an error.

This option is applied just before writing the final table (after --colmetadata
has finished). So in case you changed the column metadata, or added new
columns, you can use the new names, or the newly defined column numbers.
For the precedence of this operation in relation to others, see Section 5.3.4
[Operation precedence in Table], page 354.

-m STR/INT,STR[,STR[,STR]]

--colmetadata=STR/INT,STR[,STR[,STR]]

Update the specified column metadata in the output table. This option is
applied after all other column-related operations are complete, for example,
column arithmetic, or column concatenation. For the precedence of this oper-
ation in relation to others, see Section 5.3.4 [Operation precedence in Table],
page 354.

The first value (before the first comma) given to this option is the column’s
identifier. It can either be a counter (positive integer, counting from 1), or a
name (the column’s name in the output if this option was not called).

After the to-be-updated column is identified, at least one other string should
be given, with a maximum of three strings. The first string after the original
name will the selected column’s new name. The next (optional) string will be
the selected column’s unit and the third (optional) will be its comments. If the
two optional strings are not given, the original column’s units or comments will
remain unchanged.

If any of the values contains a comma, you should place a ‘\’ before the comma
to avoid it getting confused with a delimiter. For example, see the command
below for a column description that contains a comma:

$ asttable table.fits \

--colmetadata=NAME,UNIT,"Comments\, with a comma"
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Generally, since the comma is commonly used as a delimiter in many scenarios,
to avoid complicating your future analysis with the table, it is best to avoid
using a comma in the column name and units.

Some examples of this option are available in the tutorials, in particular Sec-
tion 2.1.15 [Working with catalogs (estimating colors)], page 55. Here are some
more specific examples:

--colmetadata=MAGNITUDE,MAG_F160W

This will convert name of the original MAGNITUDE column to MAG_

F160W, leaving the unit and comments unchanged.

--colmetadata=3,MAG_F160W,mag

This will convert name of the third column of the final output
to MAG_F160W and the units to mag, while leaving the comments
untouched.

--colmetadata=MAGNITUDE,MAG_F160W,mag,"Magnitude in F160W filter"

This will convert name of the original MAGNITUDE column to MAG_

F160W, and the units to mag and the comments to Magnitude in

F160W filter. Note the double quotations around the comment
string, they are necessary to preserve the white-space characters
within the column comment from the command-line, into the pro-
gram (otherwise, upon reaching a white-space character, the shell
will consider this option to be finished and cause un-expected be-
havior).

If your table is large and generated by a script, you can first do all your op-
erations on your table’s data and write it into a temporary file (maybe called
temp.fits). Then, look into that file’s metadata (with asttable temp.fits

-i) to see the exact column positions and possible names, then add the neces-
sary calls to this option to your previous call to asttable, so it writes proper
metadata in the same run (for example, in a script or Makefile). Recall that
when a name is given, this option will update the metadata of the first column
that matches, so if you have multiple columns with the same name, you can
call this options multiple times with the same first argument to change them
all to different names.

Finally, if you already have a FITS table by other means (for example, by
downloading) and you merely want to update the column metadata and leave
the data intact, it is much more efficient to directly modify the respective FITS
header keywords with astfits, using the keyword manipulation features de-
scribed in Section 5.1.1.2 [Keyword inspection and manipulation], page 302.
--colmetadata is mainly intended for scenarios where you want to edit the
data so it will always load the full/partial dataset into memory, then write out
the resulting datasets with updated/corrected metadata.

-f STR

--txtf32format=STR

The plain-text format of 32-bit floating point columns when output is not binary
(this option is ignored for binary outputs like FITS tables, see Section 5.3.1
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[Printing floating point numbers], page 341). The acceptable values are listed
below. This is just the format of the plain-text outputs; see --txtf32precision
for customizing their precision.

fixed Fixed-point notation (for example 123.4567).

exp Exponential notation (for example 1.234567e+02).

The default mode is exp since it is the most generic and will not cause any
loss of data. Be very cautious if you set it to fixed. As a rule of thumb, the
fixed-point notation is only good if the numbers are larger than 1.0, but not
too large! Given that the total number of accurate decimal digits is fixed the
more digits you have on the left of the decimal point (integer part), the more
un-accurate digits will be printed on the right of the decimal point.

-p STR

--txtf32precision=INT

Number of digits after (to the right side of) the decimal point (precision) for
columns with a 32-bit floating point datatype (this option is ignored for binary
outputs like FITS tables, see Section 5.3.1 [Printing floating point numbers],
page 341). This can take any positive integer (including 0). When given a value
of zero, the floating point number will be rounded to the nearest integer.

The default value to this option is 6. This is because according to IEEE 754,
32-bit floating point numbers can be accurately presented to 7.22 decimal digits
(see Section 5.3.1 [Printing floating point numbers], page 341). Since we only
have an integer number of digits in a number, we’ll round it to 7 decimal digits.
Furthermore, the precision is only defined to the right side of the decimal point.
In exponential notation (default of --txtf32format), one decimal digit will be
printed on the left of the decimal point. So the default value to this option is
7− 1 = 6.

-A STR

--txtf64format=STR

The plain-text format of 64-bit floating point columns when output is not binary
(this option is ignored for binary outputs like FITS tables, see Section 5.3.1
[Printing floating point numbers], page 341). The acceptable values are listed
below. This is just the format of the plain-text outputs; see --txtf64precision
for customizing their precision.

fixed Fixed-point notation (for example 12345.6789012345).

exp Exponential notation (for example 1.23456789012345e4).

The default mode is exp since it is the most generic and will not cause any
loss of data. Be very cautious if you set it to fixed. As a rule of thumb, the
fixed-point notation is only good if the numbers are larger than 1.0, but not
too large! Given that the total number of accurate decimal digits is fixed the
more digits you have on the left of the decimal point (integer part), the more
un-accurate digits will be printed on the right of the decimal point.
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-B STR

--txtf64precision=INT

Number of digits after the decimal point (precision) for columns with a 64-bit
floating point datatype (this option is ignored for binary outputs like FITS
tables, see Section 5.3.1 [Printing floating point numbers], page 341). This can
take any positive integer (including 0). When given a value of zero, the floating
point number will be rounded to the nearest integer.

The default value to this option is 15. This is because according to IEEE
754, 64-bit floating point numbers can be accurately presented to 15.95 decimal
digits (see Section 5.3.1 [Printing floating point numbers], page 341). Since we
only have an integer number of digits in a number, we’ll round it to 16 decimal
digits. Furthermore, the precision is only defined to the right side of the decimal
point. In exponential notation (default of --txtf64format), one decimal digit
will be printed on the left of the decimal point. So the default value to this
option is 16− 1 = 15.

-Y

--txteasy

When output is a plain-text file or just gets printed on standard output (the
terminal), all floating point columns are printed in fixed point notation (as in
123.456) instead of the default exponential notation (as in 1.23456e+02).
For 32-bit floating points, this option will use a precision of 3 digits (see
--txtf32precision) and for 64-bit floating points use a precision of 6 digits
(see --txtf64precision). This can be useful for human readability, but be
careful with some scenarios (for example 1.23e-120, which will show only
as 0.0!). When this option is called any value given the following options
is ignored: --txtf32format, --txtf32precision, --txtf64format and
--txtf64precision. For example below you can see the output of table with
and without this option:

$ asttable table.fits --head=5 -O

# Column 1: OBJNAME [name ,str23, ] Name in HyperLeda.

# Column 2: RAJ2000 [deg ,f64 , ] Right Ascension.

# Column 3: DEJ2000 [deg ,f64 , ] Declination.

# Column 4: RADIUS [arcmin,f32 , ] Major axis radius.

NGC0884 2.3736267000000e+00 5.7138753300000e+01 8.994357e+00

NGC1629 4.4935191000000e+00 -7.1838322400000e+01 5.000000e-01

NGC1673 4.7109672000000e+00 -6.9820892700000e+01 3.499210e-01

NGC1842 5.1216920000000e+00 -6.7273195300000e+01 3.999171e-01

$ asttable table.fits --head=5 -O -Y

# Column 1: OBJNAME [name ,str23, ] Name in HyperLeda.

# Column 2: RAJ2000 [deg ,f64 , ] Right Ascension.

# Column 3: DEJ2000 [deg ,f64 , ] Declination.

# Column 4: RADIUS [arcmin,f32 , ] Major axis radius.

NGC0884 2.373627 57.138753 8.994

NGC1629 4.493519 -71.838322 0.500

NGC1673 4.710967 -69.820893 0.350
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NGC1842 5.121692 -67.273195 0.400

This is also useful when you want to make outputs of other programs more
“easy” to read, for example:

$ echo 123.45678 | asttable

1.234567800000000e+02

$ echo 123.45678 | asttable -Y

123.456780� �
Can result in loss of information: be very careful with this option! It can
loose precision or generally the full value if the value is not within a "good"
range like this example. Such cases are the reason that this is not the default
format of plain-text outputs.

$ echo 123.4e-9 | asttable -Y

0.000000
 	
5.4 Query

There are many astronomical databases available for downloading astronomical data. Most
follow the International Virtual Observatory Alliance (IVOA, https://ivoa.net) stan-
dards (and in particular the Table Access Protocol, or TAP19). With TAP, it is possible to
submit your queries via a command-line downloader (for example, curl) to only get specific
tables, targets (rows in a table) or measurements (columns in a table): you do not have to
download the full table (which can be very large in some cases)! These customizations are
done through the Astronomical Data Query Language (ADQL20).

Therefore, if you are sufficiently familiar with TAP and ADQL, you can easily custom-
download any part of an online dataset. However, you also need to keep a record of the
URLs of each database and in many cases, the commands will become long and hard/buggy
to type on the command-line. On the other hand, most astronomers do not know TAP or
ADQL at all, and are forced to go to the database’s web page which is slow (it needs
to download so many images, and has too much annoying information), requires manual
interaction (further making it slow and buggy), and cannot be automated.

Gnuastro’s Query program is designed to be the middle-man in this process: it provides a
simple high-level interface to let you specify your constraints on what you want to download.
It then internally constructs the command to download the data based on your inputs and
runs it to download your desired data. Query also prints the full command before it executes
it (if not called with --quiet). Also, if you ask for a FITS output table, the full command
is written into its 0-th extension along with other input parameters to query (all Gnuastro
programs generally keep their input configuration parameters as FITS keywords in the
zero-th output). You can see it with Gnuastro’s Fits program, like below:

$ astfits query-output.fits -h0

19 https://ivoa.net/documents/TAP
20 https://ivoa.net/documents/ADQL

https://ivoa.net
https://ivoa.net/documents/TAP
https://ivoa.net/documents/ADQL
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With the full command used to download the dataset, you only need a minimal knowledge
of ADQL to do lower-level customizations on your downloaded dataset. You can simply copy
that command and change the parts of the query string you want: ADQL is very powerful!
For example, you can ask the server to do mathematical operations on the columns and
apply selections after those operations, or combine/match multiple datasets. We will try
to add high-level interfaces for such capabilities, but generally, do not limit yourself to the
high-level operations (that cannot cover everything!).

5.4.1 Available databases

The current list of databases supported by Query are listed at the end of this section. To get
the list of available datasets within each database, you can use the --information option.
for example, with the command below you can get a list of the roughly 100 datasets that
are available within the ESA Gaia server with their description:

$ astquery gaia --information

However, other databases like VizieR host many more datasets (tens of thousands!). There-
fore it is very inconvenient to get the full information every time you want to find your
dataset of interest (the full metadata file VizieR is more than 20Mb). In such cases, you
can limit the downloaded and displayed information with the --limitinfo option. For
example, with the first command below, you can get all datasets relating to the MUSE (an
instrument on the Very Large Telescope), and those that include Roland Bacon (Principle
Investigator of MUSE) as an author (Bacon, R.). Recall that -i is the short format of
--information.

$ astquery vizier -i --limitinfo=MUSE

$ astquery vizier -i --limitinfo="Bacon R."

Once you find the recognized name of your desired dataset, you can see the column
information of that dataset with adding the dataset name. For example, with the command
below you can see the column metadata in the J/A+A/608/A2/udf10 dataset (one of the
datasets in the search above) using this command:

$ astquery vizier --dataset=J/A+A/608/A2/udf10 -i

For very popular datasets of a database, Query provides an easier-to-remember short
name that you can feed to --dataset. This short name will map to the officially recognized
name of the dataset on the server. In this mode, Query will also set positional columns
accordingly. For example, most VizieR datasets have an RAJ2000 column (the RA and the
epoch of 2000) so it is the default RA column name for coordinate search (using --center

or --overlapwith). However, some datasets do not have this column (for example, SDSS
DR12). So when you use the short name and Query knows about this dataset, it will
internally set the coordinate columns that SDSS DR12 has: RA_ICRS and DEC_ICRS. Recall
that you can always change the coordinate columns with --ccol.

For example, in the VizieR and Gaia databases, the recognized name for data release
3 data is respectively I/355/gaiadr3 and gaiadr3.gaia_source. These technical names
are hard to remember. Therefore Query provides gaiadr3 (for VizieR) and dr3 (for ESA’s
Gaia database) shortcuts which you can give to --dataset instead. They will be internally
mapped to the fully recognized name by Query. In the list below that describes the available
databases, the available short names, that are recognized for each, are also listed.
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� �
Not all datasets support TAP: Large databases like VizieR have TAP access for all their
datasets. However, smaller databases have not implemented TAP for all their tables.
Therefore some datasets that are searchable in their web interface may not be available for
a TAP search. To see the full list of TAP-ed datasets in a database, use the --information
(or -i) option with the dataset name like the command below.

$ astquery astron -i

If your desired dataset is not in this list, but has web-access, contact the database main-
tainers and ask them to add TAP access for it. After they do it, you should see the name
added to the output list of the command above.
 	

The list of databases recognized by Query (and their names in Query) is described below.
Since Query is a new member of the Gnuastro family (first available in Gnuastro 0.14), this
list will hopefully grow significantly in the next releases. If you have any particular datasets
in mind, please let us know by sending an email to bug-gnuastro@gnu.org. If the dataset
supports IVOA’s TAP (Table Access Protocol), it should be very easy to add.

astron The ASTRON Virtual Observatory service (https://vo.astron.nl) is a data-
base focused on radio astronomy data and images, primarily those collected by
ASTRON itself. A query to astron is submitted to https://vo.astron.nl/_

_system__/tap/run/tap/sync.

Here is the list of short names for dataset(s) in ASTRON’s VO service:

• tgssadr --> tgssadr.main

gaia The Gaia project (https://www.cosmos.esa.int/web/gaia) database which
is a large collection of star positions on the celestial sphere, as well as peculiar ve-
locities, parallaxes and magnitudes in some bands among many others. Besides
scientific studies (like studying resolved stellar populations in the Galaxy and its
halo), Gaia is also invaluable for raw data calibrations, like astrometry. A query
to gaia is submitted to https://gea.esac.esa.int/tap-server/tap/sync.

Here is the list of short names for popular datasets within Gaia:

• dr3 --> gaiadr3.gaia_source

• edr3 --> gaiaedr3.gaia_source

• dr2 --> gaiadr2.gaia_source

• dr1 --> gaiadr1.gaia_source

• tycho2 --> public.tycho2

• hipparcos --> public.hipparcos

ned The NASA/IPAC Extragalactic Database (NED, http://ned.ipac.

caltech.edu) is a fusion database, integrating the information about
extra-galactic sources from many large sky surveys into a single catalog.
It covers the full spectrum, from Gamma rays to radio frequencies and
is updated when new data arrives. A TAP query to ned is submitted to
https://ned.ipac.caltech.edu/tap/sync.

• objdir --> NEDTAP.objdir: default TAP-based dataset in NED.

https://vo.astron.nl
https://www.cosmos.esa.int/web/gaia
http://ned.ipac.caltech.edu
http://ned.ipac.caltech.edu
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• extinction: A command-line interface to the NED Extinction Calcula-
tor (https://ned.ipac.caltech.edu/extinction_calculator). It only
takes a central coordinate and returns a VOTable of the calculated extinc-
tion in many commonly used filters at that point. As a result, options like
--width or --radius are not supported. However, Gnuastro does not yet
support the VOTable format. Therefore, if you specify an --output file,
it should have an .xml suffix and the downloaded file will not be checked.

Until VOTable support is added to Gnuastro, you can use GREP, AWK
and SED to convert the VOTable data into a FITS table with a command
like below (assuming the queried VOTable is called ned-extinction.xml):

grep '^<TR><TD>' ned-extinction.xml \

| sed -e's|<TR><TD>||' \

-e's|</TD></TR>||' \

-e's|</TD><TD>|@|g' \

| awk 'BEGIN{FS="@"; \

print "# Column 1: FILTER [name,str15] Filter name"; \

print "# Column 2: CENTRAL [um,f32] Central Wavelength"; \

print "# Column 3: EXTINCTION [mag,f32] Galactic Ext."; \

print "# Column 4: ADS_REF [ref,str50] ADS reference"} \

{printf "%-15s %g %g %s\n", $1, $2, $3, $4}' \

| asttable -oned-extinction.fits

Once the table is in FITS, you can easily get the extinction for a certain
filter (for example, the SDSS r filter) like the command below:

asttable ned-extinction.fits --equal=FILTER,"SDSS r" \

-cEXTINCTION

vizier Vizier (https://vizier.u-strasbg.fr) is arguably the largest catalog data-
base in astronomy: containing more than 20500 catalogs as of mid January
2021. Almost all published catalogs in major projects, and even the tables
in many papers are archived and accessible here. For example, VizieR also
has a full copy of the Gaia database mentioned below, with some additional
standardized columns (like RA and Dec in J2000).

The current implementation of --limitinfo only looks into the description of
the datasets, but since VizieR is so large, there is still a lot of room for im-
provement. Until then, if --limitinfo is not sufficient, you can use VizieR’s
own web-based search for your desired dataset: http://cdsarc.u-strasbg.

fr/viz-bin/cat

Because VizieR curates such a diverse set of data from tens of thousands
of projects and aims for interoperability between them, the column names
in VizieR may not be identical to the column names in the surveys’ own
databases (Gaia in the example above). A query to vizier is submitted to
http://tapvizier.u-strasbg.fr/TAPVizieR/tap/sync.

Here is the list of short names for popular datasets within VizieR (sorted alpha-
betically by their short name). Please feel free to suggest other major catalogs
(covering a wide area or commonly used in your field).. For details on each

https://ned.ipac.caltech.edu/extinction_calculator
https://ned.ipac.caltech.edu/extinction_calculator
https://vizier.u-strasbg.fr
http://cdsarc.u-strasbg.fr/viz-bin/cat
http://cdsarc.u-strasbg.fr/viz-bin/cat
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dataset with necessary citations, and links to web pages, look into their details
with their ViziR names in https://vizier.u-strasbg.fr/viz-bin/VizieR.

• 2mass --> II/246/out (2MASS All-Sky Catalog)

• akarifis --> II/298/fis (AKARI/FIS All-Sky Survey)

• allwise --> II/328/allwise (AllWISE Data Release)

• apass9 --> II/336/apass9 (AAVSO Photometric All Sky Survey, DR9)

• catwise --> II/365/catwise (CatWISE 2020 catalog)

• des1 --> II/357/des_dr1 (Dark Energy Survey data release 1)

• gaiadr3 --> I/355/gaiadr3 (GAIA Data Release 3)

• gaiaedr3 --> I/350/gaiadr3 (GAIA Early Data Release 3)

• gaiadr2 --> I/345/gaia2 (GAIA Data Release 2)

• galex5 --> II/312/ais (All-sky Survey of GALEX DR5)

• nomad --> I/297/out (Naval Observatory Merged Astrometric Dataset)

• panstarrs1 --> II/349/ps1 (Pan-STARRS Data Release 1).

• ppmxl --> I/317/sample (Positions and proper motions on the ICRS)

• sdss12 --> V/147/sdss12 (SDSS Photometric Catalogue, Release 12)

• usnob1 --> I/284/out (Whole-Sky USNO-B1.0 Catalog)

• ucac5 --> I/340/ucac5 (5th U.S. Naval Obs. CCD Astrograph Catalog)

• unwise --> II/363/unwise (Band-merged unWISE Catalog)

• wise --> II/311/wise (WISE All-Sky data Release)

5.4.2 Invoking Query

Query provides a high-level interface to downloading subsets of data from databases. The
executable name is astquery with the following general template

$ astquery DATABASE-NAME [OPTION...] ...

One line examples:

## Information about all datasets in ESA's GAIA database:

$ astquery gaia --information

## Only show catalogs in VizieR that have 'MUSE' in their

## description. The '-i' is short for '--information'.

$ astquery vizier -i --limitinfo=MUSE

## List of columns in 'J/A+A/608/A2/udf10' (one of the above).

$ astquery vizier --dataset=J/A+A/608/A2/udf10 -i

## ID, RA and Dec of all Gaia sources within an image.

$ astquery gaia --dataset=dr3 --overlapwith=image.fits \

-csource_id,ra,dec

## RA, Dec and Spectroscopic redshifts of objects in SDSS DR12

https://vizier.u-strasbg.fr/viz-bin/VizieR
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## spectroscopic redshift that overlap with 'image.fits'.

$ astquery vizier --dataset=sdss12 --overlapwith=image.fits \

-cRA_ICRS,DE_ICRS,zsp --range=zsp,1e-10,inf

## All columns of all entries in the Gaia DR3 catalog (hosted at

## VizieR) within 1 arc-minute of the given coordinate.

$ astquery vizier --dataset=gaiadr3 --output=my-gaia.fits \

--center=113.8729761,31.9027152 --radius=1/60 \

## Similar to above, but only ID, RA and Dec columns for objects with

## magnitude range 10 to 15. In VizieR, this column is called 'Gmag'.

## Also, using sexagesimal coordinates instead of degrees for center.

$ astquery vizier --dataset=gaiadr3 --output=my-gaia.fits \

--center=07h35m29.51,31d54m9.77 --radius=1/60 \

--range=Gmag,10:15 -cDR3Name,RAJ2000,DEJ2000

Query takes a single argument which is the name of the database. For the full list of
available databases and accessing them, see Section 5.4.1 [Available databases], page 376.
There are two methods to query the databases, each is more fully discussed in its option’s
description below.

• Low-level: With --query you can directly give a raw query statement that is recognized
by the database. This is very low level and will require a good knowledge of the
database’s query language, but of course, it is much more powerful. If this option is
given, the raw string is directly passed to the server and all other constraints/options
(for Query’s high-level interface) are ignored.

• High-level: With the high-level options (like --column, --center, --radius, --range
and other constraining options below), the low-level query will be constructed au-
tomatically for the particular database. This method is only limited to the generic
capabilities that Query provides for all servers. So --query is more powerful, however,
in this mode, you do not need any knowledge of the database’s query language. You
can see the internally generated query on the terminal (if --quiet is not used) or in
the 0-th extension of the output (if it is a FITS file). This full command contains the
internally generated query.

The name of the downloaded output file can be set with --output. The requested output
format can have any of the Section 4.7.1 [Recognized table formats], page 283, (currently
.txt or .fits). Like all Gnuastro programs, if the output is a FITS file, the zero-th/first
HDU of the output will contain all the command-line options given to Query as well as the
full command used to access the server. When --output is not set, the output name will be
in the format of NAME-STRING.fits, where NAME is the name of the database and STRING

is a randomly selected 6-character set of numbers and alphabetic characters. With this
feature, a second run of astquery that is not called with --output will not over-write an
already downloaded one. Generally, when calling Query more than once, it is recommended
to set an output name for each call based on your project’s context.

The outputs of Query will have a common output format, irrespective of the used data-
base. To achieve this, Query will ask the databases to provide a FITS table output (for
larger tables, FITS can consume much less download volume). After downloading is com-
plete, the raw downloaded file will be read into memory once by Query, and written into
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the file given to --output. The raw downloaded file will be deleted by default, but can be
preserved with the --keeprawdownload option. This strategy avoids unnecessary surprises
depending on database. For example, some databases can download a compressed FITS
table, even though we ask for FITS. But with the strategy above, the final output will be an
uncompressed FITS file. The metadata that is added by Query (including the full download
command) is also very useful for future usage of the downloaded data. Unfortunately many
databases do not write the input queries into their generated tables.

--dry-run

Only print the final download command to contact the server, do not actually
run it. This option is good when you want to check the finally constructed
query or download options given to the download program. You may also want
to use the constructed command as a base to do further customizations on it
and run it yourself.

-k

--keeprawdownload

Do not delete the raw downloaded file from the database. The name of the raw
download will have a OUTPUT-raw-download.fits format. Where OUTPUT is
either the base-name of the final output file (without a suffix).

-i

--information

Print the information of all datasets (tables) within a database or all columns
within a database. When --dataset is specified, the latter mode (all column
information) is downloaded and printed and when it is not defined, all dataset
information (within the database) is printed.

Some databases (like VizieR) contain tens of thousands of datasets, so you can
limit the downloaded and printed information for available databases with the
--limitinfo option (described below). Dataset descriptions are often large and
contain a lot of text (unlike column descriptions). Therefore when printing the
information of all datasets within a database, the information (e.g., database
name) will be printed on separate lines before the description. However, when
printing column information, the output has the same format as a similar option
in Table (see Section 5.3.5 [Invoking Table], page 359).

Important note to consider: the printed order of the datasets or columns is just
for displaying in the printed output. You cannot ask for datasets or columns
based on the printed order, you need to use dataset or column names.

-L STR

--limitinfo=STR

Limit the information that is downloaded and displayed (with --information)
to those that have the string given to this option in their description. Note that
this is case-sensitive. This option is only relevant when --information is also
called.

Databases may have thousands (or tens of thousands) of datasets. Therefore
just the metadata (information) to show with --information can be tens of
megabytes (for example, the full VizieR metadata file is about 23Mb as of
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January 2021). Once downloaded, it can also be hard to parse manually. With
--limitinfo, only the metadata of datasets that contain this string in their
description will be downloaded and displayed, greatly improving the speed of
finding your desired dataset.

-Q "STR"

--query="STR"

Directly specify the query to be passed onto the database. The queries will
generally contain space and other meta-characters, so we recommend placing
the query within quotations.

-s STR

--dataset=STR

The dataset to query within the database (not compatible with --query). This
option is mandatory when --query or --information are not provided. You
can see the list of available datasets within a database using --information

(possibly supplemented by --limitinfo). The output of --information will
contain the recognized name of the datasets within that database. You can pass
the recognized name directly to this option. For more on finding and using your
desired database, see Section 5.4.1 [Available databases], page 376.

-c STR

--column=STR[,STR[,...]]

The column name(s) to retrieve from the dataset in the given order (not com-
patible with --query). If not given, all the dataset’s columns for the selected
rows will be queried (which can be large!). This option can take multiple values
in one instance (for example, --column=ra,dec,mag), or in multiple instances
(for example, -cra -cdec -cmag), or mixed (for example, -cra,dec -cmag).

In case, you do not know the full list of the dataset’s column names a-priori,
and you do not want to download all the columns (which can greatly decrease
your download speed), you can use the --information option combined with
the --dataset option, see Section 5.4.1 [Available databases], page 376.

-H INT

--head=INT

Only ask for the first INT rows of the finally selected columns, not all the
rows. This can be good when your search can result a large dataset, but before
downloading the full volume, you want to see the top rows and get a feeling of
what the whole dataset looks like.

-v FITS

--overlapwith=FITS

File name of FITS file containing an image (in the HDU given by --hdu) to
use for identifying the region to query in the give database and dataset. Based
on the image’s WCS and pixel size, the sky coverage of the image is estimated
and values to the --center, --width will be calculated internally. Hence this
option cannot be used with --center, --width or --radius. Also, since it
internally generates the query, it cannot be used with --query.

Note that if the image has WCS distortions and the reference point for the
WCS is not within the image, the WCS will not be well-defined. Therefore the
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resulting catalog may not overlap, or correspond to a larger/small area in the
sky.

-C FLT,FLT

--center=FLT,FLT

The spatial center position (mostly RA and Dec) to use for the automatically
generated query (not compatible with --query). The comma-separated values
can either be in degrees (a single number), or sexagesimal (_h_m_ for RA, _d_m_
for Dec, or _:_:_ for both).

The given values will be compared to two columns in the database to find/return
rows within a certain region around this center position will be requested and
downloaded. Pre-defined RA and Dec column names are defined in Query
for every database, however you can use --ccol to select other columns to
use instead. The region can either be a circle and the point (configured with
--radius) or a box/rectangle around the point (configured with --width).

--ccol=STR,STR

The name of the coordinate-columns in the dataset to compare with the values
given to --center. Query will use its internal defaults for each dataset (for
example, RAJ2000 and DEJ2000 for VizieR data). But each dataset is treated
separately and it is not guaranteed that these columns exist in all datasets.
Also, more than one coordinate system/epoch may be present in a dataset and
you can use this option to construct your spatial constraint based on the others
coordinate systems/epochs.

-r FLT

--radius=FLT

The radius about the requested center to use for the automatically generated
query (not compatible with --query). The radius is in units of degrees, but
you can use simple division with this option directly on the command-line. For
example, if you want a radius of 20 arc-minutes or 20 arc-seconds, you can
use --radius=20/60 or --radius=20/3600 respectively (which is much more
human-friendly than 0.3333 or 0.005556).

-w FLT[,FLT]

--width=FLT[,FLT]

The square (or rectangle) side length (width) about the requested center to use
for the automatically generated query (not compatible with --query). If only
one value is given to --width the region will be a square, but if two values
are given, the widths of the query box along each dimension will be different.
The value(s) is (are) in the same units as the coordinate column (see --ccol,
usually RA and Dec which are degrees). You can use simple division for each
value directly on the command-line if you want relatively small (and more
human-friendly) sizes. For example, if you want your box to be 1 arc-minutes
along the RA and 2 arc-minutes along Dec, you can use --width=1/60,2/60.

-g STR,FLT,FLT

--range=STR,FLT,FLT

The column name and numerical range (inclusive) of acceptable values in that
column (not compatible with --query). This option can be called multiple
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times for applying range limits on many columns in one call (thus greatly re-
ducing the download size). For example, when used on the ESA gaia database,
you can use --range=phot_g_mean_mag,10:15 to only get rows that have a
value between 10 and 15 (inclusive on both sides) in the phot_g_mean_mag

column.

If you want all rows larger, or smaller, than a certain number, you can use
inf, or -inf as the first or second values respectively. For example, if you
want objects with SDSS spectroscopic redshifts larger than 2 (from the VizieR
sdss12 database), you can use --range=zsp,2,inf

If you want the interval to not be inclusive on both sides, you can run astquery

once and get the command that it executes. Then you can edit it to be non-
inclusive on your desired side.

-b STR[,STR]

--noblank=STR[,STR]

Only ask for rows that do not have a blank value in the STR column. This
option can be called many times, and each call can have multiple column names
(separated by a comma or ,). For example, if you want the retrieved rows to
not have a blank value in columns A, B, C and D, you can use --noblank=A

-bB,C,D.

--sort=STR[,STR]

Ask for the server to sort the downloaded data based on the given columns.
For example, let’s assume your desired catalog has column Z for redshift and
column MAG_R for magnitude in the R band. When you call --sort=Z,MAG_R,
it will primarily sort the columns based on the redshift, but if two objects have
the same redshift, they will be sorted by magnitude. You can add as many
columns as you like for higher-level sorting.
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6 Data manipulation

Images are one of the major formats of data that is used in astronomy. The functions in this
chapter explain the GNU Astronomy Utilities which are provided for their manipulation.
For example, cropping out a part of a larger image or convolving the image with a given
kernel or applying a transformation to it.

6.1 Crop

Astronomical images are often very large, filled with thousands of galaxies. It often happens
that you only want a section of the image, or you have a catalog of sources and you want
to visually analyze them in small postage stamps. Crop is made to do all these things.
When more than one crop is required, Crop will divide the crops between multiple threads
to significantly reduce the run time.

Astronomical surveys are usually extremely large. So large in fact, that the whole survey
will not fit into a reasonably sized file. Because of this, surveys usually cut the final image
into separate tiles and store each tile in a file. For example, the COSMOS survey’s Hubble
space telescope, ACS F814W image consists of 81 separate FITS images, with each one
having a volume of 1.7 Gigabytes.

Even though the tile sizes are chosen to be large enough that too many galaxies/targets
do not fall on the edges of the tiles, inevitably some do. So when you simply crop the image
of such targets from one tile, you will miss a large area of the surrounding sky (which is
essential in estimating the noise). Therefore in its WCS mode, Crop will stitch parts of the
tiles that are relevant for a target (with the given width) from all the input images that
cover that region into the output. Of course, the tiles have to be present in the list of input
files.

Besides cropping postage stamps around certain coordinates, Crop can also crop arbi-
trary polygons from an image (or a set of tiles by stitching the relevant parts of different
tiles within the polygon), see --polygon in Section 6.1.4 [Invoking Crop], page 389. Alter-
natively, it can crop out rectangular regions through the --section option from one image,
see Section 6.1.2 [Crop section syntax], page 388.

6.1.1 Crop modes

In order to be comprehensive, intuitive, and easy to use, there are two ways to define the
crop:

1. From its center and side length. For example, if you already know the coordinates of
an object and want to inspect it in an image or to generate postage stamps of a catalog
containing many such coordinates.

2. The vertices of the crop region, this can be useful for larger crops over many targets,
for example, to crop out a uniformly deep, or contiguous, region of a large survey.

Irrespective of how the crop region is defined, the coordinates to define the crop can
be in Image (pixel) or World Coordinate System (WCS) standards. All coordinates are
read as floating point numbers (not integers, except for the --section option, see below).
By setting the mode in Crop, you define the standard that the given coordinates must be
interpreted. Here, the different ways to specify the crop region are discussed within each
standard. For the full list options, please see Section 6.1.4 [Invoking Crop], page 389.
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When the crop is defined by its center, the respective (integer) central pixel position will
be found internally according to the FITS standard. To have this pixel positioned in the
center of the cropped region, the final cropped region will have an add number of pixels
(even if you give an even number to --width in image mode).

Furthermore, when the crop is defined as by its center, Crop allows you to only keep
crops what do not have any blank pixels in the vicinity of their center (your primary target).
This can be very convenient when your input catalog/coordinates originated from another
survey/filter which is not fully covered by your input image, to learn more about this feature,
please see the description of the --checkcenter option in Section 6.1.4 [Invoking Crop],
page 389.

Image coordinates
In image mode (--mode=img), Crop interprets the pixel coordinates and widths
in units of the input data-elements (for example, pixels in an image, not world
coordinates). In image mode, only one image may be input. The output crop(s)
can be defined in multiple ways as listed below.

Center of multiple crops (in a catalog)
The center of (possibly multiple) crops are read from a text file.
In this mode, the columns identified with the --coordcol option
are interpreted as the center of a crop with a width of --width
pixels along each dimension. The columns can contain any floating
point value. The value to --output option is seen as a directory
which will host (the possibly multiple) separate crop files, see Sec-
tion 6.1.4.2 [Crop output], page 395, for more. For a tutorial using
this feature, please see Section 2.1.19 [Reddest clumps, cutouts and
parallelization], page 64.

Center of a single crop (on the command-line)
The center of the crop is given on the command-line with the
--center option. The crop width is specified by the --width op-
tion along each dimension. The given coordinates and width can
be any floating point number.

Vertices of a single crop
In Image mode there are two options to define the vertices of a
region to crop: --section and --polygon. The former is lower-
level (does not accept floating point vertices, and only a rectangular
region can be defined), it is also only available in Image mode.
Please see Section 6.1.2 [Crop section syntax], page 388, for a full
description of this method.

The latter option (--polygon) is a higher-level method to define
any polygon (with any number of vertices) with floating point val-
ues. Please see the description of this option in Section 6.1.4 [In-
voking Crop], page 389, for its syntax.

WCS coordinates
In WCS mode (--mode=wcs), the coordinates and width are interpreted using
the World Coordinate System (WCS, that must accompany the dataset), not
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pixel coordinates. You can optionally use --widthinpix for the width to be
interpreted in pixels (even though the coordinates are in WCS). In WCS mode,
Crop accepts multiple datasets as input. When the cropped region (defined
by its center or vertices) overlaps with multiple of the input images/tiles, the
overlapping regions will be taken from the respective input (they will be stitched
when necessary for each output crop).

In this mode, the input images do not necessarily have to be the same size,
they just need to have the same orientation and pixel resolution. Currently
only orientation along the celestial coordinates is accepted, if your input has
a different orientation or resolution you can use Warp’s --gridfile option to
align the image before cropping it (see Section 6.4 [Warp], page 492).

Each individual input image/tile can even be smaller than the final crop. In
any case, any part of any of the input images which overlaps with the desired
region will be used in the crop. Note that if there is an overlap in the input
images/tiles, the pixels from the last input image read are going to be used for
the overlap. Crop will not change pixel values, so it assumes your overlapping
tiles were cutout from the same original image. There are multiple ways to
define your cropped region as listed below.

Center of multiple crops (in a catalog)
Similar to catalog inputs in Image mode (above), except that the
values along each dimension are assumed to have the same units as
the dataset’s WCS information. For example, the central RA and
Dec value for each crop will be read from the first and second calls
to the --coordcol option. The width of the cropped box (in units
of the WCS, or degrees in RA and Dec mode) must be specified
with the --width option. You can optionally use --widthinpix

for the value of --width to be interpreted in pixels.

Center of a single crop (on the command-line)
You can specify the center of only one crop box with the --center
option. If it exists in the input images, it will be cropped similar
to the catalog mode, see above also for --width.

Vertices of a single crop
The --polygon option is a high-level method to define any convex
polygon (with any number of vertices). Please see the description
of this option in Section 6.1.4 [Invoking Crop], page 389, for its
syntax.� �

CAUTION: In WCS mode, the image has to be aligned with the celestial
coordinates, such that the first FITS axis is parallel (opposite direction) to the
Right Ascension (RA) and the second FITS axis is parallel to the declination.
If these conditions are not met for an image, Crop will warn you and abort.
You can use Warp to align the input image to standard celestial coordinates,
see Section 6.4 [Warp], page 492.
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As a summary, if you do not specify a catalog, you have to define the cropped region
manually on the command-line. In any case the mode is mandatory for Crop to be able to
interpret the values given as coordinates or widths.

6.1.2 Crop section syntax

When in image mode, one of the methods to crop only one rectangular section from the
input image is to use the --section option. Crop has a powerful syntax to read the box
parameters from a string of characters. If you leave certain parts of the string to be empty,
Crop can fill them for you based on the input image sizes.

To define a box, you need the coordinates of two points: the first (X1, Y1) and the
last pixel (X2, Y2) pixel positions in the image, or four integer numbers in total. The four
coordinates can be specified with one string in this format: ‘X1:X2,Y1:Y2’. This string is
given to the --section option. Therefore, the pixels along the first axis that are ≥X1 and
≤X2 will be included in the cropped image. The same goes for the second axis. Note that
each different term will be read as an integer, not a float.

The reason it only accepts integers is that --section is a low-level option (which is also
very fast!). For a higher-level way to specify region (any polygon, not just a box), please
see the --polygon option in Section 6.1.4.1 [Crop options], page 390. Also note that in the
FITS standard, pixel indexes along each axis start from unity(1) not zero(0).

You can omit any of the values and they will be filled automatically. The left hand side
of the colon (:) will be filled with 1, and the right side with the image size. So, 2:,: will
include the full range of pixels along the second axis and only those with a first axis index
larger than 2 in the first axis. If the colon is omitted for a dimension, then the full range
is automatically used. So the same string is also equal to 2:, or 2: or even 2. If you want
such a case for the second axis, you should set it to: ,2.

If you specify a negative value, it will be seen as before the indexes of the image which
are outside the image along the bottom or left sides when viewed in SAO DS9. In case you
want to count from the top or right sides of the image, you can use an asterisk (*). When
confronted with a *, Crop will replace it with the maximum length of the image in that
dimension. So *-10:*+10,*-20:*+20 will mean that the crop box will be 20× 40 pixels in
size and only include the top corner of the input image with 3/4 of the image being covered
by blank pixels, see Section 6.1.3 [Blank pixels], page 388.

If you feel more comfortable with space characters between the values, you can use as
many space characters as you wish, just be careful to put your value in double quotes, for
example, --section="5:200, 123:854". If you forget the quotes, anything after the first
space will not be seen by --section and you will most probably get an error because the
rest of your string will be read as a filename (which most probably does not exist). See
Section 4.1 [Command-line], page 247, for a description of how the command-line works.

6.1.3 Blank pixels

The cropped box can potentially include pixels that are beyond the image range. For
example, when a target in the input catalog was very near the edge of the input image. The
parts of the cropped image that were not in the input image will be filled with the following
two values depending on the data type of the image. In both cases, SAO DS9 will not color
code those pixels.
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• If the data type of the image is a floating point type (float or double), IEEE NaN (Not
a number) will be used.

• For integer types, pixels out of the image will be filled with the value of the BLANK

keyword in the cropped image header. The value assigned to it is the lowest value
possible for that type, so you will probably never need it any way. Only for the
unsigned character type (BITPIX=8 in the FITS header), the maximum value is used
because it is unsigned, the smallest value is zero which is often meaningful.

You can ask for such blank regions to not be included in the output crop image using the
--noblank option. In such cases, there is no guarantee that the image size of your outputs
are what you asked for.

In some survey images, unfortunately they do not use the BLANK FITS keyword. Instead
they just give all pixels outside of the survey area a value of zero. So by default, when
dealing with float or double image types, any values that are 0.0 are also regarded as blank
regions. This can be turned off with the --zeroisnotblank option.

6.1.4 Invoking Crop

Crop will crop a region from an image. If in WCS mode, it will also stitch parts from
separate images in the input files. The executable name is astcrop with the following
general template

$ astcrop [OPTION...] [ASCIIcatalog] ASTRdata ...

One line examples:

## Crop all objects in cat.txt from image.fits:

$ astcrop --catalog=cat.txt image.fits

## Crop all options in catalog (with RA,DEC) from all the files

## ending in `_drz.fits' in `/mnt/data/COSMOS/':

$ astcrop --mode=wcs --catalog=cat.txt /mnt/data/COSMOS/*_drz.fits

## Crop the outer 10 border pixels of the input image and give

## the output HDU a name ('EXTNAME' keyword in FITS) of 'mysection'.

$ astcrop --section=10:*-10,10:*-10 --hdu=2 image.fits \

--metaname=mysection

## Crop region around RA and Dec of (189.16704, 62.218203):

$ astcrop --mode=wcs --center=189.16704,62.218203 goodsnorth.fits

## Same crop above, but coordinates given in sexagesimal (you can

## also use ':' between the sexagesimal components).

$ astcrop --mode=wcs --center=12h36m40.08,62d13m5.53 goodsnorth.fits

## Crop region around pixel coordinate (568.342, 2091.719):

$ astcrop --mode=img --center=568.342,2091.719 --width=201 image.fits

## Crop all HDUs within a FITS file at a certain coordinate, while

## preserving the names of the HDUs in the output.
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$ for hdu in $(astfits input.fits --listimagehdus); do \

astcrop input.fits --hdu=$hdu --append --output=crop.fits \

--metaname=$hdu --mode=wcs --center=189.16704,62.218203 \

--width=10/3600

done

Crop has one mandatory argument which is the input image name(s), shown above with
ASTRdata .... You can use shell expansions, for example, * for this if you have lots of
images in WCS mode. If the crop box centers are in a catalog, you can use the --catalog
option. In other cases, you have to provide the single cropped output parameters must be
given with command-line options. See Section 6.1.4.2 [Crop output], page 395, for how the
output file name(s) can be specified. For the full list of general options to all Gnuastro
programs (including Crop), please see Section 4.1.2 [Common options], page 251.

Floating point numbers can be used to specify the crop region (except the --section

option, see Section 6.1.2 [Crop section syntax], page 388). In such cases, the floating point
values will be used to find the desired integer pixel indices based on the FITS standard.
Hence, Crop ultimately does not do any sub-pixel cropping (in other words, it does not
change pixel values). If you need such crops, you can use Section 6.4 [Warp], page 492,
to first warp the image to the a new pixel grid, then crop from that. For example, let’s
assume you want a crop from pixels 12.982 to 80.982 along the first dimension. You should
first translate the image by −0.482 (note that the edge of a pixel is at integer multiples
of 0.5). So you should run Warp with --translate=-0.482,0 and then crop the warped
image with --section=13:81.

There are two ways to define the cropped region: with its center or its vertices. See
Section 6.1.1 [Crop modes], page 385, for a full description. In the former case, Crop can
check if the central region of the cropped image is indeed filled with data or is blank (see
Section 6.1.3 [Blank pixels], page 388), and not produce any output when the center is
blank, see the description under --checkcenter for more.

When in catalog mode, Crop will run in parallel unless you set --numthreads=1, see
Section 4.4 [Multi-threaded operations], page 274. Note that when multiple outputs are
created with threads, the outputs will not be created in the same order. This is because the
threads are asynchronous and thus not started in order. This has no effect on each output,
see Section 2.1.19 [Reddest clumps, cutouts and parallelization], page 64, for a tutorial on
effectively using this feature.

6.1.4.1 Crop options

The options can be classified into the following contexts: Input, Output and operating
mode options. Options that are common to all Gnuastro program are listed in Section 4.1.2
[Common options], page 251, and will not be repeated here.

When you are specifying the crop vertices yourself (through --section, or --polygon)
on relatively small regions (depending on the resolution of your images) the outputs from
image and WCS mode can be approximately equivalent. However, as the crop sizes get
large, the curved nature of the WCS coordinates have to be considered. For example, when
using --section, the right ascension of the bottom left and top left corners will not be
equal. If you only want regions within a given right ascension, use --polygon in WCS
mode.



Chapter 6: Data manipulation 391

Input image parameters:

--hstartwcs=INT

Specify the first keyword card (line number) to start finding the input image
world coordinate system information. This is useful when certain header key-
words of the input may cause bad conflicts with your crop (see an example
described below). To get line numbers of the header keywords, you can pipe
the fully printed header into cat -n like below:

$ astfits image.fits -h1 | cat -n

For example, distortions have only been present in WCSLIB from version 5.15
(released in mid 2016). Therefore some pipelines still apply their own specific
set of WCS keywords for distortions and put them into the image header along
with those that WCSLIB does recognize. So now that WCSLIB recognizes most
of the standard distortion parameters, they will get confused with the old ones
and give wrong results. For example, in the CANDELS-GOODS South images
that were created before WCSLIB 5.151.

The two --hstartwcs and --hendwcs are thus provided so when using older
datasets, you can specify what region in the FITS headers you want to use to
read the WCS keywords. Note that this is only relevant for reading the WCS
information, basic data information like the image size are read separately.
These two options will only be considered when the value to --hendwcs is
larger than that of --hstartwcs. So if they are equal or --hstartwcs is larger
than --hendwcs, then all the input keywords will be parsed to get the WCS
information of the image.

--hendwcs=INT

Specify the last keyword card to read for specifying the image world coordinate
system on the input images. See --hstartwcs

Crop box parameters:

-c FLT[,FLT[,...]]

--center=FLT[,FLT[,...]]

The central position of the crop in the input image. The positions along each
dimension must be separated by a comma (,) and fractions are also acceptable.
The comma-separated values can either be in degrees (a single number), or
sexagesimal (_h_m_ for RA, _d_m_ for Dec, or _:_:_ for both).

The number of values given to this option must be the same as the dimensions
of the input dataset. The width of the crop should be set with --width. The
units of the coordinates are read based on the value to the --mode option, see
below.

-O STR

--mode=STR

Mode to interpret the crop’s coordinates (for example with --center,
--catalog or --polygon). The value must either be img (to assume
image/pixel coordinates) or wcs (to assume WCS, usually RA/Dec,
coordinates), see Section 6.1.1 [Crop modes], page 385, for a full description.

1 https://archive.stsci.edu/pub/hlsp/candels/goods-s/gs-tot/v1.0/

https://archive.stsci.edu/pub/hlsp/candels/goods-s/gs-tot/v1.0/
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-w FLT[,FLT[,...]]

--width=FLT[,FLT[,...]]

Width of the cropped region about coordinate given to --center. If in WCS
mode, value(s) given to this option will be read in the same units as the dataset’s
WCS information along this dimension (unless --widthinpix is given). This
option may take either a single value (to be used for all dimensions: --width=10
in image-mode will crop a 10 × 10 pixel image) or multiple values (a specific
value for each dimension: --width=10,20 in image-mode will crop a 10 × 20
pixel image).

The --width option also accepts fractions. For example, if you want the width
of your crop to be 3 by 5 arcseconds along RA and Dec respectively and you
are in wcs-mode, you can use: --width=3/3600,5/3600.

The final output will have an odd number of pixels to allow easy identifica-
tion of the pixel which keeps your requested coordinate (from --center or
--catalog). If you want an even sided crop, you can run Crop afterwards with
--section=":*-1,:*-1" or --section=2:,2: (depending on which side you
do not need), see Section 6.1.2 [Crop section syntax], page 388.

The basic reason for making an odd-sided crop is that your given central coor-
dinate will ultimately fall within a discrete pixel in the image (defined by the
FITS standard). When the crop has an odd number of pixels in each dimension,
that pixel can be very well defined as the “central” pixel of the crop, making it
unambiguously easy to identify. However, for an even-sided crop, it will be very
hard to identify the central pixel (it can be on any of the four pixels adjacent
to the central point of the image!).

-X

--widthinpix

In WCS mode, interpret the value to --width as number of pixels, not the WCS
units like degrees. This is useful when you want a fixed crop size in pixels, even
though your center coordinates are in WCS (for example, RA and Dec).

-l STR

-l FLT:FLT,...

--polygon=STR

--polygon=FLT,FLT:FLT,FLT:...

Polygon vertice coordinates (when value is in FLT,FLT:FLT,FLT:... format)
or the filename of a SAO DS9 region file (when the value has no , or : char-
acters). Each vertice can either be in degrees (a single floating point number)
or sexagesimal (in formats of ‘_h_m_’ for RA and ‘_d_m_’ for Dec, or simply
‘_:_:_’ for either of them).

The vertices are used to define the polygon: in the same order given to this
option. When the vertices are not necessarily ordered in the proper order (for
example, one vertice in a square comes after its diagonal opposite), you can
add the --polygonsort option which will attempt to sort the vertices before
cropping. Note that for concave polygons, sorting is not recommended because
there is no unique solution, for more, see the description under --polygonsort.
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This option can be used both in the image and WCS modes, see Section 6.1.1
[Crop modes], page 385. If a SAO DS9 region file is used, the coordinate mode
of Crop will be determined by the contents of the file and any value given to
--mode is ignored. The cropped image will be the size of the rectangular region
that completely encompasses the polygon. By default all the pixels that are
outside of the polygon will be set as blank values (see Section 6.1.3 [Blank
pixels], page 388). However, if --polygonout is called all pixels internal to
the vertices will be set to blank. In WCS-mode, you may provide many FITS
images/tiles: Crop will stitch them to produce this cropped region, then apply
the polygon.

The syntax for the polygon vertices is similar to, and simpler than, that for
--section. In short, the dimensions of each coordinate are separated by a
comma (,) and each vertex is separated by a colon (:). You can define as
many vertices as you like. If you would like to use space characters between the
dimensions and vertices to make them more human-readable, then you have to
put the value to this option in double quotation marks.

For example, let’s assume you want to work on the deepest part of the WFC3/IR
images of Hubble Space Telescope eXtreme Deep Field (HST-XDF). According
to the web page (https://archive.stsci.edu/prepds/xdf/)2 the deepest
part is contained within the coordinates:

[ (53.187414,-27.779152), (53.159507,-27.759633),

(53.134517,-27.787144), (53.161906,-27.807208) ]

They have provided mask images with only these pixels in the WFC3/IR images,
but what if you also need to work on the same region in the full resolution ACS
images? Also what if you want to use the CANDELS data for the shallow
region? Running Crop with --polygon will easily pull out this region of the
image for you, irrespective of the resolution. If you have set the operating mode
to WCS mode in your nearest configuration file (see Section 4.2 [Configuration
files], page 268), there is no need to call --mode=wcs on the command-line.

$ astcrop --mode=wcs desired-filter-image(s).fits \

--polygon="53.187414,-27.779152 : 53.159507,-27.759633 : \

53.134517,-27.787144 : 53.161906,-27.807208"

More generally, you have an image and want to define the polygon yourself (it
is not already published like the example above). As the number of vertices
increases, checking the vertex coordinates on a FITS viewer (for example, SAO
DS9) and typing them in, one by one, can be very tedious and prone to typo
errors. In such cases, you can make a polygon “region” in DS9 and using your
mouse, easily define (and visually see) it. Given that SAO DS9 has a graphic
user interface (GUI), if you do not have the polygon vertices before-hand, it is
much more easier build your polygon there and pass it onto Crop through the
region file.

You can take the following steps to make an SAO DS9 region file containing
your polygon. Open your desired FITS image with SAO DS9 and activate its
“region” mode with Edit→Region. Then define the region as a polygon with

2 https://archive.stsci.edu/prepds/xdf/

https://archive.stsci.edu/prepds/xdf/
https://archive.stsci.edu/prepds/xdf/
https://archive.stsci.edu/prepds/xdf/
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Region→Shape→Polygon. Click on the approximate center of the region you
want and a small square will appear. By clicking on the vertices of the square
you can shrink or expand it, clicking and dragging anywhere on the edges will
enable you to define a new vertex. After the region has been nicely defined,
save it as a file with Region→“Save Regions”. You can then select the name
and address of the output file, keep the format as REG (*.reg) and press the
“OK” button. In the next window, keep format as “ds9” and “Coordinate
System” as “fk5” for RA and Dec (or “Image” for pixel coordinates). A plain
text file is now created (let’s call it ds9.reg) which you can pass onto Crop
with --polygon=ds9.reg.

For the expected format of the region file, see the description of gal_ds9_

reg_read_polygon in Section 12.3.36 [SAO DS9 library (ds9.h)], page 910.
However, since SAO DS9 makes this file for you, you do not usually need to
worry about its internal format unless something un-expected happens and you
find a bug.

--polygonout

Keep all the regions outside the polygon and mask the inner ones with blank
pixels (see Section 6.1.3 [Blank pixels], page 388). This is practically the inverse
of the default mode of treating polygons. Note that this option only works
when you have only provided one input image. If multiple images are given (in
WCS mode), then the full area covered by all the images has to be shown and
the polygon excluded. This can lead to a very large area if large surveys like
COSMOS are used. So Crop will abort and notify you. In such cases, it is best
to crop out the larger region you want, then mask the smaller region with this
option.

--polygonsort

Sort the given set of vertices to the --polygon option. For a concave polygon
it will sort the vertices correctly, however for a convex polygon it there is no
unique sorting, so be careful because the crop may not be what you expected.

Polygons come in two classes: convex and concave (or generally, non-convex!),
see below for a demonstration. Convex polygons are those where all inner angles
are less than 180 degrees. By contrast, a concave polygon is one where an inner
angle may be more than 180 degrees.

Concave Polygon Convex Polygon

D --------C D------------- C

\ | E / |

\E | \ |

/ | \ |

A--------B A ----------B

-s STR

--section=STR

Section of the input image which you want to be cropped. See Section 6.1.2
[Crop section syntax], page 388, for a complete explanation on the syntax re-
quired for this input.
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-C FITS/TXT

--catalog=FITS/TXT

File name of catalog for making multiple crops from the input images/cubes.
The catalog can be in any of Gnuastro’s recognized Section 4.7.1 [Recognized
table formats], page 283. The columns containing the coordinates for the crop
centers can be specified with the --coordcol option (using column names or
numbers, see Section 4.7.3 [Selecting table columns], page 287). The catalog
can also contain the name of each crop, you can specify the column containing
the name with the --namecol.

--cathdu=STR/INT

The HDU (extension) containing the catalog (if the file given to --catalog

is a FITS file). This can either be the HDU name (if it has one) or number
(counting from 0). By default (if this option is not given), the second HDU will
be used (equivalent to --cathdu=1. For more on how to specify the HDU, see
the explanation of the --hdu option in Section 4.1.2.1 [Input/Output options],
page 252.

-x STR/INT

--coordcol=STR/INT

The column in a catalog to read as a coordinate. The value can be either the
column number (starting from 1), or a match/search in the table meta-data, see
Section 4.7.3 [Selecting table columns], page 287. This option must be called
multiple times, depending on the number of dimensions in the input dataset.
If it is called more than necessary, the extra columns (later calls to this option
on the command-line or configuration files) will be ignored, see Section 4.2.2
[Configuration file precedence], page 269.

-n STR/INT

--namecol=STR/INT

Column selection of crop file name. The value can be either the column number
(starting from 1), or a match/search in the table meta-data, see Section 4.7.3
[Selecting table columns], page 287. This option can be used both in Image and
WCS modes, and not a mandatory. When a column is given to this option, the
final crop base file name will be taken from the contents of this column. The
directory will be determined by the --output option (current directory if not
given) and the value to --suffix will be appended. When this column is not
given, the row number will be used instead.

6.1.4.2 Crop output

The string given to --output option will be interpreted depending on how many crops were
requested, see Section 6.1.1 [Crop modes], page 385:

• When a catalog is given, the value of the --output (see Section 4.1.2 [Common options],
page 251) will be read as the directory to store the output cropped images. Hence if it
does not already exist, Crop will abort with an “No such file or directory” error.

The crop file names will consist of two parts: a variable part (the row number of each
target starting from 1) along with a fixed string which you can set with the --suffix
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option. Optionally, you may also use the --namecol option to define a column in the
input catalog to use as the file name instead of numbers.

• When only one crop is desired, the value to --output will be read as a file name. If no
output is specified or if it is a directory, the output file name will follow the automatic
output names of Gnuastro, see Section 4.9 [Automatic output], page 290: The string
given to --suffix will be replaced with the .fits suffix of the input.

By default, as suggested by the FITS standard and implemented in all Gnuastro pro-
grams, the first/primary extension of the output files will only contain metadata. The
cropped images/cubes will be written into the 2nd HDU of their respective FITS file
(which is actually counted as 1 because HDU counting starts from 0). However, if you
want the cropped data to be written into the primary (0-th) HDU, run Crop with the
--primaryimghdu option.

If the output file already exists by default Crop will re-write it (so that all existing HDUs
in it will be deleted). If you want the cropped HDU to be appended to existing HDUs, use
--append described below.

The 0-th HDU of each output cropped image will contain the names of the input image(s)
it was cut from. If a name is longer than the 70 character space that the FITS standard
allows for header keyword values, the name will be cut into several keywords from the
nearest slash (/). The keywords have the following format: ICFn_m (for Crop File). Where
n is the number of the image used in this crop and m is the part of the name (it can be
broken into multiple keywords). Following the name is another keyword named ICFnPIX

which shows the pixel range from that input image in the same syntax as Section 6.1.2
[Crop section syntax], page 388. So this string can be directly given to the --section

option later.

Once done, a log file can be created in the current directory with the --log option.
This file will have three columns and the same number of rows as the number of cropped
images. There are also comments on the top of the log file explaining basic information
about the run and descriptions for the columns. A short description of the columns is also
given below:

1. The cropped image file name for that row.

2. The number of input images that were used to create that image.

3. A 0 if the central few pixels (value to the --checkcenter option) are blank and 1

if they are not. When the crop was not defined by its center (see Section 6.1.1 [Crop
modes], page 385), or --checkcenter was given a value of 0 (see Section 6.1.4 [Invoking
Crop], page 389), the center will not be checked and this column will be given a value
of -1.

If the output crop(s) have a single element (pixel in an image) and --oneelemstdout has
been called, no output file will be produced! Instead, the single element’s value is printed
on the standard output. See the description of --oneelemstdout below for more:

-p STR

--suffix=STR

The suffix (or post-fix) of the output files for when you want all the cropped
images to have a special ending. One case where this might be helpful is when
besides the science images, you want the weight images (or exposure maps,
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which are also distributed with survey images) of the cropped regions too. So
in one run, you can set the input images to the science images and --suffix=_

s.fits. In the next run you can set the weight images as input and --suffix=_

w.fits.

-a STR

--metaname=STR

Name of cropped HDU (value to the EXTNAME keyword of FITS). If not given,
a default CROP will be placed there (so the EXTNAME keyword will always be
present in the output). If crop produces many outputs from a catalog, they
will be given the same string as EXTNAME (the file names containing the cropped
HDU will be different).

-A

--append If the output file already exists, append the cropped image HDU to the end of
any existing HDUs. By default (when this option isn’t given), if an output file
already exists, any existing HDU in it will be deleted. If the output file doesn’t
exist, this option is redundant.

--primaryimghdu

Write the output into the primary (0-th) HDU/extension of the output. By
default, like all Gnuastro’s default outputs, no data is written in the primary
extension because the FITS standard suggests keeping that extension free of
data and only for metadata.

-t

--oneelemstdout

When a crop only has a single element (a single pixel), print it to the standard
output instead of making a file. By default (without this option), a single-pixel
crop will be saved to a file, just like a crop of any other size.

When a single crop is requested (either through --center, or a catalog of one
row is given), the single value alone is printed with nothing else. This makes it
easy to immediately write the value into a shell variable for example:

value=$(astcrop img.fits --mode=wcs --center=1.234,5.678 \

--width=1 --widthinpix --oneelemstdout \

--quiet)

If a catalog of coordinates is given (that would produce multiple crops; or
multiple values in this scenario), the solution for a single value will not work!
Recall that Crop will do the crops in parallel, therefore each time you run it,
the order of the rows will be different and not correspond to the order of the
inputs.

To allow identification of each value (which row of the input catalog it corre-
sponds to), Crop will first print the name of the would-be created file name,
and print the value after it (separated by an empty SPACE character). In other
words, the file in the first column will not actually be created, but the value of
the pixel it would have contained (if this option was not called) is printed after
it.
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-c FLT/INT

--checkcenter=FLT/INT

Square box width of region in the center of the image to check for blank values.
If any of the pixels in this central region of a crop (defined by its center) are
blank, then it will not be stored in an output file. If the value to this option is
zero, no checking is done. This check is only applied when the cropped region(s)
are defined by their center (not by the vertices, see Section 6.1.1 [Crop modes],
page 385).

The units of the value are interpreted based on the --mode value (in WCS or
pixel units). The ultimate checked region size (in pixels) will be an odd integer
around the center (converted from WCS, or when an even number of pixels are
given to this option). In WCS mode, the value can be given as fractions, for
example, if the WCS units are in degrees, 0.1/3600 will correspond to a check
size of 0.1 arcseconds.

Because survey regions do not often have a clean square or rectangle shape,
some of the pixels on the sides of the survey FITS image do not commonly have
any data and are blank (see Section 6.1.3 [Blank pixels], page 388). So when
the catalog was not generated from the input image, it often happens that the
image does not have data over some of the points.

When the given center of a crop falls in such regions or outside the dataset, and
this option has a non-zero value, no crop will be created. Therefore with this
option, you can specify a width of a small box (3 pixels is often good enough)
around the central pixel of the cropped image. You can check which crops were
created and which were not from the command-line (if --quiet was not called,
see Section 4.1.2.3 [Operating mode options], page 257), or in Crop’s log file
(see Section 6.1.4.2 [Crop output], page 395).

-b

--noblank

Pixels outside of the input image that are in the crop box will not be used. By
default they are filled with blank values (depending on type), see Section 6.1.3
[Blank pixels], page 388. This option only applies only in Image mode, see
Section 6.1.1 [Crop modes], page 385.

-z

--zeroisnotblank

In float or double images, it is common to give the value of zero to blank
pixels. If the input image type is one of these two types, such pixels will also
be considered as blank. You can disable this behavior with this option, see
Section 6.1.3 [Blank pixels], page 388.

6.1.4.3 Crop known issues

When running Crop, you may encounter strange errors and bugs. In these cases, please
report a bug and we will try to fix it as soon as possible, see Section 1.9 [Report a bug],
page 15. However, some things are beyond our control, or may take too long to fix directly.
In this section we list such known issues that may occur in known cases and suggest the
hack (or work-around) to fix the problem:
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Crash with ‘Killed’ when cropping catalog from .fits.gz

This happens because CFISTIO (that reads and writes FITS files) will inter-
nally decompress the file in a temporary place (possibly in the RAM), then start
reading from it. On the other hand, by default when given a catalog (with many
crops) and not specifying --numthreads, Crop will use the maximum number
of threads available on your system to do each crop faster. On an normal (not
compressed) file, parallel access will not cause a problem, however, when at-
tempting parallel access with the maximum number of threads on a compressed
file, CFITSIO crashes with Killed. Therefore the following solutions can be
used to fix this crash:

• Decrease the number of threads (at the minimum, set --numthreads=1).
Since this solution does not attempt to change any of your previous Crop
command components or does not change your local file structure, it is the
preferred way.

• Decompress the file (with the command below) and feed the .fits file into
Crop without changing the number of threads.

$ gunzip -k image.fits.gz

6.2 Arithmetic

It is commonly necessary to do operations on some or all of the elements of a dataset
independently (pixels in an image). For example, in the reduction of raw data it is necessary
to subtract the Sky value (Section 7.1.4 [Sky value], page 519) from each image image. Later
(once the images as warped into a single grid using Warp for example, see Section 6.4 [Warp],
page 492), the images are co-added (the output pixel grid is the average of the pixels of the
individual input images). Arithmetic is Gnuastro’s program for such operations on your
datasets directly from the command-line. It currently uses the reverse polish or post-fix
notation, see Section 6.2.1 [Reverse polish notation], page 399, and will work on the native
data types of the input images/data to reduce CPU and RAM resources, see Section 4.5
[Numeric data types], page 277. For more information on how to run Arithmetic, please
see Section 6.2.5 [Invoking Arithmetic], page 464.

6.2.1 Reverse polish notation

The most common notation for arithmetic operations is the infix notation (https://
en.wikipedia.org/wiki/Infix_notation) where the operator goes between the two
operands, for example, 4+ 5. The infix notation is the preferred way in most programming
languages which come with scripting features for large programs. This is because the infix
notation requires a way to define precedence when more than one operator is involved.

For example, consider the statement 5 + 6 / 2. Should 6 first be divided by 2, then
added by 5? Or should 5 first be added with 6, then divided by 2? Therefore we need
parenthesis to show precedence: 5+(6/2) or (5+6)/2. Furthermore, if you need to leave a
value for later processing, you will need to define a variable for it; for example, a=(5+6)/2.

Gnuastro provides libraries where you can also use infix notation in C or C++ programs.
However, Gnuastro’s programs are primarily designed to be run on the command-line and
the level of complexity that infix notation requires can be annoying/confusing to write on
the command-line (where they can get confused with the shell’s parenthesis or variable

https://en.wikipedia.org/wiki/Infix_notation
https://en.wikipedia.org/wiki/Infix_notation
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definitions). Therefore Gnuastro’s Arithmetic and Table (when doing column arithmetic)
programs use the post-fix notation, also known as reverse polish notation (https://en.
wikipedia.org/wiki/Reverse_Polish_notation). For example, instead of writing 5+6,
we write 5 6 +.

The Wikipedia article on the reverse polish notation provides some excellent explanation
on this notation but here we will give a short summary here for self-sufficiency. In short, in
the reverse polish notation, the operator is placed after the operands. As we will see below
this removes the need to define parenthesis and lets you use previous values without needing
to define a variable. In the future3 we do plan to also optionally allow infix notation when
arithmetic operations on datasets are desired, but due to time constraints on the developers
we cannot do it immediately.

To easily understand how the reverse polish notation works, you can think of each
operand (5 and 6 in the example above) as a node in a “last-in-first-out” stack. One such
stack in daily life is a stack of dishes in the kitchen: you put a clean dish, on the top of a
stack of dishes when it is ready for later usage. Later, when you need a dish, you pick the
top one (hence the “last” dish placed “in” the stack is the “first” dish that comes “out”
when necessary).

Each operator will need a certain number of operands (in the example above, the +

operator needs two operands: 5 and 6). In the kitchen metaphor, an operator can be an
oven. Every time an operator is confronted, the operator takes (or “pops”) the number of
operands it needs from the top of the stack (so they do not exist in the stack any more),
does its operation, and places (or “pushes”) the result back on top of the stack. So if you
want the average of 5 and 6, you would write: 5 6 + 2 /. The operations that are done are:

1. 5 is an operand, so Arithmetic pushes it to the top of the stack (which is initially
empty). In the kitchen metaphor, you can visualize this as taking a new dish from the
cabinet, putting the number 5 inside of the dish, and putting the dish on top of the
(empty) cooking table in front of you. You now have a stack of one dish on the table
in front of you.

2. 6 is also an operand, so it is pushed to the top of the stack. Like before, you can
visualize this as taking a new dish from the cabinet, putting the number 6 in it and
placing it on top of the previous dish. You now have a stack of two dishes on the table
in front of you.

3. + is a binary operator, so it will pop the top two elements of the stack out of it, and
perform addition on them (the order is 5 + 6 in the example above). The result is 11
which is pushed to the top of the stack.

To visualize this, you can think of the + operator as an oven with a place for two dishes.
You pick up the top-most dish (that has the number 6 in it) and put it in the oven.
The top dish is now the one that has the number 5. You also pick it up and put it in
the oven, and close the oven door. When the oven has finished its cooking, it produces
a single output (in one dish, with the number 11 inside of it). You take that output
dish and put it back on the table. You now have a stack of one dish on the table in
front of you.

4. 2 is an operand so push it onto the top of the stack. In the kitchen metaphor, you
again go to the cabinet, pick up a dish and put the number 2 inside of it and put the

3 https://savannah.gnu.org/task/index.php?13867

https://en.wikipedia.org/wiki/Reverse_Polish_notation
https://en.wikipedia.org/wiki/Reverse_Polish_notation
https://savannah.gnu.org/task/index.php?13867
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dish over the previous dish (that has the number 11). You now have a stack of two
dishes on the table in front of you.

5. / (division) is a binary operator, so pull out the top two elements of the stack (top-most
is 2, then 11) and divide the second one by the first. In the kitchen metaphor, the /

operator can be visualized as a microwave that takes two dishes. But unlike the oven
(+ operator) before, the order of inputs matters (they are on top of each other: with
the top dish holder being the numerator and the bottom one being the denominator).
Again, you look at your stack of dishes on the table.

You pick up the top one (with value 2 inside of it) and put it in the microwave’s bottom
(denominator) dish holder. Then you go back to your stack of dishes on the table and
pick up the top dish (with value 11 inside of it) and put that in the top (nominator)
dish holder. The microwave will do its work and when it is finished, returns a new dish
with the single value 5.5 inside of it. You pick up the dish from the microwave and
place it back on the table.

6. There are no more operands or operators, so simply return the remaining operand in
the output. In the kitchen metaphor, you see that your recipe has no more steps, so
you just pick up the remaining dish and take it to the dining room to enjoy a good
dinner.

In the Arithmetic program, the operands can be FITS images of any dimensionality, or
numbers (see Section 6.2.5 [Invoking Arithmetic], page 464). In Table’s column arithmetic,
they can be any column in the table (a series of numbers in an array) or a single number
(see Section 5.3.3 [Column arithmetic], page 346).

With this notation, very complicated procedures can be created without the need for
parenthesis or worrying about precedence. Even functions which take an arbitrary number
of arguments can be defined in this notation. This is a very powerful notation and is used
in languages like Postscript4 which produces PDF files when compiled.

6.2.2 Integer benefits and pitfalls

Integers are the simplest numerical data types (Section 4.5 [Numeric data types], page 277).
Because of this, their storage space is much less, and their processing is much faster than
floating point types. You can confirm this on your computer with the series of commands
below. You will make four 5000 by 5000 pixel images filled with random values. Two of
them will be saved as signed 8-bit integers, and two with 64-bit floating point types. The
last command prints the size of the created images.

$ astarithmetic 5000 5000 2 makenew 5 mknoise-sigma int8 -oint-1.fits

$ astarithmetic 5000 5000 2 makenew 5 mknoise-sigma int8 -oint-2.fits

$ astarithmetic 5000 5000 2 makenew 5 mknoise-sigma float64 -oflt-1.fits

$ astarithmetic 5000 5000 2 makenew 5 mknoise-sigma float64 -oflt-2.fits

$ ls -lh int-*.fits flt-*.fits

The 8-bit integer images are only 24MB, while the 64-bit floating point images are 191
MB! Besides helping in storage (on your disk, or in RAM, while the program is running),
the small size of these files also helps in faster reading of the inputs. Furthermore, CPUs

4 See the EPS and PDF part of Section 5.2.2 [Recognized file formats], page 315, for a little more on the
Postscript language.
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can process integer operations much faster than floating points. In the integers, the ones
with a smaller width (number of bits) can be processed much faster. You can see this with
the two commands below where you will add the integer images with each other and the
floats with each other:

$ astarithmetic flt-1.fits flt-2.fits + -oflt-sum.fits -g1

$ astarithmetic int-1.fits int-2.fits + -oint-sum.fits -g1

Have a look at the running time of the two commands above (that is printed on their
last line). On the system that this paragraph was written on, the floating point and integer
image sums were respectively done in 0.481 and 0.089 seconds (the integer operation was
almost 5 times faster!).� �
If your data does not have decimal points, use integer types: integer types are much faster
and can take much less space in your storage or RAM (while the program is running).
 	� �
Select the smallest width that can host the range/precision of values: for example, if the
largest possible value in your dataset is 1000 and all numbers are integers, store it as a
16-bit integer. Also, if you know the values can never become negative, store it as an
unsigned 16-bit integer. For floating point types, if you know you will not need a precision
of more than 6 significant digits, use the 32-bit floating point type. For more on the range
(for integers) and precision (for floats), see Section 4.5 [Numeric data types], page 277.
 	

There is a price to be paid for this improved efficiency in integers: your wisdom! If you
have not selected your types wisely, strange situations may happen. For example, try the
command below:

$ astarithmetic 125 10 +

You expect the output to be 135, but it will be−121! The reason is that when Arithmetic (or
column-arithmetic in Table) confronts a number on the command-line, it use the principles
above to select the most efficient type for each number. Both 125 and 10 can safely fit within
a signed, 8-bit integer type, so arithmetic will store both as an 8-bit integer. However, the
sum (135) is larger than the maximum possible value of an 8-bit signed integer (127).
Therefore an integer overflow will occur, and the bits will be over-written. As a result, the
value will be 135 − 128 = 7 more than the minimum value of this type (−128), which is
−128 + 7 = −121.

When you know situations like this may occur, you can simply use Section 6.2.4.15
[Numerical type conversion operators], page 442, to set just one of the inputs to a wider
data type (the smallest, wider type to avoid wasting resources). In the example above, this
would be uint16:

$ astarithmetic 125 uint16 10 +

The reason this worked is that 125 is now converted into an unsigned 16-bit integer before
the + operator. Since this is larger than an 8-bit integer, the C programming language’s
automatic type conversion will treat both as the wider type and store the result of the
binary operation (+) in that type.

For such a basic operation like the command above, a faster hack would be any of the
two commands below (which are equivalent). This is because 125.0 or 125. are interpreted
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as floating-point types and they do not suffer from such issues (converting only on one input
is enough):

$ astarithmetic 125. 10 +

$ astarithmetic 125.0 10 +

For this particular command, the fix above will be as fast as the uint16 solution. This is
because there are only two numbers, and the overhead of Arithmetic (reading configuration
files, etc.) dominates the running time. However, for large datasets, the uint16 solution
will be faster (as you saw above), Arithmetic will consume less RAM while running, and
the output will consume less storage in your system (all major benefits)!

It is possible to do internal checks in Gnuastro and catch integer overflows and correct
them internally. However, we have not opted for this solution because all those checks will
consume significant resources and slow down the program (especially with large datasets
where RAM, storage and running time become important). To be optimal, we therefore
trust that you (the wise Gnuastro user!) make the appropriate type conversion in your com-
mands where necessary (recall that the operators are available in Section 6.2.4.15 [Numerical
type conversion operators], page 442).

6.2.3 Noise basics

Deep astronomical images, like those used in extragalactic studies, seriously suffer from
noise in the data. Generally speaking, the sources of noise in an astronomical image are
photon counting noise and Instrumental noise which are discussed in Section 6.2.3.1 [Photon
counting noise], page 403, and Section 6.2.3.2 [Instrumental noise], page 405. This review
finishes with Section 6.2.3.4 [Generating random numbers], page 406, which is a short in-
troduction on how random numbers are generated. We will see that while software random
number generators are not perfect, they allow us to obtain a reproducible series of random
numbers through setting the random number generator function and seed value. Therefore
in this section, we will also discuss how you can set these two parameters in Gnuastro’s pro-
grams (including the arithmetic operators in Section 6.2.4.16 [Random number generators],
page 443).

6.2.3.1 Photon counting noise

With the very accurate electronics used in today’s detectors, photon counting noise5 is the
most significant source of uncertainty in most datasets. To understand this noise (error in
counting) and its effect on the images of astronomical targets, let’s start by reviewing how
a distribution produced by counting can be modeled as a parametric function.

Counting is an inherently discrete operation, which can only produce positive integer out-
puts (including zero). For example, we cannot count 3.2 or −2 of anything. We only count 0,
1, 2, 3 and so on. The distribution of values, as a result of counting efforts is formally known
as the Poisson distribution (https://en.wikipedia.org/wiki/Poisson_distribution).
It is associated to Siméon Denis Poisson, because he discussed it while working on the
number of wrongful convictions in court cases in his 1837 book6.

5 In practice, we are actually counting the electrons that are produced by each photon, not the actual
photons.

6 [From Wikipedia] Poisson’s result was also derived in a previous study by Abraham de Moivre in 1711.
Therefore some people suggest it should rightly be called the de Moivre distribution.

https://en.wikipedia.org/wiki/Poisson_distribution
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Let’s take λ to represent the expected mean count of something. Furthermore, let’s
take k to represent the output of a counting attempt (hence k is a positive integer). The
probability density function of getting k counts (in each attempt, given the expected/mean
count of λ) can be written as:

f(k) =
λk

k!
e−λ, k ∈ {0, 1, 2, 3, . . .}

Because the Poisson distribution is only applicable to positive integer values (note the
factorial operator, which only applies to non-negative integers), naturally it is very skewed
when λ is near zero. One qualitative way to understand this behavior is that for smaller
values near zero, there simply are not enough integers smaller than the mean, than integers
that are larger. Therefore to accommodate all possibilities/counts, it has to be strongly
skewed to the positive when the mean is small. For more on Skewness, see Section 2.2.3
[Skewness caused by signal and its measurement], page 89.

As λ becomes larger, the distribution becomes more and more symmetric, and the
variance of that distribution is equal to its mean. In other words, the standard devia-
tion is the square root of the mean. It can also be proved that when the mean is large,
say λ > 1000, the Poisson distribution approaches the Normal (Gaussian) distribution
(https://en.wikipedia.org/wiki/Normal_distribution) with mean µ = λ and stan-
dard deviation σ =

√
λ. In other words, a Poisson distribution (with a sufficiently large λ)

is simply a Gaussian that has one free parameter (µ = λ and σ =
√
λ), instead of the two

parameters that the Gaussian distribution originally has (independent µ and σ).

In real situations, the photons/flux from our targets are combined with photons from
a certain background (observationally, the Sky value). The Sky value is defined to be the
average flux of a region in the dataset with no targets. Its physical origin can be the
brightness of the atmosphere (for ground-based instruments), possible stray light within
the imaging instrument, the average flux of undetected targets, etc. The Sky value is thus
an ideal definition, because in real datasets, what lies deep in the noise (far lower than the
detection limit) is never known7. To account for all of these, the sky value is defined to be
the average count/value of the undetected regions in the image. In a mock image/dataset,
we have the luxury of setting the background (Sky) value.

In summary, the value in each element of the dataset (pixel in an image) is the sum
of contributions from various galaxies and stars (after convolution by the PSF, see Sec-
tion 8.1.1.2 [Point spread function], page 631). Let’s name the convolved sum of possibly
overlapping objects in each pixel as Inn. nn represents ‘no noise’. For now, let’s assume the
background (B) is constant and sufficiently high for the Poisson distribution to be approx-
imated by a Gaussian. Then the flux of that pixel, after adding noise, is a random value
taken from a Gaussian distribution with the following mean (µ) and standard deviation (σ):

µ = B + Inn, σ =
√
B + Inn

7 In a real image, a relatively large number of very faint objects can be fully buried in the noise and never
detected. These undetected objects will bias the background measurement to slightly larger values. Our
best approximation is thus to simply assume they are uniform, and consider their average effect. See
Figure 1 (a.1 and a.2) and Section 2.2 in Akhlaghi and Ichikawa 2015 (https://arxiv.org/abs/1505.
01664).

https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Normal_distribution
https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1505.01664
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In astronomical instruments, B is enhanced by adding a “bias” level to each pixel before
the shutter is even opened (for the exposure to start). As the exposure is ongoing and
photo-electrons are accumulating from the astronomical objects, a “dark” current (due to
thermal radiation of the instrument) also builds up in the pixels. The “dark” current will
accumulate even when the shutter is closed, but the CCD electronics are working (hence the
name “dark”). This added dark level further enhances the mean value in a real observation
compared to the raw background value (from the atmosphere for example).

Since this type of noise is inherent in the objects we study, it is usually measured on
the same scale as the astronomical objects, namely the magnitude system, see Section 7.4.2
[Brightness, Flux, Magnitude and Surface brightness], page 574. It is then internally con-
verted to the flux scale for further processing.

The equations above clearly show the importance of the background value and its effect
on the final signal to noise ratio in each pixel of a science image. It is therefore, one of the
most important factors in understanding the noise (and properly simulating observations
where necessary). An inappropriately bright background value can hide the signal of the
mock profile hide behind the noise. In other words, a brighter background has larger
standard deviation and vice versa. As a result, the only necessary parameter to define
photon-counting noise over a mock image of simulated profiles is the background. For a
complete example, see Section 2.4 [Sufi simulates a detection], page 124.

To better understand the correlation between the mean (or background) value and the
noise standard deviation, let’s use an analogy. Consider the profile of your galaxy to be
analogous to the profile of a ship that is sailing in the sea. The height of the ship would
therefore be analogous to the maximum flux difference between your galaxy’s minimum and
maximum values. Furthermore, let’s take the depth of the sea to represent the background
value: a deeper sea, corresponds to a brighter background. In this analogy, the “noise”
would be the height of the waves that surround the ship: in deeper waters, the waves would
also be taller (the square root of the mean depth at the ship’s position).

If the ship is in deep waters, the height of waves are greater than when the ship is near
to the beach (at lower depths). Therefore, when the ship is in the middle of the sea, there
are high waves that are capable of hiding a significant part of the ship from our perspective.
This corresponds to a brighter background value in astronomical images: the resulting noise
from that brighter background can completely wash out the signal from a fainter galaxy,
star or solar system object.

6.2.3.2 Instrumental noise

While taking images with a camera, a bias current is fed to the pixels, the variation of the
value of this bias current over the pixels, also adds to the final image noise. Another source
of noise is the readout noise that is produced by the electronics in the detector. Specifically,
the parts that attempt to digitize the voltage produced by the photo-electrons in the analog
to digital converter. With the current generation of instruments, this source of noise is not
as significant as the noise due to the background Sky discussed in Section 6.2.3.1 [Photon
counting noise], page 403.

Let C represent the combined standard deviation of all these instrumental sources of
noise. When only this source of noise is present, the noised pixel value would be a random
value chosen from a Gaussian distribution with
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µ = Inn, σ =
√
C2 + Inn

This type of noise is independent of the signal in the dataset, it is only determined by
the instrument. So the flux scale (and not magnitude scale) is most commonly used for this
type of noise. In practice, this value is usually reported in analog-to-digital units or ADUs,
not flux or electron counts. The gain value of the device can be used to convert between
these two, see Section 7.4.2 [Brightness, Flux, Magnitude and Surface brightness], page 574.

6.2.3.3 Final noised pixel value

Based on the discussions in Section 6.2.3.1 [Photon counting noise], page 403, and Sec-
tion 6.2.3.2 [Instrumental noise], page 405, depending on the values you specify for B and
C from the above, the final noised value for each pixel is a random value chosen from a
Gaussian distribution with

µ = B + Inn, σ =
√
C2 +B + Inn

6.2.3.4 Generating random numbers

As discussed above, to generate noise we need to make random samples of a particular dis-
tribution. So it is important to understand some general concepts regarding the generation
of random numbers. For a very complete and nice introduction we strongly advise reading
Donald Knuth’s “The art of computer programming”, volume 2, chapter 38. Quoting from
the GNU Scientific Library manual, “If you do not own it, you should stop reading right
now, run to the nearest bookstore, and buy it”9!

Using only software, we can only produce what is called a psuedo-random sequence of
numbers. A true random number generator is a hardware (let’s assume we have made sure it
has no systematic biases), for example, throwing dice or flipping coins (which have remained
from the ancient times). More modern hardware methods use atmospheric noise, thermal
noise or other types of external electromagnetic or quantum phenomena. All pseudo-random
number generators (software) require a seed to be the basis of the generation. The advantage
of having a seed is that if you specify the same seed for multiple runs, you will get an identical
sequence of random numbers which allows you to reproduce the same final noised image.

The programs in GNU Astronomy Utilities (for example, MakeNoise or MakeProfiles)
use the GNU Scientific Library (GSL) to generate random numbers. GSL allows the user
to set the random number generator through environment variables, see Section 3.3.1.2
[Installation directory], page 233, for an introduction to environment variables. In the
chapter titled “Random Number Generation” they have fully explained the various random
number generators that are available (there are a lot of them!). Through the two environ-
ment variables GSL_RNG_TYPE and GSL_RNG_SEED you can specify the generator and its seed
respectively.

8 Knuth, Donald. 1998. The art of computer programming. Addison–Wesley. ISBN 0-201-89684-2
9 For students, running to the library might be more affordable!
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If you do not specify a value for GSL_RNG_TYPE, GSL will use its default random number
generator type. The default type is sufficient for most general applications. If no value is
given for the GSL_RNG_SEED environment variable and you have asked Gnuastro to read the
seed from the environment (through the --envseed option), then GSL will use the default
value of each generator to give identical outputs. If you do not explicitly tell Gnuastro
programs to read the seed value from the environment variable, then they will use the
system time (accurate to within a microsecond) to generate (apparently random) seeds.
In this manner, every time you run the program, you will get a different random number
distribution.

There are two ways you can specify values for these environment variables. You can call
them on the same command-line for example:

$ GSL_RNG_TYPE="taus" GSL_RNG_SEED=345 astarithmetic input.fits \

mknoise-sigma \

--envseed

In this manner the values will only be used for this particular execution of Arithmetic.
However, it makes your code hard to read! Alternatively, you can define them for the full
period of your terminal session or script, using the shell’s export command with the two
separate commands below (for a script remove the $ signs):

$ export GSL_RNG_TYPE="taus"

$ export GSL_RNG_SEED=345

The subsequent programs which use GSL’s random number generators will hence forth use
these values in this session of the terminal you are running or while executing this script.
In case you want to set fixed values for these parameters every time you use the GSL
random number generator, you can add these two lines to your .bashrc startup script10,
see Section 3.3.1.2 [Installation directory], page 233.

IMPORTANT NOTE: If the two environment variables GSL_RNG_TYPE and GSL_RNG_

SEED are defined, GSL will report them by default, even if you do not use the --envseed

option. For example, see this call to MakeProfiles:

$ export GSL_RNG_TYPE=taus

$ export GSL_RNG_SEED=345

$ astmkprof -s1 --kernel=gaussian,2,5

GSL_RNG_TYPE=taus

GSL_RNG_SEED=345

MakeProfiles V.VV started on DDD MMM DDD HH:MM:SS YYYY

- Building one gaussian kernel

- Random number generator (RNG) type: taus

- Basic RNG seed: 1618960836

---- ./kernel.fits created.

-- Output: ./kernel.fits

MakeProfiles finished in 0.068945 seconds

10 Do not forget that if you are going to give your scripts (that use the GSL random number generator)
to others you have to make sure you also tell them to set these environment variable separately. So
for scripts, it is best to keep all such variable definitions within the script, even if they are within your
.bashrc.
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The first two output lines (showing the names and values of the GSL environment vari-
ables) are printed by GSL before MakeProfiles actually starts generating random numbers.
Gnuastro’s programs will report the actual values they use independently (after the name
of the program), you should check them for the final values used, not GSL’s printed val-
ues. In the example above, did you notice how the random number generator seed above is
different between GSL and MakeProfiles? However, if --envseed was given, both printed
seeds would be the same.

6.2.4 Arithmetic operators

In this section, list of recognized operators in Arithmetic (and the Table program’s Sec-
tion 5.3.3 [Column arithmetic], page 346) and discussed in detail with examples. As men-
tioned before, to be able to easily do complex operations on the command-line, the Reverse
Polish Notation is used (where you write ‘4 5 +’ instead of ‘4 + 5’), if you are not al-
ready familiar with it, before continuing, please see Section 6.2.1 [Reverse polish notation],
page 399.

The operands to all operators can be a data array (for example, a FITS image or data
cube) or a number, the output will be an array or number according to the inputs. For
example, a number multiplied by an array will produce an array. The numerical data type
of the output of each operator is described within it. Here are some generic tips and tricks
(relevant to all operators):

Multiple operators in one command
When you need to use arithmetic commands in several consecutive operations,
you can use one command instead of multiple commands and perform all cal-
culations in the same command. For example, assume you want to apply a
threshold of 10 on your image, and label the connected groups of pixel above
this threshold. You need two operators for this: gt (for “greater than”, see
Section 6.2.4.12 [Conditional operators], page 436) and connected-components

(see Section 6.2.4.13 [Mathematical morphology operators], page 438). The bad
(non-optimized and slow) way of doing this is to call Arithmetic two times:

$ astarithmetic image.fits 10 gt --output=thresh.fits

$ astarithmetic thresh.fits 2 connected-components \

--output=labeled.fits

$ rm thresh.fits

The good (optimal) way is to call them after each other (remember Section 6.2.1
[Reverse polish notation], page 399):

$ astarithmetic image.fits 10 gt 2 connected-components \

--output=labeled.fits

You can similarly add any number of operations that must be done sequentially
in a single command and benefit from the speed and lack of intermediate files.
When your commands become long, you can use the set-AAA operator to make
it more readable, see Section 6.2.4.21 [Operand storage in memory or a file],
page 462.

Blank pixels in Arithmetic
Blank pixels in the image (see Section 6.1.3 [Blank pixels], page 388) will be
stored based on the data type. When the input is floating point type, blank
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values are NaN. One aspect of NaN values is that by definition they will fail
on any comparison. Also, any operator that includes a NaN as a an operand
will produce a NaN (irrespective of its other operands). Hence both equal and
not-equal operators will fail when both their operands are NaN! Therefore, the
only way to guarantee selection of blank pixels is through the isblank operator
explained above.

One way you can exploit this property of the NaN value to your advantage is
when you want a fully zero-valued image (even over the blank pixels) based
on an already existing image (with same size and world coordinate system
settings). The following command will produce this for you:

$ astarithmetic input.fits nan eq --output=all-zeros.fits

Note that on the command-line you can write NaN in any case (for example,
NaN, or NAN are also acceptable). Reading NaN as a floating point number in
Gnuastro is not case-sensitive.

6.2.4.1 Basic mathematical operators

These are some of the most common operations you will be doing on your data and include,
so no further explanation is necessary. If you are new to Gnuastro, just read the description
of each carefully.

+ Addition, so “4 5 +” is equivalent to 4+5. For example, in the command below,
the value 20000 is added to each pixel’s value in image.fits:

$ astarithmetic 20000 image.fits +

You can also use this operator to sum the values of one pixel in two images
(which have to be the same size). For example, in the commands below (which
are identical, see paragraph after the commands), each pixel of sum.fits is the
sum of the same pixel’s values in a.fits and b.fits.

$ astarithmetic a.fits b.fits + -h1 -h1 --output=sum.fits

$ astarithmetic a.fits b.fits + -g1 --output=sum.fits

The HDU/extension has to be specified for each image with -h. However, if the
HDUs are the same in all inputs, you can use -g to only specify the HDU once

If you need to add more than one dataset, one way is to use this operator
multiple times, for example, see the two commands below that are identical in
the Reverse Polish Notation (Section 6.2.1 [Reverse polish notation], page 399):

$ astarithmetic a.fits b.fits + c.fits + -osum.fits

$ astarithmetic a.fits b.fits c.fits + + -osum.fits

However, this can get annoying/buggy if you have more than three or four
images, in that case, a better way to sum data is to use the sum operator
(which also ignores blank pixels), that is discussed in Section 6.2.4.7 [Stacking
operators], page 421.
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� �
NaN values: if a single argument of + has a NaN value, the output will also be
NaN. To ignore NaN values, use the sum operator of Section 6.2.4.7 [Stacking
operators], page 421. You can see the difference with the two commands
below:

$ astarithmetic --quiet 1.0 2.0 3.0 nan + + +

nan

$ astarithmetic --quiet 1.0 2.0 3.0 nan 4 sum

6.000000e+00

The same goes for all the Section 6.2.4.7 [Stacking operators], page 421, so if
your data may include NaN pixels, be sure to use the stacking operators.
 	

- Subtraction, so “4 5 -” is equivalent to 4− 5. Usage of this operator is similar
to + operator, for example:

$ astarithmetic 20000 image.fits -

$ astarithmetic a.fits b.fits - -g1 --output=sub.fits

x Multiplication, so “4 5 x” is equivalent to 4× 5. For example, in the command
below, the value of each output pixel is 5 times its value in image.fits:

$ astarithmetic image.fits 5 x

And you can multiply the value of each pixel in two images, like this:

$ astarithmetic a.fits a.fits x -g1 --output=multip.fits

/ Division, so “4 5 /” is equivalent to 4/5. Like the multiplication, for example

$ astarithmetic image.fits 5 -h1 /

$ astarithmetic a.fits b.fits / -g1 --output=div.fits

% Modulo (remainder), so “3 2 %” will return 1. Note that the modulo operator
only works on integer types (see Section 4.5 [Numeric data types], page 277).
This operator is therefore not defined for most processed astronomical astro-
nomical images that have floating-point value. However it is useful in labeled
images, for example, Section 7.3.1.3 [Segment output], page 570). In such cases,
each pixel is the integer label of the object it is associated with hence with the
example command below, we can change the labels to only be between 1 and 4
and decrease all objects on the image to 4/5th (all objects with a label that is
a multiple of 5 will be set to 0).

$ astarithmetic label.fits 5 1 %

abs Absolute value of first operand, so “4 abs” is equivalent to |4|. For example, the
output of the command bellow will not have any negative pixels (all negative
pixels will be multiplied by −1 to become positive)

$ astarithmetic image.fits abs

pow First operand to the power of the second, so “4.3 5 pow” is equivalent to 4.35.
For example, with the command below all pixels will be squared

$ astarithmetic image.fits 2 pow
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sqrt The square root of the first operand, so “5 sqrt” is equivalent to
√
5. Since

the square root is only defined for positive values, any negative-valued pixel
will become NaN (blank). The output will have a floating point type, but its
precision is determined from the input: if the input is a 64-bit floating point, the
output will also be 64-bit. Otherwise, the output will be 32-bit floating point
(see Section 4.5 [Numeric data types], page 277, for the respective precision).
Therefore if you require 64-bit precision in estimating the square root, convert
the input to 64-bit floating point first, for example, with 5 float64 sqrt. For
example, each pixel of the output of the command below will be the square root
of that pixel in the input.

$ astarithmetic image.fits sqrt

If you just want to scale an image with negative values using this operator (for
better visual inspection, and the actual values do not matter for you), you can
subtract the image from its minimum value, then take its square root:

$ astarithmetic image.fits image.fits minvalue - sqrt -g1

Alternatively, to avoid reading the image into memory two times, you can use
the set- operator to read it into the variable i and use i two times to speed
up the operation (described below):

$ astarithmetic image.fits set-i i i minvalue - sqrt

log Natural logarithm of first operand, so “4 log” is equivalent to ln(4). Negative
pixels will become NaN, and the output type is determined from the input,
see the explanation under sqrt for more on these features. For example, the
command below will take the natural logarithm of every pixel in the input.

$ astarithmetic image.fits log --output=log.fits

log10 Base-10 logarithm of first popped operand, so “4 log” is equivalent to log10(4).
Negative pixels will become NaN, and the output type is determined from the
input, see the explanation under sqrt for more on these features. For example,
the command below will take the base-10 logarithm of every pixel in the input.

$ astarithmetic image.fits log10

6.2.4.2 Trigonometric and hyperbolic operators

All the trigonometric and hyperbolic functions are described here. One good thing with
these operators is that they take inputs and outputs in degrees (which we usually need as
input or output), not radians (like most other programs/libraries).

sin

cos

tan Basic trigonometric functions. They take one operand, in units of degrees.

asin

acos

atan Inverse trigonometric functions. They take one operand and the returned values
are in units of degrees.

atan2 Inverse tangent (output in units of degrees) that uses the signs of the input
coordinates to distinguish between the quadrants. This operator therefore needs
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two operands: the first popped operand is assumed to be the X axis position
of the point, and the second popped operand is its Y axis coordinate.

For example, see the commands below. To be more clear, we are using Table’s
Section 5.3.3 [Column arithmetic], page 346, which uses exactly the same in-
ternal library function as the Arithmetic program for images. We are showing
the results for four points in the four quadrants of the 2D space (if you want to
try running them, you do not need to type/copy the parts after #). The first
point (2,2) is in the first quadrant, therefore the returned angle is 45 degrees.
But the second, third and fourth points are in the quadrants of the same order,
and the returned angles reflect the quadrant.

$ echo " 2 2" | asttable -c'arith $2 $1 atan2' # --> 45

$ echo " 2 -2" | asttable -c'arith $2 $1 atan2' # --> -45

$ echo "-2 -2" | asttable -c'arith $2 $1 atan2' # --> -135

$ echo "-2 2" | asttable -c'arith $2 $1 atan2' # --> 135

However, if you simply use the classic arc-tangent operator (atan) for the same
points, the result will only be in two quadrants as you see below:

$ echo " 2 2" | asttable -c'arith $2 $1 / atan' # --> 45

$ echo " 2 -2" | asttable -c'arith $2 $1 / atan' # --> -45

$ echo "-2 -2" | asttable -c'arith $2 $1 / atan' # --> 45

$ echo "-2 2" | asttable -c'arith $2 $1 / atan' # --> -45

sinh

cosh

tanh Hyperbolic sine, cosine, and tangent. These operators take a single operand.

asinh

acosh

atanh Inverse Hyperbolic sine, cosine, and tangent. These operators take a single
operand.

6.2.4.3 Constants

During your analysis it is often necessary to have certain constants like the number π. The
“operators” in this section do not actually take any operand, they just replace the desired
constant into the stack. So in effect, these are actually operands. But since their value is
not inserted by the user, we have placed them in the list of operators.

e Euler’s number, or the base of the natural logarithm (no units). See Wikipedia
(https://en.wikipedia.org/wiki/E_(mathematical_constant)).

pi Ratio of circle’s circumference to its diameter (no units). See Wikipedia
(https://en.wikipedia.org/wiki/Pi).

c The speed of light in vacuum, in units of m/s. see Wikipedia (https://en.
wikipedia.org/wiki/Speed_of_light).

G The gravitational constant, in units of m3/kg/s2. See Wikipedia (https://en.
wikipedia.org/wiki/Gravitational_constant).

h Plank’s constant, in units of J/Hz or kg×m2/s. See Wikipedia (https://en.
wikipedia.org/wiki/Planck_constant).

https://en.wikipedia.org/wiki/E_(mathematical_constant)
https://en.wikipedia.org/wiki/E_(mathematical_constant)
https://en.wikipedia.org/wiki/Pi
https://en.wikipedia.org/wiki/Pi
https://en.wikipedia.org/wiki/Speed_of_light
https://en.wikipedia.org/wiki/Speed_of_light
https://en.wikipedia.org/wiki/Gravitational_constant
https://en.wikipedia.org/wiki/Gravitational_constant
https://en.wikipedia.org/wiki/Planck_constant
https://en.wikipedia.org/wiki/Planck_constant
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au Astronomical Unit, in units of meters. See Wikipedia (https://en.
wikipedia.org/wiki/Astronomical_unit).

ly Distance covered by light in vacuum in one year, in units of meters. See
Wikipedia (https://en.wikipedia.org/wiki/Light-year).

avogadro Avogadro’s constant, in units of 1/mol. See Wikipedia (https://en.
wikipedia.org/wiki/Avogadro_constant).

fine-structure

The fine-structure constant (no units). See Wikipedia (https://en.
wikipedia.org/wiki/Fine-structure_constant).

6.2.4.4 Coordinate conversion operators

Different celestial coordinate systems are useful for different scenarios. For example, as-
sume you have the RA and Dec of large sample of galaxies that you plan to study the
halos of galaxies from. For such studies, you prefer to stay as far away as possible from the
Galactic plane, because the density of stars and interstellar filaments (cirrus) significantly
increases as you get close to the Milky way’s disk. But the Equatorial coordinate sys-
tem (https://en.wikipedia.org/wiki/Equatorial_coordinate_system) which defines
the RA and Dec and is based on Earth’s equator; and does not show the position of your
objects in relation to the galactic disk.

The best way forward in the example above is to convert your RA and Dec
table into the Galactic coordinate system (https://en.wikipedia.org/wiki/
Galactic_coordinate_system); and select those with a large (positive or negative)
Galactic latitude. Alternatively, if you observe a bright point on a galaxy and want to
confirm if it was actually a super-nova and not a moving asteroid, a first step is to convert
your RA and Dec to the Ecliptic coordinate system (https://en.wikipedia.org/wiki/
Ecliptic_coordinate_system) and confirm if you are sufficiently distant from the ecliptic
(plane of the Solar System; where fast moving objects are most common).

The operators described in this section are precisely for the purpose above: to convert
various celestial coordinate systems that are supported within Gnuastro into each other. For
example, if you want to convert the RA and Dec equatorial (at the Julian year 2000 equinox)
coordinates (within the RA and DEC columns) of points.fits into Galactic longitude and
latitude, you can use the command below (the column metadata are not mandatory, but to
avoid later confusion, it is always good to have them in your output.

$ asttable points.fits -c'arith RA DEC eq-j2000-to-galactic' \

--colmetadata=1,GLON,deg,"Galactic longitude" \

--colmetadata=2,GLAT,deg,"Galactic latitude" \

--output=points-gal.fits

One important thing to consider is that the equatorial and ecliptic coordinates are not
static: they include the dynamics of Earth in the solar system: in particular, the reference
point on the equator moves over decades. Therefore these two (equatorial and ecliptic)
coordinate systems are defined within epochs: the 1950 epoch is defined by Besselian
years (https://en.wikipedia.org/wiki/Epoch_(astronomy)#Besselian_years),
while the 2000 epoch is defined in Julian years (https://en.wikipedia.org/wiki/
Epoch_(astronomy)#Julian_years_and_J2000). So when dealing with these coordinates
one of the ‘-b1950’ or ‘-j2000’ suffixes are necessary (for example eq-j2000 or ec-b1950).

https://en.wikipedia.org/wiki/Astronomical_unit
https://en.wikipedia.org/wiki/Astronomical_unit
https://en.wikipedia.org/wiki/Light-year
https://en.wikipedia.org/wiki/Avogadro_constant
https://en.wikipedia.org/wiki/Avogadro_constant
https://en.wikipedia.org/wiki/Fine-structure_constant
https://en.wikipedia.org/wiki/Fine-structure_constant
https://en.wikipedia.org/wiki/Equatorial_coordinate_system
https://en.wikipedia.org/wiki/Equatorial_coordinate_system
https://en.wikipedia.org/wiki/Galactic_coordinate_system
https://en.wikipedia.org/wiki/Galactic_coordinate_system
https://en.wikipedia.org/wiki/Ecliptic_coordinate_system
https://en.wikipedia.org/wiki/Ecliptic_coordinate_system
https://en.wikipedia.org/wiki/Epoch_(astronomy)#Besselian_years
https://en.wikipedia.org/wiki/Epoch_(astronomy)#Besselian_years
https://en.wikipedia.org/wiki/Epoch_(astronomy)#Julian_years_and_J2000
https://en.wikipedia.org/wiki/Epoch_(astronomy)#Julian_years_and_J2000
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The Galactic or Supergalactic coordinates are not defined based on the Earth’s dynamics;
therefore they do not have any epoch associated with them. Extra-galactic studies do not
depend on the dynamics of the earth, but the equatorial coordinate system is the most dom-
inant in that field. Therefore in its 23rd General Assembly, the International Astronomical
Union approved the International Celestial Reference System (https://en.wikipedia.
org/wiki/International_Celestial_Reference_System_and_its_realizations) or
ICRS based on quasars (which are static within our observational limitations)viewed
through long baseline radio interferometry (the most accurate method of observation that
we currently have). ICRS is designed to be within the errors of the Equatorial J2000
coordinate system, so they are currently very similar; but ICRS has much better accuracy.
We will be adding ICRS in the operators below soon.

Floating point errors: The operation to convert between the coordinate systems involves
many sines, cosines (and their inverse). Therefore, floating point errors (due to the limited
precision of the definition of floating points in bits) can cause small offsets. For example see
the code below were we convert equatorial to galactic and back, then compare the input and
output (which is in the 5th and 6th decimal of a degree; or about 0.2 or 0.01 arcseconds).

$ sys1=eq-j2000

$ sys2=galactic

$ echo "10.2345689 45.6789012" \

| asttable -Afixed -B8 \

-c'arith $1 $2 '$sys1'-to-'$sys2' \

'$sys2'-to-'$sys1' set-lat set-lng \

lng $1 - lat $2 -'

0.00000363 -0.00007725

If you set sys2=ec-j2000 or sys2=supergalactic, it will be zero until the full set of 8
decimals that are printed here (the displayed precision can be changed with the value of the
-B option above). It is therefore useful to have your original coordinates (in the same table
for example) and not do too many conversions on conversions (to propagate this problem).

eq-b1950-to-eq-j2000

eq-b1950-to-ec-b1950

eq-b1950-to-ec-j2000

eq-b1950-to-galactic

eq-b1950-to-supergalactic

Convert Equatorial (B1950 equinox) coordinates into the respective coordinate
system within each operator’s name.

eq-j2000-to-eq-b1950

eq-j2000-to-ec-b1950

eq-j2000-to-ec-j2000

eq-j2000-to-galactic

eq-j2000-to-supergalactic

Convert Equatorial (J2000 equinox) coordinates into the respective coordinate
system within each operator’s name.

https://en.wikipedia.org/wiki/International_Celestial_Reference_System_and_its_realizations
https://en.wikipedia.org/wiki/International_Celestial_Reference_System_and_its_realizations
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ec-b1950-to-eq-b1950

ec-b1950-to-eq-j2000

ec-b1950-to-ec-j2000

ec-b1950-to-galactic

ec-b1950-to-supergalactic

Convert Ecliptic (B1950 equinox) coordinates into the respective coordinate
system within each operator’s name.

ec-j2000-to-eq-b1950

ec-j2000-to-eq-j2000

ec-j2000-to-ec-b1950

ec-j2000-to-galactic

ec-j2000-to-supergalactic

Convert Ecliptic (J2000 equinox) coordinates into the respective coordinate
system within each operator’s name.

galactic-to-eq-b1950

galactic-to-eq-j2000

galactic-to-ec-b1950

galactic-to-ec-j2000

galactic-to-supergalactic

Convert Galactic coordinates into the respective coordinate system within each
operator’s name.

supergalactic-to-eq-b1950

supergalactic-to-eq-j2000

supergalactic-to-ec-b1950

supergalactic-to-ec-j2000

supergalactic-to-galactic

Convert Supergalactic coordinates into the respective coordinate system within
each operator’s name.

6.2.4.5 Unit conversion operators

It often happens that you have data in one unit (for example, counts on your CCD), but
would like to convert it into another (for example, magnitudes, to measure the brightness of
a galaxy). While the equations for the unit conversions can be easily found on the internet,
the operators in this section are designed to simplify the process and let you do it easily
and fast without having to remember constants and relations.

counts-to-mag

Convert counts (usually CCD outputs) to magnitudes using the given zero
point. The zero point is the first popped operand and the count image or value
is the second popped operand.

For example, assume you have measured the standard deviation of the noise in
an image to be 0.1 counts, and the image’s zero point is 22.5 and you want to
measure the per-pixel surface brightness limit of the dataset11. To apply this

11 The per-pixel surface brightness limit is the magnitude of the noise standard deviation. For more on
surface brightness see Section 7.4.2 [Brightness, Flux, Magnitude and Surface brightness], page 574. In
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operator on an image, simply replace 0.1 with the image name, as described
below.

$ astarithmetic 0.1 22.5 counts-to-mag --quiet

Of course, you can also convert every pixel in an image (or table column in Ta-
ble’s Section 5.3.3 [Column arithmetic], page 346) with this operator if you re-
place the second popped operand with an image/column name. For an example
of applying this operator on an image, see the description of surface brightness
in Section 7.4.2 [Brightness, Flux, Magnitude and Surface brightness], page 574,
where we will convert an image’s pixel values to surface brightness.

mag-to-counts

Convert magnitudes to counts (usually CCD outputs) using the given zero
point. The zero point is the first popped operand and the magnitude value is
the second. For example, if an object has a magnitude of 20, you can estimate
the counts corresponding to it (when the image has a zero point of 24.8) with
this command: Note that because the output is a single number, we are using
--quiet to avoid printing extra information.

$ astarithmetic 20 24.8 mag-to-counts --quiet

counts-to-sb

Convert counts to surface brightness using the zero point and area (in units of
arcsec2). The first popped operand is the area (in arcsec2), the second popped
operand is the zero point and the third are the count values. Estimating the
surface brightness involves taking the logarithm. Therefore this operator will
produce NaN for counts with a negative value.

For example, with the commands below, we read the zero point from the image
headers (assuming it is in the ZPOINT keyword), we calculate the pixel area
from the image itself, and we call this operator to convert the image pixels (in
counts) to surface brightness (mag/arcsec2).

$ zeropoint=$(astfits image.fits --keyvalue=ZPOINT -q)

$ pixarea=$(astfits image.fits --pixelareaarcsec2)

$ astarithmetic image.fits $zeropoint $pixarea counts-to-sb \

--output=image-sb.fits

For more on the definition of surface brightness see Section 7.4.2 [Brightness,
Flux, Magnitude and Surface brightness], page 574, and for a fully tutorial on
optimal usage of this, see Section 2.1.20 [FITS images in a publication], page 66.

sb-to-counts

Convert surface brightness using the zero point and area (in units of arcsec2) to
counts. The first popped operand is the area (in arcsec2), the second popped
operand is the zero point and the third are the surface brightness values. See
the description of counts-to-sb for more.

the example command, because the output is a single number, we are using --quiet to avoid printing
extra information.
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mag-to-sb

Convert magnitudes to surface brightness over a certain area (in units
of arcsec2). The first popped operand is the area and the second is the
magnitude. For example, let’s assume you have a table with the two columns
of magnitude (called MAG) and area (called AREAARCSEC2). In the command
below, we will use Section 5.3.3 [Column arithmetic], page 346, to return the
surface brightness.

$ asttable table.fits -c'arith MAG AREAARCSEC2 mag-to-sb'

sb-to-mag

Convert surface brightness to magnitudes over a certain area (in units
of arcsec2). The first popped operand is the area and the second is the
magnitude. See the description of mag-to-sb for more.

counts-to-jy

Convert counts (usually CCD outputs) to Janskys through an AB-magnitude
based zero point. The top-popped operand is assumed to be the AB-magnitude
zero point and the second-popped operand is assumed to be a dataset in units
of counts (an image in Arithmetic, and a column in Table’s Section 5.3.3 [Col-
umn arithmetic], page 346). For the full equation and basic definitions, see
Section 7.4.2 [Brightness, Flux, Magnitude and Surface brightness], page 574.

For example, SDSS images are calibrated in units of nanomaggies, with a fixed
zero point magnitude of 22.5. Therefore you can convert the units of SDSS
image pixels to Janskys with the command below:

$ astarithmetic sdss-image.fits 22.5 counts-to-jy

jy-to-counts

Convert Janskys to counts (usually CCD outputs) through an AB-magnitude
based zero point. This is the inverse operation of the counts-to-jy, see there
for usage example.

counts-to-nanomaggy

Convert counts to Nanomaggy (with fixed zero point of 22.5, used as the pixel
units of many surveys like SDSS). For example if your image has a zero point
of 24.93, you can convert it to Nanomaggies with the command below:

$ astarithmetic image.fits 24.93 counts-to-nanomaggy

nanomaggy-to-counts

Convert Nanomaggy to counts. Nanomaggy is defined to have a fixed zero point
of 22.5 and is the pixel units of many surveys like SDSS. For example if you
would like to convert an image in units of Nanomaggy (for example from SDSS)
to the counts of a camera with a zero point of 25.92, you can use the command
below:

$ astarithmetic image.fits 25.92 nanomaggy-to-counts

mag-to-jy

Convert AB magnitudes to Janskys, see Section 7.4.2 [Brightness, Flux, Mag-
nitude and Surface brightness], page 574.
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jy-to-mag

Convert Janskys to AB magnitude, see Section 7.4.2 [Brightness, Flux, Magni-
tude and Surface brightness], page 574.

au-to-pc Convert Astronomical Units (AUs) to Parsecs (PCs). This operator takes a
single argument which is interpreted to be the input AUs. The conversion
is based on the definition of Parsecs: 1PC = 1/tan(1′′)AU, where 1′′ is one
arcseconds. In other words, 1(PC) = 648000/π(AU). For example, if we take
Pluto’s average distance to the Sun to be 40 AUs, we can obtain its distance in
Parsecs using this command:

echo 40 | asttable -c'arith $1 au-to-pc'

pc-to-au Convert Parsecs (PCs) to Astronomical Units (AUs). This operator takes a
single argument which is interpreted to be the input PCs. For more on the con-
version equation, see description of au-to-pc. For example, Proxima Centauri
(the nearest star to the Solar system) is 1.3020 Parsecs from the Sun, we can
calculate this distance in units of AUs with the command below:

echo 1.3020 | asttable -c'arith $1 pc-to-au'

ly-to-pc Convert Light-years (LY) to Parsecs (PCs). This operator takes a single argu-
ment which is interpreted to be the input LYs. The conversion is done from
IAU’s definition of the light-year (9460730472580800 m ≈ 63241.077 AU =
0.306601 PC, for the conversion of AU to PC, see the description of au-to-pc).

For example, the distance of Andromeda galaxy to our galaxy is 2.5 million
light-years, so its distance in kilo-Parsecs can be calculated with the command
below (note that we want the output in kilo-parsecs, so we are dividing the
output of this operator by 1000):

echo 2.5e6 | asttable -c'arith $1 ly-to-pc 1000 /'

pc-to-ly Convert Parsecs (PCs) to Light-years (LY). This operator takes a single ar-
gument which is interpreted to be the input PCs. For the conversion and an
example of the inverse of this operator, see the description of ly-to-pc.

ly-to-au Convert Light-years (LY) to Astronomical Units (AUs). This operator takes a
single argument which is interpreted to be the input LYs. For the conversion
and a similar example, see the description of ly-to-pc.

au-to-ly Convert Astronomical Units (AUs) to Light-years (LY). This operator takes a
single argument which is interpreted to be the input AUs. For the conversion
and a similar example, see the description of ly-to-pc.

6.2.4.6 Statistical operators

The operators in this section take a single dataset as input, and will return the desired
statistic as a single value.

minvalue Minimum value in the first popped operand, so “a.fits minvalue” will push
the minimum pixel value in this image onto the stack. When this operator acts
on a single image, the output (operand that is put back on the stack) will no
longer be an image, but a number. The output of this operand is in the same
type as the input. This operator is mainly intended for multi-element datasets
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(for example, images or data cubes), if the popped operand is a number, it will
just return it without any change.

Note that when the final remaining/output operand is a single number, it is
printed onto the standard output. For example, with the command below the
minimum pixel value in image.fits will be printed in the terminal:

$ astarithmetic image.fits minvalue

However, the output above also includes a lot of extra information that are not
relevant in this context. If you just want the final number, run Arithmetic in
quiet mode:

$ astarithmetic image.fits minvalue -q

Also see the description of sqrt for other example usages of this operator.

maxvalue Maximum value of first operand in the same type, similar to minvalue, see the
description there for more. For example

$ astarithmetic image.fits maxvalue -q

numbervalue

Number of non-blank elements in first operand in the uint64 type (since it is
always a positive integer, see Section 4.5 [Numeric data types], page 277). Its
usage is similar to minvalue, for example

$ astarithmetic image.fits numbervalue -q

sumvalue Sum of non-blank elements in first operand in the float32 type. Its usage is
similar to minvalue, for example

$ astarithmetic image.fits sumvalue -q

meanvalue

Mean value of non-blank elements in first operand in the float32 type. Its
usage is similar to minvalue, for example

$ astarithmetic image.fits meanvalue -q

stdvalue Standard deviation of non-blank elements in first operand in the float32 type.
Its usage is similar to minvalue, for example

$ astarithmetic image.fits stdvalue -q

medianvalue

Median of non-blank elements in first operand with the same type. Its usage is
similar to minvalue, for example

$ astarithmetic image.fits medianvalue -q

madclip-maskfilled

sigclip-maskfilled

Mask (set to blank/NaN) all the outlying elements (defined by σ or MAD
clipping) in the inputs and put all the inputs back on the stack. The first popped
operand is the termination criteria of the clipping, the second popped operand
is the multiple of σ or MAD and the third is the number of input datasets
that will be popped for the actual operation. If you are not yet familiar with
these σ or MAD clipping, it is recommended to read this tutorial: Section 2.10
[Clipping outliers], page 195.
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For example, with the second command below, we are masking the MAD clipped
pixels of the 9 inputs (that are generated in Section 2.10 [Clipping outliers],
page 195) and writing them as separate HDUs of the output. The clipping is
done with 5 times the MAD and the clipping starts when the relative difference
between subsequent MADs is 0.01. Finally, with the third command, we see 10
HDUs in the output (because the first, or 0-th, is just metadata).

$ ls in-*.fits

in-1.fits in-3.fits in-5.fits in-7.fits in-9.fits

in-2.fits in-4.fits in-6.fits in-8.fits

$ astarithmetic in-*.fits 9 5 0.01 madclip-maskfilled \

-g1 --writeall --output=clipped.fits

$ astfits clipped.fits --numhdus

10

In the Arithmetic command above, --writeall is necessary because this oper-
ator puts all its inputs back on the stack of operands. This is because these are
usually just intermediate operators. For example, after masking the outliers
from each input, you may want to stack them into one deeper image (with the
Section 6.2.4.7 [Stacking operators], page 421. After the stacking is done, only
one operand will be on the stack, and --writeall will no longer be necessary.
For example if you want to see how many images were used in the final stack’s
pixels, you can use the number operator like below:

$ astarithmetic in-*.fits 9 5 0.01 madclip-maskfilled \

9 number -g1 --output=num-good.fits

unique Remove all duplicate (and blank) elements from the first popped operand. The
unique elements of the dataset will be stored in a single-dimensional dataset.

Recall that by default, single-dimensional datasets are stored as a table column
in the output. But you can use --onedasimage or --onedonstdout to respec-
tively store them as a single-dimensional FITS array/image, or to print them
on the standard output.

Although you can use this operator on the floating point dataset, due to floating-
point errors it may give non-reasonable values: because the tenth digit of the
decimal point is also considered although it may be statistically meaningless, see
Section 4.5 [Numeric data types], page 277. It is therefore better/recommended
to use it on the integer dataset like the labeled images of Section 7.3.1.3 [Seg-
ment output], page 570, where each pixel has the integer label of the ob-
ject/clump it is associated with. For example, let’s assume you have cropped
a region of a larger labeled image and want to find the labels/objects that are
within the crop. With this operator, this job is trivial:

$ astarithmetic seg-crop.fits unique

noblank Remove all blank elements from the first popped operand. Since the blank
pixels are being removed, the output dataset will always be single-dimensional,
independent of the dimensionality of the input.
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Recall that by default, single-dimensional datasets are stored as a table column
in the output. But you can use --onedasimage or --onedonstdout to respec-
tively store them as a single-dimensional FITS array/image, or to print them
on the standard output.

For example, with the command below, the non-blank pixel values of
cropped.fits are printed on the command-line (the --quiet option is used
to remove the extra information that Arithmetic prints as it reads the inputs,
its version and its running time).

$ astarithmetic cropped.fits noblank --onedonstdout --quiet

6.2.4.7 Stacking operators

The operators in this section are used when you have multiple datasets that you would like
to merge into one, commonly known as “stacking” or “coaddition”. For example, you have
taken ten exposures of your scientific target, and you would like to combine them all into
one deep stacked image that is deeper.� �
Masking outliers (before stacking): Outliers in one of the inputs (for example star ghosts,
satellite trails, or cosmic rays, can leave their inprints in the final stack. One good way to
remove them is the madclip-maskfilled operator that can be called before the operators
here. It is described in Section 6.2.4.6 [Statistical operators], page 418; and a full tuto-
rial on understanding outliers and how best to remove them is available in Section 2.10
[Clipping outliers], page 195.
 	� �
Hundreds or thousands of images to stack: It can happen that you need to stack hundreds
or thousands of images. Added with the possibly long file/directory names, this can lead to
an extremely long shell command that may cause an “Argument list too long” error in your
shell. To avoid this, you should use Arithmetic’s --arguments option, see Section 6.2.5
[Invoking Arithmetic], page 464.
 	

When calling the stacking operators you should determine how many operands they
should take in: unlike the rest of the operators that have a fixed number of input operands,
these operators have a variable number of input operators. As described in the first operand
below, you do this through their first (or early) popped operands (which should be a single
integer number that is larger than one). Below are Some important points for all the
stacking operators described in this section:

• NaN/blank pixels will be ignored, see Section 6.1.3 [Blank pixels], page 388.

• The operation will be multi-threaded, greatly speeding up the process if you have
large and numerous data to stack. You can disable multi-threaded operations with the
--numthreads=1 option (see Section 4.4 [Multi-threaded operations], page 274).
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min

max

sum

std

mad

mean

median

number For each pixel, calculate the respective statistic from in all given datasets. For
the min and max operators, the output will have the same type as the input.
For the number operator, the output will have an unsigned 32-bit integer type
and the rest will be 32-bit floating point.

The first popped operand to this operator must be a positive integer number
which specifies how many further operands should be popped from the stack.
All the subsequently popped operands must have the same type and size. This
operator (and all the variable-operand operators similar to it that are discussed
below) will work in multi-threaded mode unless Arithmetic is called with the
--numthreads=1 option, see Section 4.4 [Multi-threaded operations], page 274.

For example, the following command will produce an image with the same size
and type as the three inputs, but each output pixel value will be the minimum
of the same pixel’s values in all three input images.

$ astarithmetic a.fits b.fits c.fits 3 min --output=min.fits

Regarding the number operator: some datasets may have blank values (which
are also ignored in all similar operators like min, sum, mean or median). Hence,
the final pixel values of this operator will not, in general, be equal to the
number of inputs. This operator is therefore mostly called in parallel with
those operators to know the “weight” of each pixel (in case you want to only
keep pixels that had the full exposure for example).

quantile For each pixel, find the quantile from all given datasets. The output will have
the same numeric data type and size as the input datasets. Besides the input
datasets, the quantile operator also needs a single parameter (the requested
quantile). The parameter should be the first popped operand, with a value
between (and including) 0 and 1. The second popped operand must be the
number of datasets to use.

In the example below, the first-popped operand (0.7) is the quantile, the
second-popped operand (3) is the number of datasets to pop.

astarithmetic a.fits b.fits c.fits 3 0.7 quantile

sigclip-mad

sigclip-std

sigclip-mean

sigclip-median

Return the respective statistic after σ-clipping the values of the same pixel of all
the input operands. The respective statistic will be stored in a 32-bit floating
point number. The number of inputs used to make the desired measurement
for each pixel is also returned as a second output operand; see below for more
on how to deal with the second output operand.
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For a complete tutorial on clipping outliers when stacking images see Sec-
tion 2.10 [Clipping outliers], page 195, (if you haven’t read it yet, we encourage
you to read through it before continuing). In particular, the most robust solu-
tion is to first use madclip-maskfilled (described in Section 6.2.4.6 [Statistical
operators], page 418), then use any of these.

This operator is very similar to min, with the exception that it expects two extra
operands (parameters for MAD-clipping) before the total number of inputs. The
first popped operand is the termination criteria and the second is the multiple
of the median absolute deviation.

For example, in the command below, the first popped operand of sigclip-mean
(0.1) is the σ-clipping termination criteria. If the termination criteria is larger
than, or equal to 1, it is interpreted as the total number of clips. But if it is
between 0 and 1, then it is the tolerance level on the change in the median
absolute deviation (see Section 2.10.2 [Sigma clipping], page 200). The second
popped operand (4) is the multiple of sigma (STD) to use. The third popped
operand (3) is number of datasets that should be stacked (similar to the first
popped operand to min). Two other side-notes should be mentioned here:

• As mentioned above, before this operator, we are masking the filled MAD-
clipped elements with madclip-maskfilled. As described in Section 2.10
[Clipping outliers], page 195, this is very important for removing the types
of outliers that we have in astronomical imaging.

• We are using --writeall because this operator places two operands on
the stack: your desired statistics, and the number of inputs that were used
in it (after clipping).

$ astarithmetic a.fits b.fits c.fits -g1 --writeall \

3 5 0.01 madclip-maskfilled \

3 4 0.1 sigclip-mean

The numbers image has the smallest unsigned integer type that fits the total
number of your input datasets (see Section 4.5 [Numeric data types], page 277).
For example if you have less than 255 input operands (not pixels!), then it will
have an unsigned 8-bit integer type, if you have 1000 input operands (or any
number less than 65534 inputs), it will be an unsigned 16-bit integer. Recall
that when you have many input files to stack, it may be necessary to write
the arguments into a text file and use --arguments (see Section 6.2.5 [Invoking
Arithmetic], page 464).

The numbers image is included by default because it is usually important in
clipping based stacks (where the number of inputs used in the calculation of
each pixel can be different from another pixel, and this affects the final output
noise). In case you are not interested in the numbers image, you should first
swap the two output operands, then free the top operand like below.

$ astarithmetic a.fits b.fits c.fits -g1 \

3 5 0.01 madclip-maskfilled \

3 4 0.1 sigclip-mean swap free \

--output=single-hdu.fits
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In case you just want the numbers image, you can use sigclip-median (which
is always calculated as part of the clipping process: no extra overhead), and
free the top operand (without the swap: the median-stack image), leaving only
the numbers image:

$ astarithmetic a.fits b.fits c.fits 3 5 0.01 \

madclip-fill-median -g1 free \

--output=single-hdu-only-numbers.fits

madclip-mad

madclip-std

madclip-mean

madclip-median

Similar to the sigclip-* operators, but using Median Absolute Deviation
(MAD) clipping. See the description of sigclip-* for usage details; just re-
member that o1 MAD is equivalent to 0.67449σ; see Section 2.10.3 [MAD clip-
ping], page 206, and more generally Section 2.10 [Clipping outliers], page 195.

6.2.4.8 Filtering (smoothing) operators

Image filtering is commonly used for smoothing: every pixel value in the output image is
created by applying a certain statistic to the pixels in its vicinity.

filter-mean

Apply mean filtering (or moving average (https://en.wikipedia.org/wiki/
Moving_average)) on the input dataset. During mean filtering, each pixel (data
element) is replaced by the mean value of all its surrounding pixels (excluding
blank values). The number of surrounding pixels in each dimension (to calculate
the mean) is determined through the earlier operands that have been pushed
onto the stack prior to the input dataset. The number of necessary operands
is determined by the dimensions of the input dataset (first popped operand).
The order of the dimensions on the command-line is the order in FITS format.
Here is one example:

$ astarithmetic 5 4 image.fits filter-mean

In this example, each pixel is replaced by the mean of a 5 by 4 box around it.
The box is 5 pixels along the first FITS dimension (horizontal when viewed in
ds9) and 4 pixels along the second FITS dimension (vertical).

Each pixel will be placed in the center of the box that the mean is calculated on.
If the given width along a dimension is even, then the center is assumed to be
between the pixels (not in the center of a pixel). When the pixel is close to the
edge, the pixels of the box that fall outside the image are ignored. Therefore,
on the edge, less points will be used in calculating the mean.

The final effect of mean filtering is to smooth the input image, it is essentially
a convolution with a kernel that has identical values for all its pixels (is flat),
see Section 6.3.1.1 [Convolution process], page 470.

Note that blank pixels will also be affected by this operator: if there are any
non-blank elements in the box surrounding a blank pixel, in the filtered image,
it will have the mean of the non-blank elements, therefore it will not be blank
any more. If blank elements are important for your analysis, you can use the

https://en.wikipedia.org/wiki/Moving_average
https://en.wikipedia.org/wiki/Moving_average
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isblank operator with the where operator to set them back to blank after
filtering.

For example in the command below, we are first filtering the image, then setting
its original blank elements back to blank in the output of filtering (all within one
Arithmetic command). Note how we are using the set- operator to give names
to the temporary outputs of steps and simplify the code (see Section 6.2.4.21
[Operand storage in memory or a file], page 462).

$ astarithmetic image.fits -h1 set-in \

5 4 in filter-mean set-filtered \

filtered in isblank nan where \

--output=out.fits

filter-median

Apply median filtering (https://en.wikipedia.org/wiki/Median_filter)
on the input dataset. This is very similar to filter-mean, except that instead
of the mean value of the box pixels, the median value is used to replace a pixel
value. For more on how to use this operator, please see filter-mean.

The median is less susceptible to outliers compared to the mean. As a result,
after median filtering, the pixel values will be more discontinuous than mean
filtering.

filter-sigclip-mean

Apply a σ-clipped mean filtering onto the input dataset. This is very similar to
filter-mean, except that all outliers (identified by the σ-clipping algorithm)
have been removed, see Section 2.10.2 [Sigma clipping], page 200, for more on
the basics of this algorithm. As described there, two extra input parameters
are necessary for σ-clipping: the multiple of σ and the termination criteria.
filter-sigclip-mean therefore needs to pop two other operands from the
stack after the dimensions of the box.

For example, the line below uses the same box size as the example of filter-
mean. However, all elements in the box that are iteratively beyond 3σ of the
distribution’s median are removed from the final calculation of the mean until
the change in σ is less than 0.2.

$ astarithmetic 3 0.2 5 4 image.fits filter-sigclip-mean

The median (which needs a sorted dataset) is necessary for σ-clipping, therefore
filter-sigclip-mean can be significantly slower than filter-mean. However,
if there are strong outliers in the dataset that you want to ignore (for example,
emission lines on a spectrum when finding the continuum), this is a much better
solution.

filter-sigclip-median

Apply a σ-clipped median filtering onto the input dataset. This operator and
its necessary operands are almost identical to filter-sigclip-mean, except
that after σ-clipping, the median value (which is less affected by outliers than
the mean) is added back to the stack.

https://en.wikipedia.org/wiki/Median_filter
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6.2.4.9 Pooling operators

Pooling is one way of reducing the complexity of the input image by grouping multi-
ple input pixels into one output pixel (using any statistical measure). As a result, the
output image has fewer pixels (less complexity). In Computer Vision, Pooling is com-
monly used in Convolutional Neural Networks (https://en.wikipedia.org/wiki/
Convolutional_neural_network) (CNNs).

In pooling, the inputs are an image (e.g., a FITS file) and a square window pixel size that
is known as a pooling window. The window has to be smaller than the input’s number of
pixels in both dimensions and its width is called the “pool size”. The pooling window starts
at the top-left corner pixel of the input and calculates statistical operations on the pixels
that overlap with it. It slides forward by the “stride” pixels, moving over all pixels in the
input from the top-left corner to the bottom-right corner, and repeats the same calculation
for the overlapping pixels in each position.

Usually, the stride (or spacing between the windows as they slide over the input) is equal
to the window-size. In other words, in pooling, the separate “windows” do not overlap with
each other on the input. However, you can choose any size for the stride. Remember
this, It’s crucial to ensure that the stride size is less than the pool size. If not, some
pixels may be missed during the pooling process. Therefore there are two major differences
with Section 6.3.1 [Spatial domain convolution], page 470, or Section 6.2.4.8 [Filtering
(smoothing) operators], page 424, but pooling has some similarities to the Section 6.4
[Warp], page 492.

• In convolution or filtering the input and output sizes are the same. However, when the
stride is larger than 1 then, the output of pooling must have fewer pixels.

• In convolution or filters, the kernels slide over the input in a pixel-by-pixel manner. As
a result, the same pixel’s value will be used in many of the output pixels. However, in
pooling each input pixel may be only used in a single output pixel (if the stride and
the pool size are the same).

• Special cases of Warping an image are similar to pooling. For example calling pool-sum
with pool size of 2 will give the same pixel values (except the outer edges) as giving
the same image to astwarp with --scale=1/2 --centeroncorner. However, warping
will only provide the sum of the input pixels, there is no easy way to generically define
something like pool-max in Warp (which is far more general than pooling). Also, due
to its generic features (for example for non-linear warps), Warp is slower than the
pool-max that is introduced here.� �

No WCS in output: As of Gnuastro 0.22.24-f3e8, the output of pooling will not contain
WCS information (primarily due to a lack of time by developers). Please inform us of your
interest in having it, by contacting us at bug-gnuastro@gnu.org. If you need pool-sum,
you can use Section 6.4 [Warp], page 492, (which also modifies the WCS, see note above).
 	

If the width or height of input is not divisible by the stride size, the pool window will go
beyond the input pixel grid. In this case, the window pixels that do not overlap with the
input are given a blank value (and thus ignored in the calculation of the desired statistical
operation).

https://en.wikipedia.org/wiki/Convolutional_neural_network
https://en.wikipedia.org/wiki/Convolutional_neural_network
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The simple ASCII figure below shows the pooling operation where the input is a 3 × 3
pixel image with a pool size of 2 pixels. In the center of the second row, you see the
intermediate input matrix that highlights how the input and output pixels relate with each
other. Since the input is 3 × 3 and we have a stride size of 2, as mentioned above blank
pseudo-pixels are added with a value of B (for blank).

Pool window: Input:

+-----------+ +-------------+

| | | | 10 12 9 |

| _ _ | _ _ |___________________________| 31 4 1 |

| | | || || | 16 5 8 |

| | | || || +-------------+

+-----------+ || ||

The pooling window 2*2 || ||

stride 2 \/ \/

+---------------------+

|/ 10 12\|/ 9 B \|

| | |

+-------+ pool-min |\ 31 4 /|\ 1 B /| pool-max +-------+

| 4 1 | /------ |---------------------| ------\ |31 9 |

| 5 8 | \------ |/ 16 5 \|/ 8 B \| ------/ |16 8 |

+-------+ | | | +-------+

|\ B B /.\ B B /|

+---------------------+

The choice of the statistic to use depends on the specific use case, the characteristics of
the input data, and the desired output. Each statistic has its advantages and disadvantages
and the choice of which to use should be informed by the specific needs of the problem at
hand. Below, the various pool operators of arithmetic are listed:

pool-max Apply max-pooling on the input dataset. This operator takes three operands:
the first popped operand is the stride and the second is the width of the square
pooling window (which should be a single integer). Also, The third operand
should be the input image. Within the pooling window, this operator will place
the largest value in the output pixel (any blank pixels will be ignored).

See the ASCII diagram above for a demonstration of how max-pooling works.
Here is an example of using this operator:

$ astarithmetic image.fits 2 2 pool-max

Max-pooling retains the largest value of the input window in the output, so the
returned image is sharper where you have strong signal-to-noise ratio and more
noisy in regions with no significant signal (only noise). It is therefore useful
when the background of the image is dark and we are interested in only the
highest signal-to-noise ratio regions of the image.

pool-min Apply min-pooling on the input dataset. This operator takes three operands:
the first popped operand is the stride and the second is the width of the square
pooling window (which should be a single integer). Also, The third operand
should be the input image. Except the used statistical measurement, this op-
erator is similar to pool-max, see the description there for more.
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Min-pooling is mostly used when the image has a high signal-to-noise ratio and
a light background: min-pooling will select darker (lower-valued) pixels. For
low signal-to-noise regions, this operator will increase the noise level (similar to
the maximum, the scatter in the minimum is very strong).

pool-sum Apply sum-pooling to the input dataset. This operator takes three operands:
the first popped operand is the stride and the second is the width of the square
pooling window (which should be a single integer). Also, The third operand
should be the input image. Except the used statistical measurement, this op-
erator is similar to pool-max, see the description there for more.

Sum-pooling will increase the signal-to-noise ratio at the cost of having a
smoother output (less resolution).

pool-mean

Apply mean pooling on the input dataset. This operator takes three operands:
the first popped operand is the stride and the second is the width of the square
pooling window (which should be a single integer). Also, The third operand
should be the input image. Except the used statistical measurement, this op-
erator is similar to pool-max, see the description there for more.

The mean pooling method smooths out the image and hence the sharp features
may not be identified when this pooling method is used. This therefore preserves
more information than max-pooling, but may also reduces the effect of the most
prominent pixels. Mean is often used where a more accurate representation of
the input is required.

pool-median

Apply median pooling on the input dataset. This operator takes three operands:
the first popped operand is the stride and the second is the width of the square
pooling window (which should be a single integer). Also, The third operand
should be the input image. Except the used statistical measurement, this op-
erator is similar to pool-max, see the description there for more.

In general, the mean is mathematically easier to interpret and more susceptible
to outliers, while the median outputs as being less subject to the influence of
outliers compared to the mean so we have a smoother image. This is therefore
better for low signal-to-ratio (noisy) features and extended features (where you
don’t want a single high or low valued pixel to affect the output).

6.2.4.10 Interpolation operators

Interpolation is the process of removing blank pixels from a dataset (by giving them a value
based on the non-blank neighbors).

interpolate-medianngb

Interpolate the blank elements of the second popped operand with the median
of nearest non-blank neighbors to each. The number of the nearest non-blank
neighbors used to calculate the median is given by the first popped operand.

The distance of the nearest non-blank neighbors is irrelevant in this interpo-
lation. The neighbors of each blank pixel will be parsed in expanding circular
rings (for 2D images) or spherical surfaces (for 3D cube) and each non-blank
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element over them is stored in memory. When the requested number of non-
blank neighbors have been found, their median is used to replace that blank
element. For example, the line below replaces each blank element with the
median of the nearest 5 pixels.

$ astarithmetic image.fits 5 interpolate-medianngb

When you want to interpolate blank regions and you want each blank region
to have a fixed value (for example, the centers of saturated stars) this oper-
ator is not good. Because the pixels used to interpolate various parts of the
region differ. For such scenarios, you may use interpolate-maxofregion or
interpolate-inofregion (described below).

interpolate-meanngb

Similar to interpolate-medianngb, but will fill the blank values of the dataset
with the mean value of the requested number of nearest neighbors.

interpolate-minngb

Similar to interpolate-medianngb, but will fill the blank values of the dataset
with the minimum value of the requested number of nearest neighbors.

interpolate-maxngb

Similar to interpolate-medianngb, but will fill the blank values of the dataset
with the maximum value of the requested number of nearest neighbors. One
useful implementation of this operator is to fill the saturated pixels of stars in
images.

interpolate-minofregion

Interpolate all blank regions (consisting of many blank pixels that are touching)
in the second popped operand with the minimum value of the pixels that are
immediately bordering that region (a single value). The first popped operand
is the connectivity (see description in connected-components).

For example, with the command below all the connected blank regions of
image.fits will be filled. Its an image (2D dataset), so a 2 connectivity means
that the independent blank regions are defined by 8-connected neighbors. If
connectivity was 1, the regions would be defined by 4-connectivity: blank re-
gions that may only be touching on the corner of one pixel would be identified
as separate regions.

$ astarithmetic image.fits 2 interpolate-minofregion

interpolate-maxofregion

Similar to interpolate-minofregion, but the maximum is used to fill the
blank regions.

This operator can be useful in filling saturated pixels in stars for example.
Recall that the interpolate-maxngb operator looks for the maximum value
with a given number of neighboring pixels and is more useful in small noisy
regions. Therefore as the blank regions become larger, interpolate-maxngb
can cause a fragmentation in the connected blank region because the nearest
neighbor to one part of the blank region, may not fall within the pixels searched
for the other regions. With this option, the size of the blank region is irrelevant:
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all the pixels bordering the blank region are parsed and their maximum value
is used for the whole region.

6.2.4.11 Dimensionality changing operators

Through these operators you can change the dimensions of the output through certain
statistics on the dimensions that should be removed. For example, let’s assume you have
a 3D data cube that has 300 by 300 pixels in the RA and Dec dimensions (first two di-
mensions), and 3600 slices along the wavelength (third dimension), so the whole cube is
300× 300× 3600 voxels (volume elements). To create a narrow-band image that only con-
tains 100 slices around a certain wavelength, you can crop that section (using Section 6.1
[Crop], page 385), giving you a 300× 300× 100 cube. You can now use the collapse-sum
operator below to “collapse” all the 100 slices into one 2D image that has 300× 300 pixels.
Every pixel in this 2D image will have the flux of the sum of the 100 slices.

to-1d Convert the input operand into a 1D array; irrespective of the number of di-
mensions it has. This operator only takes a single operand (the input array)
and just updates the metadata. Therefore it does not change the layout of the
array contents in memory and is very fast.

If no further operation is requested on the 1D array, recall that Arithmetic will
write a 1D array as a table column by default. In case you want the output
to be saved as a 1D image, or to see it on the standard output, please use
the --onedasimage or --onedonstdout options respectively (see Section 6.2.5
[Invoking Arithmetic], page 464).

This operator is useful in scenarios where after some operations on a 2D image
or 3D cube, the dimensionality is no longer relevant for you and you just care
about the values. In the example below, we will first make a simple 2D image
from a plain-text file, then convert it to a 1D array:

## Contents of 'a.txt' to start with.

$ cat a.txt

# Image 1: DEMO [counts, uint8] An example image

1 2 3

4 5 6

7 8 9

## Convert the text image into a FITS image.

$ astconvertt a.txt -o a.fits

## Convert it into a table column (1D):

$ astarithmetic a.fits to-1d -o table.fits

## Convert it into a 1D image:

$ astarithmetic a.fits to-1d -o table.fits --onedasimage

A more real-world example would be the following: assume you want to “flat-
ten” two images into a single 1D array (as commonly done in convolutional
neural networks, or CNNs12). First, we show the contents of a new 2× 2 image

12 https://en.wikipedia.org/wiki/Convolutional_neural_network

https://en.wikipedia.org/wiki/Convolutional_neural_network
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in plain-text image, then convert it to a 2D FITS image (b.fits). We will then
use arithmetic to make both a.fits (from the example above) and b.fits into
a 1D array and stitch them together into a single 1D image with one call to
Arithmetic. For a description of the stitch operator, see below (same section).

## Contents of 'b.txt':

$ cat b.txt

# Image 1: DEMO [counts, uint8] An example image

10 11

12 13

## Convert the text image into a FITS image.

$ astconvertt b.txt -o b.fits

# Flatten the two images into a single 1D image:

$ astarithmetic a.fits to-1d b.fits to-1d 2 1 stitch -g1 \

--onedonstdout --quiet

1

2

3

4

5

6

7

8

9

10

11

12

13

stitch Stitch (connect) any number of given images together along the given dimen-
sion. The output has the same number of dimensions as the input, but the
number of pixels along the requested dimension will be different from the in-
puts. The stitch operator takes at least three operands:

• The first popped operand (placed just before stitch) is the direction (di-
mension) that the images should be stitched along. The first FITS di-
mension is along the horizontal, therefore a value of 1 will stitch them
horizontally. Similarly, giving a value of 2 will result in a vertical stitch.

• The second popped operand is the number of images that should be
stitched.

• Depending on the value given to the second popped operand, stitch will
pop the given number of datasets from the stack and stitch them along
the given dimension. The popped images have to have the same number of
pixels along the other dimension. The order of the stitching is defined by
how they are placed in the command-line, not how they are popped (after
being popped, they are placed in a list in the same order).
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For example, in the commands below, we will first crop out fixed sized regions
of 100 × 300 pixels of a larger image (large.fits) first. In the first call of
Arithmetic below, we will stitch the bottom set of crops together along the first
(horizontal) axis. In the second Arithmetic call, we will stitch all 6 along both
dimensions.

## Crop the fixed-size regions of a larger image ('-O' is the

## short form of the '--mode' option).

$ astcrop large.fits -Oimg --section=1:100,1:300 -oa.fits

$ astcrop large.fits -Oimg --section=101:200,1:300 -ob.fits

$ astcrop large.fits -Oimg --section=201:300,1:300 -oc.fits

$ astcrop large.fits -Oimg --section=1:100,301:600 -od.fits

$ astcrop large.fits -Oimg --section=101:200,301:600 -oe.fits

$ astcrop large.fits -Oimg --section=201:300,301:600 -of.fits

## Stitch the bottom three crops into one image.

$ astarithmetic a.fits b.fits c.fits 3 1 stitch -obottom.fits

# Stitch all the 6 crops along both dimensions

$ astarithmetic a.fits b.fits c.fits 3 1 stitch \

d.fits e.fits f.fits 3 1 stitch \

2 2 stitch -g1 -oall.fits

The start of the last command is like the one before it (stitching the bottom
three crops along the first FITS dimension, producing a 300×300 image). Later
in the same command, we then stitch the top three crops horizontally (again,
into a 300× 300 image) This leaves the the two 300× 300 images on the stack
(see Section 6.2.1 [Reverse polish notation], page 399). We finally stitch those
two along the second (vertical) dimension. This operator is therefore useful in
scenarios like placing the CCD amplifiers into one image.

trim Trim all blank elements from the outer edges of the input operand (it only
takes a single operand). For example see the commands below using Table’s
Section 5.3.3 [Column arithmetic], page 346:

$ cat table.txt

nan

nan

nan

3

4

nan

5

6

nan

$ asttable table.txt -Y -c'arith $1 trim'

3.000000

4.000000

nan
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5.000000

6.000000

Similarly, on 2D images or 3D cubes, all outer rows/columns or slices that are
fully blank get “trim”ed with this operator. This is therefore a very useful
operator for extracting a certain feature within your dataset.

For example, let’s assume that you have set Section 7.2 [NoiseChisel], page 541,
and Section 7.3 [Segment], page 561, on an image to extract all clumps and ob-
jects. With the command below on Segment’s output, you will have a smaller
image that only contains the sky-subtracted input pixels corresponding to ob-
ject 263.

$ astarithmetic seg.fits -hINPUT-NO-SKY seg.fits -hOBJECTS \

263 ne nan where trim --output=obj-263.fits

add-dimension-slow

Build a higher-dimensional dataset from all the input datasets stacked after
one another (along the slowest dimension). The first popped operand has to
be a single number. It is used by the operator to know how many operands it
should pop from the stack (and the size of the output in the new dimension).
The rest of the operands must have the same size and numerical data type.
This operator currently only works for 2D input operands, please contact us if
you want inputs to have different dimensions.

The output’s WCS (which should have a different dimensionality compared to
the inputs) can be read from another file with the --wcsfile option. If no file
is specified for the WCS, the first dataset’s WCS will be used, you can later
add/change the necessary WCS keywords with the FITS keyword modification
features of the Fits program (see Section 5.1 [Fits], page 295).

If your datasets do not have the same type, you can use the type transformation
operators of Arithmetic that are discussed below. Just beware of overflow if
you are transforming to a smaller type, see Section 4.5 [Numeric data types],
page 277.

For example, let’s assume you have 3 two-dimensional images a.fits, b.fits
and c.fits (each with 200 × 100 pixels). You can construct a 3D data cube
with 200× 100× 3 voxels (volume-pixels) using the command below:

$ astarithmetic a.fits b.fits c.fits 3 add-dimension-slow

add-dimension-fast

Similar to add-dimension-slow but along the fastest dimension. This operator
currently only works for 1D input operands, please contact us if you want inputs
to have different dimensions.

For example, let’s assume you have 3 one-dimensional datasets, each with 100
elements. With this operator, you can construct a 3 × 100 pixel FITS image
that has 3 pixels along the horizontal and 5 pixels along the vertical.

collapse-sum

Collapse the given dataset (second popped operand), by summing all elements
along the first popped operand (a dimension in FITS standard: counting from
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one, from fastest dimension). The returned dataset has one dimension less
compared to the input.

The output will have a double-precision floating point type irrespective of the
input dataset’s type. Doing the operation in double-precision (64-bit) float-
ing point will help the collapse (summation) be affected less by floating point
errors. But afterwards, single-precision floating points are usually enough in
real (noisy) datasets. So depending on the type of the input and its nature, it
is recommended to use one of the type conversion operators on the returned
dataset.

If any WCS is present, the returned dataset will also lack the respective di-
mension in its WCS matrix. Therefore, when the WCS is important for later
processing, be sure that the input is aligned with the respective axes: all non-
diagonal elements in the WCS matrix are zero.

One common application of this operator is the creation of pseudo broad-band
or narrow-band 2D images from 3D data cubes. For example, integral field
unit (IFU) data products that have two spatial dimensions (first two FITS
dimensions) and one spectral dimension (third FITS dimension). The command
below will collapse the whole third dimension into a 2D array the size of the
first two dimensions, and then convert the output to single-precision floating
point (as discussed above).

$ astarithmetic cube.fits 3 collapse-sum float32

collapse-min

collapse-max

collapse-mean

collapse-median

Similar to collapse-sum, but the returned dataset will be the desired statistic
along the collapsed dimension, not the sum.

collapse-madclip-fill-mad

collapse-madclip-fill-std

collapse-madclip-fill-mean

collapse-madclip-fill-median

collapse-madclip-fill-number

Collapse the input dataset (fourth popped operand) along the FITS dimen-
sion given as the first popped operand by calculating the desired statistic after
median absolute deviation (MAD) filled re-clipping. The MAD-clipping param-
eters (namely, the multiple of sigma and termination criteria) are read as the
third and second popped operands respectively.

This is the most robust method to reject outliers; for more on filled re-clipping
and its advantages, see Section 2.10.4 [Contiguous outliers], page 209. For a
more general tutorial on rejecting outliers, see Section 2.10 [Clipping outliers],
page 195. If you have not done this tutorial yet, we recommend you to take an
hour or so and go through that tutorial for optimal understanding and results.

For example, with the command below, the pixels of the input 2 dimensional
image.fits will be collapsed to a single dimension output. The first popped
operand is 2, so it will collapse all the pixels that are vertically on top of
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each other. Such that the output will have the same number of pixels as the
horizontal axis of the input. During the collapsing, all pixels that are more than
3σ (third popped operand) are rejected, and the clipping will continue until the
standard deviation changes less than 0.2 between clips. Finally the counter

operator is used to have a two-column table with the first one being a simple
counter starting from one (see Section 6.2.4.19 [Size and position operators],
page 456).

$ astarithmetic image.fits 3 0.2 2 collapse-sigclip-mean \

counter --output=collapsed-vertical.fits� �
Printing output of collapse in plain-text: the default datatype of collapse-
sigclip-mean is 32-bit floating point. This is sufficient for any observed
astronomical data. However, if you request a plain-text output, or decide to
print/view the output as plain-text on the standard output, the full set of
decimals may not be printed in some situations. This can lead to apparently
discrete values in the output of this operator when viewed in plain-text! The
FITS format is always superior (since it stores the value in binary, therefore
not having the problem above). But if you are forced to save the output in
plain-text, use the float64 operator after this to change the type to 64-bit
floating point (which will print more decimals).
 	

collapse-madclip-mad

collapse-madclip-std

collapse-madclip-mean

collapse-madclip-median

collapse-madclip-number

Collapse the input dataset (fourth popped operand) along the FITS dimension
given as the first popped operand by calculating the desired statistic after me-
dian absolute deviation (MAD) clipping. This operator is called similarly to
the collapse-madclip-fill-* operators, see the description there for more.

collapse-sigclip-fill-mad

collapse-sigclip-fill-std

collapse-sigclip-fill-mean

collapse-sigclip-fill-median

collapse-sigclip-fill-number

Collapse the input dataset (fourth popped operand) along the FITS dimension
given as the first popped operand by calculating the desired statistic after filled
σ re-clipping. This operator is called similarly to the collapse-madclip-fill-
* operators, see the description there for more.
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collapse-sigclip-mad

collapse-sigclip-std

collapse-sigclip-mean

collapse-sigclip-median

collapse-sigclip-number

Collapse the input dataset (fourth popped operand) along the FITS dimension
given as the first popped operand by calculating the desired statistic after σ-
clipping. This operator is called similarly to the collapse-madclip-fill-*

operators, see the description there for more.

6.2.4.12 Conditional operators

Conditional operators take two inputs and return a binary output that can only have two
values 0 (for pixels where the condition was false) or 1 (for the pixels where the condition
was true). Because of the binary (2-valued) nature of their outputs, the output is therefore
stored in an unsigned char data type (see Section 4.5 [Numeric data types], page 277)
to speed up process and take less space in your storage. There are two exceptions to the
general features above: isblank only takes one input, and where takes three, while not
returning a binary output, see their description for more.

lt Less than: creates a binary output (values either 0 or 1) where each pixel will
be 1 if the second popped operand is smaller than the first popped operand and
0 otherwise. If both operands are images, then all the pixels will be compared
with their counterparts in the other image.

For example, the pixels in the output of the command below will have a value of
1 (true) if their value in image1.fits is less than their value in image2.fits.
Otherwise, their value will be 0 (false).

$ astarithmetic image1.fits image2.fits lt

If only one operand is an image, then all the pixels will be compared with the
single value (number) of the other operand. For example:

$ astarithmetic image1.fits 1000 lt

Finally if both are numbers, then the output is also just one number (0 or 1).

$ astarithmetic 4 5 lt

le Less or equal: similar to lt (‘less than’ operator), but returning 1 when the
second popped operand is smaller or equal to the first. For example

$ astarithmetic image1.fits 1000 le

gt Greater than: similar to lt (‘less than’ operator), but returning 1 when the
second popped operand is greater than the first. For example

$ astarithmetic image1.fits 1000 gt

ge Greater or equal: similar to lt (‘less than’ operator), but returning 1 when the
second popped operand is larger or equal to the first. For example

$ astarithmetic image1.fits 1000 ge

eq Equality: similar to lt (‘less than’ operator), but returning 1 when the two
popped operands are equal (to double precision floating point accuracy).

$ astarithmetic image1.fits 1000 eq
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ne Non-Equality: similar to lt (‘less than’ operator), but returning 1 when the two
popped operands are not equal (to double precision floating point accuracy).

$ astarithmetic image1.fits 1000 ne

and Logical AND: returns 1 if both operands have a non-zero value and 0 if both
are zero. Both operands have to be the same kind: either both images or both
numbers and it mostly makes meaningful values when the inputs are binary
(with pixel values of 0 or 1).

$ astarithmetic image1.fits image2.fits -g1 and

For example, if you only want to see which pixels in an image have a value
between 50 (greater equal, or inclusive) and 200 (less than, or exclusive), you
can use this command:

$ astarithmetic image.fits set-i i 50 ge i 200 lt and

or Logical OR: returns 1 if either one of the operands is non-zero and 0 only when
both operators are zero. Both operands have to be the same kind: either both
images or both numbers. The usage is similar to and.

For example, if you only want to see which pixels in an image have a value
outside of -100 (greater equal, or inclusive) and 200 (less than, or exclusive),
you can use this command:

$ astarithmetic image.fits set-i i -100 lt i 200 ge or

not Logical NOT: returns 1 when the operand is 0 and 0 when the operand is non-
zero. The operand can be an image or number, for an image, it is applied to
each pixel separately. For example, if you want to know which pixels are not
blank (and assuming that we didn’t have the isnotblank operator), you can
use this not operator on the output of the isblank operator described below:

$ astarithmetic image.fits isblank not

isblank Test each pixel for being a blank value (see Section 6.1.3 [Blank pixels],
page 388). This is a conditional operator: the output has the same size and
dimensions as the input, but has an unsigned 8-bit integer type with two
possible values: either 1 (for a pixel that was blank) or 0 (for a pixel that was
not blank). See the description of lt operator above). The difference is that it
only needs one operand. For example:

$ astarithmetic image.fits isblank

Because of the definition of a blank pixel, a blank value is not even equal to
itself, so you cannot use the equal operator above to select blank pixels. See
the “Blank pixels” box below for more on Blank pixels in Arithmetic.

In case you want to set non-blank pixels to an output pixel value of 1, it is better
to use isnotblank instead of ‘isblank not’ (for more, see the description of
isnotblank).

isnotblank

The inverse of the isblank operator above (see that description for more).
Therefore, if a pixel has a blank value, the output of this operator will have a
0 value for it. This operator is therefore similar to running ‘isblank not’, but
slightly more efficient (won’t need the intermediate product of two operators).
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where Change the input (pixel) value where/if a certain condition holds. The con-
ditional operators above can be used to define the condition. Three operands
are required for where. The input format is demonstrated in this simplified
example:

$ astarithmetic modify.fits binary.fits if-true.fits where

The value of any pixel in modify.fits that corresponds to a non-zero and non-
blank pixel of binary.fits will be changed to the value of the same pixel in
if-true.fits (this may also be a number). The 3rd and 2nd popped operands
(modify.fits and binary.fits respectively, see Section 6.2.1 [Reverse polish
notation], page 399) have to have the same dimensions/size. if-true.fits can
be either a number, or have the same dimension/size as the other two.

The 2nd popped operand (binary.fits) has to have uint8 (or unsigned char

in standard C) type (see Section 4.5 [Numeric data types], page 277). It is
treated as a binary dataset (with only two values: zero and non-zero, hence
the name binary.fits in this example). However, commonly you will not
be dealing with an actual FITS file of a condition/binary image. You will
probably define the condition in the same run based on some other reference
image and use the conditional and logical operators above to make a true/false
(or one/zero) image for you internally. For example, the case below:

$ astarithmetic in.fits reference.fits 100 gt new.fits where

In the example above, any of the in.fits pixels that has a value in
reference.fits greater than 100, will be replaced with the corresponding
pixel in new.fits. Effectively the reference.fits 100 gt part created
the condition/binary image which was added to the stack (in memory) and
later used by where. The command above is thus equivalent to these two
commands:

$ astarithmetic reference.fits 100 gt --output=binary.fits

$ astarithmetic in.fits binary.fits new.fits where

Finally, the input operands are read and used independently, so you can use
the same file more than once as any of the operands.

When the 1st popped operand to where (if-true.fits) is a single number, it
may be a NaN value (or any blank value, depending on its type) like the example
below (see Section 6.1.3 [Blank pixels], page 388). When the number is blank,
it will be converted to the blank value of the type of the 3rd popped operand
(in.fits). Hence, in the example below, all the pixels in reference.fits that
have a value greater than 100, will become blank in the natural data type of
in.fits (even though NaN values are only defined for floating point types).

$ astarithmetic in.fits reference.fits 100 gt nan where

6.2.4.13 Mathematical morphology operators

From Wikipedia: “Mathematical morphology (MM) is a theory and technique for the anal-
ysis and processing of geometrical structures, based on set theory, lattice theory, topology,
and random functions. MM is most commonly applied to digital images”. In theory it
extends a very large body of research and methods in image processing, but currently in
Gnuastro it mainly applies to images that are binary (only have a value of 0 or 1). For
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example, you have applied the greater-than operator (gt, see Section 6.2.4.12 [Conditional
operators], page 436) to select all pixels in your image that are larger than a value of 100.
But they will all have a value of 1, and you want to separate the various groups of pixels
that are connected (for example, peaks of stars in your image). With the connected-

components operator, you can give each connected region of the output of gt a separate
integer label.

erode Erode the foreground pixels (with value 1) of the input dataset (second popped
operand). The first popped operand is the connectivity (see description in
connected-components). Erosion is simply a flipping of all foreground pixels
(with value 1) to background (with value 0) that are “touching” background
pixels. “Touching” is defined by the connectivity.

In effect, this operator “carves off” the outer borders of the foreground, making
them thinner. This operator assumes a binary dataset (all pixels are 0 or 1).
For example, imagine that you have an astronomical image with a mean/sky
value of 0 units and a standard deviation (σ) of 100 units and many galaxies in
it. With the first command below, you can apply a threshold of 2σ on the image
(by only keeping pixels that are greater than 200 using the gt operator). The
output of thresholding the image is a binary image (each pixel is either smaller
or equal to the threshold or larger than it). You can then erode the binary
image with the second command below to remove very small false positives
(one or two pixel peaks).

$ astarithmetic image.fits 100 gt -obinary.fits

$ astarithmetic binary.fits 2 erode -oout.fits

In fact, you can merge these operations into one command thanks to the reverse
polish notation (see Section 6.2.1 [Reverse polish notation], page 399):

$ astarithmetic image.fits 100 gt 2 erode -oout.fits

To see the effect of connectivity, try this:

$ astarithmetic image.fits 100 gt 1 erode -oout-con-1.fits

dilate Dilate the foreground pixels (with value 1) of the binary input dataset (second
popped operand). The first popped operand is the connectivity (see description
in connected-components). Dilation is simply a flipping of all background pix-
els (with value 0) to foreground (with value 1) that are “touching” foreground
pixels. “Touching” is defined by the connectivity. In effect, this expands the
outer borders of the foreground. This operator assumes a binary dataset (all
pixels are 0 and 1). The usage is similar to erode, for example:

$ astarithmetic binary.fits 2 dilate -oout.fits

number-neighbors

Return a dataset of the same size as the second popped operand, but where each
non-zero and non-blank input pixel is replaced with the number of its non-zero
and non-blank neighbors. The first popped operand is the connectivity (see
above) and must be a single-value of an integer type. The dataset is assumed
to be binary (having an unsigned, 8-bit dataset).

For example with the command below, you can select all pixels above a value of
100 in your image with the “greater-than” or gt operator (see Section 6.2.4.12
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[Conditional operators], page 436). Recall that the output of all conditional
operators is a binary output (having a value of 0 or 1). In the same command,
we will then find how many neighboring pixels of each pixel (that was originally
above the threshold) are also above the threshold.

$ astarithmetic image.fits 100 gt 2 number-neighbors

connected-components

Find the connected components in the input dataset (second popped operand).
The first popped is the connectivity used in the connected components algo-
rithm. The second popped operand is the dataset where connected components
are to be found. It is assumed to be a binary image (with values of 0 or 1).
It must have an 8-bit unsigned integer type which is the format produced by
conditional operators. This operator will return a labeled dataset where the
non-zero pixels in the input will be labeled with a counter (starting from 1).

The connectivity is a number between 1 and the number of dimensions in the
dataset (inclusive). 1 corresponds to the weakest (symmetric) connectivity
between elements and the number of dimensions the strongest. For example,
on a 2D image, a connectivity of 1 corresponds to 4-connected neighbors and 2
corresponds to 8-connected neighbors.

One example usage of this operator can be the identification of regions above a
certain threshold, as in the command below. With this command, Arithmetic
will first separate all pixels greater than 100 into a binary image (where pixels
with a value of 1 are above that value). Afterwards, it will label all those that
are connected.

$ astarithmetic in.fits 100 gt 2 connected-components

If your input dataset does not have a binary type, but you know all its values
are 0 or 1, you can use the uint8 operator (below) to convert it to binary.

fill-holes

Flip background (0) pixels surrounded by foreground (1) in a binary dataset.
This operator takes two operands (similar to connected-components): the
second is the binary (0 or 1 valued) dataset to fill holes in and the first popped
operand is the connectivity (to define a hole). Imagine that in your dataset
there are some holes with zero value inside the objects with one value (for
example, the output of the thresholding example of erode) and you want to fill
the holes:

$ astarithmetic binary.fits 2 fill-holes

invert Invert an unsigned integer dataset (will not work on other data types, see
Section 4.5 [Numeric data types], page 277). This is the only operator that
ignores blank values (which are set to be the maximum values in the unsigned
integer types).

This is useful in cases where the target(s) has(have) been imaged in absorption
as raw formats (which are unsigned integer types). With this option, the max-
imum value for the given type will be subtracted from each pixel value, thus
“inverting” the image, so the target(s) can be treated as emission. This can
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be useful when the higher-level analysis methods/tools only work on emission
(positive skew in the noise, not negative).

$ astarithmetic image.fits invert

6.2.4.14 Bitwise operators

Astronomical images are usually stored as an array multi-byte pixels with different sizes
for different precision levels (see Section 4.5 [Numeric data types], page 277). For example,
images from CCDs are usually in the unsigned 16-bit integer type (each pixel takes 16 bits,
or 2 bytes, of memory) and fully reduced deep images have a 32-bit floating point type
(each pixel takes 32 bits or 4 bytes).

On the other hand, during the data reduction, we need to preserve a lot of meta-data
about some pixels. For example, if a cosmic ray had hit the pixel during the exposure, or
if the pixel was saturated, or is known to have a problem, or if the optical vignetting is
too strong on it. A crude solution is to make a new image when checking for each one of
these things and make a binary image where we flag (set to 1) pixels that satisfy any of
these conditions above, and set the rest to zero. However, processing pipelines sometimes
need more than 20 flags to store important per-pixel meta-data, and recall that the smallest
numeric data type is one byte (or 8 bits, that can store up to 256 different values), while
we only need two values for each flag! This is a major waste of storage space!

A much more optimal solution is to use the bits within each pixel to store different flags!
In other words, if you have an 8-bit pixel, use each bit as a flag to mark if a certain condition
has happened on a certain pixel or not. For example, let’s set the following standard based
on the four cases mentioned above: the first bit will show that a cosmic ray has hit that
pixel. So if a pixel is only affected by cosmic rays, it will have this sequence of bits (note
that the bit-counting starts from the right): 00000001. The second bit shows that the pixel
was saturated (00000010), the third bit shows that it has known problems (00000100) and
the fourth bit shows that it was affected by vignetting (00001000).

Since each bit is independent, we can thus mark multiple metadata about that pixel in
the actual image, within a single “flag” or “mask” pixel of a flag or mask image that has the
same number of pixels. For example, a flag-pixel with the following bits 00001001 shows
that it has been affected by cosmic rays and it has been affected by vignetting at the same
time. The common data type to store these flagging pixels are unsigned integer types (see
Section 4.5 [Numeric data types], page 277). Therefore when you open an unsigned 8-bit
flag image in a viewer like DS9, you will see a single integer in each pixel that actually has
8 layers of metadata in it! For example, the integer you will see for the bit sequences given
above will respectively be: 20 = 1 (for a pixel that only has cosmic ray), 21 = 2 (for a pixel
that was only saturated), 22 = 4 (for a pixel that only has known problems), 23 = 8 (for a
pixel that is only affected by vignetting) and 20 + 23 = 9 (for a pixel that has a cosmic ray
and was affected by vignetting).

You can later use this bit information to mark objects in your final analysis or to mask
certain pixels. For example, you may want to set all pixels affected by vignetting to NaN,
but can interpolate over cosmic rays. You therefore need ways to separate the pixels with
a desired flag(s) from the rest. It is possible to treat a flag pixel as a single integer (and try
to define certain ranges in value to select certain flags). But a much more easier and robust
way is to actually look at each pixel as a sequence of bits (not as a single integer!) and use
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the bitwise operators below for this job. For more on the theory behind bitwise operators,
see Wikipedia (https://en.wikipedia.org/wiki/Bitwise_operation).

bitand Bitwise AND operator: only bits with values of 1 in both popped operands will
get the value of 1, the rest will be set to 0. For example, (assuming numbers can
be written as bit strings on the command-line): 00101000 00100010 bitand

will give 00100000. Note that the bitwise operators only work on integer type
datasets.

bitor Bitwise inclusive OR operator: The bits where at least one of the two popped
operands has a 1 value get a value of 1, the others 0. For example, (assum-
ing numbers can be written as bit strings on the command-line): 00101000

00100010 bitand will give 00101010. Note that the bitwise operators only
work on integer type datasets.

bitxor Bitwise exclusive OR operator: A bit will be 1 if it differs between the two
popped operands. For example, (assuming numbers can be written as bit strings
on the command-line): 00101000 00100010 bitand will give 00001010. Note
that the bitwise operators only work on integer type datasets.

lshift Bitwise left shift operator: shift all the bits of the first operand to the left by a
number of times given by the second operand. For example, (assuming numbers
can be written as bit strings on the command-line): 00101000 2 lshift will
give 10100000. This is equivalent to multiplication by 4. Note that the bitwise
operators only work on integer type datasets.

rshift Bitwise right shift operator: shift all the bits of the first operand to the right by a
number of times given by the second operand. For example, (assuming numbers
can be written as bit strings on the command-line): 00101000 2 rshift will
give 00001010. Note that the bitwise operators only work on integer type
datasets.

bitnot Bitwise not (more formally known as one’s complement) operator: flip all the
bits of the popped operand (note that this is the only unary, or single operand,
bitwise operator). In other words, any bit with a value of 0 is changed to 1

and vice-versa. For example, (assuming numbers can be written as bit strings
on the command-line): 00101000 bitnot will give 11010111. Note that the
bitwise operators only work on integer type datasets/numbers.

6.2.4.15 Numerical type conversion operators

With the operators below you can convert the numerical data type of your input, see
Section 4.5 [Numeric data types], page 277. Type conversion is particularly useful when
dealing with integers, see Section 6.2.2 [Integer benefits and pitfalls], page 401.

As an example, let’s assume that your colleague gives you many single exposure images
for processing, but they have a double-precision floating point type! You know that the
statistical error a single-exposure image can never exceed 6 or 7 significant digits, so you
would prefer to archive them as a single-precision floating point and save space on your
computer (a double-precision floating point is also double the file size!). You can do this
with the float32 operator described below.

https://en.wikipedia.org/wiki/Bitwise_operation
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u8

uint8 Convert the type of the popped operand to 8-bit unsigned integer type (see
Section 4.5 [Numeric data types], page 277). The internal conversion of C will
be used.

i8

int8 Convert the type of the popped operand to 8-bit signed integer type (see Sec-
tion 4.5 [Numeric data types], page 277). The internal conversion of C will be
used.

u16

uint16 Convert the type of the popped operand to 16-bit unsigned integer type (see
Section 4.5 [Numeric data types], page 277). The internal conversion of C will
be used.

i16

int16 Convert the type of the popped operand to 16-bit signed integer (see Section 4.5
[Numeric data types], page 277). The internal conversion of C will be used.

u32

uint32 Convert the type of the popped operand to 32-bit unsigned integer type (see
Section 4.5 [Numeric data types], page 277). The internal conversion of C will
be used.

i32

int32 Convert the type of the popped operand to 32-bit signed integer type (see
Section 4.5 [Numeric data types], page 277). The internal conversion of C will
be used.

u64

uint64 Convert the type of the popped operand to 64-bit unsigned integer (see Sec-
tion 4.5 [Numeric data types], page 277). The internal conversion of C will be
used.

f32

float32 Convert the type of the popped operand to 32-bit (single precision) floating
point (see Section 4.5 [Numeric data types], page 277). The internal conversion
of C will be used. For example, if f64.fits is a 64-bit floating point image, and
you want to store it as a 32-bit floating point image, you can use the command
below (the second command is to show that the output file consumes half the
storage)

$ astarithmetic f64.fits float32 --output=f32.fits

$ ls -lh f64.fits f32.fits

f64

float64 Convert the type of the popped operand to 64-bit (double precision) floating
point (see Section 4.5 [Numeric data types], page 277). The internal conversion
of C will be used.

6.2.4.16 Random number generators

When you simulate data (for example, see Section 2.4 [Sufi simulates a detection], page 124),
everything is ideal and there is no noise! The final step of the process is to add simulated
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noise to the data. The operators in this section are designed for that purpose. To learn more
about the definition and implementation “noise”, see Section 6.2.3 [Noise basics], page 403.

In case each data element’s random distribution should have an independent parameter
(for example σ in a Gaussian distribution), the first popped operand can be a dataset of
the same size as the second. In this case (when the parameter is not a single value, but an
array), each element will have a different parameter.

When --quiet is not given, a statement will be printed on each invocation of these
operators (if there are multiple calls to the mknoise-* operators, the statement will be
printed multiple times). It will show the random number generator function and seed that
was used in that invocation. These are necessary for the future reproducibility of the outputs
using the --envseed option, for more, see Section 6.2.3.4 [Generating random numbers],
page 406. For example, with the first command below, image.fits will be degraded by a
noise of standard deviation 3 units.

$ astarithmetic image.fits 3 mknoise-sigma

Alternatively, you can use the operators in this section within the Section 5.3.3 [Column
arithmetic], page 346, feature of the Table program. For example, with the command below,
you can generate a random number (centered on 0, with σ = 3). With the second command,
you can put it into a shell variable for later usage.

$ echo 0 | asttable -c'arith $1 3 mknoise-sigma'

$ value=$(echo 0 | asttable -c'arith $1 3 mknoise-sigma' --quiet)

$ echo $value

You can also use the operators here in combination with AWK to easily generate an
arbitrarily large table with random columns. In the example below, we will create a two
column table with 20 rows. The first column will be centered on 5 and σ1 = 2, the second
will be centered on 10 and σ2 = 3:

$ echo 5 10 \

| awk '{for(i=0;i<20;++i) print $1, $2}' \

| asttable -c'arith $1 2 mknoise-sigma' \

-c'arith $2 3 mknoise-sigma'

By adding an extra --output=random.fits, the table will be saved into a file called
random.fits, and you can change the i<20 to i<5000 to have 5000 rows instead. Of
course, if your input table has different values in the desired column the noisy distribution
will be centered on each input element, but all will have the same scatter/sigma.

As mentioned above, you can use the --envseed option to pre-define the random num-
ber generator seed (and thus get a reproducible result). For more on --envseed, see Sec-
tion 6.2.3.4 [Generating random numbers], page 406. When using column arithmetic in Ta-
ble, it may happen that multiple columns need random numbers (with any of the mknoise-*
operators) in one call of asttable. In such cases, the value given to GSL_RNG_SEED is incre-
mented by one on every call to the mknoise-* operators. Without this increment, when the
column values are the same (happens a lot, for no-noised datasets), the returned values for
all columns will be identical. But this feature has a side-effect: that if the order of calling
the mknoise-* operators changes, the seeds used for each operator will change13.

13 We have defined Task 15971 (https://savannah.gnu.org/task/?15971) in Gnuastro’s project manage-
ment system to address this. If you need this feature please send us an email at bug-gnuastro@gnu.org
(to motivate us in its implementation).

https://savannah.gnu.org/task/?15971
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mknoise-sigma

Add a Gaussian noise with pre-defined σ to each element of the input
dataset (independent of the input pixel value). σ is the standard deviation
of the Gaussian or Normal distribution (https://en.wikipedia.org/wiki/
Normal_distribution). This operator takes two arguments: the top/first
popped operand is the noise standard deviation, the next popped operand is
the dataset that the noise should be added to.

For example, with the first command below, let’s put a Sérsic profile with Sérsic
index 1 and effective radius 10 pixels, truncated at 5 times the effective radius
in the center of a mock image that is 100 × 100 pixels wide. We will also give
it a position angle of 45 degrees and an axis ratio of 0.8, and set it to have a
total electron count of 10000 (1e4 in the command). Note that this example is
focused on this operator, for a robust simulation, see the tutorial in Section 2.4
[Sufi simulates a detection], page 124. With the second command, let’s add
noise to this image and with the third command, we’ll subtract the raw image
from the noised image. Finally, we’ll view them both together:

$ echo "1 50 50 1 10 1 45 0.8 1e4 5" \

| astmkprof --mergedsize=100,100 --oversample=1 \

--mcolissum --output=raw.fits

$ astarithmetic raw.fits 2 mknoise-sigma --output=sigma.fits

$ astarithmetic raw.fits sigma.fits - -g1 \

--output=diff-sigma.fits

$ astscript-fits-view raw.fits sigma.fits diff-sigma.fits

You see that the final diff-sigma.fits distribution was independent of the
pixel values of the input. You will also notice that within sigma.fits the noisy
pixels that had a zero value in raw.fits, the noise fluctuates around zero (is
negative in half of those pixels). These behaviors will be different in the case for
mknoise-sigma-from-mean below, which is more “realistic” (or Poisson-like).

mknoise-sigma-from-mean

Replace each input element (e.g., pixel in an image) of the input with a random
value taken from a Gaussian distribution (for pixel i) with mean µi and standard
deviation σi. Where, σi =

√
Ii +Bi and µi = Ii + Bi and Ii and Bi are

respectively the values of the input image, and background in that same pixel.
In other words, this can be seen as approximating a Poisson distribution at high
mean values (where the Poisson distribution becomes identical to the Gaussian
distribution).

This operator takes two arguments: 1. the first popped operand (just before
the operator) is the per-pixel background value (in units of electron counts). 2.
The second popped operand is the dataset that the noise should be added to.

To demonstrate the effect of this noise pattern, please run the example com-
mands in the description of mknoise-sigma. With the first command below,
let’s add this Poisson-like noise (assuming a background level of 4 electron

https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Normal_distribution
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counts, to be similar to a σ = 2 of the example in mknoise-sigma). With the
second command, let’s subtract the raw image from this noise pattern:

$ astarithmetic raw.fits 4 mknoise-sigma-from-mean \

--output=sigma-from-mean.fits

$ astarithmetic raw.fits sigma-from-mean.fits - -g1 \

--output=diff-sigma-from-mean.fits

$ astscript-fits-view diff-sigma.fits \

diff-sigma-from-mean.fits

You clearly see how the noise in the center of the Sérsic profile is much stronger
than the outer parts. As described, above, this is behavior we would expect in a
“real” observation: the regions with stronger signal, also have stronger noise as
defined through the Poisson distribution (https://en.wikipedia.org/wiki/
Poisson_distribution)! The reason we described this operator as “Poisson-
like” is that, it has some shortcomings as opposed to the mknoise-poisson

operator (that is described below):

• For low mean values (less than 3 for example), this will produce a sym-
metric Gaussian distribution, while the Poisson distribution will not be
symmetric.

• The random values from this distribution are floating point (unlike the
Poisson distribution that produces integers.

• The random values can be negative (which is not possible in a Poisson
distribution).

Therefore to simulate photon-starved images (for example UV or X-ray data),
the mknoise-poisson operator should always be used, not this one. However,
in optical (or redder bands) data, the background is very bright (much brighter
than 10 counts for example). In such cases (as the mean increases), the Pois-
son distributions becomes identical to the Gaussian distribution. Furthermore,
processed co-add/stacked images are no longer integers, but floating points
with the Sky-level already subtracted (see Section 7.1.4 [Sky value], page 519).
Therefore if you are trying to simulate a processed, photon-rich dataset, you
can safely use this operator.

Recall that the background values reported by observatories (for example, to de-
fine dark or gray nights), or in papers, is usually reported in units of magnitudes
per arcseconds square. You need to do the conversion to counts per pixel manu-
ally. The conversion of magnitudes to counts is described below. For converting
arcseconds squared to number of pixels, you can use the --pixelscale option of
Section 5.1 [Fits], page 295. For example, astfits image.fits --pixelscale.

Except for the noise-model, this operator is very similar to mknoise-sigma and
the examples there apply here too. The main difference with mknoise-sigma is
that in a Poisson distribution the scatter/sigma will depend on each element’s
value.

For example, let’s assume you have made a mock image called mock.fits with
Section 8.1 [MakeProfiles], page 629, and it is assumed zero point is 22.5 (for

https://en.wikipedia.org/wiki/Poisson_distribution
https://en.wikipedia.org/wiki/Poisson_distribution
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more on the zero point, see Section 7.4.2 [Brightness, Flux, Magnitude and Sur-
face brightness], page 574). Let’s assume the background level for the Poisson
noise has a value of 19 magnitudes. You can first use the mag-to-counts opera-
tor to convert this background magnitude into counts, then feed the background
value in counts to mknoise-sigma-from-mean operator:

$ astarithmetic mock.fits 19 22.5 mag-to-counts \

mknoise-sigma-from-mean

Try changing the background value from 19 to 10 to see the effect! Recall that
the tutorial Section 2.4 [Sufi simulates a detection], page 124, shows how you
can use MakeProfiles to build mock images.

mknoise-poisson

Replace every pixel of the input with a random integer taken from a Poisson
distribution with the mean value of that input pixel. Similar to mknoise-

sigma-from-mean, it takes two operands: 1. The first popped operand (just
before the operator) is the per-pixel background value (in units of electron
counts). 2. The second popped operand is the dataset that the noise should be
added to.

To demonstrate this noise pattern, let’s use mknoise-poisson in the example
of the description of mknoise-sigma-from-mean with the first command below.
The second command below will show you the two images side-by-side, you will
notice that the Poisson distribution’s un-detected regions are slightly darker
(this is because of the skewness of the Poisson distribution). Finally, with the
last two commands, you can see the histograms of the two distributions:

$ astarithmetic raw.fits 4 mknoise-poisson \

--output=poisson.fits

$ astscript-fits-view sigma-from-mean.fits poisson.fits

$ aststatistics sigma-from-mean.fits --lessthan=10

-------

Histogram:

| ***

| ******

| **********

| ***********

| **************

| ****************

| ******************

| **********************

| **************************

| ********************************** *

|* **********************************************************

|------------------------------------------------------------

$ aststatistics poisson.fits --lessthan=10

-------
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Histogram:

| * *

| * *

| * * *

| * * * *

| * * * * *

| * * * * *

| * * * * * * *

| * * * * * * *

| * * * * * * * *

| * * * * * * * *

| * * * * * * * *

|------------------------------------------------------------

The extra skewness in the Poisson distribution, and the fact that it only re-
turns integers is therefore clear with the commands above. The comparison
was further made above in the description of mknoise-sigma-from-mean. In
summary, you should prefer the Poisson distribution when you are simulating
the following scenarios:

• A photon-starved image (as in UV or X-ray).

• A raw exposure of a photon-rich image (which may be photon-rich, but
always integers).

mknoise-uniform

Add uniform noise to each element of the input dataset. This operator takes two
arguments: the top/first popped operand is the width of the interval, the second
popped operand is the dataset that the noise should be added to (each element
will be the center of the interval). The returned random values may happen
to be the minimum interval value, but will never be the maximum. Except for
the noise-model, this operator behaves very similar to mknoise-sigma, see the
explanation there for more.

For example, with the command below, a random value will be selected between
10 to 14 (centered on 12, which is the only input data element, with a total
width of 4).

echo 12 | asttable -c'arith $1 4 mknoise-uniform'

Similar to the example in mknoise-sigma, you can pipe the output of echo
to awk before passing it to asttable to generate a full column of uniformly
selected values within the same interval.

random-from-hist-raw

Generate random values from a custom distribution (defined by a histogram).
The output will have a double-precision floating point type (see Section 4.5
[Numeric data types], page 277). This operator takes three operands:

• The first popped operand (nearest to the operator) is the histogram values.
The histogram is a 1-dimensional dataset (a table column) and contains the
probability of obtaining a certain interval of values. The histogram does
not have to be normalized: the GNU Scientific Library (or GSL, which is
used by Gnuastro for this operator), will normalize it internally. The value
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of each bin (whose probability is given in the histogram) is given in the
second popped operand. Therefore these two operands have to have the
same number of rows.

• The second popped operand is the bin value (mostly the bin center, but it
can be anything). The probability of each bin is defined in the histogram
operand (first popped operand). The bins can have any width (do not have
to be evenly spaced), and any order. Just make sure that the same row in
the bins column corresponds to the same row in the histogram: the number
of rows in the bins and histogram must be equal.

• The third popped operand is the dataset that the random values should
be written over. Effectively only its size will be used by this operator (all
values will be over-written as a double-precision floating point number).

The first two operands have to be single-dimensional (a table column) and have
the same number of rows, but the last popped operand can have any number
of dimensions. You can use the load-col- operator to load the two bins and
histogram columns from an external file (see Section 6.2.4.18 [Loading external
columns], page 456).

For example, in the command below, we first construct a fake histogram to
represent a y = x2 distribution with AWK. We aim to distribute random values
from this distribution in a 100 × 100 image. Therefore, we use the makenew

operator to construct an empty image of that size, use the load-col- op-
erator to load the histogram columns into Arithmetic and put the output in
random.fits. Finally we visually inspect random.fits with DS9 and also have
a look at its pixel distribution with aststatistics.

$ echo "" | awk '{for(i=1;i<5;++i) print i, i*i}' \

> histogram.txt

$ cat histogram.txt

1 1

2 4

3 9

4 16

$ astarithmetic 100 100 2 makenew \

load-col-1-from-histogram.txt \

load-col-2-from-histogram.txt \

random-from-hist-raw \

--output=random.fits

$ astscript-fits-view random.fits

$ aststatistics random.fits --asciihist --numasciibins=50

| *

| *

| *

| *
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| * *

| * *

| * *

| * * *

| * * *

|* * * *

|* * * *

|--------------------------------------------------

As you see, the 10000 pixels in the image only have values 1, 2, 3 or 4 (which
were the values in the bins column of histogram.txt), and the number of times
each of these values occurs follows the y = x2 distribution.

Generally, any value given in the bins column will be used for the final output
values. For example, in the command below (for generating a histogram from
an analytical function), we are adding the bins by 20 (while keeping the same
probability distribution of y = x2). If you re-run the Arithmetic command
above after this, you will notice that the pixels values are now one of the
following 21, 22, 23 or 24 (instead of 1, 2, 3, or 4). But the shape of the
histogram of the resulting random distribution will be unchanged.

$ echo "" | awk '{for(i=1;i<5;++i) print 20+i, i*i}' \

> histogram.txt

If you do not want the outputs to have exactly the value of the bin identifier,
but be a randomly selected value from a uniform distribution within the bin,
you should use random-from-hist (see below).

As mentioned above, the output will have a double-precision floating point type
(see Section 4.5 [Numeric data types], page 277). Therefore, by default each
element of the output will consume 8 bytes (64-bits) of storage. This is usually
far more than the statistical error/precision of your data (and just results in
wasted storage in your file system, or wasted RAM when a program that uses
the data is being run, and a slower running time of the program).

It is therefore recommended to use a type-conversion operator after this opera-
tor to put the output in the smallest type that can be used to safely store your
data without wasting storage, RAM or time. For the list of type conversion
operators, see Section 6.2.4.15 [Numerical type conversion operators], page 442.
Recall that you already know the values returned by this operator (they are
one of the values in the bins column).

For example, in the example above, the whole image only has values 1, 2, 3 or
4. Since they are always positive and are below 255, we can safely place them
in an unsigned 8-bit integer (see Section 4.5 [Numeric data types], page 277)
with the command below (note the uint8 after the operator name, and that
we are using a different name for the output). After building the new image,
let’s have a look at the sizes of the two images with ls -l:

$ astarithmetic 100 100 2 makenew \

load-col-1-from-histogram.txt \

load-col-2-from-histogram.txt \

random-from-hist-raw uint8 \
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--output=random-u8.fits

$ ls -lh random.fits random-u8.fits

-rw-r--r-- 1 name name 85K Jan 01 13:40 random.fits

-rw-r--r-- 1 name name 17K Jan 01 13:45 random-u8.fits

As you see, when using a suitable data type, we can shrink the size of the file
significantly without loosing any information (from 85 kilobytes to 17 kilobytes).
This difference can be felt much better for larger (real-world) datasets, so be
sure to always set the output data type after calling this operator.

random-from-hist

Similar to random-from-hist-raw, but do not return the exact bin value,
instead return a random value from a uniform distribution within each bin.
Therefore the following limitations have to be taken into account (compared to
random-from-hist-raw):

• The number associated with each bin (in the bin column) should be its
center.

• The bins have to be in descending order (so the second row in the bin
column is larger than the first).

• The bin widths (distance from one bin to another) have to be fixed.

For a demonstration, let’s replace random-from-hist-raw with random-from-

hist in the example of the description of random-from-hist-raw. Note how we
are manually converting the output of this operator into single-precision floating
point (32-bit, since the default 64-bit precision is statistically meaningless in
this scenario and we do not want to waste storage, memory and running time):

$ echo "" | awk '{for(i=1;i<5;++i) print i, i*i}' \

> histogram.txt

$ astarithmetic 100 100 2 makenew \

load-col-1-from-histogram.txt \

load-col-2-from-histogram.txt \

random-from-hist float32 \

--output=random.fits

$ aststatistics random.fits --asciihist --numasciibins=50

| *

| *** ********

| ************

| *************

| * * *************

| * ***********************

| *************************

| *************************

| *************************************

|********* * **************************************

|**************************************************
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|--------------------------------------------------

You can see that the pixels of histogram.fits are no longer just 1, 2, 3 or
4. Instead, the values within each bin are selected from a uniform distribution
covering that bin. This creates the step-like feature in the histogram of the
output.

Of course, this extra uniform random number generation can make your pro-
gram slower so be sure to check if it is worth it. In particular, one way to avoid
this (and use random-from-hist-raw with a more contiguous-looking output
distribution) is to simply use a higher-resolution histogram (assuming it is pos-
sible: you have a sufficient number of data points, or you have an analytical
expression that you can sample at smaller bin sizes).

To better demonstrate this operator and its practical usage in everyday re-
search, let’s look at another example: Assume you want to get 100 random star
magnitudes that follow the real-world Gaia Data release 3 magnitude distribu-
tion within a radius of 2 degrees around the (RA,Dec) coordinate of (1.23,4.56).
Let’s further assume that you want to distribute them uniformly over an image
of size 1000 by 1000 pixels. So your desired output table should have three
columns, the first two are pixel positions of each star, and the third is the
magnitude.

First, we need to query the Gaia database and ask for all the magnitudes in
this region of the sky. We know that Gaia is not complete for stars fainter than
the 20th magnitude, so we will use the --range option and only ask for those
stars that are brighter than magnitude 20.

$ astquery gaia --dataset=dr3 --center=1.23,3.45 --radius=2 \

--column=phot_g_mean_mag --output=gaia.fits \

--range=phot_g_mean_mag,-inf,20

We now have more than 25000 magnitudes in gaia.fits! To get a more accu-
rate random sampling of our stars, let’s construct a histogram with 500 bins,
and generate our three desired randomly selected columns:

$ aststatistics gaia.fits --histogram --numbins=500 \

--output=gaia-hist.fits

$ asttable gaia-hist.fits -i

$ echo 1000 \

| awk '{for(i=0;i<100;++i) print $1/2}' \

| asttable -c'arith $1 500 mknoise-uniform' \

-c'arith $1 500 mknoise-uniform' \

-c'arith $1 \

load-col-1-from-gaia-hist.fits-hdu-1 \

load-col-2-from-gaia-hist.fits-hdu-1 \

random-from-hist float32'

These columns can easily be placed in the format for Section 8.1 [MakeProfiles],
page 629, to be inserted into an image automatically.
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6.2.4.17 Coordinate and border operators

The operators here help you in defining or manipulating coordinates. For examples to define
the “box” (a rectangular region) that surrounds an ellipse or to rotate a point around a
reference point.

rotate-coord

Rotate the given point (horizontal and vertical coordinates given in 5th and 4th
popped operands) around a center/reference point (coordinates given in the 3rd
and 2nd popped operands) by a given angle (first popped operand).

For example, if you want to trace the outer edge of a circle centered on
(1.23,45.6) with a radius of 0.78, you can use this operator like below. The
logic is that we assume a single point that is located on 0.78 units after the
center on the horizontal axis (the point’s vertical axis position is the same as
the center). We then rotate this point in each row by one degree to build the
circle’s circumference.

$ cx=1.23

$ cy=45.6

$ rad=0.78

$ seq 0 360 \

| awk '{print '$rad'+'$cx', '$cy', $1}' \

| asttable -c'arith $1 $2 '$cx' '$cy' $3 rotate-coord' \

--output=circle.fits

## Within TOPCAT, after opening "Plane Plot", within "Axes" select

## "Aspect lock" so the steps in both axis is the same.

$ astscript-fits-view circle.fits

If you want the points to create a circle on the celestial sphere, you can use
the eq-j2000-from-flat operator after this one (see Section 5.3.3 [Column
arithmetic], page 346):

$ seq 0 360 \

| awk '{print '$rad'+'$cx', '$cy', $1}' \

| asttable -c'arith $1 $2 '$cx' '$cy' $3 rotate-coord \

'$cx' '$cy' TAN eq-j2000-from-flat' \

--output=circle-on-sky.fits

When you open TOPCAT, if you open the “Plane Plot”, you will see an ellipse.
However, if you open “Sky Plot” (from the “Graphics” menu), and select the
first and second columns respectively, you will see a circle.

The center coordinates and angle can be fixed for all the rows (as in the example
above) or be different for every row. Recall that if you want these to change
on every row, you should give the column name (or number followed by $) for
these operands instead of the constant number above.

box-around-ellipse

Return the width (along horizontal) and height (along vertical) of a box that
encompasses an ellipse with the same center point. The top-popped operand
is assumed to be the position angle (angle from the horizontal axis) in degrees.
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The second and third popped operands are the minor and major radii of the
ellipse respectively. This operator outputs two operands on the general stack.
The first one is the width and the second (which will be the top one when this
operator finishes) is the height.

If the value to the second popped operand (minor axis) is larger than the third
(major axis), a NaN value will be written for both the width and height of that
element and a warning will be printed (the warning can be disabled with the
--quiet option).

As an example, if your ellipse has a major axis radius of 10 units, a minor
axis radius of 4 units and a position angle of 20 degrees, you can estimate the
bounding box with this command:

$ echo "10 4 20" \

| asttable -c'arith $1 $2 $3 box-around-ellipse'

Alternatively if your three values are in separate FITS arrays/images, you can
use the command below to have the width and height in similarly sized fits
arrays. In this example a.fits and b.fits are respectively the major and
minor axis lengths and pa.fits is the position angle (in degrees). Also, in all
three, we assume the first extension is used. After it is done, the height of
the box will be put in h.fits and the width will be in w.fits. Just note that
because this operator has two output datasets, you need to first write the height
(top output operand) into a file and free it with the tofilefree- operator, then
write the width in the file given to --output.

$ astarithmetic a.fits b.fits pa.fits box-around-ellipse \

tofilefree-h.fits -ow.fits -g1

Finally, if you need to treat the width and height separately for further pro-
cessing, you can call the set- operator two times afterwards like below. Recall
that the set- operator will pop the top operand, and put it in memory with a
certain name, bringing the next operand to the top of the stack.

For example, let’s assume catalog.fits has at least three columns MAJOR,
MINOR and PA which specify the major axis, minor axis and position angle
respectively. But you want the final width and height in 32-bit floating point
numbers (not the default 64-bit, which may be too much precision in many
scenarios). You can do this with the command below (note you can also break
lines with \, within the single-quote environment)

$ asttable catalog.fits \

-c'arith MAJOR MINOR PA box-around-ellipse \

set-height set-width \

width float32 height float32'

box-vertices-on-sphere

Convert a box center and width to the coordinates of the vertices of the box on
a left-hand spherical coordinate system. In a left-handed spherical coordinate
system, the longitude increases towards the left while north is up (as in the
RA and Dec direction of the equatorial coordinate system used in astronomy).
This operator therefore takes four input operands (the RA and Dec of the box’s
center, as well as the width of the box in each direction).
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After it is complete, this operator places 8 operands on the stack which contain
the RA and Dec of the four vertices of the box in the following anti-clockwise
order:

1. Bottom-left vertice Longitude (RA)

2. Bottom-left vertice Latitude (Dec)

3. Bottom-right vertice Longitude (RA)

4. Bottom-right vertice Latitude (Dec)

5. Top-right vertice Longitude (RA)

6. Top-right vertice Latitude (Dec)

7. Top-left vertice Longitude (RA)

8. Top-left vertice Latitude (Dec)

For example, with the command below, we will retrieve the vertice coordinates
of a rectangle around a point with RA=20 and Dec=0 (on the equator). The
rectangle will have a 1 degree edge along the RA direction and a 2 degree edge
along the declination. In this example, we are using the -Afixed -B2 only for
demonstration purposes here due to the round numbers! In general, it is best
to write your outputs to a binary FITS table to preserve the full precision (see
Section 5.3.1 [Printing floating point numbers], page 341).

$ echo "20 0 1 2" \

| asttable -Afixed -B2 \

-c'arith $1 $2 $3 $4 box-vertices-on-sphere'

20.50 -1.00 19.50 -1.00 19.50 1.00 20.50 1.00

We see that the bottom-left vertice is at (RA,Dec) of (20.50,−1.0) and the
top-right vertice is at (19.50, 1.00). These could have easily been done by man-
ually adding and subtracting! But you will see that the complexity arises at
higher/lower declinations. For example, with the command below, let’s see how
vertice coordinates of the same box, but after moving its center to (RA,Dec) of
(20,85):

$ echo "20 85 1 2" \

| asttable -Afixed -B2 \

-c'arith $1 $2 $3 $4 box-vertices-on-sphere'

24.78 84.00 15.22 84.00 12.83 86.00 27.17 86.00

Even though, we didn’t change the central RA (20) or the size of the box along
the RA (1 degree), the RA of the bottom-left vertice is now at 24.78; almost
5 degrees away! This occurs because of the spherical coordinate system, we
measure the longitude (e.g., RA) with the following way:

1. Draw a meridian that passes your point. The meridian is half of a
great-circle (https://en.wikipedia.org/wiki/Great_circle) (which
has a diameter that is equal to the sphere’s diameter) passes both poles.

2. Find the intersection of that meridian with the equator.

3. The distance of the intersection and the reference point (along the equator)
defines the longitude angle.

https://en.wikipedia.org/wiki/Great_circle
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As you get more distant from the equator (declination becomes non-zero), any
change along the RA (towards the east; 1 degree in the example above) will on
longer be on a great circle, but along a “small circle (https://en.wikipedia.
org/wiki/Circle_of_a_sphere)”. On a small circle that is defined by the fixed
declination δ, the distance of two points is closer than the distances of their pro-
jection on the equator (as described in the definition of longitude above). It is
smaller by a factor of cos(δ).

Therefore, an angular change (let’s call it Δlon) along the small circle defined
by the fixed declination of δ corresponds to Δlon/ cos(δ) on the equator.

6.2.4.18 Loading external columns

In the Arithmetic program, you can always load new dataset by simply giving their name.
However, they can only be images, not a column. In the Table program, you can load
columns in Section 5.3.3 [Column arithmetic], page 346, but it has to be columns within the
same table (and thus the same number of rows). However, in some situations, it is necessary
to use certain columns of a table in the Arithmetic program, or columns of different rows
(from the main input) in Table.

load-col-%-from-%

load-col-%-from-%-hdu-%

Load the requested column (first %) from the requested file (second %). If the
file is a FITS file, it is also necessary to specify a HDU using the second form
(where the HDU identifier is the third %. For example, load-col-MAG-from-
catalog.fits-hdu-1 will load the MAG column from HDU 1 of catalog.fits.

For example, let’s assume you have the following two tables, and you would like
to add the first column of the first with the second:

$ asttable tab-1.fits

1 43.23

2 21.91

3 71.28

4 18.10

$ cat tab-2.txt

5

6

7

8

$ asttable tab-1.txt -c'arith $1 load-col-1-from-tab-2.txt +'

6

8

10

12

6.2.4.19 Size and position operators

With the operators below you can get metadata about the top dataset on the stack.

https://en.wikipedia.org/wiki/Circle_of_a_sphere
https://en.wikipedia.org/wiki/Circle_of_a_sphere
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index Add a new operand to the stack with an integer type and the same size (in all
dimensions) as top operand on the stack (before it was called; it is not popped!).
The first pixel in the returned operand is zero, and every later pixel’s value is
incremented by one. It is important to remember that the top operand is not
popped by this operand, so it remains on the stack. After this operand is
finished, it adds a new operand to the stack. To pop the previous operand, you
can use the indexonly operator.

The data type of the output is always an unsigned integer, and its width is
determined from the number of pixels/rows in the top operand. For example if
there are only 108 rows in a table, the returned column will have an unsigned
8-bit integer type (that can keep 256 separate values). But if the top operand
is a 1000×1000 = 106 pixel image, the output will be a 32-bit unsigned integer.
For the various types of integers, see Section 4.5 [Numeric data types], page 277.

To see the index image along with the actual image, you can use the --writeall
operator to have a multi-HDU output (without --writeall, Arithmetic will
complain if more than one operand is left at the end). After DS9 opens with
the second command, flip between the two extensions.

$ astarithmetic image.fits index --writeall

$ astscript-fits-view image_arith.fits

Below is a review some usage examples of this operator:

Image: masking margins
With the command below, we will be masking all pixels that are 20
pixels away from the edges of the image (on the margin). Here is
a description of the command below (for the basics of Arithmetic’s
notation, see Section 6.2.1 [Reverse polish notation], page 399):

• The index operator just adds a new dataset on the stack: un-
like almost all other operators in Arithmetic, index doesn’t
remove its input dataset from the stack (use indexonly for
the “normal” behavior). This is because index returns the
pixel metadata not data. As a result, after index, we have
two operands on the stack: the input image and the index
image.

• With the set-i operator, the top operand (the image con-
taining the index of each pixel) is popped from the stack and
associated to the name i. Therefore after this, the stack only
has the input image. For more on the set- operator, see Sec-
tion 6.2.4.21 [Operand storage in memory or a file], page 462.

• We need three values from the commands before Arithmetic
(for the width and height of the image and the size of the mar-
gin). To make the rest of the command easier to read/use, we’ll
define them in Arithmetic as three named operators (respec-
tively called w, h and m). All three are integers that will have
a positive value lower than 216 = 65536 (for a “normal” im-
age!). Therefore, we will store them as 16-bit unsigned integers
with the uint16 operator (this will help optimal processing in



Chapter 6: Data manipulation 458

later steps). For more the type changing operators, see Sec-
tion 6.2.4.15 [Numerical type conversion operators], page 442.

• Using the modulo % and division (/) operators on the index
image and the width, we extract the horizontal (X) and vertical
(Y) positions of each pixel in separately named operands called
X and Y. The maximum value in these two will also fit within
an unsigned 16-bit integer, so we’ll also store these in that
type.

• For the horizontal (X) dimension, we select pixels that are less
than the margin (X m lt) and those that are more than the
width subtracted by the margin (X w m - gt).

• The output of the lt and gt conditional operators above is
a binary (0 or 1 valued) image. We therefore merge them
into one binary image using the or operator. For more, see
Section 6.2.4.12 [Conditional operators], page 436.

• We repeat the two steps above for the vertical (Y) dimension.

• Once the images containing the to-be-masked pixels in each
dimension are made, we combine them into one binary image
with a final or operator. At this point, the stack only has two
operands: 1) the input image and 2) the binary image that has
a value of 1 for all pixels whose value should be changed.

• A single-element operand (nan) is added on the stack.

• Using the where operator, we replace all the pixels that are
non-zero in the second operand (on the margins) to the top
operand’s value (NaN) in the third popped operand (image
that was read from image.fits). For more on the where op-
erator, see Section 6.2.4.12 [Conditional operators], page 436.

$ margin=20

$ width=$(astfits image.fits --keyvalue=NAXIS1 -q)

$ height=$(astfits image.fits --keyvalue=NAXIS2 -q)

$ astarithmetic image.fits index set-i \

$width uint16 set-w \

$height uint16 set-h \

$margin uint16 set-m \

i w % uint16 set-X \

i w / uint16 set-Y \

X m lt X w m - gt or \

Y m lt Y h m - gt or \

or nan where

Image: Masking regions outside a circle
As another example for usage on an image, in the command below
we are using index to define an image where each pixel contains the
distance to the pixel with X,Y coordinates of 345,250. We are then
using that distance image to only keep the pixels that are within a
50 pixel radius of that point.
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The basic concept behind this process is very similar to the pre-
vious example, with a different mathematical definition for pixels
to mask. The major difference is that we want the distance to a
pixel within the image, we need to have negative values and the
center coordinates can be in a sub-pixel positions. The best nu-
meric datatype for intermediate steps is therefore floating point.
64-bit floating point can have a precision of up to 15 digits after
the decimal point. This is far too much for what we need here: in
astronomical imaging, the PSF is usually on the scale of 1 or more
pixels (see Section 6.3.2.7 [Sampling theorem], page 481). So even
reaching a precision of one millionth of a pixel (offered by 32-bit
floating points) is beyond our wildest dreams (see Section 4.5 [Nu-
meric data types], page 277). We will also define the horizontal
(X) and vertical (Y) operands after shifting to the desired central
point.

$ radius=50

$ centerx=345.2

$ centery=250.3

$ width=$(astfits image.fits --keyvalue=NAXIS1 -q)

$ astarithmetic image.fits index set-i \

$width uint16 set-w \

$radius float32 set-r \

$centerx float32 set-cx \

$centery float32 set-cy \

i w % cx - set-X \

i w / cy - set-Y \

X X x Y Y x + sqrt r gt \

nan where --output=arith-masked.fits� �
Optimal data types have significant benefits: choosing the min-
imum required datatype for your operation is very important to
avoid wasting your CPU and RAM. Don’t simply default to 64-
bit floating points for everything! Integer operations are much
faster than floating points, and within floating point types, 32-
bit is faster and will use half the RAM/storage! For more, see
Section 4.5 [Numeric data types], page 277.
 	
The example above was just a demo for usage of the index operator
and some important concepts. But it is not the easiest way to
achieve the desired result above! An easier way for the scenario
above (to keep a circle within an image and set everything else to
NaN) is to use MakeProfiles in combination with Arithmetic, like
below:

$ radius=50

$ centerx=345.2

$ centery=250.3
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$ echo "1 $centerx $centery 5 $radius 0 0 1 1 1" \

| astmkprof --background=image.fits \

--mforflatpix --clearcanvas \

-omkprof-mask.fits --type=uint8

$ astarithmetic image.fits mkprof-mask.fits not \

nan where -g1 -omkprof-masked.fits

Tables: adding new columns with row index
Within Table, you can use this operator to add an index column
like below (see the counter operator for starting the count from
one).

## The index will be the second column.

$ asttable table.fits -c'arith $1 index'

## The index will be the first column

$ asttable table.fits -c'arith $1 index swap'

indexonly

Similar to index, except that the top operand is popped from the stack and is
no longer available afterwards.

counter Similar to index, except that counting starts from one (not zero as in index).
Counting from one is usually necessary when adding row counters in tables, like
below:

$ asttable table.fits -c'arith $1 counter swap'

counteronly

Similar to counter, but the top operand before it is popped (no longer avail-
able).

size Size of the dataset along a given FITS (or FORTRAN) dimension (counting
from 1). The desired dimension should be the first popped operand and the
dataset must be the second popped operand. The output will be a single un-
signed integer (dimensions cannot be negative). For example, the following
command will produce the size of the first extension/HDU (the default HDU)
of a.fits along the second FITS axis.

$ astarithmetic a.fits 2 size� �
Not optimal: This operator reads the top element on the stack and then
simply reads its size along the given dimension. On a small dataset this won’t
consume much RAM, but if you want to put this in a pipeline or use it on
large image, the extra RAM and slow operation can become meaningful. To
avoid such issues, you can read the size along the given dimension using the
--keyvalue option of Section 5.1.1.2 [Keyword inspection and manipulation],
page 302. For example, in the code below, the X axis position of every pixel
is returned:

$ width=$(astfits image.fits --keyvalue=NAXIS1 -q)

$ astarithmetic image.fits indexonly $width % -opix-x.fits
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6.2.4.20 New operands

With the operator here, you can create a new dataset from scratch to start certain operations
without any input data.

makenew Create a new dataset that only has zero values. The number of dimensions
is read as the first popped operand and the number of elements along each
dimension are the next popped operand (in reverse of the popping order). The
type of the new dataset is an unsigned 8-bit integer and all pixel values have a
value of zero. For example, if you want to create a new 100 by 200 pixel image,
you can run this command:

$ astarithmetic 100 200 2 makenew

To further extend the example, you can use any of the noise-making operators to
add noise to this new dataset (see Section 6.2.4.16 [Random number generators],
page 443), like the command below:

$ astarithmetic 100 200 2 makenew 5 mknoise-sigma

constant Return an operand that will have a constant value (first popped operand) in all
its elements. The number of elements is read from the second popped operand.
The second popped operand is only used for its number of elements, its numeric
data type, or its values are fully ignored and it is later freed.

Here is one useful scenario for this operator in tables: you want to merge the
objects/rows of some catalogs together, but you first want to give each source
catalog a label/counter that distinguishes between the source of each rows in
the merged/final catalog (using Section 5.3.5 [Invoking Table], page 359). The
steps below show the the usage of this.

## Add label 1 to the RA, Dec, magnitude and magnitude error

## rows of the first catalog.

$ asttable cat-1.fits -cRA,DEC,MAG,MAG_ERR \

-c'arith $1 1 constant' --output=tab-1.fits

## Similar to above, but for the second catalog.

$ asttable cat-2.fits -cRA,DEC,MAG,MAG_ERR \

-c'arith $1 2 constant' --output=tab-2.fits

## Concatenate (merge/blend) the rows of the two tables into

## one for the 5 columns, but also add a counter for each

## object or row in the final catalog.

$ asttable tab-1.fits --catrowfile=tab-2.fits \

-c'arith $1 counteronly' \

-cRA,DEC,MAG,MAG_ERR,5 --output=merged.fits \

--colmetadata=1,ID_MERGED,counter,"Merged ID." \

--colmetadata=6,SOURCE-CAT,counter,"Source ID."

## Add keyword information on each input. It is very important

## to preserve this within the merged catalog. If the tables

## came from public databases (for example on VizieR), give

## their public identifier as the value.
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$ astfits merged.fits --write=/,"Source catalogs" \

--write=CATSRC1,"I/355/gaiadr3","VizieR ID." \

--write=CATSRC2,"Jane Doe","Name of source."

## Check the metadata in 'merged.fits' and clean the

## temporary files.

$ rm tab-1.fits tab-2.fits

$ astfits merged.fits -h1

Like most operators, constant is not limited to tables, you can also apply it
on images. In the example below, we’ll use constant to set all the pixels of the
input image to NaN (which is necessary in scenarios that you need to include in
an image in an analysis, but you don’t want its pixels to affect the processing):

$ astarithmetic image.fits nan constant

6.2.4.21 Operand storage in memory or a file

In your early days of using Gnuastro, to do multiple operations, it is likely that you will
simply call Arithmetic (or Table, with column arithmetic) multiple times: feed the output
file of the first call to the second call. But as you get more proficient in the reverse polish
notation, you will find yourself combining many operations into one call. This greatly speeds
up your operation, because instead of writing the dataset to a file in one command, and
reading it in the next command, it will just keep the intermediate dataset in memory!

But adding more complexity to your operations, can make them much harder to debug,
or extend even further. Therefore in this section we have some special operators that behave
differently from the rest: they do not touch the contents of the data, only where/how they
are stored. They are designed to do complex operations, without necessarily having a
complex command.

swap Swap the top two operands on the stack. For example the index operator
doesn’t pop with the top operand (the input to index), it just adds the index
image to the stack. In case you want your next operation to be on the input
to index, you can simply call swap and continue the operations on that image,
while keeping the indexed pixels for later steps. In the example below we are
using the --writeall option to write the full stack and if you open the outputs
you will see that the stack order has changed.

## Index image is written in HDU 1.

$ astarithmetic image.fits index --writeall \

--output=ind-first.fits

## image.fits in HDU 1.

$ astarithmetic image.fits index swap --writeall \

--output=img-first.fits

repeat Add N copies of the second popped operand to the stack of operands. N is the
first popped operand. For example, let’s assume image.fits is a 100 × 100
image. The output of the command below will be a 3D datacube of size 100×
100× 20 voxels (volume-pixels):

$ astarithmetic image.fits 20 repeat 20 add-dimension-slow
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free Free the top operand from the stack and memory. This is useful in cases where
the operator adds more than one operand on the stack. For example operators
that do stacking by clipping in Section 6.2.4.7 [Stacking operators], page 421;
see the examples there for more.

set-AAA Set the characters after the dash (AAA in the case shown here) as a name for
the first popped operand on the stack. The named dataset will be freed from
memory as soon as it is no longer needed, or if the name is reset to refer to
another dataset later in the command. This operator thus enables reusability
of a dataset without having to reread it from a file every time it is necessary
during a process. When a dataset is necessary more than once, this operator
can thus help simplify reading/writing on the command-line (thus avoiding
potential bugs), while also speeding up the processing.

Like all operators, this operator pops the top operand off of the main processing
stack, but unlike other operands, it will not add anything back to the stack
immediately. It will keep the popped dataset in memory through a separate list
of named datasets (not on the main stack). That list will be used to add/copy
any requested dataset to the main processing stack when the name is called.

The name to give the popped dataset is part of the operator’s name. For
example, the set-a operator of the command below, gives the name “a” to the
contents of image.fits. This name is then used instead of the actual filename
to multiply the dataset by two.

$ astarithmetic image.fits set-a a 2 x

The name can be any string, but avoid strings ending with standard filename
suffixes (for example, .fits)14.

One example of the usefulness of this operator is in the where operator. For
example, let’s assume you want to mask all pixels larger than 5 in image.fits

(extension number 1) with a NaN value. Without setting a name for the dataset,
you have to read the file two times from memory in a command like this:

$ astarithmetic image.fits image.fits 5 gt nan where -g1

But with this operator you can simply give image.fits the name i and simplify
the command above to the more readable one below (which greatly helps when
the filename is long):

$ astarithmetic image.fits set-i i i 5 gt nan where

tofile-AAA

Write the top operand on the operands stack into a file called AAA (can be any
FITS file name) without changing the operands stack. If you do not need the
dataset any more and would like to free it, see the tofilefree operator below.

By default, any file that is given to this operator is deleted before Arithmetic
actually starts working on the input datasets. The deletion can be deactivated
with the --dontdelete option (as in all Gnuastro programs, see Section 4.1.2.1

14 A dataset name like a.fits (which can be set with set-a.fits) will cause confusion in the initial parser
of Arithmetic. It will assume this name is a FITS file, and if it is used multiple times, Arithmetic will
abort, complaining that you have not provided enough HDUs.
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[Input/Output options], page 252). If the same FITS file is given to this oper-
ator multiple times, it will contain multiple extensions (in the same order that
it was called.

For example, the operator tofile-check.fits will write the top operand to
check.fits. Since it does not modify the operands stack, this operator is very
convenient when you want to debug, or understanding, a string of operators
and operands given to Arithmetic: simply put tofile-AAA anywhere in the
process to see what is happening behind the scenes without modifying the
overall process.

tofilefree-AAA

Similar to the tofile operator, with the only difference that the dataset that
is written to a file is popped from the operand stack and freed from memory
(cannot be used any more).

6.2.5 Invoking Arithmetic

Arithmetic will do pixel to pixel arithmetic operations on the individual pixels of input data
and/or numbers. For the full list of operators with explanations, please see Section 6.2.4
[Arithmetic operators], page 408. Any operand that only has a single element (number, or
single pixel FITS image) will be read as a number, the rest of the inputs must have the
same dimensions. The general template is:

$ astarithmetic [OPTION...] ASTRdata1 [ASTRdata2] OPERATOR ...

One line examples:

## Calculate (10.32-3.84)^2.7 quietly (will just print 155.329):

$ astarithmetic -q 10.32 3.84 - 2.7 pow

## Inverse the input image (1/pixel):

$ astarithmetic 1 image.fits / --out=inverse.fits

## Multiply each pixel in image by -1:

$ astarithmetic image.fits -1 x --out=negative.fits

## Subtract extension 4 from extension 1 (counting from zero):

$ astarithmetic image.fits image.fits - --out=skysub.fits \

--hdu=1 --hdu=4

## Add two images, then divide them by 2 (2 is read as floating point):

## Note that without the '.0', the '2' will be read/used as an integer.

$ astarithmetic image1.fits image2.fits + 2.0 / --out=average.fits

## Use Arithmetic's average operator:

$ astarithmetic image1.fits image2.fits average --out=average.fits

## Calculate the median of three images in three separate extensions:

$ astarithmetic img1.fits img2.fits img3.fits median \

-h0 -h1 -h2 --out=median.fits
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Arithmetic’s notation for giving operands to operators is fully described in Section 6.2.1
[Reverse polish notation], page 399. The output dataset is last remaining operand on the
stack. When the output dataset a single number, and --output is not called, it will be
printed on the standard output (command-line). When the output is an array, it will be
stored as a file.

The name of the final file can be specified with the --output option, but if it is not
given (and the output dataset has more than one element), Arithmetic will use “automatic
output” on the name of the first FITS image encountered to generate an output file name,
see Section 4.9 [Automatic output], page 290. By default, if the output file already exists,
it will be deleted before Arithmetic starts operation. However, this can be disabled with
the --dontdelete option (see below). At any point during Arithmetic’s operation, you can
also write the top operand on the stack to a file, using the tofile or tofilefree operators,
see Section 6.2.4 [Arithmetic operators], page 408.

By default, the world coordinate system (WCS) information of the output dataset will
be taken from the first input image (that contains a WCS) on the command-line. This can
be modified with the --wcsfile and --wcshdu options described below. When the --quiet
option is not given, the name and extension of the dataset used for the output’s WCS is
printed on the command-line.

Through operators like those starting with collapse-, the dimensionality of the inputs
may not be the same as the outputs. By default, when the output is 1D, Arithmetic will
write it as a table, not an image/array. The format of the output table (plain text or
FITS ASCII or binary) can be set with the --tableformat option, see Section 4.1.2.1
[Input/Output options], page 252). You can disable this feature (write 1D arrays as FITS
images/arrays, or to the standard output) with the --onedasimage or --onedonstdout

options.

See Section 4.1.2 [Common options], page 251, for a review of the options in all Gnuastro
programs. Arithmetic just redefines the --hdu and --dontdelete options as explained
below.

--arguments=STR

A plain-text file containing the command-line arguments that will be used by
Arithmetic. This option is only relevant when no arguments are given on the
command-line: if any arguments are given, this option is ignored.

This is necessary when the set of of input files and operators (arguments; see
Section 4.1.1 [Arguments and options], page 248) are very long (thousands of
long file names for example; usually generated within large pipelines). Such long
arguments will cause the shell to abort with an Argument list too long error.
In such cases, you can put the list into a plain-text file and use this option like
below. Here we are assuming you want to stack all the files in a certain directory
with the mean operator but after masking outliers; see Section 6.2.4.7 [Stacking
operators], page 421, and Section 6.2.4.6 [Statistical operators], page 418:

$ counter=0

$ for f in $(pwd)/*.fits; do \

echo $f; counter=$((counter+1)); \

done > arguments.txt; \

echo "$counter 4.5 0.01 madclip-maskfilled $counter mean" \
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>> arguments.txt

$ astarithmetic --arguments=arguments.txt -g1

-h INT/STR

--hdu INT/STR

The header data unit of the input FITS images, see Section 4.1.2.1
[Input/Output options], page 252. Unlike most options in Gnuastro (which
will ultimately only have one value for this option), Arithmetic allows --hdu

to be called multiple times and the value of each invocation will be stored
separately (for the unlimited number of input images you would like to use).
Recall that for other programs this (common) option only takes a single value.
So in other programs, if you specify it multiple times on the command-line,
only the last value will be used and in the configuration files, it will be ignored
if it already has a value.

The order of the values to --hdu has to be in the same order as input FITS
images. Options are first read from the command-line (from left to right),
then top-down in each configuration file, see Section 4.2.2 [Configuration file
precedence], page 269.

If the number of HDUs is less than the number of input images, Arithmetic
will abort and notify you. However, if there are more HDUs than FITS images,
there is no problem: they will be used in the given order (every time a FITS
image comes up on the stack) and the extra HDUs will be ignored in the end.
So there is no problem with having extra HDUs in the configuration files and by
default several HDUs with a value of 0 are kept in the system-wide configuration
file when you install Gnuastro.

-g INT/STR

--globalhdu INT/STR

Use the value to this option as the HDU of all input FITS files. This option is
very convenient when you have many input files and the dataset of interest is
in the same HDU of all the files. When this option is called, any values given
to the --hdu option (explained above) are ignored and will not be used.

-w FITS

--wcsfile FITS

FITS Filename containing the WCS structure that must be written to the
output. The HDU/extension should be specified with --wcshdu.

When this option is used, the respective WCS will be read before any processing
is done on the command-line and directly used in the final output. If the given
file does not have any WCS, then the default WCS (first file on the command-
line with WCS) will be used in the output.

This option will mostly be used when the default file (first of the set of inputs)
is not the one containing your desired WCS. But with this option, you can also
use Arithmetic to rewrite/change the WCS of an existing FITS dataset from
another file:

$ astarithmetic data.fits --wcsfile=other.fits -ofinal.fits
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-W STR

--wcshdu STR

HDU/extension to read the WCS within the file given to --wcsfile. For more,
see the description of --wcsfile.

--envseed

Use the environment for the random number generator settings in operators
that need them (for example, mknoise-sigma). This is very important for
obtaining reproducible results, for more see Section 6.2.3.4 [Generating random
numbers], page 406.

--append If the output file already exists, do not delete it; add the output data to new
HDUs at the end of that file. You can use the --meta* options below to give
a name, unit or comments to this HDUs (to easily distinguish it from other
HDUs).

-n STR

--metaname=STR

Metadata (name) of the output dataset. For a FITS image or table, the string
given to this option is written in the EXTNAME or TTYPE1 keyword (respectively).

If this keyword is present in a FITS extension, it will be printed in the ta-
ble output of a command like astfits image.fits (for images) or asttable
table.fits -i (for tables). This metadata can be very helpful for yourself in
the future (when you have forgotten the details), so it is recommended to use
this option for files that should be archived or shared with colleagues.

-u STR

--metaunit=STR

Metadata (units) of the output dataset. For a FITS image or table, the string
given to this option is written in the BUNIT or TTYPE1 keyword respectively.
In the case of tables, recall that the Arithmetic program only outputs a single
column, you should use column arithmetic in Table for more than one column
(see Section 5.3.3 [Column arithmetic], page 346). For more on the importance
of metadata, see the description of --metaname.

-c STR

--metacomment=STR

Metadata (comments) of the output dataset. For a FITS image or table, the
string given to this option is written in the COMMENT or TCOMM1 keyword respec-
tively. In the case of tables, recall that the Arithmetic program only outputs
a single column, you should use column arithmetic in Table for more than one
column (see Section 5.3.3 [Column arithmetic], page 346). For more on the
importance of metadata, see the description of --metaname.

-O

--onedasimage

Write final dataset as a FITS image/array even if it has a single dimension.
By default, if the output is 1D, it will be written as a table, see above. If the
output has more than one dimension, this option is redundant.
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-s

--onedonstdout

Write final dataset (only when it is 1D) to standard output, not as a file. By
default 1D datasets will be written as a table, see above. If the output has more
than one dimension, this option is redundant.

-D

--dontdelete

Do not delete the output file, or files given to the tofile or tofilefree opera-
tors, if they already exist. Instead append the desired datasets to the extensions
that already exist in the respective file. Note it does not matter if the final out-
put file name is given with the --output option, or determined automatically.

Arithmetic treats this option differently from its default operation in other
Gnuastro programs (see Section 4.1.2.1 [Input/Output options], page 252).
If the output file exists, when other Gnuastro programs are called with
--dontdelete, they simply complain and abort. But when Arithmetic is
called with --dontdelete, it will appended the dataset(s) to the existing
extension(s) in the file.

-a

--writeall

Write all datasets on the stack as separate HDUs in the output file. This only
affects datasets with multiple dimensions (or single-dimension datasets when
the --onedasimg is called). This option is useful to debug Arithmetic calls: to
check all the images on the stack while you are designing your operation. The
top dataset on the stack will be on HDU number 1 of the output, the second
dataset will be on HDU number 2 and so on.

Arithmetic accepts two kinds of input: images and numbers. Images are considered to
be any of the inputs that is a file name of a recognized type (see Section 4.1.1.1 [Arguments],
page 249) and has more than one element/pixel. Numbers on the command-line will be
read into the smallest type (see Section 4.5 [Numeric data types], page 277) that can store
them, so -2 will be read as a char type (which is signed on most systems and can thus keep
negative values), 2500 will be read as an unsigned short (all positive numbers will be read
as unsigned), while 3.1415926535897 will be read as a double and 3.14 will be read as a
float. To force a number to be read as float, put a . after it (possibly followed by a zero
for easier readability), or add an f after it. Hence while 5 will be read as an integer, 5.,
5.0 or 5f will be added to the stack as float (see Section 6.2.1 [Reverse polish notation],
page 399).

Unless otherwise stated (in Section 6.2.4 [Arithmetic operators], page 408), the operators
can deal with numeric multiple data types (see Section 4.5 [Numeric data types], page 277).
For example, in “a.fits b.fits +”, the image types can be long and float. In such cases,
C’s internal type conversion will be used. The output type will be set to the higher-ranking
type of the two inputs. Unsigned integer types have smaller ranking than their signed
counterparts and floating point types have higher ranking than the integer types. So the
internal C type conversions done in the example above are equivalent to this piece of C:

size_t i;

long a[100];
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float b[100], out[100];

for(i=0;i<100;++i) out[i]=a[i]+b[i];

Relying on the default C type conversion significantly speeds up the processing and also
requires less RAM (when using very large images).

Some operators can only work on integer types (of any length, for example, bitwise
operators) while others only work on floating point types, (currently only the pow operator).
In such cases, if the operand type(s) are different, an error will be printed. Arithmetic also
comes with internal type conversion operators which you can use to convert the data into
the appropriate type, see Section 6.2.4 [Arithmetic operators], page 408.

The hyphen (-) can be used both to specify options (see Section 4.1.1.2 [Options],
page 249) and also to specify a negative number which might be necessary in your arith-
metic. In order to enable you to do this, Arithmetic will first parse all the input strings
and if the first character after a hyphen is a digit, then that hyphen is temporarily replaced
by the vertical tab character which is not commonly used. The arguments are then parsed
and these strings will not be specified as an option. Then the given arguments are parsed
and any vertical tabs are replaced back with a hyphen so they can be read as negative
numbers. Therefore, as long as the names of the files you want to work on, do not start
with a vertical tab followed by a digit, there is no problem. An important consequence of
this implementation is that you should not write negative fractions like this: -.3, instead
write them as -0.3.

Without any images, Arithmetic will act like a simple calculator and print the resulting
output number on the standard output like the first example above. If you really want
such calculator operations on the command-line, AWK (GNU AWK is the most common
implementation) is much faster, easier and much more powerful. For example, the numeri-
cal one-line example above can be done with the following command. In general AWK is a
fantastic tool and GNU AWK has a wonderful manual (https://www.gnu.org/software/
gawk/manual/). So if you often confront situations like this, or have to work with large
text tables/catalogs, be sure to checkout AWK and simplify your life.

$ echo "" | awk '{print (10.32-3.84)^2.7}'

155.329

6.3 Convolve

On an image, convolution can be thought of as a process to blur or remove the contrast
in an image. If you are already familiar with the concept and just want to run Convolve,
you can jump to Section 6.3.4 [Convolution kernel], page 488, and Section 6.3.5 [Invoking
Convolve], page 488, and skip the lengthy introduction on the basic definitions and concepts
of convolution.

There are generally two methods to convolve an image. The first and more intuitive
one is in the “spatial domain” or using the actual image pixel values, see Section 6.3.1
[Spatial domain convolution], page 470. The second method is when we manipulate the
“frequency domain”, or work on the magnitudes of the different frequencies that constitute
the image, see Section 6.3.2 [Frequency domain and Fourier operations], page 472. Un-
derstanding convolution in the spatial domain is more intuitive and thus recommended if
you are just starting to learn about convolution. However, getting a good grasp of the

https://www.gnu.org/software/gawk/manual/
https://www.gnu.org/software/gawk/manual/
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frequency domain is a little more involved and needs some concentration and some math-
ematical proofs. However, its reward is a faster operation and more importantly a very
fundamental understanding of this very important operation.

Convolution of an image will generally result in blurring the image because it mixes pixel
values. In other words, if the image has sharp differences in neighboring pixel values15, those
sharp differences will become smoother. This has very good consequences in detection of
signal in noise for example. In an actual observed image, the variation in neighboring pixel
values due to noise can be very high. But after convolution, those variations will decrease
and we have a better hope in detecting the possible underlying signal. Another case where
convolution is extensively used is in mock images and modeling in general, convolution can
be used to simulate the effect of the atmosphere or the optical system on the mock profiles
that we create, see Section 8.1.1.2 [Point spread function], page 631. Convolution is a
very interesting and important topic in any form of signal analysis (including astronomical
observations). So we have thoroughly16 explained the concepts behind it in the following
sub-sections.

6.3.1 Spatial domain convolution

The pixels in an input image represent different “spatial” positions, therefore when convo-
lution is done only using the actual input pixel values, we name the process as being done
in the “Spatial domain”. In particular this is in contrast to the “frequency domain” that we
will discuss later in Section 6.3.2 [Frequency domain and Fourier operations], page 472. In
the spatial domain (and in realistic situations where the image and the convolution kernel
do not extend to infinity), convolution is the process of changing the value of one pixel to
the weighted average of all the pixels in its neighborhood.

The ‘neighborhood’ of each pixel (how many pixels in which direction) and the ‘weight’
function (how much each neighboring pixel should contribute depending on its position) are
given through a second image which is known as a “kernel”17.

6.3.1.1 Convolution process

In convolution, the kernel specifies the weight and positions of the neighbors of each pixel.
To find the convolved value of a pixel, the central pixel of the kernel is placed on that
pixel. The values of each overlapping pixel in the kernel and image are multiplied by each
other and summed for all the kernel pixels. To have one pixel in the center, the sides of
the convolution kernel have to be an odd number. This process effectively mixes the pixel
values of each pixel with its neighbors, resulting in a blurred image compared to the sharper
input image.

Formally, convolution is one kind of linear ‘spatial filtering’ in image processing texts.
If we assume that the kernel has 2a+ 1 and 2b+ 1 pixels on each side, the convolved value
of a pixel placed at x and y (Cx,y) can be calculated from the neighboring pixel values in
the input image (I) and the kernel (K) from

15 In astronomy, the only major time we confront such sharp borders in signal are cosmic rays. All other
sources of signal in an image are already blurred by the atmosphere or the optics of the instrument.

16 A mathematician will certainly consider this explanation is incomplete and inaccurate. However this
text is written for an understanding on the operations that are done on a real (not complex, discrete
and noisy) astronomical image, not any general form of abstract function

17 Also known as filter, here we will use ‘kernel’.
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Cx,y =
a∑

s=−a

b∑
t=−b

Ks,t × Ix+s,y+t.

Formally, any pixel that is outside of the image in the equation above will be considered
to be zero (although, see Section 6.3.1.2 [Edges in the spatial domain], page 471). When
the kernel is symmetric about its center the blurred image has the same orientation as the
original image. However, if the kernel is not symmetric, the image will be affected in the
opposite manner, this is a natural consequence of the definition of spatial filtering. In order
to avoid this we can rotate the kernel about its center by 180 degrees so the convolved output
can have the same original orientation (this is done by default in the Convolve program).
Technically speaking, only if the kernel is flipped the process is known as Convolution. If
it is not it is known as Correlation.

To be a weighted average, the sum of the weights (the pixels in the kernel) has to be
unity. This will have the consequence that the convolved image of an object and unconvolved
object will have the same brightness (see Section 7.4.2 [Brightness, Flux, Magnitude and
Surface brightness], page 574), which is natural, because convolution should not eat up the
object photons, it only disperses them.

The convolution of each pixel is independent of the other pixels, and in some cases, it
may be necessary to convolve different parts of an image separately (for example, when you
have different amplifiers on the CCD). Therefore, to speed up spatial convolution, Gnuastro
first defines a tessellation over the input; assigning each group of pixels to “tiles”. It then
does the convolution in parallel on each tile. For more on how Gnuastro’s programs create
the tile grid (tessellation), see Section 4.8 [Tessellation], page 289.

6.3.1.2 Edges in the spatial domain

In purely ‘linear’ spatial filtering (convolution), there are problems with the edges of the
input image. Here we will explain the problem in the spatial domain. For a discussion
of this problem from the frequency domain perspective, see Section 6.3.2.10 [Edges in the
frequency domain], page 486. The problem originates from the fact that on the edges,
in practice, the sum of the weights we use on the actual image pixels is not unity18. For
example, as discussed above, a profile in the center of an image will have the same brightness
before and after convolution. However, for partially imaged profile on the edge of the image,
the brightness (sum of its pixel fluxes within the image, see Section 7.4.2 [Brightness, Flux,
Magnitude and Surface brightness], page 574) will not be equal, some of the flux is going
to be ‘eaten’ by the edges.

If you run $ make check on the source files of Gnuastro, you can see this effect by
comparing the convolve_frequency.fits with convolve_spatial.fits in the ./tests/
directory. In the spatial domain, by default, no assumption will be made about pixels
outside of the image or any blank pixels in the image. The problem explained above will
also occur on the sides of blank regions (see Section 6.1.3 [Blank pixels], page 388). The
solution to this edge effect problem is only possible in the spatial domain. For pixels near the
edge, we have to abandon the assumption that the sum of the kernel pixels is unity during
the convolution process19. So taking W as the sum of the kernel pixels that overlapped

18 Because we assumed the overlapping pixels outside the input image have a value of zero.
19 Of course the sum of the kernel pixels still have to be unity in general.



Chapter 6: Data manipulation 472

with non-blank and in-image pixels, the equation in Section 6.3.1.1 [Convolution process],
page 470, will become:

Cx,y =

∑a
s=−a

∑b
t=−bKs,t × Ix+s,y+t

W
.

In this manner, objects which are near the edges of the image or blank pixels will also have
the same brightness (within the image) before and after convolution. This correction is
applied by default in Convolve when convolving in the spatial domain. To disable it, you
can use the --noedgecorrection option. In the frequency domain, there is no way to avoid
this loss of flux near the edges of the image, see Section 6.3.2.10 [Edges in the frequency
domain], page 486, for an interpretation from the frequency domain perspective.

Note that the edge effect discussed here is different from the one in Section 8.1.2 [If
convolving afterwards], page 635. In making mock images we want to simulate a real
observation. In a real observation, the images of the galaxies on the sides of the CCD are
first blurred by the atmosphere and instrument, then imaged. So light from the parts of a
galaxy which are immediately outside the CCD will affect the parts of the galaxy which are
covered by the CCD. Therefore in modeling the observation, we have to convolve an image
that is larger than the input image by exactly half of the convolution kernel. We can hence
conclude that this correction for the edges is only useful when working on actual observed
images (where we do not have any more data on the edges) and not in modeling.

6.3.2 Frequency domain and Fourier operations

Getting a good grip on the frequency domain is usually not an easy job! So we have
decided to give the issue a complete review here. Convolution in the frequency domain (see
Section 6.3.2.6 [Convolution theorem], page 480) heavily relies on the concepts of Fourier
transform (Section 6.3.2.4 [Fourier transform], page 477) and Fourier series (Section 6.3.2.3
[Fourier series], page 476) so we will be investigating these important operations first. It has
become something of a cliché for people to say that the Fourier series “is a way to represent
a (wave-like) function as the sum of simple sine waves” (from Wikipedia). However, sines
themselves are abstract functions, so this statement really adds no extra layer of physical
insight.

Before jumping head-first into the equations and proofs, we will begin with a historical
background to see how the importance of frequencies actually roots in our ancient desire
to see everything in terms of circles. A short review of how the complex plane should be
interpreted is then given. Having paved the way with these two basics, we define the Fourier
series and subsequently the Fourier transform. The final aim is to explain discrete Fourier
transform, however some very important concepts need to be solidified first: The Dirac
comb, convolution theorem and sampling theorem. So each of these topics are explained
in their own separate sub-sub-section before going on to the discrete Fourier transform.
Finally we revisit (after Section 6.3.1.2 [Edges in the spatial domain], page 471) the problem
of convolution on the edges, but this time in the frequency domain. Understanding the
sampling theorem and the discrete Fourier transform is very important in order to be able
to pull out valuable science from the discrete image pixels. Therefore we have included
the mathematical proofs and figures so you can have a clear understanding of these very
important concepts.
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6.3.2.1 Fourier series historical background

Ever since the ancient times, the circle has been (and still is) the simplest shape for abstract
comprehension. All you need is a center point and a radius and you are done. All the
points on a circle are at a fixed distance from the center. However, the moment you
try to connect this elegantly simple and beautiful abstract construct (the circle) with the
real world (for example, compute its area or its circumference), things become really hard
(ideally, impossible) because the irrational number π gets involved.

The key to understanding the Fourier series (thus the Fourier transform and finally the
Discrete Fourier Transform) is our ancient desire to express everything in terms of circles or
the most exceptionally simple and elegant abstract human construct. Most people prefer to
say the same thing in a more ahistorical manner: to break a function into sines and cosines.
As the term “ancient” in the previous sentence implies, Jean-Baptiste Joseph Fourier (1768
– 1830 A.D.) was not the first person to do this. The main reason we know this process
by his name today is that he came up with an ingenious method to find the necessary
coefficients (radius of) and frequencies (“speed” of rotation on) the circles for any generic
(integrable) function.

Figure 6.1: Epicycles and the Fourier series. Left: A demonstration of
Mercury’s epicycles relative to the “center of the world” by Qutb al-Din
al-Shirazi (1236 – 1311 A.D.) retrieved from Wikipedia (https://commons.
wikimedia.org/wiki/File:Ghotb2.jpg). Middle (https://commons.wikimedia.
org/wiki/File:Fourier_series_square_wave_circles_animation.gif) and
Right: How adding more epicycles (or terms in the Fourier series) will ap-
proximate functions. The right (https://commons.wikimedia.org/wiki/
File:Fourier_series_sawtooth_wave_circles_animation.gif) animation is also
available.

Like most aspects of mathematics, this process of interpreting everything in terms of
circles, began for astronomical purposes. When astronomers noticed that the orbit of Mars
and other outer planets, did not appear to be a simple circle (as everything should have
been in the heavens). At some point during their orbit, the revolution of these planets
would become slower, stop, go back a little (in what is known as the retrograde motion)
and then continue going forward again.

https://commons.wikimedia.org/wiki/File:Ghotb2.jpg
https://commons.wikimedia.org/wiki/File:Ghotb2.jpg
https://commons.wikimedia.org/wiki/File:Fourier_series_square_wave_circles_animation.gif
https://commons.wikimedia.org/wiki/File:Fourier_series_square_wave_circles_animation.gif
https://commons.wikimedia.org/wiki/File:Fourier_series_sawtooth_wave_circles_animation.gif
https://commons.wikimedia.org/wiki/File:Fourier_series_sawtooth_wave_circles_animation.gif
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The correction proposed by Ptolemy (90 – 168 A.D.) was the most agreed upon. He
put the planets on Epicycles or circles whose center itself rotates on a circle whose center
is the earth. Eventually, as observations became more and more precise, it was necessary
to add more and more epicycles in order to explain the complex motions of the planets20.
Figure 6.1(Left) shows an example depiction of the epicycles of Mercury in the late 13th
century.

Of course we now know that if they had abdicated the Earth from its throne in the center
of the heavens and allowed the Sun to take its place, everything would become much simpler
and true. But there was not enough observational evidence for changing the “professional
consensus” of the time to this radical view suggested by a small minority21. So the pre-
Galilean astronomers chose to keep Earth in the center and find a correction to the models
(while keeping the heavens a purely “circular” order).

The main reason we are giving this historical background which might appear off topic is
to give historical evidence that while such “approximations” do work and are very useful for
pragmatic reasons (like measuring the calendar from the movement of astronomical bodies).
They offer no physical insight. The astronomers who were involved with the Ptolemaic world
view had to add a huge number of epicycles during the centuries after Ptolemy in order to
explain more accurate observations. Finally the death knell of this world-view was Galileo’s
observations with his new instrument (the telescope). So the physical insight, which is what
Astronomers and Physicists are interested in (as opposed to Mathematicians and Engineers
who just like proving and optimizing or calculating!) comes from being creative and not
limiting ourselves to such approximations. Even when they work.

6.3.2.2 Circles and the complex plane

Before going onto the derivation, it is also useful to review how the complex numbers and
their plane relate to the circles we talked about above. The two schematics in the middle
and right of Figure 6.1 show how a 1D function of time can be made using the 2D real and
imaginary surface. Seeing the animation in Wikipedia will really help in understanding this
important concept. At each point in time, we take the vertical coordinate of the point and
use it to find the value of the function at that point in time. Figure 6.2 shows this relation
with the axes marked.

Leonhard Euler22 (1707 – 1783 A.D.) showed that the complex exponential (eiv where v
is real) is periodic and can be written as: eiv = cos v+ isinv. Therefore eiv+2π = eiv. Later,
Caspar Wessel (mathematician and cartographer 1745 – 1818 A.D.) showed how complex
numbers can be displayed as vectors on a plane. Euler’s identity might seem counter
intuitive at first, so we will try to explain it geometrically (for deeper physical insight). On
the real-imaginary 2D plane (like the left hand plot in each box of Figure 6.2), multiplying a
number by i can be interpreted as rotating the point by 90 degrees (for example, the value 3

20 See the Wikipedia page on “Deferent and epicycle” for a more complete historical review.
21 Aristarchus of Samos (310 – 230 B.C.) appears to be one of the first people to suggest the Sun being in

the center of the universe. This approach to science (that the standard model is defined by consensus)
and the fact that this consensus might be completely wrong still applies equally well to our models of
particle physics and cosmology today.

22 Other forms of this equation were known before Euler. For example, in 1707 A.D. (the year of Euler’s
birth) Abraham de Moivre (1667 – 1754 A.D.) showed that (cosx + i sinx)n = cos(nx) + i sin(nx). In
1714 A.D., Roger Cotes (1682 – 1716 A.D. a colleague of Newton who proofread the second edition of
Principia) showed that: ix = ln(cosx+ i sinx).
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on the real axis becomes 3i on the imaginary axis). On the other hand, e ≡ limn→∞(1+
1
n
)n,

therefore, defining m ≡ nu, we get:

eu = lim
n→∞

(
1 +

1

n

)nu
= lim

n→∞

(
1 +

u

nu

)nu
= lim

m→∞

(
1 +

u

m

)m

Taking u ≡ iv the result can be written as a generic complex number (a function of v):

eiv = lim
m→∞

(
1 + i

v

m

)m
= a(v) + ib(v)

For v = π, a nice geometric animation of going to the limit can be seen on Wikipedia
(https://commons.wikimedia.org/wiki/File:ExpIPi.gif). We see that limm→∞ a(π) =
−1, while limm→∞ b(π) = 0, which gives the famous eiπ = −1 equation. The final value is
the real number −1, however the distance of the polygon points traversed as m→∞ is half
the circumference of a circle or π, showing how v in the equation above can be interpreted
as an angle in units of radians and therefore how a(v) = cos(v) and b(v) = sin(v).

Since eiv is periodic (let’s assume with a period of T ), it is more clear to write it as
v ≡ 2πn

T
t (where n is an integer), so eiv = ei

2πn
T t. The advantage of this notation is that the

period (T ) is clearly visible and the frequency ( 2πn
T

, in units of 1/cycle) is defined through
the integer n. In this notation, t is in units of “cycle”s.

As we see from the examples in Figure 6.1 and Figure 6.2, for each constituting fre-
quency, we need a respective ‘magnitude’ or the radius of the circle in order to accurately
approximate the desired 1D function. The concepts of “period” and “frequency” are rela-
tively easy to grasp when using temporal units like time because this is how we define them
in every-day life. However, in an image (astronomical data), we are dealing with spatial
units like distance. Therefore, by one “period” we mean the distance at which the signal is
identical and frequency is defined as the inverse of that spatial “period”. The complex circle
of Figure 6.2 can be thought of the Moon rotating about Earth which is rotating around the
Sun; so the “Real (signal)” axis shows the Moon’s position as seen by a distant observer on
the Sun as time goes by. Because of the scalar (not having any direction or vector) nature
of time, Figure 6.2 is easier to understand in units of time. When thinking about spatial
units, mentally replace the “Time (sec)” axis with “Distance (meters)”. Because length has
direction and is a vector, visualizing the rotation of the imaginary circle and the advance
along the “Distance (meters)” axis is not as simple as temporal units like time.

https://commons.wikimedia.org/wiki/File:ExpIPi.gif
https://commons.wikimedia.org/wiki/File:ExpIPi.gif
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Time: 1sec

i

Real(signal)

Time (sec)

Real(signal)

1 2 3

Time: 2sec

i

Real(signal)

Time (sec)

Real(signal)

1 2 3

Figure 6.2: Relation between the real (signal), imaginary (i ≡
√
−1) and time axes at

two snapshots of time.

6.3.2.3 Fourier series

In astronomical images, our variable (brightness, or number of photo-electrons, or signal to
be more generic) is recorded over the 2D spatial surface of a camera pixel. However to make
things easier to understand, here we will assume that the signal is recorded in 1D (assume
one row of the 2D image pixels). Also for this section and the next (Section 6.3.2.4 [Fourier
transform], page 477) we will be talking about the signal before it is digitized or pixelated.
Let’s assume that we have the continuous function f(l) which is integrable in the interval
[l0, l0 + L] (always true in practical cases like images). Take l0 as the position of the first
pixel in the assumed row of the image and L as the width of the image along that row. The
units of l0 and L can be in any spatial units (for example, meters) or an angular unit (like
radians) multiplied by a fixed distance which is more common.

To approximate f(l) over this interval, we need to find a set of frequencies and their
corresponding ‘magnitude’s (see Section 6.3.2.2 [Circles and the complex plane], page 474).
Therefore our aim is to show f(l) as the following sum of periodic functions:

f(l) =
∞∑

n=−∞
cne

i 2πnL l

Note that the different frequencies (2πn/L, in units of cycles per meters for example) are
not arbitrary. They are all integer multiples of the fundamental frequency of ω0 = 2π/L.
Recall that L was the length of the signal we want to model. Therefore, we see that the
smallest possible frequency (or the frequency resolution) in the end, depends on the length
we observed the signal or L. In the case of each dimension on an image, this is the size of the
image in the respective dimension. The frequencies have been defined in this “harmonic”
fashion to insure that the final sum is periodic outside of the [l0, l0 + L] interval too. At
this point, you might be thinking that the sky is not periodic with the same period as my
camera’s view angle. You are absolutely right! The important thing is that since your
camera’s observed region is the only region we are “observing” and will be using, the rest of
the sky is irrelevant; so we can safely assume the sky is periodic outside of it. However, this
working assumption will haunt us later in Section 6.3.2.10 [Edges in the frequency domain],
page 486.
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The frequencies are thus determined by definition. So all we need to do is to find the
coefficients (cn), or magnitudes, or radii of the circles for each frequency which is identified
with the integer n. Fourier’s approach was to multiply both sides with a fixed term:

f(l)e−i
2πm
L l =

∞∑
n=−∞

cne
i
2π(n−m)

L l

where m > 023. We can then integrate both sides over the observation period:

∫ l0+L

l0

f(l)e−i
2πm
L ldl =

∫ l0+L

l0

∞∑
n=−∞

cne
i
2π(n−m)

L ldl =
∞∑

n=−∞
cn

∫ l0+L

l0

ei
2π(n−m)

L ldl

Both n and m are positive integers. Also, we know that a complex exponential is periodic
so after one period (L) it comes back to its starting point. Therefore

∫ l0+L
l0

e2πk/Ldl = 0 for

any k > 0. However, when k = 0, this integral becomes:
∫ l0+T
l0

e0dt =
∫ l0+T
l0

dt = T . Hence
since the integral will be zero for all n 6=m, we get:

∞∑
n=−∞

cn

∫ l0+T

l0

ei
2π(n−m)

L ldl = Lcm

The origin of the axis is fundamentally an arbitrary position. So let’s set it to the start of
the image such that l0 = 0. So we can find the “magnitude” of the frequency 2πm/L within
f(l) through the relation:

cm =
1

L

∫ L

0

f(l)e−i
2πm
L ldl

6.3.2.4 Fourier transform

In Section 6.3.2.3 [Fourier series], page 476, we had to assume that the function is periodic
outside of the desired interval with a period of L. Therefore, assuming that L → ∞ will
allow us to work with any function. However, with this approximation, the fundamental
frequency (ω0) or the frequency resolution that we discussed in Section 6.3.2.3 [Fourier
series], page 476, will tend to zero: ω0 → 0. In the equation to find cm, every m represented
a frequency (multiple of ω0) and the integration on l removes the dependence of the right
side of the equation on l, making it only a function of m or frequency. Let’s define the
following two variables:

ω≡mω0 =
2πm

L

F (ω)≡Lcm
23 We could have assumed m < 0 and set the exponential to positive, but this is more clear.
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The equation to find the coefficients of each frequency in Section 6.3.2.3 [Fourier series],
page 476, thus becomes:

F (ω) =

∫ ∞
−∞

f(l)e−iωldl.

The function F (ω) is thus the Fourier transform of f(l) in the frequency domain. So through
this transformation, we can find (analyze) the magnitudes of the constituting frequencies or
the value in the frequency space24 of our spatial input function. The great thing is that we
can also do the reverse and later synthesize the input function from its Fourier transform.
Let’s do it: with the approximations above, multiply the right side of the definition of the
Fourier Series (Section 6.3.2.3 [Fourier series], page 476) with 1 = L/L = (ω0L)/(2π):

f(l) =
1

2π

∞∑
n=−∞

Lcne
2πin
L lω0 =

1

2π

∞∑
n=−∞

F (ω)eiωlΔω

To find the right most side of this equation, we renamed ω0 as Δω because it was our
resolution, 2πn/L was written as ω and finally, Lcn was written as F (ω) as we defined
above. Now, as L→∞, Δω → 0 so we can write:

f(l) =
1

2π

∫ ∞
−∞

F (ω)eiωldω

Together, these two equations provide us with a very powerful set of tools that we can use
to process (analyze) and recreate (synthesize) the input signal. Through the first equation,
we can break up our input function into its constituent frequencies and analyze it, hence it
is also known as analysis. Using the second equation, we can synthesize or make the input
function from the known frequencies and their magnitudes. Thus it is known as synthesis.
Here, we symbolize the Fourier transform (analysis) and its inverse (synthesis) of a function
f(l) and its Fourier Transform F (ω) as F [f ] and F−1[F ].

6.3.2.5 Dirac delta and comb

The Dirac δ (delta) function (also known as an impulse) is the way that we convert a
continuous function into a discrete one. It is defined to satisfy the following integral:∫ ∞

−∞
δ(l)dl = 1

When integrated with another function, it gives that function’s value at l = 0:∫ ∞
−∞

f(l)δ(l)dt = f(0)

24 As we discussed before, this ‘magnitude’ can be interpreted as the radius of the circle rotating at this
frequency in the epicyclic interpretation of the Fourier series, see Figure 6.1 and Figure 6.2.
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An impulse positioned at another point (say l0) is written as δ(l − l0):∫ ∞
−∞

f(l)δ(l − l0)dt = f(l0)

The Dirac δ function also operates similarly if we use summations instead of integrals. The
Fourier transform of the delta function is:

F [δ(l)] =
∫ ∞
−∞

δ(l)e−iωldl = e−iω0 = 1

F [δ(l − l0)] =
∫ ∞
−∞

δ(l − l0)e−iωldl = e−iωl0

From the definition of the Dirac δ we can also define a Dirac comb (IIIP ) or an impulse
train with infinite impulses separated by P :

IIIP (l) ≡
∞∑

k=−∞
δ(l − kP )

P is chosen to represent “pixel width” later in Section 6.3.2.7 [Sampling theorem], page 481.
Therefore the Dirac comb is periodic with a period of P . We have intentionally used a
different name for the period of the Dirac comb compared to the input signal’s length
of observation that we showed with L in Section 6.3.2.3 [Fourier series], page 476. This
difference is highlighted here to avoid confusion later when these two periods are needed
together in Section 6.3.2.8 [Discrete Fourier transform], page 484. The Fourier transform of
the Dirac comb will be necessary in Section 6.3.2.7 [Sampling theorem], page 481, so let’s
derive it. By its definition, it is periodic, with a period of P , so the Fourier coefficients of
its Fourier Series (Section 6.3.2.3 [Fourier series], page 476) can be calculated within one
period:

IIIP =
∞∑

n=−∞
cne

i 2πnP l

We can now find the cn from Section 6.3.2.3 [Fourier series], page 476:

cn =
1

P

∫ P/2

−P/2
δ(l)e−i

2πn
P l =

1

P
→ IIIP =

1

P

∞∑
n=−∞

ei
2πn
P l

So we can write the Fourier transform of the Dirac comb as:

F [IIIP ] =
∫ ∞
−∞

IIIP e
−iωldl =

1

P

∞∑
n=−∞

∫ ∞
−∞

e−i(ω−
2πn
P )ldl =

1

P

∞∑
n=−∞

δ

(
ω − 2πn

P

)
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In the last step, we used the fact that the complex exponential is a periodic function, that
n is an integer and that as we defined in Section 6.3.2.4 [Fourier transform], page 477,
ω≡mω0, where m was an integer. The integral will be zero for any ω that is not equal
to 2πn/P , a more complete explanation can be seen in Section 6.3.2.3 [Fourier series],
page 476. Therefore, while in the spatial domain the impulses had spacing of P (meters
for example), in the frequency space, the spacing between the different impulses are 2π/P
cycles per meters.

6.3.2.6 Convolution theorem

The convolution (shown with the ∗ operator) of the two functions f(l) and h(l) is defined
as:

c(l) ≡ [f∗h](l) =
∫ ∞
−∞

f(τ)h(l − τ)dτ

See Section 6.3.1.1 [Convolution process], page 470, for a more detailed physical (pixel
based) interpretation of this definition. The Fourier transform of convolution (C(ω)) can
be written as:

C(ω) =

∫ ∞
−∞

[f∗h](l)e−iωldl =
∫ ∞
−∞

f(τ)

[∫ ∞
−∞

h(l − τ)e−iωldl
]
dτ

To solve the inner integral, let’s define s≡l− τ , so that ds = dl and l = s+ τ then the inner
integral becomes:

∫ ∞
−∞

h(l − τ)e−iωldl =
∫ ∞
−∞

h(s)e−iω(s+τ)ds = e−iωτ
∫ ∞
−∞

h(s)e−iωsds = H(ω)e−iωτ

where H(ω) is the Fourier transform of h(l). Substituting this result for the inner integral
above, we get:

C(ω) = H(ω)

∫ ∞
−∞

f(τ)e−iωτdτ = H(ω)F (ω) = F (ω)H(ω)

where F (ω) is the Fourier transform of f(l). So multiplying the Fourier transform of two
functions individually, we get the Fourier transform of their convolution. The convolution
theorem also proves a relation between the convolutions in the frequency space. Let’s define:

D(ω)≡F (ω)∗H(ω)

Applying the inverse Fourier Transform or synthesis equation (Section 6.3.2.4 [Fourier trans-
form], page 477) to both sides and following the same steps above, we get:
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d(l) = f(l)h(l)

Where d(l) is the inverse Fourier transform of D(ω). We can therefore re-write the two
equations above formally as the convolution theorem:

F [f∗h] = F [f ]F [h]

F [fh] = F [f ] ∗ F [h]

Besides its usefulness in blurring an image by convolving it with a given kernel, the
convolution theorem also enables us to do another very useful operation in data analysis:
to match the blur (or PSF) between two images taken with different telescopes/cameras or
under different atmospheric conditions. This process is also known as deconvolution. Let’s
take f(l) as the image with a narrower PSF (less blurry) and c(l) as the image with a wider
PSF which appears more blurred. Also let’s take h(l) to represent the kernel that should
be convolved with the sharper image to create the more blurry image. Above, we proved
the relation between these three images through the convolution theorem. But there, we
assumed that f(l) and h(l) are known (given) and the convolved image is desired.

In deconvolution, we have f(l) –the sharper image– and f ∗h(l) –the more blurry image–
and we want to find the kernel h(l). The solution is a direct result of the convolution
theorem:

F [h] = F [f∗h]
F [f ]

or h(l) = F−1
[F [f∗h]
F [f ]

]

While this works really nice, it has two problems:

• If F [f ] has any zero values, then the inverse Fourier transform will not be a number!

• If there is significant noise in the image, then the high frequencies of the noise are going
to significantly reduce the quality of the final result.

A standard solution to both these problems is the Weiner deconvolution algorithm25.

6.3.2.7 Sampling theorem

Our mathematical functions are continuous, however, our data collecting and measuring
tools are discrete. Here we want to give a mathematical formulation for digitizing the
continuous mathematical functions so that later, we can retrieve the continuous function
from the digitized recorded input. Assuming that we have a continuous function f(l), then
we can define fs(l) as the ‘sampled’ f(l) through the Dirac comb (see Section 6.3.2.5 [Dirac
delta and comb], page 478):

25 https://en.wikipedia.org/wiki/Wiener_deconvolution

https://en.wikipedia.org/wiki/Wiener_deconvolution
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fs(l) = f(l)IIIP =
∞∑

n=−∞
f(l)δ(l − nP )

The discrete data-element fk (for example, a pixel in an image), where k is an integer, can
thus be represented as:

fk =

∫ ∞
−∞

fs(l)dl =

∫ ∞
−∞

f(l)δ(l − kP )dt = f(kP )

Note that in practice, our discrete data points are not found in this fashion. Each
detector pixel (in an image for example) has an area and averages the signal it receives
over that area, not a mathematical point as the Dirac δ function defines. However, as
long as the variation in the signal over one detector pixel is not significant, this can be a
good approximation. Having put this issue to the side, we can now try to find the relation
between the Fourier transforms of the un-sampled f(l) and the sampled fs(l). For a more
clear notation, let’s define:

Fs(ω) ≡ F [fs]

D(ω) ≡ F [IIIP ]

Then using the Convolution theorem (see Section 6.3.2.6 [Convolution theorem], page 480),
Fs(ω) can be written as:

Fs(ω) = F [f(l)IIIP ] = F (ω)∗D(ω)

Finally, from the definition of convolution and the Fourier transform of the Dirac comb (see
Section 6.3.2.5 [Dirac delta and comb], page 478), we get:

Fs(ω) =

∫ ∞
−∞

F (ω)D(ω − µ)dµ

=
1

P

∞∑
n=−∞

∫ ∞
−∞

F (ω)δ

(
ω − µ− 2πn

P

)
dµ

=
1

P

∞∑
n=−∞

F

(
ω − 2πn

P

)
.

F (ω) was only a simple function, see Figure 6.3(left). However, from the sampled Fourier
transform function we see that Fs(ω) is the superposition of infinite copies of F (ω) that
have been shifted, see Figure 6.3(right). From the equation, it is clear that the shift in each
copy is 2π/P .
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F (ω): FT of unsampled f(l)

Frequency (ω)−ωm +ωm0

Fs(ω): FT of sampled fs(l) = f(l)IIIP

−ωm +ωm0

2π
P

2π/P 4π/P−2π/P−4π/P

Figure 6.3: Sampling causes infinite repetition in the frequency domain. FT is an abbre-
viation for ‘Fourier transform’. ωm represents the maximum frequency present in the input.
F (ω) is only symmetric on both sides of 0 when the input is real (not complex). In general
F (ω) is complex and thus cannot be simply plotted like this. Here we have assumed a real
Gaussian f(t) which has produced a Gaussian F (ω).

The input f(l) can have any distribution of frequencies in it. In the example of Fig-
ure 6.3(left), the input consisted of a range of frequencies equal to Δω = 2ωm. Fortunately
as Figure 6.3(right) shows, the assumed pixel size (P ) we used to sample this hypothetical
function was such that 2π/P > Δω. The consequence is that each copy of F (ω) has become
completely separate from the surrounding copies. Such a digitized (sampled) data set is
thus called over-sampled. When 2π/P = Δω, P is just small enough to finely separate even
the largest frequencies in the input signal and thus it is known as critically-sampled. Finally
if 2π/P < Δω we are dealing with an under-sampled data set. In an under-sampled data
set, the separate copies of F (ω) are going to overlap and this will deprive us of recovering
high constituent frequencies of f(l). The effects of under-sampling in an image with high
rates of change (for example, a brick wall imaged from a distance) can clearly be visually
seen and is known as aliasing.

When the input f(l) is composed of a finite range of frequencies, f(l) is known as a
band-limited function. The example in Figure 6.3(left) was a nice demonstration of such a
case: for all ω < −ωm or ω > ωm, we have F (ω) = 0. Therefore, when the input function
is band-limited and our detector’s pixels are placed such that we have critically (or over-)
sampled it, then we can exactly reproduce the continuous f(l) from the discrete or digitized
samples. To do that, we just have to isolate one copy of F (ω) from the infinite copies and
take its inverse Fourier transform.

This ability to exactly reproduce the continuous input from the sampled or digitized data
leads us to the sampling theorem which connects the inherent property of the continuous
signal (its maximum frequency) to that of the detector (the spacing between its pixels).
The sampling theorem states that the full (continuous) signal can be recovered when the
pixel size (P ) and the maximum constituent frequency in the signal (ωm) have the following
relation26:

2π

P
> 2ωm

26 This equation is also shown in some places without the 2π. Whether 2π is included or not depends on
how you define the frequency
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This relation was first formulated by Harry Nyquist (1889 – 1976 A.D.) in 1928 and for-
mally proved in 1949 by Claude E. Shannon (1916 – 2001 A.D.) in what is now known as
the Nyquist-Shannon sampling theorem. In signal processing, the signal is produced (syn-
thesized) by a transmitter and is received and de-coded (analyzed) by a receiver. Therefore
producing a band-limited signal is necessary.

In astronomy, we do not produce the shapes of our targets, we are only observers.
Galaxies can have any shape and size, therefore ideally, our signal is not band-limited.
However, since we are always confined to observing through an aperture, the aperture will
cause a point source (for which ωm = ∞) to be spread over several pixels. This spread is
quantitatively known as the point spread function or PSF. This spread does blur the image
which is undesirable; however, for this analysis it produces the positive outcome that there
will be a finite ωm. Though we should caution that any detector will have noise which will
add lots of very high frequency (ideally infinite) changes between the pixels. However, the
coefficients of those noise frequencies are usually exceedingly small.

6.3.2.8 Discrete Fourier transform

As we have stated several times so far, the input image is a digitized, pixelated or discrete
array of values (fs(l), see Section 6.3.2.7 [Sampling theorem], page 481). The input is not a
continuous function. Also, all our numerical calculations can only be done on a sampled, or
discrete Fourier transform. Note that Fs(ω) is not discrete, it is continuous. One way would
be to find the analytic Fs(ω), then sample it at any desired “freq-pixel”27 spacing. However,
this process would involve two steps of operations and computers in particular are not too
good at analytic operations for the first step. So here, we will derive a method to directly
find the ‘freq-pixel’ated Fs(ω) from the pixelated fs(l). Let’s start with the definition of
the Fourier transform (see Section 6.3.2.4 [Fourier transform], page 477):

Fs(ω) =

∫ ∞
−∞

fs(l)e
−iωldl

From the definition of fs(ω) (using x instead of n) we get:

Fs(ω) =
∞∑

x=−∞

∫ ∞
−∞

f(l)δ(l − xP )e−iωldl

=
∞∑

x=−∞
fxe
−iωxP

Where fx is the value of f(l) on the point x or the value of the xth pixel. As shown
in Section 6.3.2.7 [Sampling theorem], page 481, this function is infinitely periodic with
a period of 2π/P . So all we need is the values within one period: 0 < ω < 2π/P , see
Figure 6.3. We want X samples within this interval, so the frequency difference between
each frequency sample or freq-pixel is 1/XP . Hence we will evaluate the equation above on
the points at:

ω =
u

XP
u = 0, 1, 2, ..., X − 1

27 We are using the made-up word “freq-pixel” so they are not confused with spatial domain “pixels”.
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Therefore the value of the freq-pixel u in the frequency domain is:

Fu =
X−1∑
x=0

fxe
−iuxX

Therefore, we see that for each freq-pixel in the frequency domain, we are going to need all
the pixels in the spatial domain28. If the input (spatial) pixel row is also X pixels wide,
then we can exactly recover the xth pixel with the following summation:

fx =
1

X

X−1∑
u=0

Fue
iuxX

When the input pixel row (we are still only working on 1D data) has X pixels, then it is
L = XP spatial units wide. L, or the length of the input data was defined in Section 6.3.2.3
[Fourier series], page 476, and P or the space between the pixels in the input was defined
in Section 6.3.2.5 [Dirac delta and comb], page 478. As we saw in Section 6.3.2.7 [Sampling
theorem], page 481, the input (spatial) pixel spacing (P ) specifies the range of frequencies
that can be studied and in Section 6.3.2.3 [Fourier series], page 476, we saw that the length of
the (spatial) input, (L) determines the resolution (or size of the freq-pixels) in our discrete
Fourier transformed image. Both result from the fact that the frequency domain is the
inverse of the spatial domain.

6.3.2.9 Fourier operations in two dimensions

Once all the relations in the previous sections have been clearly understood in one dimension,
it is very easy to generalize them to two or even more dimensions since each dimension is
by definition independent. Previously we defined l as the continuous variable in 1D and the
inverse of the period in its direction to be ω. Let’s show the second spatial direction with
m the inverse of the period in the second dimension with ν. The Fourier transform in 2D
(see Section 6.3.2.4 [Fourier transform], page 477) can be written as:

F (ω, ν) =

∫ ∞
−∞

∫ ∞
−∞

f(l,m)e−i(ωl+νm)dl

f(l,m) =

∫ ∞
−∞

∫ ∞
−∞

F (ω, ν)ei(ωl+νm)dl

The 2D Dirac δ(l,m) is non-zero only when l = m = 0. The 2D Dirac comb (or Dirac
brush! See Section 6.3.2.5 [Dirac delta and comb], page 478) can be written in units of the
2D Dirac δ. For most image detectors, the sides of a pixel are equal in both dimensions.
So P remains unchanged, if a specific device is used which has non-square pixels, then for
each dimension a different value should be used.

28 So even if one pixel is a blank pixel (see Section 6.1.3 [Blank pixels], page 388), all the pixels in the
frequency domain will also be blank.
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IIIP (l,m) ≡
∞∑

j=−∞

∞∑
k=−∞

δ(l − jP,m− kP )

The Two dimensional Sampling theorem (see Section 6.3.2.7 [Sampling theorem],
page 481) is thus very easily derived as before since the frequencies in each dimension
are independent. Let’s take νm as the maximum frequency along the second dimension.
Therefore the two dimensional sampling theorem says that a 2D band-limited function can
be recovered when the following conditions hold29:

2π

P
> 2ωm and

2π

P
> 2νm

Finally, let’s represent the pixel counter on the second dimension in the spatial and
frequency domains with y and v respectively. Also let’s assume that the input image has Y
pixels on the second dimension. Then the two dimensional discrete Fourier transform and
its inverse (see Section 6.3.2.8 [Discrete Fourier transform], page 484) can be written as:

Fu,v =
X−1∑
x=0

Y−1∑
y=0

fx,ye
−i(uxX + vy

Y )

fx,y =
1

XY

X−1∑
u=0

Y−1∑
v=0

Fu,ve
i(uxX + vy

Y )

6.3.2.10 Edges in the frequency domain

With a good grasp of the frequency domain, we can revisit the problem of convolution on the
image edges, see Section 6.3.1.2 [Edges in the spatial domain], page 471. When we apply the
convolution theorem (see Section 6.3.2.6 [Convolution theorem], page 480) to convolve an
image, we first take the discrete Fourier transforms (DFT, Section 6.3.2.8 [Discrete Fourier
transform], page 484) of both the input image and the kernel, then we multiply them with
each other and then take the inverse DFT to construct the convolved image. Of course, in
order to multiply them with each other in the frequency domain, the two images have to be
the same size, so let’s assume that we pad the kernel (it is usually smaller than the input
image) with zero valued pixels in both dimensions so it becomes the same size as the input
image before the DFT.

Having multiplied the two DFTs, we now apply the inverse DFT which is where the
problem is usually created. If the DFT of the kernel only had values of 1 (unrealistic
condition!) then there would be no problem and the inverse DFT of the multiplication would
be identical with the input. However in real situations, the kernel’s DFT has a maximum
of 1 (because the sum of the kernel has to be one, see Section 6.3.1.1 [Convolution process],
page 470) and decreases something like the hypothetical profile of Figure 6.3. So when

29 If the pixels are not a square, then each dimension has to use the respective pixel size, but since most
detectors have square pixels, we assume so here too
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multiplied with the input image’s DFT, the coefficients or magnitudes (see Section 6.3.2.2
[Circles and the complex plane], page 474) of the smallest frequency (or the sum of the
input image pixels) remains unchanged, while the magnitudes of the higher frequencies are
significantly reduced.

As we saw in Section 6.3.2.7 [Sampling theorem], page 481, the Fourier transform of a
discrete input will be infinitely repeated. In the final inverse DFT step, the input is in the
frequency domain (the multiplied DFT of the input image and the kernel DFT). So the
result (our output convolved image) will be infinitely repeated in the spatial domain. In
order to accurately reconstruct the input image, we need all the frequencies with the correct
magnitudes. However, when the magnitudes of higher frequencies are decreased, longer
periods (shorter frequencies) will dominate in the reconstructed pixel values. Therefore,
when constructing a pixel on the edge of the image, the newly empowered longer periods
will look beyond the input image edges and will find the repeated input image there. So if
you convolve an image in this fashion using the convolution theorem, when a bright object
exists on one edge of the image, its blurred wings will be present on the other side of the
convolved image. This is often termed as circular convolution or cyclic convolution.

So, as long as we are dealing with convolution in the frequency domain, there is nothing
we can do about the image edges. The least we can do is to eliminate the ghosts of the other
side of the image. So, we add zero valued pixels to both the input image and the kernel in
both dimensions so the image that will be convolved has a size equal to the sum of both
images in each dimension. Of course, the effect of this zero-padding is that the sides of the
output convolved image will become dark. To put it another way, the edges are going to
drain the flux from nearby objects. But at least it is consistent across all the edges of the
image and is predictable. In Convolve, you can see the padded images when inspecting the
frequency domain convolution steps with the --viewfreqsteps option.

6.3.3 Spatial vs. Frequency domain

With the discussions above it might not be clear when to choose the spatial domain and
when to choose the frequency domain. Here we will try to list the benefits of each.

The spatial domain,

• Can correct for the edge effects of convolution, see Section 6.3.1.2 [Edges in the spatial
domain], page 471.

• Can operate on blank pixels.

• Can be faster than frequency domain when the kernel is small (in terms of the number
of pixels on the sides).

The frequency domain,

• Will be much faster when the image and kernel are both large.

As a general rule of thumb, when working on an image of modeled profiles use the frequency
domain and when working on an image of real (observed) objects use the spatial domain
(corrected for the edges). The reason is that if you apply a frequency domain convolution to
a real image, you are going to loose information on the edges and generally you do not want
large kernels. But when you have made the profiles in the image yourself, you can just make
a larger input image and crop the central parts to completely remove the edge effect, see
Section 8.1.2 [If convolving afterwards], page 635. Also due to oversampling, both the kernels
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and the images can become very large and the speed boost of frequency domain convolution
will significantly improve the processing time, see Section 8.1.1.6 [Oversampling], page 634.

6.3.4 Convolution kernel

All the programs that need convolution will need to be given a convolution kernel file and
extension. In most cases (other than Convolve, see Section 6.3 [Convolve], page 469) the
kernel file name is optional. However, the extension is necessary and must be specified either
on the command-line or at least one of the configuration files (see Section 4.2 [Configuration
files], page 268). Within Gnuastro, there are two ways to create a kernel image:

• MakeProfiles: You can use MakeProfiles to create a parametric (based on a radial
function) kernel, see Section 8.1 [MakeProfiles], page 629. By default MakeProfiles will
make the Gaussian and Moffat profiles in a separate file so you can feed it into any of
the programs.

• ConvertType: You can write your own desired kernel into a text file table and convert
it to a FITS file with ConvertType, see Section 5.2 [ConvertType], page 314. Just be
careful that the kernel has to have an odd number of pixels along its two axes, see
Section 6.3.1.1 [Convolution process], page 470. All the programs that do convolution
will normalize the kernel internally, so if you choose this option, you do not have to
worry about normalizing the kernel. Only within Convolve, there is an option to disable
normalization, see Section 6.3.5 [Invoking Convolve], page 488.

The two options to specify a kernel file name and its extension are shown below. These are
common between all the programs that will do convolution.

-k FITS

--kernel=FITS

The convolution kernel file name. The BITPIX (data type) value of this file can
be any standard type and it does not necessarily have to be normalized. Several
operations will be done on the kernel image prior to the program’s processing:

• It will be converted to floating point type.

• All blank pixels (see Section 6.1.3 [Blank pixels], page 388) will be set to
zero.

• It will be normalized so the sum of its pixels equal unity.

• It will be flipped so the convolved image has the same orientation. This is
only relevant if the kernel is not circular. See Section 6.3.1.1 [Convolution
process], page 470.

-U STR

--khdu=STR

The convolution kernel HDU. Although the kernel file name is optional, before
running any of the programs, they need to have a value for --khdu even if the
default kernel is to be used. So be sure to keep its value in at least one of the
configuration files (see Section 4.2 [Configuration files], page 268). By default,
the system configuration file has a value.

6.3.5 Invoking Convolve

Convolve an input dataset (2D image or 1D spectrum for example) with a known kernel,
or make the kernel necessary to match two PSFs. The general template for Convolve is:
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$ astconvolve [OPTION...] ASTRdata

One line examples:

## Convolve mockimg.fits with psf.fits:

$ astconvolve --kernel=psf.fits mockimg.fits

## Convolve in the spatial domain:

$ astconvolve observedimg.fits --kernel=psf.fits --domain=spatial

## Convolve a 3D cube (only spatial domain is supported in 3D).

## It is also necessary to define 3D tiles and channels for

## parallelization (see the Tessellation section for more).

$ astconvolve cube.fits --kernel=kernel3d.fits --domain=spatial \

--tilesize=30,30,30 --numchannels=1,1,1

## Find the kernel to match sharper and blurry PSF images (they both

## have to have the same pixel size).

$ astconvolve --kernel=sharperimage.fits --makekernel=10 \

blurryimage.fits

## Convolve a Spectrum (column 14 in the FITS table below) with a

## custom kernel (the kernel will be normalized internally, so only

## the ratios are important). Sed is used to replace the spaces with

## new line characters so Convolve sees them as values in one column.

$ echo "1 3 10 3 1" | sed 's/ /\n/g' | astconvolve spectra.fits -c14

The only argument accepted by Convolve is an input image file. Some of the options
are the same between Convolve and some other Gnuastro programs. Therefore, to avoid
repetition, they will not be repeated here. For the full list of options shared by all Gnuastro
programs, please see Section 4.1.2 [Common options], page 251. In particular, in the spatial
domain, on a multi-dimensional datasets, convolve uses Gnuastro’s tessellation to speed up
the run, see Section 4.8 [Tessellation], page 289. Common options related to tessellation
are described in Section 4.1.2.2 [Processing options], page 255.

1-dimensional datasets (for example, spectra) are only read as columns within a table
(see Section 4.7 [Tables], page 282, for more on how Gnuastro programs read tables). Note
that currently 1D convolution is only implemented in the spatial domain and thus kernel-
matching is also not supported.

Here we will only explain the options particular to Convolve. Run Convolve with --help

in order to see the full list of options Convolve accepts, irrespective of where they are
explained in this book.

--kernelcolumn

Column containing the 1D kernel. When the input dataset is a 1-dimensional
column, and the host table has more than one column, use this option to specify
which column should be used.

--nokernelflip

Do not flip the kernel after reading; only for spatial domain convolution. This
can be useful if the flipping has already been applied to the kernel. By default,
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the input kernel is flipped to avoid the output getting flipped; see Section 6.3.1.1
[Convolution process], page 470.

--nokernelnorm

Do not normalize the kernel after reading it, such that the sum of its pixels
is unity. As described in Section 6.3.1.1 [Convolution process], page 470, the
kernel is normalized by default.

--conv-on-blank

Do not ignore blank pixels in the convolution. The output pixels that were
originally non-blank are not affected by this option (they will have the same
value if this option is called or not). This option just expands/dilates the non-
blank regions of your dataset into the blank regions and only works in spatial
domain convolution. Therefore, with this option convolution can be used as a
proxy for interpolation or dilation.

By default, blank pixels are ignored during spatial domain convolution; so the
input and output have exactly the same number of blank pixels. With this
option, the blank pixels that are sufficiently close to non-blank pixels (based on
the kernel) will be given a value based on the non-blank elements that overlap
with the kernel for that blank pixel (see Section 6.3.1.2 [Edges in the spatial
domain], page 471).

-d STR

--domain=STR

The domain to use for the convolution. The acceptable values are ‘spatial’
and ‘frequency’, corresponding to the respective domain.

For large images, the frequency domain process will be more efficient than
convolving in the spatial domain. However, the edges of the image will loose
some flux (see Section 6.3.1.2 [Edges in the spatial domain], page 471) and
the image must not contain any blank pixels, see Section 6.3.3 [Spatial vs.
Frequency domain], page 487.

--checkfreqsteps

With this option a file with the initial name of the output file will be created
that is suffixed with _freqsteps.fits, all the steps done to arrive at the final
convolved image are saved as extensions in this file. The extensions in order
are:

1. The padded input image. In frequency domain convolution the two images
(input and convolved) have to be the same size and both should be padded
by zeros.

2. The padded kernel, similar to the above.

3. The Fourier spectrum of the forward Fourier transform of the input image.
Note that the Fourier transform is a complex operation (and not view able
in one image!) So we either have to show the ‘Fourier spectrum’ or the
‘Phase angle’. For the complex number a + ib, the Fourier spectrum is
defined as

√
a2 + b2 while the phase angle is defined as arctan(b/a).

4. The Fourier spectrum of the forward Fourier transform of the kernel image.



Chapter 6: Data manipulation 491

5. The Fourier spectrum of the multiplied (through complex arithmetic)
transformed images.

6. The inverse Fourier transform of the multiplied image. If you open it, you
will see that the convolved image is now in the center, not on one side of
the image as it started with (in the padded image of the first extension). If
you are working on a mock image which originally had pixels of precisely
0.0, you will notice that in those parts that your convolved profile(s) did
not convert, the values are now ∼ 10−18, this is due to floating-point round
off errors. Therefore in the final step (when cropping the central parts of
the image), we also remove any pixel with a value less than 10−17.

--noedgecorrection

Do not correct the edge effect in spatial domain convolution (this correction is
done in spatial domain convolution by default). For a full discussion, please see
Section 6.3.1.2 [Edges in the spatial domain], page 471.

-m INT

--makekernel=INT

If this option is called, Convolve will do PSF-matching: the output will be the
kernel that you should convolve with the sharper image to obtain the blurry
one (see Section 6.3.2.6 [Convolution theorem], page 480). The two images
must have the same size (number of pixels). This option is not yet supported
in 1-dimensional datasets. In effect, it is only necessary to give the two PSFs
of your two datasets, find the matching kernel based on that, then apply that
kernel to the higher-resolution (sharper image).

The image given to the --kernel option is assumed to be the sharper (less
blurry) image and the input image (with no option) is assumed to be the more
blurry image. The value given to this option will be used as the maximum radius
of the kernel. Any pixel in the final kernel that is larger than this distance from
the center will be set to zero.

Noise has large frequencies which can make the result less reliable for the higher
frequencies of the final result. So all the frequencies which have a spectrum
smaller than the value given to the minsharpspec option in the sharper input
image are set to zero and not divided. This will cause the wings of the final
kernel to be flatter than they would ideally be which will make the convolved
image result unreliable if it is too high.

Some notes to on how to prepare your two input PSFs. Note that these (and
several other issues that relate to an accurate estimation of the PSF) are prac-
tically described in the following tutorial: Section 2.3 [Building the extended
PSF], page 103.

• Choose a bright (unsaturated) star and use a region box (with Crop for
example, see Section 6.1 [Crop], page 385) that is sufficiently above the
noise.

• Mask all background sources that may be nearby (you can use Segment’s
clumps, see Section 7.3 [Segment], page 561).

• Use Warp (see Section 6.4 [Warp], page 492) to warp the pixel grid so the
star’s center is exactly on the center of the central pixel in the cropped im-
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age. This will certainly slightly degrade the result, however, it is necessary.
If there are multiple good stars, you can shift all of them, then normalize
them (so the sum of each star’s pixels is one) and then take their average
to decrease this effect.

• The shifting might move the center of the star by one pixel in any direction,
so crop the central pixel of the warped image to have a clean image for the
deconvolution.

-c

--minsharpspec

(=FLT) The minimum frequency spectrum (or coefficient, or pixel value in the
frequency domain image) to use in deconvolution, see the explanations under
the --makekernel option for more information.

6.4 Warp

Image warping is the process of mapping the pixels of one image onto a new pixel grid.
This process is sometimes known as transformation, however following the discussion of
Heckbert 198930 we will not be using that term because it can be confused with only pixel
value or flux transformations. Here we specifically mean the pixel grid transformation which
is better conveyed with ‘warp’.

Image warping is a very important step in astronomy, both in observational data analysis
and in simulating modeled images. In modeling, warping an image is necessary when
we want to apply grid transformations to the initial models, for example, in simulating
gravitational lensing. Observational reasons for warping an image are listed below:

• Noise: Most scientifically interesting targets are inherently faint (have a very low Signal
to noise ratio). Therefore one short exposure is not enough to detect such objects that
are drowned deeply in the noise. We need multiple exposures so we can add them
together and increase the objects’ signal to noise ratio. Keeping the telescope fixed on
one field of the sky is practically impossible. Therefore very deep observations have to
put into the same grid before adding them.

• Resolution: If we have multiple images of one patch of the sky (hopefully at multiple
orientations) we can warp them to the same grid. The multiple orientations will allow us
to ‘guess’ the values of pixels on an output pixel grid that has smaller pixel sizes and thus
increase the resolution of the output. This process of merging multiple observations is
known as Mosaicing.

• Cosmic rays: Cosmic rays can randomly fall on any part of an image. If they collide
vertically with the camera, they are going to create a very sharp and bright spot that in
most cases can be separated easily31. However, depending on the depth of the camera
pixels, and the angle that a cosmic rays collides with it, it can cover a line-like larger
area on the CCD which makes the detection using their sharp edges very hard and
error prone. One of the best methods to remove cosmic rays is to compare multiple

30 Paul S. Heckbert. 1989. Fundamentals of Texture mapping and Image Warping, Master’s thesis at
University of California, Berkeley.

31 All astronomical targets are blurred with the PSF, see Section 8.1.1.2 [Point spread function], page 631,
however a cosmic ray is not and so it is very sharp (it suddenly stops at one pixel).



Chapter 6: Data manipulation 493

images of the same field. To do that, we need all the images to be on the same pixel
grid.

• Optical distortion: In wide field images, the optical distortion that occurs on the outer
parts of the focal plane will make accurate comparison of the objects at various locations
impossible. It is therefore necessary to warp the image and correct for those distortions
prior to the analysis.

• Detector not on focal plane: In some cases (like the Hubble Space Telescope ACS and
WFC3 cameras), the CCD might be tilted compared to the focal plane, therefore the
recorded CCD pixels have to be projected onto the focal plane before further analysis.

6.4.1 Linear warping basics

Let’s take [u v ] as the coordinates of a point in the input image and [x y ] as the
coordinates of that same point in the output image32. The simplest form of coordinate
transformation (or warping) is the scaling of the coordinates, let’s assume we want to scale
the first axis by M and the second by N , the output coordinates of that point can be
calculated by [

x
y

]
=

[
Mu
Nv

]
=

[
M 0
0 N

] [
u
v

]

Note that these are matrix multiplications. We thus see that we can represent any such
grid warping as a matrix. Another thing we can do with this 2× 2 matrix is to rotate the
output coordinate around the common center of both coordinates. If the output is rotated
anticlockwise by θ degrees from the positive (to the right) horizontal axis, then the warping
matrix should become:[

x
y

]
=

[
ucosθ − vsinθ
usinθ + vcosθ

]
=

[
cosθ −sinθ
sinθ cosθ

] [
u
v

]

We can also flip the coordinates around the first axis, the second axis and the coordinate
center with the following three matrices respectively:[

1 0
0 −1

] [
−1 0
0 1

] [
−1 0
0 −1

]

The final thing we can do with this definition of a 2×2 warping matrix is shear. If we want
the output to be sheared along the first axis with A and along the second with B, then we
can use the matrix: [

1 A
B 1

]

To have one matrix representing any combination of these steps, you use matrix multiplica-
tion, see Section 6.4.2 [Merging multiple warpings], page 495. So any combinations of these
transformations can be displayed with one 2× 2 matrix:

32 These can be any real number, we are not necessarily talking about integer pixels here.
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[
a b
c d

]

The transformations above can cover a lot of the needs of most coordinate transforma-
tions. However they are limited to mapping the point [ 0 0 ] to [ 0 0 ]. Therefore they
are useless if you want one coordinate to be shifted compared to the other one. They are
also space invariant, meaning that all the coordinates in the image will receive the same
transformation. In other words, all the pixels in the output image will have the same area
if placed over the input image. So transformations which require varying output pixel sizes
like projections cannot be applied through this 2 × 2 matrix either (for example, for the
tilted ACS and WFC3 camera detectors on board the Hubble space telescope).

To add these further capabilities, namely translation and projection, we use the homo-
geneous coordinates. They were defined about 200 years ago by August Ferdinand Möbius
(1790 – 1868). For simplicity, we will only discuss points on a 2D plane and avoid the com-
plexities of higher dimensions. We cannot provide a deep mathematical introduction here,
interested readers can get a more detailed explanation from Wikipedia33 and the references
therein.

By adding an extra coordinate to a point we can add the flexibility we need. The
point [x y ] can be represented as [xZ yZ Z ] in homogeneous coordinates. Therefore
multiplying all the coordinates of a point in the homogeneous coordinates with a constant
will give the same point. Put another way, the point [x y Z ] corresponds to the point
[x/Z y/Z ] on the constant Z plane. Setting Z = 1, we get the input image plane, so
[u v 1 ] corresponds to [u v ]. With this definition, the transformations above can be
generally written as: xy

1

 =

 a b 0
c d 0
0 0 1

uv
1


We thus acquired 4 extra degrees of freedom. By giving non-zero values to the zero valued
elements of the last column we can have translation (try the matrix multiplication!). In
general, any coordinate transformation that is represented by the matrix below is known as
an affine transformation34:  a b c

d e f
0 0 1


We can now consider translation, but the affine transform is still spatially invariant.

Giving non-zero values to the other two elements in the matrix above gives us the projective
transformation or Homography35 which is the most general type of transformation with the
3× 3 matrix:

33 http://en.wikipedia.org/wiki/Homogeneous_coordinates
34 http://en.wikipedia.org/wiki/Affine_transformation
35 http://en.wikipedia.org/wiki/Homography

http://en.wikipedia.org/wiki/Homogeneous_coordinates
http://en.wikipedia.org/wiki/Affine_transformation
http://en.wikipedia.org/wiki/Homography
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x′y′
w

 =

 a b c
d e f
g h 1

uv
1


So the output coordinates can be calculated from:

x =
x′

w
=
au+ bv + c

gu+ hv + 1
y =

y′

w
=
du+ ev + f

gu+ hv + 1

Thus with Homography we can change the sizes of the output pixels on the input plane,
giving a ‘perspective’-like visual impression. This can be quantitatively seen in the two
equations above. When g = h = 0, the denominator is independent of u or v and thus we
have spatial invariance. Homography preserves lines at all orientations. A very useful fact
about Homography is that its inverse is also a Homography. These two properties play a very
important role in the implementation of this transformation. A short but instructive and
illustrated review of affine, projective and also bi-linear mappings is provided in Heckbert
198936.

6.4.2 Merging multiple warpings

In Section 6.4.1 [Linear warping basics], page 493, we saw how a basic warp/transformation
can be represented with a matrix. To make more complex warpings (for example, to define
a translation, rotation and scale as one warp) the individual matrices have to be multiplied
through matrix multiplication. However matrix multiplication is not commutative, so the
order of the set of matrices you use for the multiplication is going to be very important.

The first warping should be placed as the left-most matrix. The second warping to
the right of that and so on. The second transformation is going to occur on the warped
coordinates of the first. As an example for merging a few transforms into one matrix, the
multiplication below represents the rotation of an image about a point [U V ] anticlockwise
from the horizontal axis by an angle of θ. To do this, first we take the origin to [U V ]
through translation. Then we rotate the image, then we translate it back to where it was
initially. These three operations can be merged in one operation by calculating the matrix
multiplication below:  1 0 U

0 1 V
0 0 1

 cosθ −sinθ 0
sinθ cosθ 0
0 0 1

 1 0 −U
0 1 −V
0 0 1



6.4.3 Resampling

A digital image is composed of discrete ‘picture elements’ or ‘pixels’. When a real image is
created from a camera or detector, each pixel’s area is used to store the number of photo-
electrons that were created when incident photons collided with that pixel’s surface area.
This process is called the ‘sampling’ of a continuous or analog data into digital data.

36 Paul S. Heckbert. 1989. Fundamentals of Texture mapping and Image Warping, Master’s thesis at
University of California, Berkeley. Note that since points are defined as row vectors there, the matrix is
the transpose of the one discussed here.
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When we change the pixel grid of an image, or “warp” it, we have to calculate the flux
value of each pixel on the new grid based on the old grid, or resample it. Because of the
calculation (as opposed to observation), any form of warping on the data is going to degrade
the image and mix the original pixel values with each other. So if an analysis can be done
on an unwarped data image, it is best to leave the image untouched and pursue the analysis.
However as discussed in Section 6.4 [Warp], page 492, this is not possible in some scenarios
and re-sampling is necessary.

When the FWHM of the PSF of the camera is much larger than the pixel scale (see
Section 6.3.2.7 [Sampling theorem], page 481) we are sampling the signal in a much higher
resolution than the camera can offer. This is usually the case in many applications of image
processing (nonastronomical imaging). In such cases, we can consider each pixel to be a
point and not an area: the PSF doesn’t vary much over a single pixel.

Approximating a pixel’s area to a point can significantly speed up the resampling and
also the simplicity of the code. Because resampling becomes a problem of interpolation:
points of the input grid need to be interpolated at certain other points (over the output
grid). To increase the accuracy, you might also sample more than one point from within a
pixel giving you more points for a more accurate interpolation in the output grid.

However, interpolation has several problems. The first one is that it will depend on the
type of function you want to assume for the interpolation. For example, you can choose a
bi-linear or bi-cubic (the ‘bi’s are for the 2 dimensional nature of the data) interpolation
method. For the latter there are various ways to set the constants37. Such parametric
interpolation functions can fail seriously on the edges of an image, or when there is a sharp
change in value (for example, the bleeding saturation of bright stars in astronomical CCDs).
They will also need normalization so that the flux of the objects before and after the warping
is comparable.

The parametric nature of these methods adds a level of subjectivity to the data (it makes
more assumptions through the functions than the data can handle). For most applications
this is fine (as discussed above: when the PSF is over-sampled), but in scientific applications
where we push our instruments to the limit and the aim is the detection of the faintest
possible galaxies or fainter parts of bright galaxies, we cannot afford this loss. Because of
these reasons Warp will not use parametric interpolation techniques.

Warp will do interpolation based on “pixel mixing”38 or “area resampling”. This is also
similar to what the Hubble Space Telescope pipeline calls “Drizzling”39. This technique
requires no functions, it is thus non-parametric. It is also the closest we can get (make least
assumptions) to what actually happens on the detector pixels.

In pixel mixing, the basic idea is that you reverse-transform each output pixel to find
which pixels of the input image it covers, and what fraction of the area of the input pixels
are covered by that output pixel. We then multiply each input pixel’s value by the fraction
of its area that overlaps with the output pixel (between 0 to 1). The output’s pixel value is
derived by summing all these multiplications for the input pixels that it covers.

Through this process, pixels are treated as an area not as a point (which is how detectors
create the image), also the brightness (see Section 7.4.2 [Brightness, Flux, Magnitude and

37 see http://entropymine.com/imageworsener/bicubic/ for a nice introduction.
38 For a graphic demonstration see http://entropymine.com/imageworsener/pixelmixing/.
39 http://en.wikipedia.org/wiki/Drizzle_(image_processing)

http://entropymine.com/imageworsener/bicubic/
http://entropymine.com/imageworsener/pixelmixing/
http://en.wikipedia.org/wiki/Drizzle_(image_processing)
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Surface brightness], page 574) of an object will be fully preserved. Since it involves the
mixing of the input’s pixel values, this pixel mixing method is a form of Section 6.3.1
[Spatial domain convolution], page 470. Therefore, after comparing the input and output,
you will notice that the output is slightly smoothed, thus boosting the more diffuse signal,
but creating correlated noise. In astronomical imaging the correlated noise will be decreased
later when you stack many exposures40.

If there are very high spatial-frequency signals in the image (for example, fringes) which
vary on a scale smaller than your output image pixel size (this is rarely the case in astro-
nomical imaging), pixel mixing can cause ailiasing41. Therefore, in case such fringes are
present, they have to be calculated and removed separately (which would naturally be done
in any astronomical reduction pipeline). Because of the PSF, no astronomical target has a
sharp change in their signal. Thus this issue is less important for astronomical applications,
see Section 8.1.1.2 [Point spread function], page 631.

To find the overlap area of the output pixel over the input pixels, we need to define
polygons and clip them (find the overlap). Usually, it is sufficient to define a pixel with
a four-vertice polygon. However, when a non-linear distortion (for example, SIP or TPV)
is present and the distortion is significant over an output pixel’s size (usually far from the
reference point), the shadow of the output pixel on the input grid can be curved. To account
for such cases (which can only happen when correcting for non-linear distortions), Warp
has the --edgesampling option to sample the output pixel over more vertices. For more,
see the description of this option in Section 6.4.4.1 [Align pixels with WCS considering
distortions], page 499.

6.4.4 Invoking Warp

Warp will warp an input image into a new pixel grid by pixel mixing (see Section 6.4.3
[Resampling], page 495). Without any options, Warp will remove any non-linear distor-
tions from the image and align the output pixel coordinates to its WCS coordinates. Any
homographic warp (for example, scaling, rotation, translation, projection, see Section 6.4.1
[Linear warping basics], page 493) can also be done by calling the relevant option explicitly.
The general template for invoking Warp is:

$ astwarp [OPTIONS...] InputImage

One line examples:

## Align image with celestial coordinates and remove any distortion

$ astwarp image.fits

## Align four exposures to same pixel grid and stack them with

## Arithmetic program's sigma-clipped mean operator (out of many

## stacking operators, see Arithmetic's documentation).

$ grid="--center=1.234,5.678 --width=1001,1001 --widthinpix --cdelt=0.2/3600"

$ astwarp a.fits $grid --output=A.fits

$ astwarp b.fits $grid --output=B.fits

$ astwarp c.fits $grid --output=C.fits

40 If you are working on a single exposure image and see pronounced Moiré patterns after Warping, check
Section 2.9 [Moiré pattern in stacking and its correction], page 191, for a possible way to reduce them

41 http://en.wikipedia.org/wiki/Aliasing

http://en.wikipedia.org/wiki/Aliasing
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$ astwarp d.fits $grid --output=D.fits

$ astarithmetic A.fits B.fits C.fits D.fits 4 5 0.2 sigclip-mean \

-g1 --output=stack.fits

## Warp a previously created mock image to the same pixel grid as the

## real image (including any distortions).

$ astwarp mock.fits --gridfile=real.fits

## Rotate and then scale input image:

$ astwarp --rotate=37.92 --scale=0.8 image.fits

## Scale, then translate the input image:

$ astwarp --scale 8/3 --translate 2.1 image.fits

## Directly input a custom warping matrix (using fraction):

$ astwarp --matrix=1/5,0,4/10,0,1/5,4/10,0,0,1 image.fits

## Directly input a custom warping matrix, with final numbers:

$ astwarp --matrix="0.7071,-0.7071, 0.7071,0.7071" image.fits

If any processing is to be done, Warp needs to be given a 2D FITS image. As in
all Gnuastro programs, when an output is not explicitly set with the --output option, the
output filename will be set automatically based on the operation, see Section 4.9 [Automatic
output], page 290. For the full list of general options to all Gnuastro programs (including
Warp), please see Section 4.1.2 [Common options], page 251.

Warp uses pixel mixing to derive the pixel values of the output image, see Section 6.4.3
[Resampling], page 495. To be the most accurate, the input image will be read as a 64-bit
double precision floating point dataset and all internal processing is done in this format.
Upon writing, by default it will be converted to 32-bit single precision floating point type
(actual observational data rarely have such precision!). In case you want a different output
type, you can use the --type option that is common to several Gnuastro programs. For
example, if your input is a mock image without noise, and you want to preserve the 64-bit
precision, use (with --type=float64. Just note that the file size will also be double! For
more on the precision of various types, see Section 4.5 [Numeric data types], page 277.

By default (if no linear operation is requested), Warp will align the pixel grid of the
input image to the WCS coordinates it contains. This operation and the the options that
govern it are described in Section 6.4.4.1 [Align pixels with WCS considering distortions],
page 499. You can Warp an input image to the same pixel grid as a reference FITS file
using the --wcsfile option. In this case, the output image will take all the information
needed from the reference WCS file and HDU/extension specified with --wcshdu, thus it
will discard any other resampling options given.

If you need any custom linear warping (independent of the WCS, see Section 6.4.1 [Linear
warping basics], page 493), you need to call the respective operation manually. These are
described in Section 6.4.4.2 [Linear warps to be called explicitly], page 504. Please note
that you may not use both linear and non-linear modes simultaneously. For example, you
cannot scale or rotate the image while removing its non-linear distortions at the same time.

The following options are shared between both modes:
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--hstartwcs=INT

Specify the first header keyword number (line) that should be used to read
the WCS information, see the full explanation in Section 6.1.4 [Invoking Crop],
page 389.

--hendwcs=INT

Specify the last header keyword number (line) that should be used to read the
WCS information, see the full explanation in Section 6.1.4 [Invoking Crop],
page 389.

-C FLT

--coveredfrac=FLT

Depending on the warp, the output pixels that cover pixels on the edge of the
input image, or blank pixels in the input image, are not going to be fully covered
by input data. With this option, you can specify the acceptable covered fraction
of such pixels (any value between 0 and 1). If you only want output pixels that
are fully covered by the input image area (and are not blank), then you can set
--coveredfrac=1 (which is the default!). Alternatively, a value of 0 will keep
output pixels that are even infinitesimally covered by the input. As a result,
with --coveredfrac=0, the sum of the pixels in the input and output images
will be exactly the same.

6.4.4.1 Align pixels with WCS considering distortions

When none of the linear warps42 are requested, Warp will align the input’s pixel axes with
it’s WCS axes. In the process, any possibly existing distortion is also removed (such as TPV
and SIP). Usually, the WCS axes are the Right Ascension and Declination in equatorial
coordinates. The output image’s pixel grid is highly customizable through the options in
this section. To learn about Warp’s strategy to build the new pixel grid, see Section 6.4.3
[Resampling], page 495. For strong distortions (that produce strong curvatures), you can
fine-tune the area-based resampling with --edgesampling, as described below.

On the other hand, sometimes you need to Warp an input image to the exact same
grid of an already available reference FITS image with an existing WCS. If that image is
already aligned, finding its center, number of pixels and pixel scale can be annoying (and
just increase the complexity of your script). On the other hand, if that image is not aligned
(for example, has a certain rotation in the sky, and has a different distortion), there are too
many WCS parameters to set (some are not yet available explicitly in the options here)!
For such scenarios, Warp has the --gridfile option. When --gridfile is called, the
options below that are used to define the output’s WCS will be ignored (these options:
--center, --widthinpix, --cdelt, --ctype). In this case, the output’s WCS and pixel
grid will exactly match the image given to --gridfile (including any rotation, pixel scale,
or distortion or projection).

42 For linear warps, see Section 6.4.4.2 [Linear warps to be called explicitly], page 504.
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� �
Set --cdelt explicitly when you plan to stack many warped images: To align some images
and later stack them, it is necessary to be sure the pixel sizes of all the images are the same
exactly. Most of the time the measured (during astrometry) pixel scale of the separate
exposures, will be different in the second or third digit number after the decimal point. It
is a normal/statistical error in measuring the astrometry. On a large image, these slight
differences can cause different output sizes (of one or two pixels on a very large image).

You can fix this by explicitly setting the pixel scale of each warped exposure with
Warp’s --cdelt option that is described below. For good strategies of setting the pixel
scale, see Section 2.9 [Moiré pattern in stacking and its correction], page 191.
 	

Another problem that may arise when aligning images to new pixel grids is the aliasing
or visible Moiré patterns on the output image. This artifact should be removed if you are
stacking several exposures, especially with a pointing pattern. If not see Section 2.9 [Moiré
pattern in stacking and its correction], page 191, for ways to mitigate the visible patterns.
See the description of --gridfile below for more.� �
Known issue: Warp’s WCS-based aligning works best with WCSLIB version 7.12 (released
in September 2022) and above. If you have an older version of WCSLIB, you might get a
wcss2p error otherwise.
 	
-c FLT,FLT

--center=FLT,FLT

WCS coordinates of the center of the central pixel of the output image. Since a
central pixel is only defined with an odd number of pixels along both dimensions,
the output will always have an odd number of pixels. When --center or
--gridfile aren’t given, the output will have the same central WCS coordinate
as the input.

Usually, the WCS coordinates are Right Ascension and Declination (when the
first three characters of CTYPE1 and CTYPE2 are respectively RA- and DEC). For
more on the CTYPEi keyword values, see --ctype below.

-w INT[,INT]

--width=INT[,INT]

Width and height of the output image in units of WCS (usually degrees). If
you want the values to be read as pixels, also call the --widthinpix option
with --width. If a single value is given, Warp will use the same value for the
second dimension (creating a square output). When --width or --gridfile

aren’t given, Warp will calculate the necessary size of the output pixel grid to
fully contain the input image.

Usually the WCS coordinates are in units of degrees (defined by the CUNITi

keywords of the FITS standard). But entering a certain number of arcseconds
or arcminutes for the width can be annoying (you will usually need to go to the
calculator!). To simplify such situations, this option also accepts division. For
example --width=1/60,2/60 will make an aligned warp that is 1 arcmin along
Right Ascension and 2 arcminutes along the Declination.
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With the --widthinpix option the values will be interpreted as numbers of
pixels. In this scenario, this option should be given odd integer(s) that are
greater than 1. This ensures that the output image can have a central pixel.
Recall that through the --center option, you specify the WCS coordinate of
the center of the central pixel. The central coordinate of an image with an even
number of pixels will be on the edge of two pixels, so a “central” pixel is not
well defined. If any of the given values are even, Warp will automatically add
a single pixel (to make it an odd integer) and print a warning message.

--widthinpix

When called, the values given to the --width option will be interpreted as the
number of pixels along each dimension(s). See the description of --width for
more.

-x FLT[,FLT]

--cdelt=FLT[,FLT]

Coordinate deltas or increments (CDELTi in the FITS standard), or the pixel
scale in both dimensions. If a single value is given, it will be used for both axes.
In this way, the output’s pixels will be squares on the sky at the reference point
(as is usually expected!). When --cdelt or --gridfile aren’t given, Warp
will read the input’s pixel scale and choose the larger of CDELT1 or CDELT2 so
the output pixels are square.

Usually (when dealing with RA and Dec, and the CUNITis have a value of
deg), the units of the given values are degrees/pixel. Warp allows you to easily
convert from arcsec to degrees by simply appending a /3600 to the value. For
example, for an output image of pixel scale 0.27 arcsec/pixel, you can use
--cdelt=0.27/3600.

--ctype=STR,STR

The coordinate types of the output (CTYPE1 and CTYPE2 keywords in the FITS
standard), separated by a comma. By default the value to this option is
‘RA---TAN,DEC--TAN’. However, if --gridfile is given, this option is ignored.

If you don’t call --ctype or --gridfile, the output WCS coordinates
will be Right Ascension and Declination, while the output’s projection will
be Gnomonic (https://en.wikipedia.org/wiki/Gnomonic_projection),
also known as Tangential (TAN). This combination is the most common in
extra-galactic imaging surveys. For other coordinates and projections in your
output use other values, as described below.

According to the FITS standard version 4.043: CTYPEi is the “type for the
Intermediate-coordinate Axis i. Any coordinate type that is not covered by this
Standard or an officially recognized FITS convention shall be taken to be linear.
All non-linear coordinate system names must be expressed in ‘4–3’ form: the
first four characters specify the coordinate type, the fifth character is a hyphen
(-), and the remaining three characters specify an algorithm code for computing
the world coordinate value. Coordinate types with names of fewer than four
characters are padded on the right with hyphens, and algorithm codes with

43 FITS standard version 4.0: https://fits.gsfc.nasa.gov/standard40/fits_standard40aa-le.pdf

https://en.wikipedia.org/wiki/Gnomonic_projection
https://fits.gsfc.nasa.gov/standard40/fits_standard40aa-le.pdf


Chapter 6: Data manipulation 502

fewer than three characters are padded on the right with SPACE. Algorithm
codes should be three characters” (see list of algorithm codes below).

You can use any of the projection algorithms (last three characters of
each coordinate’s type) provided by your host WCSLIB (a mandatory
dependency of Gnuastro; see Section 3.1.1.3 [WCSLIB], page 213). For a very
elaborate and complete description of projection algorithms in the FITS WCS
standard, see Calabretta and Greisen 2002 (https://doi.org/10.1051/
0004-6361:20021327). Wikipedia also has a nice article on Map projections
(https://en.wikipedia.org/wiki/Map_projection). As an example,
WCSLIB 7.12 (released in September 2022) has the following projection
algorithms:

AZP Zenithal/azimuthal perspective

SZP Slant zenithal perspective

TAN Gnomonic (tangential)

STG Stereographic

SIN Orthographic/synthesis

ARC Zenithal/azimuthal equidistant

ZPN Zenithal/azimuthal polynomial

ZEA Zenithal/azimuthal equal area

AIR Airy

CYP Cylindrical perspective

CEA Cylindrical equal area

CAR Plate carree

MER Mercator

SFL Sanson-Flamsteed

PAR Parabolic

MOL Mollweide

AIT Hammer-Aitoff

COP Conic perspective

COE Conic equal area

COD Conic equidistant

COO Conic orthomorphic

BON Bonne

PCO Polyconic

TSC Tangential spherical cube

CSC COBE spherical cube

https://doi.org/10.1051/0004-6361:20021327
https://doi.org/10.1051/0004-6361:20021327
https://en.wikipedia.org/wiki/Map_projection
https://en.wikipedia.org/wiki/Map_projection
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QSC Quadrilateralized spherical cube

HPX HEALPix

XPH HEALPix polar, aka "butterfly"

-G

--gridfile

FITS filename containing the final pixel grid and WCS for the output image.
The HDU/extension containing should be specified with --gridhdu or its short
option -H. The HDU should contain a WCS, otherwise, Warp will abort with
a crash. When this option is used, Warp will read the respective WCS and the
size of the image to resample the input. Since this WCS of this HDU contains
everything needed to construct the WCS the options above will be ignored when
--gridfile is called: --cdelt, --center, and --widthinpix.

In the example below, let’s use this option to put the image of M51 in one
survey (J-PLUS) into the pixel grid of another survey (SDSS) containing M51.
The J-PLUS field of view is very large (almost 1.5 × 1.5 deg2, in 9500 × 9500
pixels), while the field of view of SDSS in each filter is small (almost 0.3 ×
0.25 deg2 in 2048 × 1489 pixels). With the first two commands, we’ll first
download the two images, then we’ll extract the portion of the J-PLUS image
that overlaps with the SDSS image and align it exactly to SDSS’s pixel grid.
Note that these are the two images that were used in two of Gnuastro’s tutorials:
Section 2.3 [Building the extended PSF], page 103, and Section 2.2 [Detecting
large extended targets], page 81.

## Download the J-PLUS DR2 image of M51 in the r filter.

$ jplusbase="http://archive.cefca.es/catalogues/vo/siap"

$ wget $jplusbase/jplus-dr2/get_fits?id=67510 \

-O jplus.fits.fz

## Download the SDSS image in r filter and decompress it

## (Bzip2 is not a standard FITS compression algorithm).

$ sdssbase=https://dr12.sdss.org/sas/dr12/boss/photoObj/frames

$ wget $sdssbase/301/3716/6/frame-r-003716-6-0117.fits.bz2 \

-O sdss.fits.bz2

$ bunzip2 sdss.fits.bz2

## Warp and crop the J-PLUS image so the output exactly

## matches the SDSS pixel gid.

$ astwarp jplus.fits.fz --gridfile=sdss.fits --gridhdu=0 \

--output=jplus-on-sdss.fits

## View the two images side-by-side:

$ astscript-fits-view sdss.fits jplus-on-sdss.fits

As the example above shows, this option can therefore be very useful when
comparing images from multiple surveys. But there are other very interesting
use cases also. For example, when you are making a mock dataset and need
to add distortion to the image so it matches the distortion of your camera.
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Through --gridhdu, you can easily insert that distortion over the mock image
and put the mock image in the pixel grid of an exposure.

-H

--gridhdu

The HDU/extension of the reference WCS file specified with option --wcsfile

or its short version -H (see the description of --wcsfile for more).

--edgesampling=INT

Number of extra samplings along the edge of a pixel. By default the value is
0 (the output pixel’s polygon over the input will be a quadrilateral (a polygon
with four edges/vertices).

Warp uses pixel mixing to derive the output pixel values. For a complete
introduction, see Section 6.4.3 [Resampling], page 495, and in particular its later
part on distortions. To account for this possible curvature due to distortion, you
can use this option. For example, --edgesampling=1 will add one extra vertice
in the middle of each edge of the output pixel, producing an 8-vertice polygon.
Similarly, --edgesampling=5 will put 5 extra vertices along each edge, thus
sampling the shape (and possible curvature) of the output pixel over an input
pixel with 4+5×4 = 24 vertice polygon. Since the polygon clipping will happen
for every output pixel, a higher value to this option can significantly reduce the
running speed and increase the RAM usage of Warp; so use it with caution: in
most cases the default --edgesampling=0 is sufficient.

To visually inspect the curvature effect on pixel area of the input image, see op-
tion --pixelareaonwcs in Section 5.1.1.3 [Pixel information images], page 313.

--checkmaxfrac

Check each output pixel’s maximum coverage on the input data and append
as the ‘MAX-FRAC’ HDU/extension to the output aligned image. This option
provides an easy visual inspection for possible recurring patterns or fringes
caused by aligning to a new pixel grid. For more detail about the origin of
these patterns and how to mitigate them see Section 2.9 [Moiré pattern in
stacking and its correction], page 191.

Note that the ‘MAX-FRAC’ HDU/extension is not showing the patterns them-
selves; It represents the largest area coverage on the input data for that partic-
ular pixel. The values can be in the range between 0 to 1, where 1 means the
pixel is covering at least one complete pixel of the input data. On the other
hand, 0 means that the pixel is not covering any pixels of the input at all.

6.4.4.2 Linear warps to be called explicitly

Linear warps include operations like rotation, scaling, sheer, etc. For an introduction, see
Section 6.4.1 [Linear warping basics], page 493. These are warps that don’t depend on
the WCS of the image and should be explicitly requested. To align the input pixel coor-
dinates with the WCS coordinates, see Section 6.4.4.1 [Align pixels with WCS considering
distortions], page 499.

While they will correct any existing WCS based on the warp, they can also operate on
images without any WCS. For example, you have a mock image that doesn’t (yet!) have
its mock WCS, and it has been created on an over-sampled grid and convolved with an
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over-sampled PSF. In this scenario, you can use the --scale option to under-sample it
to your desired resolution. This is similar to the Section 2.4 [Sufi simulates a detection],
page 124, tutorial.

Linear warps must be specified as command-line options, either as (possibly multiple)
modular warpings (for example, --rotate, or --scale), or directly as a single raw matrix
(with --matrix). If specified together, the latter (direct matrix) will take precedence and
all the modular warpings will be ignored. Any number of modular warpings can be specified
on the command-line and configuration files. If more than one modular warping is given,
all will be merged to create one warping matrix. As described in Section 6.4.2 [Merging
multiple warpings], page 495, matrix multiplication is not commutative, so the order of
specifying the modular warpings on the command-line, and/or configuration files makes
a difference (see Section 4.2.2 [Configuration file precedence], page 269). The full list of
modular warpings and the other options particular to Warp are described below.

The values to the warping options (modular warpings as well as --matrix), are a se-
quence of at least one number. Each number in this sequence is separated from the next by
a comma (,). Each number can also be written as a single fraction (with a forward-slash /

between the numerator and denominator). Space and Tab characters are permitted between
any two numbers, just do not forget to quote the whole value. Otherwise, the value will not
be fully passed onto the option. See the examples above as a demonstration.

Based on the FITS standard, integer values are assigned to the center of a pixel and the
coordinate [1.0, 1.0] is the center of the first pixel (bottom left of the image when viewed in
SAO DS9). So the coordinate center [0.0, 0.0] is half a pixel away (in each axis) from the
bottom left vertex of the first pixel. The resampling that is done in Warp (see Section 6.4.3
[Resampling], page 495) is done on the coordinate axes and thus directly depends on the
coordinate center. In some situations this if fine, for example, when rotating/aligning a real
image, all the edge pixels will be similarly affected. But in other situations (for example,
when scaling an over-sampled mock image to its intended resolution, this is not desired:
you want the center of the coordinates to be on the corner of the pixel. In such cases, you
can use the --centeroncorner option which will shift the center by 0.5 before the main
warp, then shift it back by −0.5 after the main warp.

-r FLT

--rotate=FLT

Rotate the input image by the given angle in degrees: θ in Section 6.4.1 [Linear
warping basics], page 493. Note that commonly, the WCS structure of the
image is set such that the RA is the inverse of the image horizontal axis which
increases towards the right in the FITS standard and as viewed by SAO DS9.
So the default center for rotation is on the right of the image. If you want to
rotate about other points, you have to translate the warping center first (with
--translate) then apply your rotation and then return the center back to the
original position (with another call to --translate, see Section 6.4.2 [Merging
multiple warpings], page 495.

-s FLT[,FLT]

--scale=FLT[,FLT]

Scale the input image by the given factor(s): M and N in Section 6.4.1 [Linear
warping basics], page 493. If only one value is given, then both image axes
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will be scaled with the given value. When two values are given (separated by a
comma), the first will be used to scale the first axis and the second will be used
for the second axis. If you only need to scale one axis, use 1 for the axis you
do not need to scale. The value(s) can also be written (on the command-line
or in configuration files) as a fraction.

-f FLT[,FLT]

--flip=FLT[,FLT]

Flip the input image around the given axis(s). If only one value is given,
then both image axes are flipped. When two values are given (separated by
acomma), you can choose which axis to flip over. --flip only takes values 0
(for no flip), or 1 (for a flip). Hence, if you want to flip by the second axis only,
use --flip=0,1.

-e FLT[,FLT]

--shear=FLT[,FLT]

Shear the input image by the given value(s): A and B in Section 6.4.1 [Linear
warping basics], page 493. If only one value is given, then both image axes
will be sheared with the given value. When two values are given (separated
by a comma), the first will be used to shear the first axis and the second will
be used for the second axis. If you only need to shear along one axis, use 0

for the axis that must be untouched. The value(s) can also be written (on the
command-line or in configuration files) as a fraction.

-t FLT[,FLT]

--translate=FLT[,FLT]

Translate (move the center of coordinates) the input image by the given value(s):
c and f in Section 6.4.1 [Linear warping basics], page 493. If only one value
is given, then both image axes will be translated by the given value. When
two values are given (separated by a comma), the first will be used to translate
the first axis and the second will be used for the second axis. If you only need
to translate along one axis, use 0 for the axis that must be untouched. The
value(s) can also be written (on the command-line or in configuration files) as
a fraction.

-p FLT[,FLT]

--project=FLT[,FLT]

Apply a projection to the input image by the given values(s): g and h in
Section 6.4.1 [Linear warping basics], page 493. If only one value is given, then
projection will apply to both axes with the given value. When two values are
given (separated by a comma), the first will be used to project the first axis and
the second will be used for the second axis. If you only need to project along
one axis, use 0 for the axis that must be untouched. The value(s) can also be
written (on the command-line or in configuration files) as a fraction.

-m STR

--matrix=STR

The warp/transformation matrix. All the elements in this matrix must be
separated by commas(,) characters and as described above, you can also use
fractions (a forward-slash between two numbers). The transformation matrix
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can be either a 2 by 2 (4 numbers), or a 3 by 3 (9 numbers) array. In the
former case (if a 2 by 2 matrix is given), then it is put into a 3 by 3 matrix (see
Section 6.4.1 [Linear warping basics], page 493).

The determinant of the matrix has to be non-zero and it must not contain
any non-number values (for example, infinities or NaNs). The elements of the
matrix have to be written row by row. So for the general Homography matrix
of Section 6.4.1 [Linear warping basics], page 493, it should be called with
--matrix=a,b,c,d,e,f,g,h,1.

The raw matrix takes precedence over all the modular warping options listed
above, so if it is called with any number of modular warps, the latter are ignored.

--centeroncorner

Put the center of coordinates on the corner of the first (bottom-left when viewed
in SAO DS9) pixel. This option is applied after the final warping matrix has
been finalized: either through modular warpings or the raw matrix. See the
explanation above for coordinates in the FITS standard to better understand
this option and when it should be used.

-k

--keepwcs

Do not correct the WCS information of the input image and save it untouched to
the output image. By default the WCS (World Coordinate System) information
of the input image is going to be corrected in the output image so the objects
in the image are at the same WCS coordinates. But in some cases it might be
useful to keep it unchanged (for example, to correct alignments).
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7 Data analysis

Astronomical datasets (images or tables) contain very valuable information, the tools in this
section can help in analyzing, extracting, and quantifying that information. For example,
getting general or specific statistics of the dataset (with Section 7.1 [Statistics], page 508),
detecting signal within a noisy dataset (with Section 7.2 [NoiseChisel], page 541), or creating
a catalog from an input dataset (with Section 7.4 [MakeCatalog], page 572).

7.1 Statistics

The distribution of values in a dataset can provide valuable information about it. For
example, in an image, if it is a positively skewed distribution, we can see that there is
significant data in the image. If the distribution is roughly symmetric, we can tell that
there is no significant data in the image. In a table, when we need to select a sample of
objects, it is important to first get a general view of the whole sample.

On the other hand, you might need to know certain statistical parameters of the dataset.
For example, if we have run a detection algorithm on an image, and we want to see how
accurate it was, one method is to calculate the average of the undetected pixels and see
how reasonable it is (if detection is done correctly, the average of undetected pixels should
be approximately equal to the background value, see Section 7.1.4 [Sky value], page 519).
In a table, you might have calculated the magnitudes of a certain class of objects and want
to get some general characteristics of the distribution immediately on the command-line
(very fast!), to possibly change some parameters. The Statistics program is designed for
such situations.

7.1.1 Histogram and Cumulative Frequency Plot

Histograms and the cumulative frequency plots are both used to visually study the distribu-
tion of a dataset. A histogram shows the number of data points which lie within pre-defined
intervals (bins). So on the horizontal axis we have the bin centers and on the vertical, the
number of points that are in that bin. You can use it to get a general view of the distri-
bution: which values have been repeated the most? how close/far are the most significant
bins? Are there more values in the larger part of the range of the dataset, or in the lower
part? Similarly, many very important properties about the dataset can be deduced from a
visual inspection of the histogram. In the Statistics program, the histogram can be either
output to a table to plot with your favorite plotting program1, or it can be shown with
ASCII characters on the command-line, which is very crude, but good enough for a fast and
on-the-go analysis, see the example in Section 7.1.5 [Invoking Statistics], page 525.

The width of the bins is only necessary parameter for a histogram. In the limiting
case that the bin-widths tend to zero (while assuming the number of points in the dataset
tend to infinity), then the histogram will tend to the probability density function (https://
en.wikipedia.org/wiki/Probability_density_function) of the distribution. When the
absolute number of points in each bin is not relevant to the study (only the shape of the
histogram is important), you can normalize a histogram so like the probability density
function, the sum of all its bins will be one.

1 We recommend PGFPlots (http://pgfplots.sourceforge.net/) which generates your plots directly
within TEX (the same tool that generates your document).

https://en.wikipedia.org/wiki/Probability_density_function
https://en.wikipedia.org/wiki/Probability_density_function
http://pgfplots.sourceforge.net/
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In the cumulative frequency plot of a distribution, the horizontal axis is the sorted data
values and the y axis is the index of each data in the sorted distribution. Unlike a histogram,
a cumulative frequency plot does not involve intervals or bins. This makes it less prone to
any sort of bias or error that a given bin-width would have on the analysis. When a larger
number of the data points have roughly the same value, then the cumulative frequency plot
will become steep in that vicinity. This occurs because on the horizontal axis, there is little
change while on the vertical axis, the indexes constantly increase. Normalizing a cumulative
frequency plot means to divide each index (y axis) by the total number of data points (or
the last value).

Unlike the histogram which has a limited number of bins, ideally the cumulative fre-
quency plot should have one point for every data element. Even in small datasets (for
example, a 200 × 200 image) this will result in an unreasonably large number of points to
plot (40000)! As a result, for practical reasons, it is common to only store its value on a
certain number of points (intervals) in the input range rather than the whole dataset, so you
should determine the number of bins you want when asking for a cumulative frequency plot.
In Gnuastro (and thus the Statistics program), the number reported for each bin is the total
number of data points until the larger interval value for that bin. You can see an example
histogram and cumulative frequency plot of a single dataset under the --asciihist and
--asciicfp options of Section 7.1.5 [Invoking Statistics], page 525.

So as a summary, both the histogram and cumulative frequency plot in Statistics will
work with bins. Within each bin/interval, the lower value is considered to be within then
bin (it is inclusive), but its larger value is not (it is exclusive). Formally, an interval/bin
between a and b is represented by [a, b). When the over-all range of the dataset is specified
(with the --greaterequal, --lessthan, or --qrange options), the acceptable values of the
dataset are also defined with a similar inclusive-exclusive manner. But when the range is
determined from the actual dataset (none of these options is called), the last element in the
dataset is included in the last bin’s count.

7.1.2 2D Histograms

In Section 7.1.1 [Histogram and Cumulative Frequency Plot], page 508, the concept of
histograms were introduced on a single dataset. But they are only useful for viewing the
distribution of a single variable (column in a table). In many contexts, the distribution of
two variables in relation to each other may be of interest. For example, the color-magnitude
diagrams in astronomy, where the horizontal axis is the luminosity or magnitude of an
object, and the vertical axis is the color. Scatter plots are useful to see these relations
between the objects of interest when the number of the objects is small.

As the density of points in the scatter plot increases, the points will fall over each other
and just make a large connected region hide potentially interesting behaviors/correlations in
the densest regions. This is where 2D histograms can become very useful. A 2D histogram
is composed of 2D bins (boxes or pixels), just as a 1D histogram consists of 1D bins (lines).
The number of points falling within each box/pixel will then be the value of that box.
Added with a color-bar, you can now clearly see the distribution independent of the density
of points (for example, you can even visualize it in log-scale if you want).

Gnuastro’s Statistics program has the --histogram2d option for this task. It takes
a single argument (either table or image) that specifies the format of the output 2D
histogram. The two formats will be reviewed separately in the sub-sections below. But
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let’s start with the generalities that are common to both (related to the input, not the
output).

You can specify the two columns to be shown using the --column (or -c) option. So if
you want to plot the color-magnitude diagram from a table with the MAG-R column on the
horizontal and COLOR-G-R on the vertical column, you can use --column=MAG-r,COLOR-G-
r. The number of bins along each dimension can be set with --numbins (for first input
column) and --numbins2 (for second input column).

Without specifying any range, the full range of values will be used in each dimension.
If you only want to focus on a certain interval of the values in the columns in any dimen-
sion you can use the --greaterequal and --lessthan options to limit the values along
the first/horizontal dimension and --greaterequal2 and --lessthan2 options for the sec-
ond/vertical dimension.

7.1.2.1 2D histogram as a table for plotting

When called with the --histogram=table option, Statistics will output a table file with
three columns that have the information of every box as a column. If you asked for
--numbins=N and --numbins2=M, all three columns will have M × N rows (one row for
every box/pixel of the 2D histogram). The first and second columns are the position of
the box along the first and second dimensions. The third column has the number of input
points that fall within that box/pixel.

For example, you can make high-quality plots within your paper (using the same LATEX
engine, thus blending very nicely with your text) using PGFPlots (https://ctan.org/pkg/
pgfplots). Below you can see one such minimal example, using your favorite text editor,
save it into a file, make the two small corrections in it, then run the commands shown at
the top. This assumes that you have LATEX installed, if not the steps to install a mini-
mally sufficient LATEX package on your system, see the respective section in Section 3.1.3
[Bootstrapping dependencies], page 217.

The two parts that need to be corrected are marked with ’%% <--’: the first one
(XXXXXXXXX) should be replaced by the value to the --numbins option which is the number
of bins along the first dimension. The second one (FILE.txt) should be replaced with the
name of the file generated by Statistics.

%% Replace 'XXXXXXXXX' with your selected number of bins in the first

%% dimension.

%%

%% Then run these commands to build the plot in a LaTeX command.

%% mkdir tikz

%% pdflatex --shell-escape --halt-on-error report.tex

\documentclass{article}

%% Load PGFPlots and set it to build the figure separately in a 'tikz'

%% directory (which has to exist before LaTeX is run). This

%% "externalization" is very useful to include the commands of multiple

%% plots in the middle of your paper/report, but also have the plots

%% separately to use in slides or other scenarios.

\usepackage{pgfplots}

\usetikzlibrary{external}

https://ctan.org/pkg/pgfplots
https://ctan.org/pkg/pgfplots
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\tikzexternalize

\tikzsetexternalprefix{tikz/}

%% Define colormap for the PGFPlots 2D histogram

\pgfplotsset{

/pgfplots/colormap={hsvwhitestart}{

rgb255(0cm)=(255,255,255)

rgb255(0.10cm)=(128,0,128)

rgb255(0.5cm)=(0,0,230)

rgb255(1.cm)=(0,255,255)

rgb255(2.5cm)=(0,255,0)

rgb255(3.5cm)=(255,255,0)

rgb255(6cm)=(255,0,0)

}

}

%% Start the prinable document

\begin{document}

You can write a full paper here and include many figures!

Describe what the two axes are, and how you measured them.

Also, do not forget to explain what it shows and how to interpret it.

You also have separate PDFs for every figure in the `tikz' directory.

Feel free to change this text.

%% Draw the plot.

\begin{tikzpicture}

\small

\begin{axis}[

width=\linewidth,

view={0}{90},

colorbar horizontal,

xlabel=X axis,

ylabel=Y axis,

ylabel shift=-0.1cm,

colorbar style={at={(0,1.01)}, anchor=south west,

xticklabel pos=upper},

]

\addplot3[

surf,

shader=flat corner,

mesh/ordering=rowwise,

mesh/cols=XXXXXXXXX, %% <-- Number of bins in 1st column.

] file {FILE.txt}; %% <-- Name of aststatistics output.

\end{axis}

\end{tikzpicture}
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%% End the printable document.

\end{document}

Let’s assume you have put the LATEX source above, into a plain-text file called
report.tex. The PGFPlots call above is configured to build the plots as separate PDF
files in a tikz/ directory2. This allows you to directly load those PDFs in your slides or
other reports. Therefore, before building the PDF report, you should first make a tikz/

directory:

$ mkdir tikz

To build the final PDF, you should run pdflatex with the --shell-escape option, so
it can build the separate PDF(s) separately. We are also adding the --halt-on-error so
it immediately aborts in the case of an error (in the case of an error, by default LATEX will
not abort, it will stop and ask for your input to temporarily change things and try fixing
the error, but it has a special interface which can be hard to master).

$ pdflatex --shell-escape --halt-on-error report.tex

You can now open report.pdf to see your very high quality 2D histogram within your text.
And if you need the plots separately (for example, for slides), you can take the PDF inside
the tikz/ directory.

7.1.2.2 2D histogram as an image

When called with the --histogram=image option, Statistics will output a FITS file with
an image/array extension. If you asked for --numbins=N and --numbins2=M the image will
have a size of N ×M pixels (one pixel per 2D bin). Also, the FITS image will have a linear
WCS that is scaled to the 2D bin size along each dimension. So when you hover your mouse
over any part of the image with a FITS viewer (for example, SAO DS9), besides the number
of points in each pixel, you can directly also see “coordinates” of the pixels along the two
axes. You can also use the optimized and fast FITS viewer features for many aspects of
visually inspecting the distributions (which we will not go into further).

For example, let’s assume you want to derive the color-magnitude diagram (CMD) of
the UVUDF survey (http://uvudf.ipac.caltech.edu). You can run the first command
below to download the table with magnitudes of objects in many filters and run the second
command to see general column metadata after it is downloaded.

$ wget http://asd.gsfc.nasa.gov/UVUDF/uvudf_rafelski_2015.fits.gz

$ asttable uvudf_rafelski_2015.fits.gz -i

Let’s assume you want to find the color to be between the F606W and F775W filters
(roughly corresponding to the g and r filters in ground-based imaging). However, the original
table does not have color columns (there would be too many combinations!). Therefore
you can use the Section 5.3.3 [Column arithmetic], page 346, feature of Gnuastro’s Table
program for deriving a new table with the F775Wmagnitude in one column and the difference
between the F606W and F775W on the other column. With the second command, you can
see the actual values if you like.

$ asttable uvudf_rafelski_2015.fits.gz -cMAG_F775W \

-c'arith MAG_F606W MAG_F775W -' \

2 TiKZ (https://www.ctan.org/pkg/pgf) is the name of the lower-level engine behind PGPlots.

http://uvudf.ipac.caltech.edu
https://www.ctan.org/pkg/pgf
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--colmetadata=ARITH_1,F606W-F775W,"AB mag" -ocmd.fits

$ asttable cmd.fits

You can now construct your 2D histogram as a 100 × 100 pixel FITS image with this
command (assuming you want F775W magnitudes between 22 and 30, colors between -1 and
3 and 100 bins in each dimension). Note that without the --manualbinrange option the
range of each axis will be determined by the values within the columns (which may be larger
or smaller than your desired large).

aststatistics cmd.fits -cMAG_F775W,F606W-F775W --histogram2d=image \

--numbins=100 --greaterequal=22 --lessthan=30 \

--numbins2=100 --greaterequal2=-1 --lessthan2=3 \

--manualbinrange --output=cmd-2d-hist.fits

If you have SAO DS9, you can now open this FITS file as a normal FITS image, for example,
with the command below. Try hovering/zooming over the pixels: not only will you see the
number of objects in the UVUDF catalog that fall in each bin, but you also see the F775W

magnitude and color of that pixel also.

$ ds9 cmd-2d-hist.fits -cmap sls -zoom to fit

With the first command below, you can activate the grid feature of DS9 to actually see the
coordinate grid, as well as values on each line. With the second command, DS9 will even
read the labels of the axes and use them to generate an almost publication-ready plot.

$ ds9 cmd-2d-hist.fits -cmap sls -zoom to fit -grid yes

$ ds9 cmd-2d-hist.fits -cmap sls -zoom to fit -grid yes \

-grid type publication

If you are happy with the grid, coloring and the rest, you can also use ds9 to save this as
a JPEG image to directly use in your documents/slides with these extra DS9 options (DS9
will write the image to cmd-2d.jpeg and quit immediately afterwards):

$ ds9 cmd-2d-hist.fits -cmap sls -zoom 4 -grid yes \

-grid type publication -saveimage cmd-2d.jpeg -quit

This is good for a fast progress update. But for your paper or more official report,
you want to show something with higher quality. For that, you can use the PGFPlots
package in LATEX to add axes in the same font as your text, sharp grids and many other
elegant/powerful features (like over-plotting interesting points and lines). But to load the
2D histogram into PGFPlots first you need to convert the FITS image into a more standard
format, for example, PDF. We will use Gnuastro’s Section 5.2 [ConvertType], page 314, for
this, and use the sls-inverse color map (which will map the pixels with a value of zero to
white):

$ astconvertt cmd-2d-hist.fits --colormap=sls-inverse \

--borderwidth=0 -ocmd-2d-hist.pdf

Below you can see a minimally working example of how to add axis numbers, labels and a
grid to the PDF generated above. Copy and paste the LATEX code below into a plain-text
file called cmd-report.tex Notice the xmin, xmax, ymin, ymax values and how they are the
same as the range specified above.

\documentclass{article}

\usepackage{pgfplots}

\dimendef\prevdepth=0
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\begin{document}

You can write all you want here...

\begin{tikzpicture}

\begin{axis}[

enlargelimits=false,

grid,

axis on top,

width=\linewidth,

height=\linewidth,

xlabel={Magnitude (F775W)},

ylabel={Color (F606W-F775W)}]

\addplot graphics[xmin=22, xmax=30, ymin=-1, ymax=3]

{cmd-2d-hist.pdf};

\end{axis}

\end{tikzpicture}

\end{document}

Run this command to build your PDF (assuming you have LATEX and PGFPlots).

$ pdflatex cmd-report.tex

The improved quality, blending in with the text, vector-graphics resolution and other
features make this plot pleasing to the eye, and let your readers focus on the main point of
your scientific argument. PGFPlots can also built the PDF of the plot separately from the
rest of the paper/report, see Section 7.1.2.1 [2D histogram as a table for plotting], page 510,
for the necessary changes in the preamble.

7.1.3 Least squares fitting

After completing a good observation, doing robust data reduction and finalizing the mea-
surements, it is commonly necessary to parameterize the derived correlations. For example,
you have derived the radial profile of the PSF of your image (see Section 2.3 [Building the
extended PSF], page 103). You now want to parameterize the radial profile to estimate
the slope. Alternatively, you may have found the star formation rate and stellar mass of
your sample of galaxies. Now, you want to derive the star formation main sequence as
a parametric relation between the two. The fitting functions below can be used for such
purposes.

Gnuastro’s least squares fitting features are just wrappers over the least squares fit-
ting methods of the linear (https://www.gnu.org/software/gsl/doc/html/lls.html)
and nonlinear (https://www.gnu.org/software/gsl/doc/html/nls.html) least-squares
fitting functions of the GNU Scientific Library (GSL). For the low-level details and equa-
tions of the methods, please see the GSL documentation. The names have been preserved
here in Gnuastro to simplify the connection with GSL and follow the details in the detailed
documentation there.

GSL is a very low-level library, designed for maximal portability to many scenarios,
and power. Therefore calling GSL’s functions directly for a fast operation requires a good
knowledge of the C programming language and many lines of code. As a low-level library,

https://www.gnu.org/software/gsl/doc/html/lls.html
https://www.gnu.org/software/gsl/doc/html/nls.html
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GSL is designed to be the back-end of higher-level programs (like Gnuastro). Through
the Statistics program, in Gnuastro we provide a high-level interface to access to GSL’s
very powerful least squares fitting engine to read/write from/to standard data formats in
astronomy. A fully working example is shown below.

To activate fitting in Statistics, simply give your desired fitting method to the --fit op-
tion (for the full list of acceptable methods, see Section 7.1.5.4 [Fitting options], page 535).
For example, with the command below, we’ll build a fake measurement table (including
noise) from the polynomial y = 1.23 − 4.56x + 7.89x2. To understand how this equation
translates to the command below (part before set-y), see Section 6.2.1 [Reverse polish
notation], page 399, and Section 5.3.3 [Column arithmetic], page 346. We will set the X
axis to have values from 0.1 to 2, with steps of 0.01 and let’s assume a random Gaussian
noise to each y measurement: σy = 0.1y. To make the random number generation exactly
reproducible, we are also setting the seed (see Section 6.2.3.4 [Generating random numbers],
page 406, which also uses GSL as a backend). To learn more about the mknoise-sigma oper-
ator, see the Arithmetic program’s Section 6.2.4.16 [Random number generators], page 443.

$ export GSL_RNG_SEED=1664015492

$ seq 0.1 0.01 2 \

| asttable --output=noisy.fits --envseed -c1 \

-c'arith 1.23 -4.56 $1 x + 7.89 $1 x $1 x + set-y \

0.1 y x set-yerr \

y yerr mknoise-sigma yerr' \

--colmetadata=1,X --colmetadata=2,Y \

--colmetadata=3,Yerr

Let’s have a look at the output plot with TOPCAT using the command below.

$ astscript-fits-view noisy.fits

To see the error-bars, after opening the scatter plot, go into the “Form” tab for that plot.
Click on the button with a green “+” sign followed by “Forms” and select “XYError”. On
the side-menu, in front of “Y Positive Error”, select the Yerr column of the input table.

As you see, the error bars do indeed increase for higher X axis values. Since we have
error bars in this example (as in any measurement), we can use weighted fitting. Also, this
isn’t a linear relation, so we’ll use a polynomial to second order (a maximum power of 2 in
the form of Y = c0 + c1X + c2X

2):

$ aststatistics noisy.fits -cX,Y,Yerr --fit=polynomial-weighted \

--fitmaxpower=2

Statistics (GNU Astronomy Utilities) 0.22.24-f3e8

-------

Fitting results (remove extra info with '--quiet' or '-q)

Input file: noisy.fits (hdu: 1) with 191 non-blank rows.

X column: X

Y column: Y

Weight column: Yerr [Standard deviation of Y in each row]

Fit function: Y = c0 + (c1 * X^1) + (c2 * X^2) + ... (cN * X^N)

N: 2

c0: +1.2286211608
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c1: -4.5127796636

c2: +7.8435883943

Covariance matrix:

+0.0010496001 -0.0039928488 +0.0028367390

-0.0039928488 +0.0175244127 -0.0138030778

+0.0028367390 -0.0138030778 +0.0128129806

Reduced chi^2 of fit:

+0.9740670090

As you see from the elaborate message, the weighted polynomial fitting has found re-
turn the c0, c1 and c2 of Y = c0 + c1X + c2X

2 that best represents the data we inserted.
Our input values were c0 = 1.23, c1 = −4.56 and c2 = 7.89, and the fitted values are
c0 ≈ 1.2286, c1 ≈ −4.5128 and c2 ≈ 7.8436 (which is statistically a very good fit! given
that we knew the original values a-priori!). The covariance matrix is also calculated, it is
necessary to calculate error bars on the estimations and contains a lot of information (e.g.,
possible correlations between parameters). Finally, the reduced χ2 (or χ2

red) of the fit is
also printed (which was the measure to minimize). A χ2

red ≈ 1 shows a good fit. This is
good for real-world scenarios when you don’t know the original values a-priori. For more
on interpreting χ2

red ≈ 1, see Andrae et al. 2010 (https://arxiv.org/abs/1012.3754).

The comparison of fitted and input values look pretty good, but nothing beats visual
inspection! To see how this looks compared to the data, let’s open the table again:

$ astscript-fits-view noisy.fits

Repeat the steps below to show the scatter plot and error-bars. Then, go to the “Layers”
menu and select “Add Function Control”. Use the results above to fill the box in front of
“Function Expression”: 1.2286+(-4.5128*x)+(7.8436*x*x). You will see that the second
order polynomial falls very nicely over the points3. But this fit is not perfect: it also has
errors (inherited from the measurement errors). We need the covariance matrix to estimate
the errors on each point, and that can be complex to do by hand.

Fortunately GSL has the tools to easily estimate the function at any point and also cal-
culate its corresponding error. To access this feature within Gnuastro’s Statistics program,
you should use the --fitestimate option. You can either give an independent table file
name (with --fitestimatehdu and --fitestimatecol to specify the HDU and column in
that file), or just self so it uses the same X axis column that was used in this fit. Let’s use
the easier case:

$ aststatistics noisy.fits -cX,Y,Yerr --fit=polynomial-weighted \

--fitmaxpower=2 --fitestimate=self --output=est.fits

...[[truncated; same as above]]...

3 After plotting, you will notice that the legend made the plot too thin. Fortunately you have a lot of
empty space within the plot. To bring the legend in, click on the “Legend” item on the bottom-left
menu, in the “Location” tab, click on “Internal” and hold and move it to the top-left in the box below.
To make the functional fit more clear, you can click on the “Function” item of the bottom-left menu. In
the “Style” tab, change the color and thickness.

https://arxiv.org/abs/1012.3754
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Requested estimation:

Written to: est.fits

The first lines of the printed text are the same as before. Afterwards, you will see a new
line printed in the output, saying that the estimation was written in est.fits. You can
now inspect the two tables with TOPCAT again with the command below. After TOPCAT
opens, plot both scatter plots:

$ astscript-fits-view noisy.fits est.fits

It is clear that they fall nicely on top of each other. The est.fits table also has a third
column with error bars. You can follow the same steps before and draw the error bars to
see how they compare with the scatter of the measured data. They are much smaller than
the error in each point because we had a very good sampling of the function in our noisy
data.

Another useful point with the estimated output file is that it contains all the fitting
outputs as keywords in the header:

$ astfits est.fits -h1

...[[truncated]]...

/ Fit results

FITTYPE = 'polynomial-weighted' / Functional form of the fitting.

FITMAXP = 2 / Maximum power of polynomial.

FITIN = 'noisy.fits' / Name of file with input columns.

FITINHDU= '1 ' / Name or Number of HDU with input cols.

FITXCOL = 'X ' / Name or Number of independent (X) col.

FITYCOL = 'Y ' / Name or Number of measured (Y) column.

FITWCOL = 'Yerr ' / Name or Number of weight column.

FITWNAT = 'Standard deviation' / Nature of weight column.

FRDCHISQ= 0.974067008958516 / Reduced chi^2 of fit.

FITC0 = 1.22862116084727 / C0: multiple of x^0 in polynomial

FITC1 = -4.51277966356177 / C1: multiple of x^1 in polynomial

FITC2 = 7.84358839431161 / C2: multiple of x^2 in polynomial

FCOV11 = 0.00104960011629718 / Covariance matrix element (1,1).

FCOV12 = -0.00399284880859776 / Covariance matrix element (1,2).

FCOV13 = 0.00283673901863388 / Covariance matrix element (1,3).

FCOV21 = -0.00399284880859776 / Covariance matrix element (2,1).

FCOV22 = 0.0175244126670659 / Covariance matrix element (2,2).

FCOV23 = -0.0138030778380786 / Covariance matrix element (2,3).

FCOV31 = 0.00283673901863388 / Covariance matrix element (3,1).

FCOV32 = -0.0138030778380786 / Covariance matrix element (3,2).

FCOV33 = 0.0128129806394559 / Covariance matrix element (3,3).

...[[truncated]]...

In scenarios were you don’t want the estimation, but only the fitted parameters, all that
verbose, human-friendly text or FITS keywords can be an annoying extra step. For such
cases, you should use the --quiet option like below. It will print the parameters, rows of
the covariance matrix and χ2

red on separate lines with nothing extra. This allows you to
parse the values in any way that you would like.
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$ aststatistics noisy.fits -cX,Y,Yerr --fit=polynomial-weighted \

--fitmaxpower=2 --quiet

+1.2286211608 -4.5127796636 +7.8435883943

+0.0010496001 -0.0039928488 +0.0028367390

-0.0039928488 +0.0175244127 -0.0138030778

+0.0028367390 -0.0138030778 +0.0128129806

+0.9740670090

As a final example, because real data usually have outliers, let’s look at the “robust”
polynomial fit which has special features to remove outliers. First, we need to add some
outliers to the table. To do this, we’ll make a plain-text table with echo, and use Table’s
--catrowfile to concatenate (or append) those two rows to the original table. Finally,
we’ll run the same fitting step above:

$ echo "0.6 20 0.01" > outliers.txt

$ echo "0.8 20 0.01" >> outliers.txt

$ asttable noisy.fits --catrowfile=outliers.txt \

--output=with-outlier.fits

$ aststatistics with-outlier.fits -cX,Y,Yerr --fit=polynomial-weighted \

--fitmaxpower=2 --fitestimate=self \

--output=est-out.fits

Statistics (GNU Astronomy Utilities) 0.22.24-f3e8

-------

Fitting results (remove extra info with '--quiet' or '-q)

Input file: with-outlier.fits (hdu: 1) with 193 non-blank rows.

X column: X

Y column: Y

Weight column: Yerr [Standard deviation of Y in each row]

Fit function: Y = c0 + (c1 * X^1) + (c2 * X^2) + ... (cN * X^N)

N: 2

c0: -13.6446036899

c1: +66.8463258547

c2: -30.8746303591

Covariance matrix:

+0.0007889160 -0.0027706310 +0.0022208939

-0.0027706310 +0.0113922468 -0.0100306732

+0.0022208939 -0.0100306732 +0.0094087226

Reduced chi^2 of fit:

+4501.8356719150

Requested estimation:

Written to: est-out.fit
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We see that the coefficient values have changed significantly and that χ2
red has increased

to 4501! Recall that a good fit should have χ2
red ≈ 1. These numbers clearly show that

the fit was bad, but again, nothing beats a visual inspection. To visually see the effect of
those outliers, let’s plot them with the command below. You see that those two points have
clearly caused a turn in the fitted result which is terrible.

$ astscript-fits-view with-outlier.fits est-out.fits

For such cases, GSL has Robust linear regression (https://www.gnu.org/software/
gsl/doc/html/lls.html#robust-linear-regression). In Gnuastro’s Statistics, you can
access it with --fit=polynomial-robust, like the example below. Just note that the ro-
bust method doesn’t take an error column (because it estimates the errors internally while
rejecting outliers, based on the method).

$ aststatistics with-outlier.fits -cX,Y --fit=polynomial-robust \

--fitmaxpower=2 --fitestimate=self \

--output=est-out.fits --quiet

$ astfits est-out.fits -h1 | grep ^FITC

FITC0 = 1.20422691185238 / C0: multiple of x^0 in polynomial

FITC1 = -4.4779253576348 / C1: multiple of x^1 in polynomial

FITC2 = 7.84986153686548 / C2: multiple of x^2 in polynomial

$ astscript-fits-view with-outlier.fits est-out.fits

It is clear that the coefficients are very similar to the no-outlier scenario above and if
you run the second command to view the scatter plots on TOPCAT, you also see that
the fit nicely follows the curve and is not affected by those two points. GSL provides
many methods to reject outliers. For their full list, see the description of --fitrobust in
Section 7.1.5.4 [Fitting options], page 535. For a description of the outlier rejection meth-
ods, see the GSL manual (https://www.gnu.org/software/gsl/doc/html/lls.html#c.
gsl_multifit_robust_workspace).

You may have noticed that unlike the cases before the last Statistics command above
didn’t print anything on the standard output. This is becasue --quiet and --fitestimate

were called together. In this case, because all the fitting parameters are written as FITS
keywords, because of the --quiet option, they are no longer printed on standard output.

7.1.4 Sky value

One of the most important aspects of a dataset is its reference value: the value of the
dataset where there is no signal. Without knowing, and thus removing the effect of, this
value it is impossible to compare the derived results of many high-level analyses over the
dataset with other datasets (in the attempt to associate our results with the “real” world).

In astronomy, this reference value is known as the “Sky” value: the value that noise fluc-
tuates around: where there is no signal from detectable objects or artifacts (for example,
galaxies, stars, planets or comets, star spikes or internal optical ghost). Depending on the
dataset, the Sky value maybe a fixed value over the whole dataset, or it may vary based on
location. For an example of the latter case, see Figure 11 in Akhlaghi and Ichikawa 2015
(https://arxiv.org/abs/1505.01664).

https://www.gnu.org/software/gsl/doc/html/lls.html#robust-linear-regression
https://www.gnu.org/software/gsl/doc/html/lls.html#robust-linear-regression
https://www.gnu.org/software/gsl/doc/html/lls.html#c.gsl_multifit_robust_workspace
https://www.gnu.org/software/gsl/doc/html/lls.html#c.gsl_multifit_robust_workspace
https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1505.01664
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Because of the significance of the Sky value in astronomical data analysis, we have de-
voted this subsection to it for a thorough review. We start with a thorough discussion on its
definition (Section 7.1.4.1 [Sky value definition], page 520). In the astronomical literature,
researchers use a variety of methods to estimate the Sky value, so in Section 7.1.4.2 [Sky
value misconceptions], page 521) we review those and discuss their biases. From the defini-
tion of the Sky value, the most accurate way to estimate the Sky value is to run a detection
algorithm (for example, Section 7.2 [NoiseChisel], page 541) over the dataset and use the
undetected pixels. However, there is also a more crude method that maybe useful when
good direct detection is not initially possible (for example, due to too many cosmic rays in
a shallow image). A more crude (but simpler method) that is usable in such situations is
discussed in Section 7.1.4.3 [Quantifying signal in a tile], page 522.

7.1.4.1 Sky value definition

This analysis is taken from Akhlaghi and Ichikawa 2015 (https://arxiv.org/abs/1505.
01664). Let’s assume that all instrument defects – bias, dark and flat – have been corrected
and the magnitude (see Section 7.4.2 [Brightness, Flux, Magnitude and Surface brightness],
page 574) of a detected object, O, is desired. The sources of flux on pixel4 i of the image
can be written as follows:

• Contribution from the target object (Oi).

• Contribution from other detected objects (Di).

• Undetected objects or the fainter undetected regions of bright objects (Ui).

• A cosmic ray (Ci).

• The background flux, which is defined to be the count if none of the others exists on
that pixel (Bi).

The total flux in this pixel (Ti) can thus be written as:

Ti = Bi +Di + Ui + Ci +Oi.

By definition, Di is detected and it can be assumed that it is correctly estimated (deblended)
and subtracted, we can thus set Di = 0. There are also methods to detect and remove
cosmic rays, for example, the method described in van Dokkum (2001)5, or by comparing
multiple exposures. This allows us to set Ci = 0. Note that in practice, Di and Ui are
correlated, because they both directly depend on the detection algorithm and its input
parameters. Also note that no detection or cosmic ray removal algorithm is perfect. With
these limitations in mind, the observed Sky value for this pixel (Si) can be defined as

Si ≡ Bi + Ui.

4 For this analysis the dimension of the data (image) is irrelevant. So if the data is an image (2D) with
width of w pixels, then a pixel located on column x and row y (where all counting starts from zero and
(0, 0) is located on the bottom left corner of the image), would have an index: i = x+ y × w.

5 van Dokkum, P. G. (2001). Publications of the Astronomical Society of the Pacific. 113, 1420.

https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1505.01664
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Therefore, as the detection process (algorithm and input parameters) becomes more accu-
rate, or Ui → 0, the Sky value will tend to the background value or Si → Bi. Hence, we
see that while Bi is an inherent property of the data (pixel in an image), Si depends on the
detection process. Over a group of pixels, for example, in an image or part of an image, this
equation translates to the average of undetected pixels (Sky=

∑
Si). With this definition

of Sky, the object flux in the data can be calculated, per pixel, with

Ti = Si +Oi → Oi = Ti − Si.

In the fainter outskirts of an object, a very small fraction of the photo-electrons in a
pixel actually belongs to objects, the rest is caused by random factors (noise), see Figure 1b
in Akhlaghi and Ichikawa 2015 (https://arxiv.org/abs/1505.01664). Therefore even a
small over estimation of the Sky value will result in the loss of a very large portion of most
galaxies. Besides the lost area/brightness, this will also cause an over-estimation of the
Sky value and thus even more under-estimation of the object’s magnitude. It is thus very
important to detect the diffuse flux of a target, even if they are not your primary target.

In summary, the more accurately the Sky is measured, the more accurately the magnitude
(calculated from the sum of pixel values) of the target object can be measured (photometry).
Any under/over-estimation in the Sky will directly translate to an over/under-estimation
of the measured object’s magnitude.� �
The Sky value is only correctly found when all the detected objects (Di and Ci) have been
removed from the data.
 	
7.1.4.2 Sky value misconceptions

As defined in Section 7.1.4 [Sky value], page 519, the sky value is only accurately defined
when the detection algorithm is not significantly reliant on the sky value. In particular
its detection threshold. However, most signal-based detection tools6 use the sky value as
a reference to define the detection threshold. These older techniques therefore had to rely
on approximations based on other assumptions about the data. A review of those other
techniques can be seen in Appendix A of Akhlaghi and Ichikawa 2015 (https://arxiv.
org/abs/1505.01664).

These methods were extensively used in astronomical data analysis for several decades,
therefore they have given rise to a lot of misconceptions, ambiguities and disagreements
about the sky value and how to measure it. As a summary, the major methods used until
now were an approximation of the mode of the image pixel distribution and σ-clipping.

• To find the mode of a distribution those methods would either have to assume (or find)
a certain probability density function (PDF) or use the histogram. But astronomical
datasets can have any distribution, making it almost impossible to define a generic
function. Also, histogram-based results are very inaccurate (there is a large dispersion)
and it depends on the histogram bin-widths. Generally, the mode of a distribution also

6 According to Akhlaghi and Ichikawa (2015), signal-based detection is a detection process that relies
heavily on assumptions about the to-be-detected objects. This method was the most heavily used
technique prior to the introduction of NoiseChisel in that paper.

https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1505.01664
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shifts as signal is added. Therefore, even if it is accurately measured, the mode is a
biased measure for the Sky value.

• Another approach was to iteratively clip the brightest pixels in the image (which is
known as σ-clipping). See Section 2.10.2 [Sigma clipping], page 200, for a complete
explanation. σ-clipping is useful when there are clear outliers (an object with a sharp
edge in an image for example). However, real astronomical objects have diffuse and
faint wings that penetrate deeply into the noise, see Figure 1 in Akhlaghi and Ichikawa
2015 (https://arxiv.org/abs/1505.01664).

As discussed in Section 7.1.4 [Sky value], page 519, the sky value can only be correctly
defined as the average of undetected pixels. Therefore all such approaches that try to
approximate the sky value prior to detection are ultimately poor approximations.

7.1.4.3 Quantifying signal in a tile

In order to define detection thresholds on the image, or calibrate it for measurements (sub-
tract the signal of the background sky and define errors), we need some basic measurements.
For example, the quantile threshold in NoiseChisel (--qthresh option), or the mean of the
undetected regions (Sky) and the Sky standard deviation (Sky STD) which are the output of
NoiseChisel and Statistics. But astronomical images will contain a lot of stars and galaxies
that will bias those measurements if not properly accounted for. Quantifying where signal
is present is thus a very important step in the usage of a dataset; for example, if the Sky
level is over-estimated, your target object’s magnitude will be under-estimated.

Let’s start by clarifying some definitions: Signal is defined as the non-random source of
flux in each pixel (you can think of this as the mean in a Gaussian or Poisson distribution).
In astronomical images, signal is mostly photons coming of a star or galaxy, and counted
in each pixel. Noise is defined as the random source of flux in each pixel (or the standard
deviation of a Gaussian or Poisson distribution). Noise is mainly due to counting errors in
the detector electronics upon data collection. Data is defined as the combination of signal
and noise (so a noisy image of a galaxy is one dataset).

When a dataset does not have any signal (for example, you take an image with a closed
shutter, producing an image that only contains noise), the mean, median and mode of the
distribution are equal within statistical errors. Signal from emitting objects, like astro-
nomical targets, always has a positive value and will never become negative, see Figure 1
in Akhlaghi and Ichikawa 2015 (https://arxiv.org/abs/1505.01664). Therefore, when
signal is added to the data (you take an image with an open shutter pointing to a galaxy
for example), the mean, median and mode of the dataset shift to the positive, creating a
positively skewed distribution. The shift of the mean is the largest. The median shifts
less, since it is defined after ordering all the elements/pixels (the median is the value at a
quantile of 0.5), thus it is not affected by outliers. Finally, the mode’s shift to the positive
is the least.

Inverting the argument above gives us a robust method to quantify the significance of
signal in a dataset: when the mean and median of a distribution are approximately equal
we can argue that there is no significant signal. In other words: when the quantile of the
mean (qmean) is around 0.5. This definition of skewness through the quantile of the mean
is further introduced with a real image the tutorials, see Section 2.2.3 [Skewness caused by
signal and its measurement], page 89.

https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1505.01664
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However, in an astronomical image, some of the pixels will contain more signal than the
rest, so we cannot simply check qmean on the whole dataset. For example, if we only look
at the patch of pixels that are placed under the central parts of the brightest stars in the
field of view, qmean will be very high. The signal in other parts of the image will be weaker,
and in some parts it will be much smaller than the noise (for example, 1/100-th of the
noise level). When the signal-to-noise ratio is very small, we can generally assume no signal
(because its effectively impossible to measure it) and qmean will be approximately 0.5.

To address this problem, we break the image into a grid of tiles7 (see Section 4.8 [Tes-
sellation], page 289). For example, a tile can be a square box of size 30 × 30 pixels. By
measuring qmean on each tile, we can find which tiles that contain significant signal and
ignore them. Technically, if a tile’s |qmean − 0.5| is larger than the value given to the
--meanmedqdiff option, that tile will be ignored for the next steps. You can read this
option as “mean-median-quantile-difference”.

The raw dataset’s pixel distribution (in each tile) is noisy, to decrease the noise/error in
estimating qmean, we convolve the image before tessellation (see Section 6.3.1.1 [Convolution
process], page 470. Convolution decreases the range of the dataset and enhances its skew-
ness, See Section 3.1.1 and Figure 4 in Akhlaghi and Ichikawa 2015 (https://arxiv.org/
abs/1505.01664). This enhanced skewness can be interpreted as an increase in the Signal
to noise ratio of the objects buried in the noise. Therefore, to obtain an even better measure
of the presence of signal in a tile, the mean and median discussed above are measured on
the convolved image.

There is one final hurdle: raw astronomical datasets are commonly peppered with Cos-
mic rays. Images of Cosmic rays are not smoothed by the atmosphere or telescope aperture,
so they have sharp boundaries. Also, since they do not occupy too many pixels, they do
not affect the mode and median calculation. But their very high values can greatly bias the
calculation of the mean (recall how the mean shifts the fastest in the presence of outliers),
for example, see Figure 15 in Akhlaghi and Ichikawa 2015 (https://arxiv.org/abs/1505.
01664). The effect of outliers like cosmic rays on the mean and standard deviation can be
removed through σ-clipping, see Section 2.10.2 [Sigma clipping], page 200, for a complete
explanation.

Therefore, after asserting that the mean and median are approximately equal in a tile
(see Section 4.8 [Tessellation], page 289), the Sky and its STD are measured on each tile after
σ-clipping with the --sigmaclip option (see Section 2.10.2 [Sigma clipping], page 200). In
the end, some of the tiles will pass the test and will be given a value. Others (that had signal
in them) will just be assigned a NaN (not-a-number) value. But we need a measurement
over each tile (and thus pixel). We will therefore use interpolation to assign a value to the
NaN tiles.

However, prior to interpolating over the failed tiles, another point should be considered:
large and extended galaxies, or bright stars, have wings which sink into the noise very
gradually. In some cases, the gradient over these wings can be on scales that is larger than
the tiles (for example, the pixel value changes by 0.1σ after 100 pixels, but the tile has a
width of 30 pixels).

In such cases, the qmean test will be successful, even though there is signal. Recall that
qmean is a measure of skewness. If we do not identify (and thus set to NaN) such outlier

7 The options to customize the tessellation are discussed in Section 4.1.2.2 [Processing options], page 255.

https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1505.01664
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tiles before the interpolation, the photons of the outskirts of the objects will leak into the
detection thresholds or Sky and Sky STD measurements and bias our result, see Section 2.2
[Detecting large extended targets], page 81. Therefore, the final step of “quantifying signal
in a tile” is to look at this distribution of successful tiles and remove the outliers. σ-clipping
is a good solution for removing a few outliers, but the problem with outliers of this kind
is that there may be many such tiles (depending on the large/bright stars/galaxies in the
image). We therefore apply the following local outlier rejection strategy.

For each tile, we find the nearest Nngb tiles that had a usable value (Nngb is the value
given to --outliernumngb). We then sort them and find the difference between the largest
and second-to-smallest elements (The minimum is not used because the scatter can be
large). Let’s call this the tile’s slope (measured from its neighbors). All the tiles that are
on a region of flat noise will have similar slope values, but if a few tiles fall on the wings of
a bright star or large galaxy, their slope will be significantly larger than the tiles with no
signal. We just have to find the smallest tile slope value that is an outlier compared to the
rest, and reject all tiles with a slope larger than that.

To identify the smallest outlier, we will use the distribution of distances between sorted
elements. Let’s assume the total number of tiles with a good mean-median quantile differ-
ence is N . They are first sorted and searching for the outlier starts on element N/3 (integer
division). Let’s take vi to be the i-th element of the sorted input (with no blank values) and
m and σ as the σ-clipped median and standard deviation from the distances of the previous
N/3−1 elements (not including vi). If the value given to --outliersigma is displayed with
s, the i-th element is considered as an outlier when the condition below is true.

(vi − vi−1)−m
σ

> s

Since i begins from the N/3-th element in the sorted array (a quantile of 1/3 = 0.33), the
outlier has to be larger than the 0.33 quantile value of the dataset (this is usually the case;
otherwise, it is hard to define it as an “outlier”!).

Once the outlying tiles have been successfully identified and set to NaN, we use nearest-
neighbor interpolation to give a value to all tiles in the image. We do not use parametric
interpolation methods (like bicubic), because they will effectively extrapolate on the edges,
creating strong artifacts. Nearest-neighbor interpolation is very simple: for each tile, we
find the Nngb nearest tiles that had a good value, the tile’s value is found by estimating
the median. You can set Nngb through the --interpnumngb option. Once all the tiles are
given a value, a smoothing step is implemented to remove the sharp value contrast that can
happen on the edges of tiles. The size of the smoothing box is set with the --smoothwidth
option.

As mentioned above, the process above is used for any of the basic measurements (for
example, identifying the quantile-based thresholds in NoiseChisel, or the Sky value in Statis-
tics). You can use the check-image feature of NoiseChisel or Statistics to inspect the steps
and visually see each step (all the options that start with --check). For example, as
mentioned in the Section 2.2.2 [NoiseChisel optimization], page 83, tutorial, when given
a dataset from a new instrument (with differing noise properties), we highly recommend
to use --checkqthresh in your first call and visually inspect how the parameters above
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affect the final quantile threshold (e.g., have the wings of bright sources leaked into the
threshold?). The same goes for the --checksky option of Statistics or NoiseChisel.

7.1.5 Invoking Statistics

Statistics will print statistical measures of an input dataset (table column or image). The
executable name is aststatistics with the following general template

$ aststatistics [OPTION ...] InputImage.fits

One line examples:

## Print some general statistics of input image:

$ aststatistics image.fits

## Print some general statistics of column named MAG_F160W:

$ aststatistics catalog.fits -h1 --column=MAG_F160W

## Make the histogram of the column named MAG_F160W:

$ aststatistics table.fits -cMAG_F160W --histogram

## Find the Sky value on image with a given kernel:

$ aststatistics image.fits --sky --kernel=kernel.fits

## Print Sigma-clipped results of records with a MAG_F160W

## column value between 26 and 27:

$ aststatistics cat.fits -cMAG_F160W -g26 -l27 --sigmaclip=3,0.2

## Find the polynomial (to third order) that best fits the X and Y

## columns of 'table.fits'. Robust fitting will be used to reject

## outliers. Also, estimate the fitted polynomial on the same input

## column (with errors).

$ aststatistics table.fits --fit=polynomial-robust --fitmaxpower=3 \

-cX,Y --fitestimate=self --output=estimated.fits

## Print the median value of all records in column MAG_F160W that

## have a value larger than 3 in column PHOTO_Z:

$ aststatistics tab.txt -rPHOTO_Z -g3 -cMAG_F160W --median

## Calculate the median of the third column in the input table, but only

## for rows where the mean of the first and second columns is >5.

$ awk '($1+$2)/2 > 5 {print $3}' table.txt | aststatistics --median

Statistics can take its input dataset either from a file (image or table) or the Standard
input (see Section 4.1.4 [Standard input], page 264). If any output file is to be created, the
value to the --output option, is used as the base name for the generated files. Without
--output, the input name will be used to generate an output name, see Section 4.9 [Auto-
matic output], page 290. The options described below are particular to Statistics, but for
general operations, it shares a large collection of options with the other Gnuastro programs,
see Section 4.1.2 [Common options], page 251, for the full list. For more on reading from
standard input, please see the description of --stdintimeout option in Section 4.1.2.1 [In-
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put/Output options], page 252. Options can also be given in configuration files, for more,
please see Section 4.2 [Configuration files], page 268.

The input dataset may have blank values (see Section 6.1.3 [Blank pixels], page 388), in
this case, all blank pixels are ignored during the calculation. Initially, the full dataset will
be read, but it is possible to select a specific range of data elements to use in the analysis
of each run. You can either directly specify a minimum and maximum value for the range
of data elements to use (with --greaterequal or --lessthan), or specify the range using
quantiles (with --qrange). If a range is specified, all pixels outside of it are ignored before
any processing.

When no operation is requested, Statistics will print some general basic properties of
the input dataset on the command-line like the example below (ran on one of the output
images of make check8). This default behavior is designed to help give you a general feeling
of how the data are distributed and help in narrowing down your analysis.

$ aststatistics convolve_spatial_scaled_noised.fits \

--greaterequal=9500 --lessthan=11000

Statistics (GNU Astronomy Utilities) X.X

-------

Input: convolve_spatial_scaled_noised.fits (hdu: 0)

Range: from (inclusive) 9500, upto (exclusive) 11000.

Unit: counts

-------

Number of elements: 9074

Minimum: 9622.35

Maximum: 10999.7

Mode: 10055.45996

Mode quantile: 0.4001983908

Median: 10093.7

Mean: 10143.98257

Standard deviation: 221.80834

-------

Histogram:

| **

| ******

| *******

| *********

| *************

| **************

| ******************

| ********************

| *************************** *

| ***************************************** ***

|* **************************************************************

|-----------------------------------------------------------------

8 You can try it by running the command in the tests directory, open the image with a FITS viewer and
have a look at it to get a sense of how these statistics relate to the input image/dataset.
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Gnuastro’s Statistics is a very general purpose program, so to be able to easily understand
this diversity in its operations (and how to possibly run them together), we will divided the
operations into two types: those that do not respect the position of the elements and those
that do (by tessellating the input on a tile grid, see Section 4.8 [Tessellation], page 289).
The former treat the whole dataset as one and can re-arrange all the elements (for example,
sort them), but the former do their processing on each tile independently. First, we will
review the operations that work on the whole dataset.

The group of options below can be used to get single value measurement(s) of the whole
dataset. They will print only the requested value as one field in a line/row, like the --mean,
--median options. These options can be called any number of times and in any order. The
outputs of all such options will be printed on one line following each other (with a space
character between them). This feature makes these options very useful in scripts, or to
redirect into programs like GNU AWK for higher-level processing. These are some of the
most basic measures, Gnuastro is still under heavy development and this list will grow. If
you want another statistical parameter, please contact us and we will do out best to add it
to this list, see Section 1.10 [Suggest new feature], page 17.

7.1.5.1 Input to Statistics

The following set of options are for specifying the input/outputs of Statistics. There are
many other input/output options that are common to all Gnuastro programs including
Statistics, see Section 4.1.2.1 [Input/Output options], page 252, for those.

-c STR/INT

--column=STR/INT

The column to use when the input file is a table with more than one column.
See Section 4.7.3 [Selecting table columns], page 287, for a full description of
how to use this option. For more on how tables are read in Gnuastro, please
see Section 4.7 [Tables], page 282.

-g FLT

--greaterequal=FLT

Limit the range of inputs into those with values greater and equal to what is
given to this option. None of the values below this value will be used in any of
the processing steps below.

-l FLT

--lessthan=FLT

Limit the range of inputs into those with values less-than what is given to this
option. None of the values greater or equal to this value will be used in any of
the processing steps below.

-Q FLT[,FLT]

--qrange=FLT[,FLT]

Specify the range of usable inputs using the quantile. This option can take one
or two quantiles to specify the range. When only one number is input (let’s call
it Q), the range will be those values in the quantile range Q to 1−Q. So when
only one value is given, it must be less than 0.5. When two values are given,
the first is used as the lower quantile range and the second is used as the larger
quantile range.



Chapter 7: Data analysis 528

The quantile of a given element in a dataset is defined by the fraction of its
index to the total number of values in the sorted input array. So the smallest
and largest values in the dataset have a quantile of 0.0 and 1.0. The quantile is
a very useful non-parametric (making no assumptions about the input) relative
measure to specify a range. It can best be understood in terms of the cumulative
frequency plot, see Section 7.1.1 [Histogram and Cumulative Frequency Plot],
page 508. The quantile of each horizontal axis value in the cumulative frequency
plot is the vertical axis value associate with it.

7.1.5.2 Single value measurements

-n

--number Print the number of all used (non-blank and in range) elements.

--minimum

Print the minimum value of all used elements.

--maximum

Print the maximum value of all used elements.

--sum Print the sum of all used elements.

-m

--mean Print the mean (average) of all used elements.

-t

--std Print the standard deviation of all used elements.

--mad Print the median absolute deviation (MAD) of all used elements.

-E

--median Print the median of all used elements.

-u FLT[,FLT[,...]]

--quantile=FLT[,FLT[,...]]

Print the values at the given quantiles of the input dataset. Any number of
quantiles may be given and one number will be printed for each. Values can
either be written as a single number or as fractions, but must be between zero
and one (inclusive). Hence, in effect --quantile=0.25 --quantile=0.75 is
equivalent to --quantile=0.25,3/4, or -u1/4,3/4.

The returned value is one of the elements from the dataset. Taking q to be your
desired quantile, and N to be the total number of used (non-blank and within
the given range) elements, the returned value is at the following position in the
sorted array: round(q ×N).

--quantfunc=FLT[,FLT[,...]]

Print the quantiles of the given values in the dataset. This option is the inverse
of the --quantile and operates similarly except that the acceptable values are
within the range of the dataset, not between 0 and 1. Formally it is known as
the “Quantile function”.

Since the dataset is not continuous this function will find the nearest element
of the dataset and use its position to estimate the quantile function.
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--quantofmean

Print the quantile of the mean in the dataset. This is a very good measure of
detecting skewness or outliers. The concept is used by programs like NoiseChisel
to identify the presence of signal in a tile of the image (because signal in noise
causes skewness).

For example, take this simple array: 1 2 20 4 5 6 3. The mean is 5.85. The
nearest element to this mean is 6 and the quantile of 6 in this distribution is
0.8333. Here is how we got to this: in the sorted dataset (1 2 3 4 5 6 20), 6
is the 5-th element (counting from zero, since a quantile of zero corresponds
to the minimum, by definition) and the maximum is the 6-th element (again,
counting from zero). So the quantile of the mean in this case is 5/6 = 0.8333.

In the example above, if we had 7 instead of 20 (which was an outlier), then the
mean would be 4 and the quantile of the mean would be 0.5 (which by definition,
is the quantile of the median), showing no outliers. As the number of elements
increases, the mean itself is less affected by a small number of outliers, but
skewness can be nicely identified by the quantile of the mean.

-O

--mode Print the mode of all used elements. The mode is found through the mirror dis-
tribution which is fully described in Appendix C of Akhlaghi and Ichikawa 2015
(https://arxiv.org/abs/1505.01664). See that section for a full description.

This mode calculation algorithm is non-parametric, so when the dataset is not
large enough (larger than about 1000 elements usually), or does not have a clear
mode it can fail. In such cases, this option will return a value of nan (for the
floating point NaN value).

As described in that paper, the easiest way to assess the quality of this mode
calculation method is to use it’s symmetricity (see --modesym below). A bet-
ter way would be to use the --mirror option to generate the histogram and
cumulative frequency tables for any given mirror value (the mode in this case)
as a table. If you generate plots like those shown in Figure 21 of that paper,
then your mode is accurate.

--modequant

Print the quantile of the mode. You can get the actual mode value from the
--mode described above. In many cases, the absolute value of the mode is
irrelevant, but its position within the distribution is important. In such cases,
this option will become handy.

--modesym

Print the symmetricity of the calculated mode. See the description of --mode
for more. This mode algorithm finds the mode based on how symmetric it is,
so if the symmetricity returned by this option is too low, the mode is not too
accurate. See Appendix C of Akhlaghi and Ichikawa 2015 (https://arxiv.
org/abs/1505.01664) for a full description. In practice, symmetricity values
larger than 0.2 are mostly good.

https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1505.01664
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--modesymvalue

Print the value in the distribution where the mirror and input distributions are
no longer symmetric, see --mode and Appendix C of Akhlaghi and Ichikawa
2015 (https://arxiv.org/abs/1505.01664) for more.

--sigclip-std

--sigclip-mad

--sigclip-mean

--sigclip-number

--sigclip-median

Calculate the desired statistic after applying σ-clipping (see Section 2.10.2
[Sigma clipping], page 200, part of the tutorial Section 2.10 [Clipping outliers],
page 195). σ-clipping configuration is done with the --sclipparams option.

Here is one scenario where this can be useful: assume you have a table and
you would like to remove the rows that are outliers (not within the σ-clipping
range). Let’s assume your table is called table.fits and you only want to
keep the rows that have a value in COLUMN within the σ-clipped range (to 3σ,
with a tolerance of 0.1). This command will return the σ-clipped median and
standard deviation (used to define the range later).

$ aststatistics table.fits -cCOLUMN --sclipparams=3,0.1 \

--sigclip-median --sigclip-std

You can then use the --range option of Table (see Section 5.3 [Table], page 340)
to select the proper rows. But for that, you need the actual starting and ending
values of the range (m ± sσ; where m is the median and s is the multiple of
sigma to define an outlier). Therefore, the raw outputs of Statistics in the
command above are not enough.

To get the starting and ending values of the non-outlier range (and put a ‘,’
between them, ready to be used in --range), pipe the result into AWK. But in
AWK, we will also need the multiple of σ, so we will define it as a shell variable
(s) before calling Statistics (note how $s is used two times now):

$ s=3

$ aststatistics table.fits -cCOLUMN --sclipparams=$s,0.1 \

--sigclip-median --sigclip-std \

| awk '{s='$s'; printf("%f,%f\n", $1-s*$2, $1+s*$2)}'

To pass it onto Table, we will need to keep the printed output from the command
above in another shell variable (r), not print it. In Bash, can do this by putting
the whole statement within a $():

$ s=3

$ r=$(aststatistics table.fits -cCOLUMN --sclipparams=$s,0.1 \

--sigclip-median --sigclip-std \

| awk '{s='$s'; printf("%f,%f\n", $1-s*$2, $1+s*$2)}')

$ echo $r # Just to confirm.

Now you can use Table with the --range option to only print the rows that
have a value in COLUMN within the desired range:

$ asttable table.fits --range=COLUMN,$r

https://arxiv.org/abs/1505.01664
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To save the resulting table (that is clean of outliers) in another file (for
example, named cleaned.fits, it can also have a .txt suffix), just add
--output=cleaned.fits to the command above.

--madclip-std

--madclip-mad

--madclip-mean

--madclip-number

--madclip-median

Calculate the desired statistic after applying median absolute deviation (MAD)
clipping (see Section 2.10.3 [MAD clipping], page 206, part of the tutorial Sec-
tion 2.10 [Clipping outliers], page 195). MAD-clipping configuration is done
with the --mclipparams option.

This option behaves similarly to --sigclip-* options, read their description
for usage examples.

7.1.5.3 Generating histograms and cumulative freq.

The list of options below are for those statistical operations that output more than one
value. So while they can be called together in one run, their outputs will be distinct (each
one’s output will usually be printed in more than one line).

-A

--asciihist

Print an ASCII histogram of the usable values within the input dataset along
with some basic information like the example below (from the UVUDF cata-
log9). The width and height of the histogram (in units of character widths and
heights on your command-line terminal) can be set with the --numasciibins

(for the width) and --asciiheight options.

For a full description of the histogram, please see Section 7.1.1 [Histogram and
Cumulative Frequency Plot], page 508. An ASCII plot is certainly very crude
and cannot be used in any publication, but it is very useful for getting a general
feeling of the input dataset very fast and easily on the command-line without
having to take your hands off the keyboard (which is a major distraction!). If
you want to try it out, you can write it all in one line and ignore the \ and
extra spaces.

$ aststatistics uvudf_rafelski_2015.fits.gz --hdu=1 \

--column=MAG_F160W --lessthan=40 \

--asciihist --numasciibins=55

ASCII Histogram:

Number: 8593

Y: (linear: 0 to 660)

X: (linear: 17.7735 -- 31.4679, in 55 bins)

| ****

| *****

| ******

9 https://asd.gsfc.nasa.gov/UVUDF/uvudf_rafelski_2015.fits.gz

https://asd.gsfc.nasa.gov/UVUDF/uvudf_rafelski_2015.fits.gz
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| ********

| *********

| ***********

| **************

| *****************

| ***********************

| ********************************

|*** ***************************************************

|-------------------------------------------------------

--asciicfp

Print the cumulative frequency plot of the usable elements in the input dataset.
Please see descriptions under --asciihist for more, the example below is from
the same input table as that example. To better understand the cumulative
frequency plot, please see Section 7.1.1 [Histogram and Cumulative Frequency
Plot], page 508.

$ aststatistics uvudf_rafelski_2015.fits.gz --hdu=1 \

--column=MAG_F160W --lessthan=40 \

--asciicfp --numasciibins=55

ASCII Cumulative frequency plot:

Y: (linear: 0 to 8593)

X: (linear: 17.7735 -- 31.4679, in 55 bins)

| *******

| **********

| ***********

| *************

| **************

| ***************

| *****************

| *******************

| ***********************

| ******************************

|*******************************************************

|-------------------------------------------------------

-H

--histogram

Save the histogram of the usable values in the input dataset into a table. The
first column is the value at the center of the bin and the second is the number
of points in that bin. If the --cumulative option is also called with this option
in a run, then the table will have three columns (the third is the cumulative fre-
quency plot). Through the --numbins, --onebinstart, or --manualbinrange,
you can modify the first column values and with --normalize and --maxbinone

you can modify the second columns. See below for the description of each.

By default (when no --output is specified) a plain text table will be created,
see Section 4.7.2 [Gnuastro text table format], page 285. If a FITS name is
specified, you can use the common option --tableformat to have it as a FITS
ASCII or FITS binary format, see Section 4.1.2 [Common options], page 251.
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This table can then be fed into your favorite plotting tool and get a much more
clean and nice histogram than what the raw command-line can offer you (with
the --asciihist option).

--histogram2d

Save the 2D histogram of two input columns into an output file, see Section 7.1.2
[2D Histograms], page 509. The output will have three columns: the first
two are the coordinates of each box’s center in the first and second dimen-
sions/columns. The third will be number of input points that fall within that
box.

-C

--cumulative

Save the cumulative frequency plot of the usable values in the input dataset
into a table, similar to --histogram.

--madclip

Do median absolute deviation (MAD) clipping on the usable pixels of the input
dataset. See Section 2.10.3 [MAD clipping], page 206, for a description on MAD-
clipping and Section 2.10 [Clipping outliers], page 195, for a complete tutorial
on clipping of outliers. The MAD-clipping parameters can be set through the
--mclipparams option (see below).

-s

--sigmaclip

Do σ-clipping on the usable pixels of the input dataset. See Section 2.10.2
[Sigma clipping], page 200, for a full description on σ-clipping and Section 2.10
[Clipping outliers], page 195, for a complete tutorial on clipping of outliers.
The σ-clipping parameters can be set through the --sclipparams option (see
below).

--mirror=FLT

Make a histogram and cumulative frequency plot of the mirror distribution for
the given dataset when the mirror is located at the value to this option. The
mirror distribution is fully described in Appendix C of Akhlaghi and Ichikawa
2015 (https://arxiv.org/abs/1505.01664) and currently it is only used to
calculate the mode (see --mode).

Just note that the mirror distribution is a discrete distribution like the input,
so while you may give any number as the value to this option, the actual mirror
value is the closest number in the input dataset to this value. If the two numbers
are different, Statistics will warn you of the actual mirror value used.

This option will make a table as output. Depending on your selected name
for the output, it will be either a FITS table or a plain text table (which is
the default). It contains three columns: the first is the center of the bins,
the second is the histogram (with the largest value set to 1) and the third is
the normalized cumulative frequency plot of the mirror distribution. The bins
will be positioned such that the mode is on the starting interval of one of the
bins to make it symmetric around the mirror. With this output file and the
input histogram (that you can generate in another run of Statistics, using the

https://arxiv.org/abs/1505.01664
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--onebinvalue), it is possible to make plots like Figure 21 of Akhlaghi and
Ichikawa 2015 (https://arxiv.org/abs/1505.01664).

The list of options below allow customization of the histogram and cumulative frequency
plots (for the --histogram, --cumulative, --asciihist, and --asciicfp options).

--numbins

The number of bins (rows) to use in the histogram and the cumulative frequency
plot tables (outputs of --histogram and --cumulative).

--numasciibins

The number of bins (characters) to use in the ASCII plots when printing the
histogram and the cumulative frequency plot (outputs of --asciihist and
--asciicfp).

--asciiheight

The number of lines to use when printing the ASCII histogram and cumulative
frequency plot on the command-line (outputs of --asciihist and --asciicfp).

-n

--normalize

Normalize the histogram or cumulative frequency plot tables (outputs of
--histogram and --cumulative). For a histogram, the sum of all bins will
become one and for a cumulative frequency plot the last bin value will be one.

--maxbinone

Divide all the histogram values by the maximum bin value so it becomes one
and the rest are similarly scaled. In some situations (for example, if you want
to plot the histogram and cumulative frequency plot in one plot) this can be
very useful.

--onebinstart=FLT

Make sure that one bin starts with the value to this option. In practice, this
will shift the bins used to find the histogram and cumulative frequency plot
such that one bin’s lower interval becomes this value.

For example, when a histogram range includes negative and positive values and
zero has a special significance in your analysis, then zero might fall somewhere
in one bin. As a result that bin will have counts of positive and negative.
By setting --onebinstart=0, you can make sure that one bin will only count
negative values in the vicinity of zero and the next bin will only count positive
ones in that vicinity.

Note that by default, the first row of the histogram and cumulative frequency
plot show the central values of each bin. So in the example above you will not
see the 0.000 in the first column, you will see two symmetric values.

If the value is not within the usable input range, this option will be ignored.
When it is, this option is the last operation before the bins are finalized, there-
fore it has a higher priority than options like --manualbinrange.

--manualbinrange

Use the values given to the --greaterequal and --lessthan to define the
range of all bin-based calculations like the histogram. This option itself does

https://arxiv.org/abs/1505.01664
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not take any value, but just tells the program to use the values of those two
options instead of the minimum and maximum values of a plot. If any of the two
options are not given, then the minimum or maximum will be used respectively.
Therefore, if none of them are called calling this option is redundant.

The --onebinstart option has a higher priority than this option. In other
words, --onebinstart takes effect after the range has been finalized and the
initial bins have been defined, therefore it has the power to (possibly) shift the
bins. If you want to manually set the range of the bins and have one bin on a
special value, it is thus better to avoid --onebinstart.

--numbins2=INT

Similar to --numbins, but for the second column when a 2D histogram is re-
quested, see --histogram2d.

--greaterequal2=FLT

Similar to --greaterequal, but for the second column when a 2D histogram
is requested, see --histogram2d.

--lessthan2=FLT

Similar to --lessthan, but for the second column when a 2D histogram is
requested, see --histogram2d.

--onebinstart2=FLT

Similar to --onebinstart, but for the second column when a 2D histogram is
requested, see --histogram2d.

7.1.5.4 Fitting options

With the options below, you can customize the least squares fitting features of Statistics.
For a tutorial of the usage of least squares fitting in Statistics, please see Section 7.1.3 [Least
squares fitting], page 514. Here, we will just review the details of each option.

To activate least squares fitting in Statistics, it is necessary to use the --fit option to
specify the type of fit you want to do. See the description of --fit for the various available
fitting models. The fitting models that account for weights require three input columns,
while the non-weighted ones only take two input columns. Here is a summary of the input
columns:

1. The first input column is assumed to be the independent variable (on the horizontal
axis of a plot, or X in the equations of each fit).

2. The second input column is assumed to be the measured value (on the vertical axis of
a plot, or Y in the equation above).

3. The third input column is only for fittings with a weight. It is assumed to be the
“weight” of the measurement column. The nature of the “weight” can be set with the
--fitweight option, for example, if you have the standard deviation of the error in
Y , you can use --fitweight=std (which is the default, so unless the default value has
been changed, you will not need to set this).

If three columns are given to a model without weight, or two columns are given to a
model that requires weights, Statistics will abort and inform you. Below you can see an
example of fitting with the same linear model, once weighted and once without weights.

$ aststatistics table.fits --column=X,Y --fit=linear
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$ aststatistics table.fits --column=X,Y,Yerr --fit=linear-weighted

The output of the fitting can be in three modes listed below. For a complete example,
see the tutorial in Section 7.1.3 [Least squares fitting], page 514).

Human friendly format
By default (for example, the commands above) the output is an elaborate de-
scription of the model parameters. For example, c0 and c1 in the linear model
(Y = c0 + c1X). Their covariance matrix and the reduced χ2 of the fit are also
printed on the output.

Raw numbers
If you don’t need the human friendly components of the output (which are
annoying when you want to parse the outputs in some scenarios), you can use
--quiet option. Only the raw output numbers will be printed.

Estimate on a custom X column
Through the --fitestimate option, you can specify an independent table col-
umn to estimate the fit (it can also take a single value). See the description of
this option for more.

-f STR

--fit=STR

The name of the fitting method to use. They are based on the linear (https://
www.gnu.org/software/gsl/doc/html/lls.html) and nonlinear (https://
www.gnu.org/software/gsl/doc/html/nls.html) least-squares fitting func-
tions of the GNU Scientific Library (GSL).

linear Y = c0 + c1X

linear-weighted

Y = c0 + c1X; accounting for “weights” in Y .

linear-no-constant

Y = c1X.

linear-no-constant-weighted

Y = c1X; accounting for “weights” in Y .

polynomial

Y = c0 + c1X + c2X
2 + · · · + cnX

n; the maximum required power
(n) is specified by --fitmaxpower.

polynomial-weighted

Y = c0 + c1X + c2X
2 + · · ·+ cnX

n; accounting for “weights” in Y .
The maximum required power (n) is specified by --fitmaxpower.

polynomial-robust

Y = c0 + c1X + c2X
2 + · · · + cnX

n; rejects outliers. The function
to use for outlier removal can be specified with the --fitrobust

option described below. This model doesn’t take weights since they
are calculated internally based on the outlier removal function (re-
quires two input columns). The maximum required power (n) is
specified by --fitmaxpower.

https://www.gnu.org/software/gsl/doc/html/lls.html
https://www.gnu.org/software/gsl/doc/html/lls.html
https://www.gnu.org/software/gsl/doc/html/nls.html
https://www.gnu.org/software/gsl/doc/html/nls.html
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For a comprehensive review of “robust” fitting and the
available functions, please see the Robust linear regression
(https://www.gnu.org/software/gsl/doc/html/lls.html#
robust-linear-regression) section of the GNU Scientific
Library.

--fitweight=STR

The nature of the “weight” column (when a weight is necessary for the model).
It can take one of the following values:

std Standard deviation of each Y axis measurement: this is the usual
“error” associated with a measurement (for example, in Section 7.4
[MakeCatalog], page 572) and is the default value to this option.

var Variance of each Y axis measurement. Assuming a Gaussian dis-
tribution with standard deviation σ, the variance is σ2.

inv-var Inverse variance of each Y axis measurement. Assuming a Gaussian
distribution with standard deviation σ, the variance is 1/σ2.

--fitmaxpower=INT

The maximum power (an integer) in a polynomial (n in Y = c0+ c1X+ c2X
2+

· · ·+ cnX
n). This is only relevant when one of the polynomial models is given

to --fit. The fit will return n+ 1 coefficients.

--fitrobust=STR

The function for rejecting outliers in the polynomial-robust fitting model. For
a comprehensive review of “robust” fitting and the available functions, please
see the Robust linear regression (https://www.gnu.org/software/gsl/doc/
html/lls.html#robust-linear-regression) section of the GNU Scientific Li-
brary. This function can take the following values:

bisquare Tukey’s biweight (bisquare) function, this is the default function.
According to the GSL manual, this is a good general purpose weight
function.

cauchy Cauchy’s function (also known as the Lorentzian function). It
doesn’t guarantee a unique solution, so it should be used with care.

fair The fair function. It guarantees a unique solution and has contin-
uous derivatives to three orders.

huber Huber’s ρ function. This is also a good general purpose weight func-
tion for rejecting outliers, but can cause difficulty in some special
scenarios.

ols Ordinary Least Squares (OLS) solution with a constant weight of
unity.

welsch Welsch function which is useful when the residuals follow an expo-
nential distribution.

--fitestimate=STR/FLT

Estimate the fitted function at a single point or a complete column of points.
The input X axis positions to estimate the function can be specified in the
following ways:

https://www.gnu.org/software/gsl/doc/html/lls.html#robust-linear-regression
https://www.gnu.org/software/gsl/doc/html/lls.html#robust-linear-regression
https://www.gnu.org/software/gsl/doc/html/lls.html#robust-linear-regression
https://www.gnu.org/software/gsl/doc/html/lls.html#robust-linear-regression
https://www.gnu.org/software/gsl/doc/html/lls.html#robust-linear-regression
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• A real number: the fitted function will be estimated at that X position
and the corresponding Y and its error will be printed to standard output.

• self: in this mode, the same X axis column that was used in the fit will be
used for estimating the fitted function. This can be useful to visually/easily
check the fit, see Section 7.1.3 [Least squares fitting], page 514.

• A file name: If the value is none of the above, Statistics expects it to be a
file name containing a table. If the file is a FITS file, the HDU containing
the table should be specified with the --fitestimatehdu option. The
column of the table to use for the X axis points should be specified with
the --fitestimatecol option.

The output in this mode can be customized in the following ways:

• If a single floating point value is given --fitestimate, the fitted function
will be estimated on that point and printed to standard output.

• When nothing is given to --output, the independent column and the esti-
mated values and errors are printed on the standard output.

• If a file name is given to --output, the estimated table above is saved
in that file. It can have any of the formats in Section 4.7.1 [Recognized
table formats], page 283. As a FITS file, all the fit outputs (coefficients,
covariance matrix and reduced χ2) are kept as FITS keywords in the same
HDU of the estimated table. For a complete example, see Section 7.1.3
[Least squares fitting], page 514.

When the covariance matrix (and thus the χ2) cannot be calculated (for
example if you only have two rows!), the printed values on the terminal will
be NaN. However, the FITS standard does not allow NaN values in keyword
values! Therefore, when writing the χ2 and covariance matrix elements into
the output FITS keywords, the largest value of the 64-bit floating point
type will be written: 1.79769313486232 × 10308; see Section 4.5 [Numeric
data types], page 277.

• When --quiet is given with --fitestimate, the fitted parameters are no
longer printed on the standard output; they are available as FITS keywords
in the file given to --output.

--fitestimatehdu=STR/INT

HDU name or counter (counting from zero) that contains the table to be used
for the estimating the fitted function over many points through --fitestimate.
For more on selecting a HDU, see the description of --hdu in Section 4.1.2.1
[Input/Output options], page 252.

--fitestimatecol=STR/INT

Column name or counter (counting from one) that contains the table to be used
for the estimating the fitted function over many points through --fitestimate.
See Section 4.7.3 [Selecting table columns], page 287.

7.1.5.5 Contour options

Contours are useful to highlight the 2D shape of a certain flux level over an image. To
derive contours in Statistics, you can use the option below:
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-R FLT[,FLT[,FLT...]]

--contour=FLT[,FLT[,FLT...]]

Write the contours for the requested levels in a file ending with _contour.txt.
It will have three columns: the first two are the coordinates of each point and
the third is the level it belongs to (one of the input values). Each disconnected
contour region will be separated by a blank line. This is the requested format
for adding contours with PGFPlots in LATEX. If any other format can be useful
for your work please let us know so we can add it. If the image has World
Coordinate System information, the written coordinates will be in RA and
Dec, otherwise, they will be in pixel coordinates.

Note that currently, this is a very crude/simple implementation, please let us
know if you find problematic situations so we can fix it.

7.1.5.6 Statistics on tiles

All the options described until now were from the first class of operations discussed above:
those that treat the whole dataset as one. However, it often happens that the relative
position of the dataset elements over the dataset is significant. For example, you do not
want one median value for the whole input image, you want to know how the median
changes over the image. For such operations, the input has to be tessellated (see Section 4.8
[Tessellation], page 289). Thus this class of options cannot currently be called along with
the options above in one run of Statistics.

-t

--ontile Do the respective single-valued calculation over one tile of the input dataset, not
the whole dataset. This option must be called with at least one of the single val-
ued options discussed above (for example, --mean or --quantile). The output
will be a file in the same format as the input. If the --oneelempertile option
is called, then one element/pixel will be used for each tile (see Section 4.1.2.2
[Processing options], page 255). Otherwise, the output will have the same size
as the input, but each element will have the value corresponding to that tile’s
value. If multiple single valued operations are called, then for each operation
there will be one extension in the output FITS file.

-y

--sky Estimate the Sky value on each tile as fully described in Section 7.1.4.3 [Quanti-
fying signal in a tile], page 522. As described in that section, several options are
necessary to configure the Sky estimation which are listed below. The output
file will have two extensions: the first is the Sky value and the second is the Sky
standard deviation on each tile. Similar to --ontile, if the --oneelempertile
option is called, then one element/pixel will be used for each tile (see Sec-
tion 4.1.2.2 [Processing options], page 255).

The parameters for estimating the sky value can be set with the following options, except
for the --sclipparams option (which is also used by the --sigmaclip), the rest are only
used for the Sky value estimation.
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-k=FITS

--kernel=FITS

File name of kernel to help in estimating the significance of signal in a tile, see
Section 7.1.4.3 [Quantifying signal in a tile], page 522.

--khdu=STR

Kernel HDU to help in estimating the significance of signal in a tile, see Sec-
tion 7.1.4.3 [Quantifying signal in a tile], page 522.

--meanmedqdiff=FLT

The maximum acceptable distance between the quantiles of the mean and me-
dian, see Section 7.1.4.3 [Quantifying signal in a tile], page 522. The initial Sky
and its standard deviation estimates are measured on tiles where the quantiles
of their mean and median are less distant than the value given to this option.
For example, --meanmedqdiff=0.01 means that only tiles where the mean’s
quantile is between 0.49 and 0.51 (recall that the median’s quantile is 0.5) will
be used.

--sclipparams=FLT,FLT

The σ-clipping parameters, see Section 2.10.2 [Sigma clipping], page 200. This
option takes two values which are separated by a comma (,). Each value
can either be written as a single number or as a fraction of two numbers (for
example, 3,1/10). The first value to this option is the multiple of σ that will
be clipped (α in that section). The second value is the exit criteria. If it is
less than 1, then it is interpreted as tolerance and if it is larger than one it is a
specific number. Hence, in the latter case the value must be an integer.

--mclipparams=FLT,FLT

The MAD-clipping parameters. This is very similar to --sclipparams above,
see there for more.

--outliersclip=FLT,FLT

σ-clipping parameters for the outlier rejection of the Sky value (similar to
--sclipparams).

Outlier rejection is useful when the dataset contains a large and diffuse (almost
flat within each tile) signal. The flatness of the profile will cause it to success-
fully pass the mean-median quantile difference test, so we will need to use the
distribution of successful tiles for removing these false positive. For more, see
the latter half of Section 7.1.4.3 [Quantifying signal in a tile], page 522.

--outliernumngb=INT

Number of neighboring tiles to use for outlier rejection (mostly the wings of
bright stars or galaxies). If this option is given a value of zero, no outlier rejec-
tion will take place. For more see the latter half of Section 7.1.4.3 [Quantifying
signal in a tile], page 522.

--outliersigma=FLT

Multiple of sigma to define an outlier in the Sky value estimation. If this
option is given a value of zero, no outlier rejection will take place. For more see
--outliersclip and the latter half of Section 7.1.4.3 [Quantifying signal in a
tile], page 522.
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--smoothwidth=INT

Width of a flat kernel to convolve the interpolated tile values. Tile interpolation
is done using the median of the --interpnumngb neighbors of each tile (see
Section 4.1.2.2 [Processing options], page 255). If this option is given a value of
zero or one, no smoothing will be done. Without smoothing, strong boundaries
will probably be created between the values estimated for each tile. It is thus
good to smooth the interpolated image so strong discontinuities do not show
up in the final Sky values. The smoothing is done through convolution (see
Section 6.3.1.1 [Convolution process], page 470) with a flat kernel, so the value
to this option must be an odd number.

--ignoreblankintiles

Do not set the input’s blank pixels to blank in the tiled outputs (for example,
Sky and Sky standard deviation extensions of the output). This is only applica-
ble when the tiled output has the same size as the input, in other words, when
--oneelempertile is not called.

By default, blank values in the input (commonly on the edges which are outside
the survey/field area) will be set to blank in the tiled outputs also. But in other
scenarios this default behavior is not desired; for example, if you have masked
something in the input, but want the tiled output under that also.

--checksky

Create a multi-extension FITS file showing the steps that were used to estimate
the Sky value over the input, see Section 7.1.4.3 [Quantifying signal in a tile],
page 522. The file will have two extensions for each step (one for the Sky and
one for the Sky standard deviation).

--checkskynointerp

Similar to --checksky, but it will stop as soon as the outlier tiles have been
identified and before it interpolates the values to cover the whole image.

This is useful when you want the good tile values before interpolation, and don’t
want to slow down your pipeline with the extra computing that interpolation
and smoothing require.

7.2 NoiseChisel

Once instrumental signatures are removed from the raw data (image) in the initial reduc-
tion process (see Chapter 6 [Data manipulation], page 385). You are naturally eager to
start answering the scientific questions that motivated the data collection in the first place.
However, the raw dataset/image is just an array of values/pixels, that is all! These raw
values cannot directly be used to answer your scientific questions; for example, “how many
galaxies are there in the image?” and “What is their magnitude?”.

The first high-level step your analysis will therefore be to classify, or label, the dataset
elements (pixels) into two classes: 1) Noise, where random effects are the major contributor
to the value, and 2) Signal, where non-random factors (for example, light from a distant
galaxy) are present. This classification of the elements in a dataset is formally known as
detection.



Chapter 7: Data analysis 542

In an observational/experimental dataset, signal is always buried in noise: only
mock/simulated datasets are free of noise. Therefore detection, or the process of separating
signal from noise, determines the number of objects you study and the accuracy of
any higher-level measurement you do on them. Detection is thus the most important
step of any analysis and is not trivial. In particular, the most scientifically interesting
astronomical targets are faint, can have a large variety of morphologies, along with a large
distribution in magnitude and size. Therefore when noise is significant, proper detection
of your targets is a uniquely decisive step in your final scientific analysis/result.

NoiseChisel is Gnuastro’s program for detection of targets that do not have a sharp
border (almost all astronomical objects). When the targets have sharp edges/borders (for
example, cells in biological imaging), a simple threshold is enough to separate them from
noise and each other (if they are not touching). To detect such sharp-edged targets, you
can use Gnuastro’s Arithmetic program in a command like below (assuming the threshold
is 100, see Section 6.2 [Arithmetic], page 399):

$ astarithmetic in.fits 100 gt 2 connected-components

Since almost no astronomical target has such sharp edges, we need a more advanced
detection methodology. NoiseChisel uses a new noise-based paradigm for detection of very
extended and diffuse targets that are drowned deeply in the ocean of noise. It was ini-
tially introduced in Akhlaghi and Ichikawa 2015 (https://arxiv.org/abs/1505.01664)
and improvements after the first four were published in Akhlaghi 2019 (https://arxiv.
org/abs/1909.11230). Please take the time to go through these papers to most effectively
understand the need of NoiseChisel and how best to use it.

The name of NoiseChisel is derived from the first thing it does after thresholding the
dataset: to erode it. In mathematical morphology, erosion on pixels can be pictured as
carving-off boundary pixels. Hence, what NoiseChisel does is similar to what a wood chisel
or stone chisel do. It is just not a hardware, but a software. In fact, looking at it as a
chisel and your dataset as a solid cube of rock will greatly help in effectively understanding
and optimally using it: with NoiseChisel you literally carve your targets out of the noise.
Try running it with the --checkdetection option, and open the temporary output as a
multi-extension cube, to see each step of the carving process on your input dataset (see
Section 10.4 [Viewing FITS file contents with DS9 or TOPCAT], page 680).

NoiseChisel’s primary output is a binary detection map with the same size as the input
but its pixels only have two values: 0 (background) and 1 (foreground). Pixels that do not
harbor any detected signal (noise) are given a label (or value) of zero and those with a value
of 1 have been identified as hosting signal.

Segmentation is the process of classifying the signal into higher-level constructs. For
example, if you have two separate galaxies in one image, NoiseChisel will give a value
of 1 to the pixels of both (each forming an “island” of touching foreground pixels). After
segmentation, the connected foreground pixels will get separate labels, enabling you to study
them individually. NoiseChisel is only focused on detection (separating signal from noise), to
segment the signal (into separate galaxies for example), Gnuastro has a separate specialized
program Section 7.3 [Segment], page 561. NoiseChisel’s output can be directly/readily fed
into Segment.

For more on NoiseChisel’s output format and its benefits (especially in conjunction with
Section 7.3 [Segment], page 561, and later Section 7.4 [MakeCatalog], page 572), please see

https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1909.11230
https://arxiv.org/abs/1909.11230
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Akhlaghi 2016 (https://arxiv.org/abs/1611.06387). Just note that when that paper
was published, Segment was not yet spun-off into a separate program, and NoiseChisel
done both detection and segmentation.

NoiseChisel’s output is designed to be generic enough to be easily used in any higher-
level analysis. If your targets are not touching after running NoiseChisel and you are not
interested in their sub-structure, you do not need the Segment program at all. You can ask
NoiseChisel to find the connected pixels in the output with the --label option. In this
case, the output will not be a binary image any more, the signal will have counters/labels
starting from 1 for each connected group of pixels. You can then directly feed NoiseChisel’s
output into MakeCatalog for measurements over the detections and the production of a
catalog (see Section 7.4 [MakeCatalog], page 572).

Thanks to the published papers mentioned above, there is no need to provide a more
complete introduction to NoiseChisel in this book. However, published papers cannot be
updated any more, but the software has evolved/changed. The changes since publication
are documented in Section 7.2.1 [NoiseChisel changes after publication], page 543. In Sec-
tion 7.2.2 [Invoking NoiseChisel], page 544, the details of running NoiseChisel and its options
are discussed.

As discussed above, detection is one of the most important steps for your scientific
result. It is therefore very important to obtain a good understanding of NoiseChisel (and
afterwards Section 7.3 [Segment], page 561, and Section 7.4 [MakeCatalog], page 572). We
strongly recommend reviewing two tutorials of Section 2.1 [General program usage tutorial],
page 23, and Section 2.2 [Detecting large extended targets], page 81. They are designed
to show how to most effectively use NoiseChisel for the detection of small faint objects
and large extended objects. In the meantime, they also show the modular principle behind
Gnuastro’s programs and how they are built to complement, and build upon, each other.

Section 2.1 [General program usage tutorial], page 23, culminates in using NoiseChisel
to detect galaxies and use its outputs to find the galaxy colors. Defining colors is a very
common process in most science-cases. Therefore it is also recommended to (patiently)
complete that tutorial for optimal usage of NoiseChisel in conjunction with all the other
Gnuastro programs. Section 2.2 [Detecting large extended targets], page 81, shows you can
optimize NoiseChisel’s settings for very extended objects to successfully carve out to signal-
to-noise ratio levels of below 1/10. After going through those tutorials, play a little with
the settings (in the order presented in the paper and Section 7.2.2 [Invoking NoiseChisel],
page 544) on a dataset you are familiar with and inspect all the check images (options
starting with --check) to see the effect of each parameter.

Below, in Section 7.2.2 [Invoking NoiseChisel], page 544, we will review NoiseChisel’s
input, detection, and output options in Section 7.2.2.1 [NoiseChisel input], page 547, Sec-
tion 7.2.2.2 [Detection options], page 549, and Section 7.2.2.3 [NoiseChisel output], page 558.
If you have used NoiseChisel within your research, please run it with --cite to list the pa-
pers you should cite and how to acknowledge its funding sources.

7.2.1 NoiseChisel changes after publication

NoiseChisel was initially introduced in Akhlaghi and Ichikawa 2015 (https://arxiv.org/
abs/1505.01664) and updates after the first four years were published in Akhlaghi 2019
(https://arxiv.org/abs/1909.11230). To help in understanding how it works, those
papers have many figures showing every step on multiple mock and real examples. We

https://arxiv.org/abs/1611.06387
https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1909.11230
https://arxiv.org/abs/1909.11230
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recommended to read these papers for a good understanding of what it does and how each
parameter influences the output.

However, the papers cannot be updated anymore, but NoiseChisel has evolved (and will
continue to do so): better algorithms or steps have been found and implemented and some
options have been added, removed or changed behavior. This book is thus the final and
definitive guide to NoiseChisel. The aim of this section is to make the transition from the
papers above to the installed version on your system, as smooth as possible with the list
below. For a more detailed list of changes in each Gnuastro version, please see the NEWS

file10.

• An improved outlier rejection for identifying tiles without any signal has been im-
plemented in the quantile-threshold phase: Prior to version 0.14, outliers were defined
globally: the distribution of all tiles with an acceptable --meanmedqdiff was inspected
and outliers were found and rejected. However, this caused problems when there are
strong gradients over the image (for example, an image prior to flat-fielding, or in the
presence of a large foreground galaxy). In these cases, the faint wings of galaxies/stars
could be mistakenly identified as Sky (leaving a footprint of the object on the Sky
output) and wrongly subtracted.

It was possible to play with the parameters to correct this for that particular dataset,
but that was frustrating. Therefore from version 0.14, instead of finding outliers from
the full tile distribution, we now measure the slope of the tile’s nearby tiles and find
outliers locally. Three options have been added to configure this part of NoiseChisel:
--outliernumngb, --outliersclip and --outliersigma. For more on the local
outlier-by-distance algorithm and the definition of slope mentioned above, see Sec-
tion 7.1.4.3 [Quantifying signal in a tile], page 522. In our tests, this gave a much
improved estimate of the quantile thresholds and final Sky values with default values.

7.2.2 Invoking NoiseChisel

NoiseChisel will detect signal in noise producing a multi-extension dataset containing a
binary detection map which is the same size as the input. Its output can be readily used
for input into Section 7.3 [Segment], page 561, for higher-level segmentation, or Section 7.4
[MakeCatalog], page 572, to do measurements and generate a catalog. The executable name
is astnoisechisel with the following general template

$ astnoisechisel [OPTION ...] InputImage.fits

One line examples:

## Detect signal in input.fits.

$ astnoisechisel input.fits

## Inspect all the detection steps after changing a parameter.

$ astnoisechisel input.fits --qthresh=0.4 --checkdetection

## Detect signal assuming input has 4 amplifier channels along first

## dimension and 1 along the second. Also set the regular tile size

## to 100 along both dimensions:

$ astnoisechisel --numchannels=4,1 --tilesize=100,100 input.fits

10 The NEWS file is present in the released Gnuastro tarball, see Section 3.2.1 [Release tarball], page 225.
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If NoiseChisel is to do processing (for example, you do not want to get help, or see the
values to each input parameter), an input image should be provided with the recognized
extensions (see Section 4.1.1.1 [Arguments], page 249). NoiseChisel shares a large set of
common operations with other Gnuastro programs, mainly regarding input/output, general
processing steps, and general operating modes. To help in a unified experience between
all of Gnuastro’s programs, these operations have the same command-line options, see
Section 4.1.2 [Common options], page 251, for a full list/description (they are not repeated
here).

As in all Gnuastro programs, options can also be given to NoiseChisel in configuration
files. For a thorough description on Gnuastro’s configuration file parsing, please see Sec-
tion 4.2 [Configuration files], page 268. All of NoiseChisel’s options with a short description
are also always available on the command-line with the --help option, see Section 4.3 [Get-
ting help], page 271. To inspect the option values without actually running NoiseChisel,
append your command with --printparams (or -P).

NoiseChisel’s input image may contain blank elements (see Section 6.1.3 [Blank pixels],
page 388). Blank elements will be ignored in all steps of NoiseChisel. Hence if your dataset
has bad pixels which should be masked with a mask image, please use Gnuastro’s Section 6.2
[Arithmetic], page 399, program (in particular its where operator) to convert those pixels
to blank pixels before running NoiseChisel. Gnuastro’s Arithmetic program has bitwise
operators helping you select specific kinds of bad-pixels when necessary.

A convolution kernel can also be optionally given. If a value (file name) is given to
--kernel on the command-line or in a configuration file (see Section 4.2 [Configuration
files], page 268), then that file will be used to convolve the image prior to thresholding.
Otherwise a default kernel will be used. For a 2D image, the default kernel is a 2D Gaus-
sian with a FWHM of 2 pixels truncated at 5 times the FWHM. This choice of the default
kernel is discussed in Section 3.1.1 of Akhlaghi and Ichikawa 2015 (https://arxiv.org/
abs/1505.01664). For a 3D cube, it is a Gaussian with FWHM of 1.5 pixels in the first two
dimensions and 0.75 pixels in the third dimension. See Section 6.3.4 [Convolution kernel],
page 488, for kernel related options. Passing none to --kernel will disable convolution. On
the other hand, through the --convolved option, you may provide an already convolved
image, see descriptions below for more.

NoiseChisel defines two tessellations over the input (see Section 4.8 [Tessellation],
page 289). This enables it to deal with possible gradients in the input dataset and also
significantly improve speed by processing each tile on different threads simultaneously.
Tessellation related options are discussed in Section 4.1.2.2 [Processing options], page 255.
In particular, NoiseChisel uses two tessellations (with everything between them identical
except the tile sizes): a fine-grained one with smaller tiles (used in thresholding and
Sky value estimations) and another with larger tiles which is used for pseudo-detections
over non-detected regions of the image. The common Tessellation options described in
Section 4.1.2.2 [Processing options], page 255, define all parameters of both tessellations.
The large tile size for the latter tessellation is set through the --largetilesize option.
To inspect the tessellations on your input dataset, run NoiseChisel with --checktiles.

https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1505.01664
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� �
Usage TIP: Frequently use the options starting with --check. Since the noise properties
differ between different datasets, you can often play with the parameters/options for a
better result than the default parameters. You can start with --checkdetection for the
main steps. For the full list of NoiseChisel’s checking options please run:

$ astnoisechisel --help | grep check
 	� �
Not detecting wings of bright galaxies: In such cases, probably the best solution is to
increase --outliernumngb (to reject tiles that are affected by very flat diffuse signal). For
more, see Section 7.1.4.3 [Quantifying signal in a tile], page 522.
 	

When working on 3D datacubes, the tessellation options need three values and updating
them every time can be annoying/buggy. To simplify the job, NoiseChisel also installs a
astnoisechisel-3d.conf configuration file (see Section 4.2 [Configuration files], page 268).
You can use this for default values on datacubes. For example, if you installed Gnuastro
with the prefix /usr/local (the default location, see Section 3.3.1.2 [Installation directory],
page 233), you can benefit from this configuration file by running NoiseChisel like the
example below.

$ astnoisechisel cube.fits \

--config=/usr/local/etc/gnuastro/astnoisechisel-3d.conf

To further simplify the process, you can define a shell alias in any startup file (for
example, ~/.bashrc, see Section 3.3.1.2 [Installation directory], page 233). Assuming that
you installed Gnuastro in /usr/local, you can add this line to the startup file (you may
put it all in one line, it is broken into two lines here for fitting within page limits).

alias astnoisechisel-3d="astnoisechisel \

--config=/usr/local/etc/gnuastro/astnoisechisel-3d.conf"

Using this alias, you can call NoiseChisel with the name astnoisechisel-3d (instead of
astnoisechisel). It will automatically load the 3D specific configuration file first, and
then parse any other arguments, options or configuration files. You can change the default
values in this 3D configuration file by calling them on the command-line as you do with
astnoisechisel11. For example:

$ astnoisechisel-3d --numchannels=3,3,1 cube.fits

Below, we will discuss NoiseChisel’s options, classified into separate sub-sections to help
in easy navigation. Section 7.2.2.1 [NoiseChisel input], page 547, discusses the basic options
relating to input file(s) and data; these have no effect on the the detection process. Af-
terwards, Section 7.2.2.2 [Detection options], page 549, fully describes every configuration
parameter (option) related to detection and how they affect the final result. The order of
options in this section follow the logical order within NoiseChisel. On first reading (while
you are still new to NoiseChisel), it is therefore strongly recommended to read the options
in the given order below. The output of --printparams (or -P) also has this order. How-

11 Recall that for single-invocation options, the last command-line invocation takes precedence over all
previous invocations (including those in the 3D configuration file). See the description of --config in
Section 4.1.2.3 [Operating mode options], page 257.
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ever, the output of --help is sorted alphabetically. Finally, in Section 7.2.2.3 [NoiseChisel
output], page 558, the format of NoiseChisel’s output is discussed.

7.2.2.1 NoiseChisel input

The options here can be used to configure the inputs and output of NoiseChisel, along with
some general processing options. Recall that you can always see the full list of Gnuastro’s
options with the --help (see Section 4.3 [Getting help], page 271), or --printparams (or
-P) to see their values (see Section 4.1.2.3 [Operating mode options], page 257).

-k FITS

--kernel=FITS

File name of kernel to smooth the image before applying the threshold, see
Section 6.3.4 [Convolution kernel], page 488. If no convolution is needed, give
this option a value of none.

The first step of NoiseChisel is to convolve/smooth the image and use the
convolved image in multiple steps including the finding and applying of the
quantile threshold (see --qthresh). The --kernel option is not mandatory.
If not called, for a 2D, image a 2D Gaussian profile with a FWHM of 2 pixels
truncated at 5 times the FWHM is used. This choice of the default kernel is
discussed in Section 3.1.1 of Akhlaghi and Ichikawa [2015].

For a 3D cube, when no file name is given to --kernel, a Gaussian with FWHM
of 1.5 pixels in the first two dimensions and 0.75 pixels in the third dimension
will be used. The reason for this particular configuration is that commonly in
astronomical applications, 3D datasets do not have the same nature in all three
dimensions, commonly the first two dimensions are spatial (RA and Dec) while
the third is spectral (for example, wavelength). The samplings are also different,
in the default case, the spatial sampling is assumed to be larger than the spectral
sampling, hence a wider FWHM in the spatial directions, see Section 6.3.2.7
[Sampling theorem], page 481.

You can use MakeProfiles to build a kernel with any of its recognized profile
types and parameters. For more details, please see Section 8.1.4.3 [MakeProfiles
output dataset], page 648. For example, the command below will make a Moffat
kernel (with β = 2.8) with FWHM of 2 pixels truncated at 10 times the FWHM.

$ astmkprof --oversample=1 --kernel=moffat,2,2.8,10

Since convolution can be the slowest step of NoiseChisel, for large datasets,
you can convolve the image once with Gnuastro’s Convolve (see Section 6.3
[Convolve], page 469), and use the --convolved option to feed it directly to
NoiseChisel. This can help getting faster results when you are playing/testing
the higher-level options.

--khdu=STR

HDU containing the kernel in the file given to the --kernel option.

--convolved=FITS

Use this file as the convolved image and do not do convolution (ignore
--kernel). NoiseChisel will just check the size of the given dataset is the
same as the input’s size. If a wrong image (with the same size) is given to this
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option, the results (errors, bugs, etc.) are unpredictable. So please use this
option with care and in a highly controlled environment, for example, in the
scenario discussed below.

In almost all situations, as the input gets larger, the single most CPU (and
time) consuming step in NoiseChisel (and other programs that need a con-
volved image) is convolution. Therefore minimizing the number of convolutions
can save a significant amount of time in some scenarios. One such scenario
is when you want to segment NoiseChisel’s detections using the same kernel
(with Section 7.3 [Segment], page 561, which also supports this --convolved
option). This scenario would require two convolutions of the same dataset: once
by NoiseChisel and once by Segment. Using this option in both programs, only
one convolution (prior to running NoiseChisel) is enough.

Another common scenario where this option can be convenient is when you
are testing NoiseChisel (or Segment) for the best parameters. You have to run
NoiseChisel multiple times and see the effect of each change. However, once you
are happy with the kernel, re-convolving the input on every change of higher-
level parameters will greatly hinder, or discourage, further testing. With this
option, you can convolve the input image with your chosen kernel once before
running NoiseChisel, then feed it to NoiseChisel on each test run and thus save
valuable time for better/more tests.

To build your desired convolution kernel, you can use Section 8.1 [MakePro-
files], page 629. To convolve the image with a given kernel you can use Sec-
tion 6.3 [Convolve], page 469. Spatial domain convolution is mandatory: in
the frequency domain, blank pixels (if present) will cover the whole image and
gradients will appear on the edges, see Section 6.3.3 [Spatial vs. Frequency
domain], page 487.

Below you can see an example of the second scenario: you want to see how
variation of the growth level (through the --detgrowquant option) will affect
the final result. Recall that you can ignore all the extra spaces, new lines, and
backslash’s (‘\’) if you are typing in the terminal. In a shell script, remove the
$ signs at the start of the lines.

## Make the kernel to convolve with.

$ astmkprof --oversample=1 --kernel=gaussian,2,5

## Convolve the input with the given kernel.

$ astconvolve input.fits --kernel=kernel.fits \

--domain=spatial --output=convolved.fits

## Run NoiseChisel with seven growth quantile values.

$ for g in 60 65 70 75 80 85 90; do \

astnoisechisel input.fits --convolved=convolved.fits \

--detgrowquant=0.$g --output=$g.fits; \

done
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--chdu=STR

The HDU/extension containing the convolved image in the file given to
--convolved.

-w FITS

--widekernel=FITS

File name of a wider kernel to use in estimating the difference of the mode and
median in a tile (this difference is used to identify the significance of signal in
that tile, see Section 7.1.4.3 [Quantifying signal in a tile], page 522). As dis-
played in Figure 4 of Akhlaghi and Ichikawa 2015 (https://arxiv.org/abs/
1505.01664), a wider kernel will help in identifying the skewness caused by
data in noise. The image that is convolved with this kernel is only used for
this purpose. Once the mode is found to be sufficiently close to the median,
the quantile threshold is found on the image convolved with the sharper kernel
(--kernel), see --qthresh).

Since convolution will significantly slow down the processing, this feature is
optional. When it is not given, the image that is convolved with --kernel will
be used to identify good tiles and apply the quantile threshold. This option is
mainly useful in conditions were you have a very large, extended, diffuse signal
that is still present in the usable tiles when using --kernel. See Section 2.2
[Detecting large extended targets], page 81, for a practical demonstration on
how to inspect the tiles used in identifying the quantile threshold.

--whdu=STR

HDU containing the kernel file given to the --widekernel option.

-L INT[,INT]

--largetilesize=INT[,INT]

The size of each tile for the tessellation with the larger tile sizes. Except for
the tile size, all the other parameters for this tessellation are taken from the
common options described in Section 4.1.2.2 [Processing options], page 255.
The format is identical to that of the --tilesize option that is discussed in
that section.

7.2.2.2 Detection options

Detection is the process of separating the pixels in the image into two groups: 1) Signal,
and 2) Noise. Through the parameters below, you can customize the detection process in
NoiseChisel. Recall that you can always see the full list of NoiseChisel’s options with the
--help (see Section 4.3 [Getting help], page 271), or --printparams (or -P) to see their
values (see Section 4.1.2.3 [Operating mode options], page 257).

-Q FLT

--meanmedqdiff=FLT

The maximum acceptable distance between the quantiles of the mean and me-
dian in each tile, see Section 7.1.4.3 [Quantifying signal in a tile], page 522. The
quantile threshold estimates are measured on tiles where the quantiles of their
mean and median are less distant than the value given to this option. For ex-
ample, --meanmedqdiff=0.01 means that only tiles where the mean’s quantile
is between 0.49 and 0.51 (recall that the median’s quantile is 0.5) will be used.

https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1505.01664
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-a INT

--outliernumngb=INT

Number of neighboring tiles to use for outlier rejection (mostly the wings of
bright stars or galaxies). For optimal detection of the wings of bright stars
or galaxies, this is the most important option in NoiseChisel. This is because
the extended wings of bright galaxies or stars (the PSF) can become flat over
the tile. In this case, they will satisfy the --meanmedqdiff condition and pass
that step. Therefore, to correctly identify such bad tiles, we need to look at
the neighboring nearby tiles. A tile that is on the wing of a bright galaxy/star
will clearly be an outlier when looking at the neighbors. For more on the
details of the outlier rejection algorithm, see the latter half of Section 7.1.4.3
[Quantifying signal in a tile], page 522. If this option is given a value of zero,
no outlier rejection will take place.

--outliersclip=FLT,FLT

σ-clipping parameters for the outlier rejection of the quantile threshold. The
format of the given values is similar to --sigmaclip below. In NoiseChisel,
outlier rejection on tiles is used when identifying the quantile thresholds
(--qthresh, --noerodequant, and detgrowquant).

Outlier rejection is useful when the dataset contains a large and diffuse (almost
flat within each tile) signal. The flatness of the profile will cause it to success-
fully pass the mean-median quantile difference test, so we will need to use the
distribution of successful tiles for removing these false positives. For more, see
the latter half of Section 7.1.4.3 [Quantifying signal in a tile], page 522.

--outliersigma=FLT

Multiple of sigma to define an outlier. If this option is given a value of zero, no
outlier rejection will take place. For more see --outliersclip and the latter
half of Section 7.1.4.3 [Quantifying signal in a tile], page 522.

-t FLT

--qthresh=FLT

The quantile threshold to apply to the convolved image. The detection process
begins with applying a quantile threshold to each of the tiles in the small tessel-
lation. The quantile is only calculated for tiles that do not have any significant
signal within them, see Section 7.1.4.3 [Quantifying signal in a tile], page 522.
Interpolation is then used to give a value to the unsuccessful tiles and it is
finally smoothed.

The quantile value is a floating point value between 0 and 1. Assume that we
have sorted the N data elements of a distribution (the pixels in each mesh on
the convolved image). The quantile (q) of this distribution is the value of the
element with an index of (the nearest integer to) q ×N in the sorted data set.
After thresholding is complete, we will have a binary (two valued) image. The
pixels above the threshold are known as foreground pixels (have a value of 1)
while those which lie below the threshold are known as background (have a
value of 0).
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--smoothwidth=INT

Width of flat kernel used to smooth the interpolated quantile thresholds, see
--qthresh for more.

--checkqthresh

Check the quantile threshold values on the mesh grid. A multi-extension FITS
file, suffixed with _qthresh.fits will be created showing each step of how
the final quantile threshold is found. With this option, NoiseChisel will abort
as soon as quantile estimation has been completed, allowing you to inspect
the steps leading to the final quantile threshold, this can be disabled with
--continueaftercheck. By default the output will have the same pixel size as
the input, but with the --oneelempertile option, only one pixel will be used
for each tile (see Section 4.1.2.2 [Processing options], page 255).

The key things to remember are:

• The measurements to find the thresholds are done on tiles that cover the
whole image in a tessellation. Recall that you can set the size of tiles with
--tilesize and check them with --checktiles. Therefore except for the
first and last extensions, the rest only show tiles.

• NoiseChisel ultimately has three thresholds: the quantile threshold (that
you set with --qthresh), the no-erode quantile (set with --noerodequant)
and the growth quantile (set with --detgrowquant). Therefore for each
step, we have three extensions.

The output file will have the following extensions. Below, the extensions are
put in the same order as you see in the file, with their name.

CONVOLVED

This is the input image after convolution with the kernel (which
is a FWHM=2 Gaussian by default, but you can change with
--kernel). Recall that the thresholds are defined on the convolved
image.

QTHRESH_ERODE

QTHRESH_NOERODE

QTHRESH_EXPAND

In these three extensions, the tiles that have a quantile-of-mean
more/less than 0.5 (quantile of median) ±d are set to NaN (d is
the value given to --meanmedqdiff, see Section 7.1.4.3 [Quantifying
signal in a tile], page 522). Therefore the non-NaN tiles that you see
here are the tiles where there is no significant skewness (changing
signal) within that tile. The only differing thing between the three
extensions is the values of the non-NaN tiles. These values will be
used to construct the final threshold map over the whole image.

VALUE1_NO_OUTLIER

VALUE2_NO_OUTLIER

VALUE3_NO_OUTLIER

All outlier tiles have been masked. The reason for removing out-
liers is that the quantile-of-mean is only sensitive to signal that
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varies on a scale that is smaller than the tile size. Therefore the ex-
tended wings of large galaxies or bright stars (which vary on scales
much larger than the tile size) will pass that test. As described in
Section 7.1.4.3 [Quantifying signal in a tile], page 522, outlier re-
jection is customized through --outliernumngb, --outliersclip
and --outliersigma.

THRESH1_INTERP

THRESH2_INTERP

THRESH3_INTERP

Using the successful values that remain after the previous step, give
values to all (interpolate) the tiles in the image. The interpolation
is done using the nearest-neighbor method: for each tile, the N
nearest neighbors are found and the median of their values is used
to fill it. You can set the value of N through the --interpnumngb

option.

THRESH1_SMOOTH

THRESH2_SMOOTH

THRESH3_SMOOTH

Smooth the interpolated image to remove the strong differences be-
tween touching tiles. Because we used the median value of the N
nearest neighbors in the previous step, there can be strong discon-
tinuities on the edges of tiles (which can directly show in the image
after applying the threshold). The scale of the smoothing (num-
ber of nearby tiles to smooth with) is set with the --smoothwidth
option.

QTHRESH-APPLIED

The pixels in this image can only have three values:

0 These pixels had a value below the quantile threshold.

1 These pixels had a value above the quantile threshold,
but below the threshold for no erosion. Therefore in
the next step, NoiseChisel will erode (set them to 0)
these pixels if they are touching a 0-valued pixel.

2 These pixels had a value above the no-erosion thresh-
old. So NoiseChisel will not erode these pixels, it will
only apply Opening to them afterwards. Recall that
this was done to avoid loosing sharp point-sources (like
stars in space-based imaging).

--blankasforeground

In the erosion and opening steps below, treat blank elements as foreground
(regions above the threshold). By default, blank elements in the dataset are
considered to be background, so if a foreground pixel is touching it, it will be
eroded. This option is irrelevant if the datasets contains no blank elements.

When there are many blank elements in the dataset, treating them as fore-
ground will systematically erode their regions less, therefore systematically cre-



Chapter 7: Data analysis 553

ating more false positives. So use this option (when blank values are present)
with care.

-e INT

--erode=INT

The number of erosions to apply to the binary thresholded image. Erosion is
simply the process of flipping (from 1 to 0) any of the foreground pixels that
neighbor a background pixel. In a 2D image, there are two kinds of neighbors,
4-connected and 8-connected neighbors. In a 3D dataset, there are three: 6-
connected, 18-connected, and 26-connected. You can specify which class of
neighbors should be used for erosion with the --erodengb option, see below.

Erosion has the effect of shrinking the foreground pixels. To put it another way,
it expands the holes. This is a founding principle in NoiseChisel: it exploits the
fact that with very low thresholds, the holes in the very low surface brightness
regions of an image will be smaller than regions that have no signal. Therefore
by expanding those holes, we are able to separate the regions harboring signal.

--erodengb=INT

The type of neighborhood (structuring element) used in erosion, see --erode

for an explanation on erosion. If the input is a 2D image, only two integer
values are acceptable: 4 or 8. For a 3D input datacube, the acceptable values
are: 6, 18 and 26.

In 2D 4-connectivity, the neighbors of a pixel are defined as the four pixels on
the top, bottom, right and left of a pixel that share an edge with it. The 8-
connected neighbors on the other hand include the 4-connected neighbors along
with the other 4 pixels that share a corner with this pixel. See Figure 6 (a) and
(b) in Akhlaghi and Ichikawa (2015) for a demonstration. A similar argument
applies to 3D datacubes.

--noerodequant

Pure erosion is going to carve off sharp and small objects completely out of
the detected regions. This option can be used to avoid missing such sharp and
small objects (which have significant pixels, but not over a large area). All
pixels with a value larger than the significance level specified by this option will
not be eroded during the erosion step above. However, they will undergo the
erosion and dilation of the opening step below.

Like the --qthresh option, the significance level is determined using the quan-
tile (a value between 0 and 1). Just as a reminder, in the normal distribution,
1σ, 1.5σ, and 2σ are approximately on the 0.84, 0.93, and 0.98 quantiles.

-p INT

--opening=INT

Depth of opening to be applied to the eroded binary image. Opening is a com-
posite operation. When opening a binary image with a depth of n, n erosions
(explained in --erode) are followed by n dilations. Simply put, dilation is the
inverse of erosion. When dilating an image any background pixel is flipped
(from 0 to 1) to become a foreground pixel. Dilation has the effect of fattening
the foreground. Note that in NoiseChisel, the erosion which is part of opening
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is independent of the initial erosion that is done on the thresholded image (ex-
plained in --erode). The structuring element for the opening can be specified
with the --openingngb option. Opening has the effect of removing the thin
foreground connections (mostly noise) between separate foreground ‘islands’
(detections) thereby completely isolating them. Once opening is complete, we
have initial detections.

--openingngb=INT

The structuring element used for opening, see --erodengb for more information
about a structuring element.

--skyfracnoblank

Ignore blank pixels when estimating the fraction of undetected pixels for Sky
estimation. NoiseChisel only measures the Sky over the tiles that have a suffi-
ciently large fraction of undetected pixels (value given to --minskyfrac). By
default this fraction is found by dividing number of undetected pixels in a tile
by the tile’s area. But this default behavior ignores the possibility of blank
pixels. In situations that blank/masked pixels are scattered across the image
and if they are large enough, all the tiles can fail the --minskyfrac test, thus
not allowing NoiseChisel to proceed. With this option, such scenarios can be
fixed: the denominator of the fraction will be the number of non-blank elements
in the tile, not the total tile area.

-B FLT

--minskyfrac=FLT

Minimum fraction (value between 0 and 1) of Sky (undetected) areas in a tile.
Only tiles with a fraction of undetected pixels (Sky) larger than this value will
be used to estimate the Sky value. NoiseChisel uses this option value twice
to estimate the Sky value: after initial detections and in the end when false
detections have been removed.

Because of the PSF and their intrinsic amorphous properties, astronomical
objects (except cosmic rays) never have a clear cutoff and commonly sink into
the noise very slowly. Even below the very low thresholds used by NoiseChisel.
So when a large fraction of the area of one mesh is covered by detections, it is
very plausible that their faint wings are present in the undetected regions (hence
causing a bias in any measurement). To get an accurate measurement of the
above parameters over the tessellation, tiles that harbor too many detected
regions should be excluded. The used tiles are visible in the respective --check
option of the given step.

--checkdetsky

Check the initial approximation of the sky value and its standard deviation
in a FITS file ending with _detsky.fits. With this option, NoiseChisel will
abort as soon as the sky value used for defining pseudo-detections is complete.
This allows you to inspect the steps leading to the final quantile threshold, this
behavior can be disabled with --continueaftercheck. By default the output
will have the same pixel size as the input, but with the --oneelempertile

option, only one pixel will be used for each tile (see Section 4.1.2.2 [Processing
options], page 255).
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-s FLT,FLT

--sigmaclip=FLT,FLT

The σ-clipping parameters for measuring the initial and final Sky values from
the undetected pixels, see Section 2.10.2 [Sigma clipping], page 200.

This option takes two values which are separated by a comma (,). Each value
can either be written as a single number or as a fraction of two numbers (for
example, 3,1/10). The first value to this option is the multiple of σ that will
be clipped (α in that section). The second value is the exit criteria. If it is
less than 1, then it is interpreted as tolerance and if it is larger than one it
is assumed to be the fixed number of iterations. Hence, in the latter case the
value must be an integer.

-R FLT

--dthresh=FLT

The detection threshold: a multiple of the initial Sky standard deviation
added with the initial Sky approximation (which you can inspect with
--checkdetsky). This flux threshold is applied to the initially undetected
regions on the unconvolved image. The background pixels that are completely
engulfed in a 4-connected foreground region are converted to background
(holes are filled) and one opening (depth of 1) is applied over both the initially
detected and undetected regions. The Signal to noise ratio of the resulting
‘pseudo-detections’ are used to identify true vs. false detections. See Section
3.1.5 and Figure 7 in Akhlaghi and Ichikawa (2015) for a very complete
explanation.

--dopening=INT

The number of openings to do after applying --dthresh.

--dopeningngb=INT

The connectivity used in the opening of --dopening. In a 2D image this must
be either 4 or 8. The stronger the connectivity, the more smaller regions will
be discarded.

--holengb=INT

The connectivity (defined by the number of neighbors) to fill holes after applying
--dthresh (above) to find pseudo-detections. For example, in a 2D image it
must be 4 (the neighbors that are most strongly connected) or 8 (all neighbors).
The stronger the connectivity, the stronger the hole will be enclosed. So setting
a value of 8 in a 2D image means that the walls of the hole are 4-connected. If
standard (near Sky level) values are given to --dthresh, setting --holengb=4,
might fill the complete dataset and thus not create enough pseudo-detections.

--pseudoconcomp=INT

The connectivity (defined by the number of neighbors) to find individual
pseudo-detections. If it is a weaker connectivity (4 in a 2D image), then
pseudo-detections that are connected on the corners will be treated as
separate.



Chapter 7: Data analysis 556

-m INT

--snminarea=INT

The minimum area to calculate the Signal to noise ratio on the pseudo-
detections of both the initially detected and undetected regions. When the
area in a pseudo-detection is too small, the Signal to noise ratio measurements
will not be accurate and their distribution will be heavily skewed to the
positive. So it is best to ignore any pseudo-detection that is smaller than this
area. Use --detsnhistnbins to check if this value is reasonable or not.

--checksn

Save the S/N values of the pseudo-detections (and possibly grown detections if
--cleangrowndet is called) into separate tables. If --tableformat is a FITS
table, each table will be written into a separate extension of one file suffixed
with _detsn.fits. If it is plain text, a separate file will be made for each table
(ending in _detsn_sky.txt, _detsn_det.txt and _detsn_grown.txt). For
more on --tableformat see Section 4.1.2.1 [Input/Output options], page 252.

You can use these to inspect the S/N values and their distribution (in combi-
nation with the --checkdetection option to see where the pseudo-detections
are). You can use Gnuastro’s Section 7.1 [Statistics], page 508, to make a
histogram of the distribution or any other analysis you would like for better
understanding of the distribution (for example, through a histogram).

--minnumfalse=INT

The minimum number of ‘pseudo-detections’ over the undetected regions to
identify a Signal-to-Noise ratio threshold. The Signal to noise ratio (S/N)
of false pseudo-detections in each tile is found using the quantile of the S/N
distribution of the pseudo-detections over the undetected pixels in each mesh.
If the number of S/N measurements is not large enough, the quantile will not
be accurate (can have large scatter). For example, if you set --snquant=0.99
(or the top 1 percent), then it is best to have at least 100 S/N measurements.

-c FLT

--snquant=FLT

The quantile of the Signal to noise ratio distribution of the pseudo-detections in
each mesh to use for filling the large mesh grid. Note that this is only calculated
for the large mesh grids that satisfy the minimum fraction of undetected pixels
(value of --minbfrac) and minimum number of pseudo-detections (value of
--minnumfalse).

--snthresh=FLT

Manually set the signal-to-noise ratio of true pseudo-detections. With this
option, NoiseChisel will not attempt to find pseudo-detections over the noisy
regions of the dataset, but will directly go onto applying the manually input
value.

This option is useful in crowded images where there is no blank sky to find the
sky pseudo-detections. You can get this value on a similarly reduced dataset
(from another region of the Sky with more undetected regions spaces).
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-d FLT

--detgrowquant=FLT

Quantile limit to “grow” the final detections. As discussed in the previous
options, after applying the initial quantile threshold, layers of pixels are carved
off the objects to identify true signal. With this step you can return those low
surface brightness layers that were carved off back to the detections. To disable
growth, set the value of this option to 1.

The process is as follows: after the true detections are found, all the non-
detected pixels above this quantile will be put in a list and used to “grow” the
true detections (seeds of the growth). Like all quantile thresholds, this thresh-
old is defined and applied to the convolved dataset. Afterwards, the dataset
is dilated once (with minimum connectivity) to connect very thin regions on
the boundary: imagine building a dam at the point rivers spill into an open
sea/ocean. Finally, all holes are filled. In the geography metaphor, holes can be
seen as the closed (by the dams) rivers and lakes, so this process is like turning
the water in all such rivers and lakes into soil. See --detgrowmaxholesize for
configuring the hole filling.

Note that since the growth occurs on all neighbors of a data element, the
quantile for 3D detection must be must larger than that of 2D detection. Recall
that in 2D each element has 8 neighbors while in 3D there are 27 neighbors.

--detgrowmaxholesize=INT

The maximum hole size to fill during the final expansion of the true detections
as described in --detgrowquant. This is necessary when the input contains
many smaller objects and can be used to avoid marking blank sky regions as
detections.

For example, multiple galaxies can be positioned such that they surround an
empty region of sky. If all the holes are filled, the Sky region in between
them will be taken as a detection which is not desired. To avoid such cases, the
integer given to this option must be smaller than the hole between such objects.
However, we should caution that unless the “hole” is very large, the combined
faint wings of the galaxies might actually be present in between them, so be
very careful in not filling such holes.

On the other hand, if you have a very large (and extended) galaxy, the diffuse
wings of the galaxy may create very large holes over the detections. In such
cases, a large enough value to this option will cause all such holes to be detected
as part of the large galaxy and thus help in detecting it to extremely low surface
brightness limits. Therefore, especially when large and extended objects are
present in the image, it is recommended to give this option (very) large values.
For one real-world example, see Section 2.2 [Detecting large extended targets],
page 81.

--cleangrowndet

After dilation, if the signal-to-noise ratio of a detection is less than the derived
pseudo-detection S/N limit, that detection will be discarded. In an ideal/clean
noise, a true detection’s S/N should be larger than its constituent pseudo-
detections because its area is larger and it also covers more signal. However,
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on a false detections (especially at lower --snquant values), the increase in size
can cause a decrease in S/N below that threshold.

This will improve purity and not change completeness (a true detection will not
be discarded). Because a true detection has flux in its vicinity and dilation will
catch more of that flux and increase the S/N. So on a true detection, the final
S/N cannot be less than pseudo-detections.

However, in many real images bad processing creates artifacts that cannot be
accurately removed by the Sky subtraction. In such cases, this option will
decrease the completeness (will artificially discard true detections). So this
feature is not default and should to be explicitly called when you know the
noise is clean.

--checkdetection

Every step of the detection process will be added as an extension to a file with
the suffix _det.fits. Going through each would just be a repeat of the expla-
nations above and also of those in Akhlaghi and Ichikawa (2015). The extension
label should be sufficient to recognize which step you are observing. Viewing
all the steps can be the best guide in choosing the best set of parameters. With
this option, NoiseChisel will abort as soon as a snapshot of all the detection
process is saved. This behavior can be disabled with --continueaftercheck.

--checksky

Check the derivation of the final sky and its standard deviation values on the
mesh grid. With this option, NoiseChisel will abort as soon as the sky value
is estimated over the image (on each tile). This behavior can be disabled with
--continueaftercheck. By default the output will have the same pixel size as
the input, but with the --oneelempertile option, only one pixel will be used
for each tile (see Section 4.1.2.2 [Processing options], page 255).

7.2.2.3 NoiseChisel output

NoiseChisel’s output is a multi-extension FITS file. The main extension/dataset is a (bi-
nary) detection map. It has the same size as the input but with only two possible values for
all pixels: 0 (for pixels identified as noise) and 1 (for those identified as signal/detections).
The detection map is followed by a Sky and Sky standard deviation dataset (which are cal-
culated from the binary image). By default (when --rawoutput is not called), NoiseChisel
will also subtract the Sky value from the input and save the sky-subtracted input as the
first extension in the output with data. The zero-th extension (that contains no data), con-
tains NoiseChisel’s configuration as FITS keywords, see Section 4.10 [Output FITS files],
page 291.

The name of the output file can be set by giving a value to --output (this is a common
option between all programs and is therefore discussed in Section 4.1.2.1 [Input/Output
options], page 252). If --output is not used, the input name will be suffixed with _

detected.fits and used as output, see Section 4.9 [Automatic output], page 290. If any of
the options starting with --check* are given, NoiseChisel will not complete and will abort
as soon as the respective check images are created. For more information on the different
check images, see the description for the --check* options in Section 7.2.2.2 [Detection
options], page 549, (this can be disabled with --continueaftercheck).
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The last two extensions of the output are the Sky and its Standard deviation, see Sec-
tion 7.1.4 [Sky value], page 519, for a complete explanation. They are calculated on the
tile grid that you defined for NoiseChisel. By default these datasets will have the same size
as the input, but with all the pixels in one tile given one value. To be more space-efficient
(keep only one pixel per tile), you can use the --oneelempertile option, see Section 4.8
[Tessellation], page 289.

To inspect any of NoiseChisel’s output files, assuming you use SAO DS9, you can con-
figure your Graphic User Interface (GUI) to open NoiseChisel’s output as a multi-extension
data cube. This will allow you to flip through the different extensions and visually inspect
the results. This process has been described for the GNOME GUI (most common GUI in
GNU/Linux operating systems) in Section 10.4 [Viewing FITS file contents with DS9 or
TOPCAT], page 680.

NoiseChisel’s output configuration options are described in detail below.

--continueaftercheck

Continue NoiseChisel after any of the options starting with --check (see Sec-
tion 7.2.2.2 [Detection options], page 549. NoiseChisel involves many steps and
as a result, there are many checks, allowing you to inspect the status of the
processing. The results of each step affect the next steps of processing. There-
fore, when you want to check the status of the processing at one step, the time
spent to complete NoiseChisel is just wasted/distracting time.

To encourage easier experimentation with the option values, when you use any
of the NoiseChisel options that start with --check, NoiseChisel will abort once
its desired extensions have been written. With --continueaftercheck option,
you can disable this behavior and ask NoiseChisel to continue with the rest of
the processing, even after the requested check files are complete.

--ignoreblankintiles

Do not set the input’s blank pixels to blank in the tiled outputs (for example,
Sky and Sky standard deviation extensions of the output). This is only applica-
ble when the tiled output has the same size as the input, in other words, when
--oneelempertile is not called.

By default, blank values in the input (commonly on the edges which are outside
the survey/field area) will be set to blank in the tiled outputs also. But in other
scenarios this default behavior is not desired; for example, if you have masked
something in the input, but want the tiled output under that also.

-l

--label Run a connected-components algorithm on the finally detected pixels to identify
which pixels are connected to which. By default the main output is a binary
dataset with only two values: 0 (for noise) and 1 (for signal/detections). See
Section 7.2.2.3 [NoiseChisel output], page 558, for more.

The purpose of NoiseChisel is to detect targets that are extended and diffuse,
with outer parts that sink into the noise very gradually (galaxies and stars
for example). Since NoiseChisel digs down to extremely low surface brightness
values, many such targets will commonly be detected together as a single large
body of connected pixels.
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To properly separate connected objects, sophisticated segmentation methods
are commonly necessary on NoiseChisel’s output. Gnuastro has the dedicated
Section 7.3 [Segment], page 561, program for this job. Since input images are
commonly large and can take a significant volume, the extra volume necessary
to store the labels of the connected components in the detection map (which
will be created with this --label option, in 32-bit signed integer type) can thus
be a major waste of space. Since the default output is just a binary dataset,
an 8-bit unsigned dataset is enough.

The binary output will also encourage users to segment the result separately
prior to doing higher-level analysis. As an alternative to --label, if you have
the binary detection image, you can use the connected-components operator
in Gnuastro’s Arithmetic program to identify regions that are connected with
each other. For example, with this command (assuming NoiseChisel’s output
is called nc.fits):

$ astarithmetic nc.fits 2 connected-components -hDETECTIONS

--rawoutput

Do not include the Sky-subtracted input image as the first extension of the
output. By default, the Sky-subtracted input is put in the first extension of the
output. The next extensions are NoiseChisel’s main outputs described above.

The extra Sky-subtracted input can be convenient in checking NoiseChisel’s
output and comparing the detection map with the input: visually see if every-
thing you expected is detected (reasonable completeness) and that you do not
have too many false detections (reasonable purity). This visual inspection is
simplified if you use SAO DS9 to view NoiseChisel’s output as a multi-extension
data-cube, see Section 10.4 [Viewing FITS file contents with DS9 or TOPCAT],
page 680.

When you are satisfied with your NoiseChisel configuration (therefore you do
not need to check on every run), or you want to archive/transfer the outputs, or
the datasets become large, or you are running NoiseChisel as part of a pipeline,
this Sky-subtracted input image can be a significant burden (take up a large
volume). The fact that the input is also noisy, makes it hard to compress it
efficiently.

In such cases, this --rawoutput can be used to avoid the extra sky-subtracted
input in the output. It is always possible to easily produce the Sky-subtracted
dataset from the input (assuming it is in extension 1 of in.fits) and the
SKY extension of NoiseChisel’s output (let’s call it nc.fits) with a command
like below (assuming NoiseChisel was not run with --oneelempertile, see
Section 4.8 [Tessellation], page 289):

$ astarithmetic in.fits nc.fits - -h1 -hSKY
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� �
Save space: with the --rawoutput and --oneelempertile, NoiseChisel’s output will
only be one binary detection map and two much smaller arrays with one value per tile.
Since none of these have noise they can be compressed very effectively (without any loss of
data) with exceptionally high compression ratios. This makes it easy to archive, or transfer,
NoiseChisel’s output even on huge datasets. To compress it with the most efficient method
(take up less volume), run the following command:

$ gzip --best noisechisel_output.fits

The resulting .fits.gz file can then be fed into any of Gnuastro’s programs directly, or
viewed in viewers like SAO DS9, without having to decompress it separately (they will
just take a little longer, because they have to internally decompress it before starting).
See Section 2.1.12 [NoiseChisel optimization for storage], page 47, for an example on a
real dataset.
 	
7.3 Segment

Once signal is separated from noise (for example, with Section 7.2 [NoiseChisel], page 541),
you have a binary dataset: each pixel is either signal (1) or noise (0). Signal (for example,
every galaxy in your image) has been “detected”, but all detections have a label of 1.
Therefore while we know which pixels contain signal, we still cannot find out how many
galaxies they contain or which detected pixels correspond to which galaxy. At the lowest
(most generic) level, detection is a kind of segmentation (segmenting the whole dataset into
signal and noise, see Section 7.2 [NoiseChisel], page 541). Here, we will define segmentation
only on signal: to separate sub-structure within the detections.

If the targets are clearly separated, or their detected regions are not touching, a simple
connected components12 algorithm (very basic segmentation) is enough to separate the
regions that are touching/connected. This is such a basic and simple form of segmentation
that Gnuastro’s Arithmetic program has an operator for it: see connected-components

in Section 6.2.4 [Arithmetic operators], page 408. Assuming the binary dataset is called
binary.fits, you can use it with a command like this:

$ astarithmetic binary.fits 2 connected-components

You can even do a very basic detection (a threshold, say at value 100) and segmentation in
Arithmetic with a single command like below:

$ astarithmetic in.fits 100 gt 2 connected-components

However, in most astronomical situations our targets are not nicely separated or have a
sharp boundary/edge (for a threshold to suffice): they touch (for example, merging galax-
ies), or are simply in the same line-of-sight (which is much more common). This causes
their images to overlap.

In particular, when you do your detection with NoiseChisel, you will detect signal to very
low surface brightness limits: deep into the faint wings of galaxies or bright stars (which can
extend very far and irregularly from their center). Therefore, it often happens that several
galaxies are detected as one large detection. Since they are touching, a simple connected
components algorithm will not suffice. It is therefore necessary to do a more sophisticated

12 https://en.wikipedia.org/wiki/Connected-component_labeling

https://en.wikipedia.org/wiki/Connected-component_labeling
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segmentation and break up the detected pixels (even those that are touching) into multiple
target objects as accurately as possible.

Segment will use a detection map and its corresponding dataset to find sub-structure
over the detected areas and use them for its segmentation. Until Gnuastro version 0.6
(released in 2018), Segment was part of Section 7.2 [NoiseChisel], page 541. Therefore,
similar to NoiseChisel, the best place to start reading about Segment and understand-
ing what it does (with many illustrative figures) is Section 3.2 of Akhlaghi and Ichikawa
2015 (https://arxiv.org/abs/1505.01664), and continue with Akhlaghi 2019 (https://
arxiv.org/abs/1909.11230).

As a summary, Segment first finds true clumps over the detections. Clumps are associ-
ated with local maxima/minima13 and extend over the neighboring pixels until they reach
a local minimum/maximum (river/watershed). By default, Segment will use the distribu-
tion of clump signal-to-noise ratios over the undetected regions as reference to find “true”
clumps over the detections. Using the undetected regions can be disabled by directly giving
a signal-to-noise ratio to --clumpsnthresh.

The true clumps are then grown to a certain threshold over the detections. Based on the
strength of the connections (rivers/watersheds) between the grown clumps, they are con-
sidered parts of one object or as separate objects. See Section 3.2 of Akhlaghi and Ichikawa
2015 (https://arxiv.org/abs/1505.01664) for more. Segment’s main output are thus
two labeled datasets: 1) clumps, and 2) objects. See Section 7.3.1.3 [Segment output],
page 570, for more.

To start learning about Segment, especially in relation to detection (Section 7.2
[NoiseChisel], page 541) and measurement (Section 7.4 [MakeCatalog], page 572), the
recommended references are Akhlaghi and Ichikawa 2015 (https://arxiv.org/abs/
1505.01664), Akhlaghi 2016 (https://arxiv.org/abs/1611.06387) and Akhlaghi 2019
(https://arxiv.org/abs/1909.11230). If you have used Segment within your research,
please run it with --cite to list the papers you should cite and how to acknowledge its
funding sources.

Those papers cannot be updated any more but the software will evolve. For example,
Segment became a separate program (from NoiseChisel) in 2018 (after those papers were
published). Therefore this book is the definitive reference. Finally, in Section 7.3.1 [Invoking
Segment], page 562, we will discuss Segment’s inputs, outputs and configuration options.

7.3.1 Invoking Segment

Segment will identify substructure within the detected regions of an input image. Seg-
ment’s output labels can be directly used for measurements (for example, with Section 7.4
[MakeCatalog], page 572). The executable name is astsegment with the following general
template

$ astsegment [OPTION ...] InputImage.fits

One line examples:

## Segment NoiseChisel's detected regions.

$ astsegment default-noisechisel-output.fits

13 By default the maximum is used as the first clump pixel, to define clumps based on local minima, use
the --minima option.

https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1909.11230
https://arxiv.org/abs/1909.11230
https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1611.06387
https://arxiv.org/abs/1909.11230
https://arxiv.org/abs/1909.11230
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## Use a hand-input S/N value for keeping true clumps

## (avoid finding the S/N using the undetected regions).

$ astsegment nc-out.fits --clumpsnthresh=10

## Inspect all the segmentation steps after changing a parameter.

$ astsegment input.fits --snquant=0.9 --checksegmentaion

## Use the fixed value of 0.01 for the input's Sky standard deviation

## (in the units of the input), and assume all the pixels are a

## detection (for example, a large structure extending over the whole

## image), and only keep clumps with S/N>10 as true clumps.

$ astsegment in.fits --std=0.01 --detection=all --clumpsnthresh=10

If Segment is to do processing (for example, you do not want to get help, or see the values
of each option), at least one input dataset is necessary along with detection and error infor-
mation, either as separate datasets (per-pixel) or fixed values, see Section 7.3.1.1 [Segment
input], page 563. Segment shares a large set of common operations with other Gnuastro
programs, mainly regarding input/output, general processing steps, and general operating
modes. To help in a unified experience between all of Gnuastro’s programs, these common
operations have the same names and defined in Section 4.1.2 [Common options], page 251.

As in all Gnuastro programs, options can also be given to Segment in configuration files.
For a thorough description of Gnuastro’s configuration file parsing, please see Section 4.2
[Configuration files], page 268. All of Segment’s options with a short description are also
always available on the command-line with the --help option, see Section 4.3 [Getting
help], page 271. To inspect the option values without actually running Segment, append
your command with --printparams (or -P).

To help in easy navigation between Segment’s options, they are separately discussed in
the three sub-sections below: Section 7.3.1.1 [Segment input], page 563, discusses how you
can customize the inputs to Segment. Section 7.3.1.2 [Segmentation options], page 567, is
devoted to options specific to the high-level segmentation process. Finally, in Section 7.3.1.3
[Segment output], page 570, we will discuss options that affect Segment’s output.

7.3.1.1 Segment input

Besides the input dataset (for example, astronomical image), Segment also needs to know
the Sky standard deviation and the regions of the dataset that it should segment. The
values dataset is assumed to be Sky subtracted by default. If it is not, you can ask Segment
to subtract the Sky internally by calling --sky. For the rest of this discussion, we will
assume it is already sky subtracted.

The Sky and its standard deviation can be a single value (to be used for the whole
dataset) or a separate dataset (for a separate value per pixel). If a dataset is used for the
Sky and its standard deviation, they must either be the size of the input image, or have
a single value per tile (generated with --oneelempertile, see Section 4.1.2.2 [Processing
options], page 255, and Section 4.8 [Tessellation], page 289).

The detected regions/pixels can be specified as a detection map (for example, see Sec-
tion 7.2.2.3 [NoiseChisel output], page 558). If --detection=all, Segment will not read
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any detection map and assume the whole input is a single detection. For example, when
the dataset is fully covered by a large nearby galaxy/globular cluster.

When dataset are to be used for any of the inputs, Segment will assume they are multiple
extensions of a single file by default (when --std or --detection are not called). For
example, NoiseChisel’s default output Section 7.2.2.3 [NoiseChisel output], page 558. When
the Sky-subtracted values are in one file, and the detection and Sky standard deviation are
in another, you just need to use --detection: in the absence of --std, Segment will look
for both the detection labels and Sky standard deviation in the file given to --detection.
Ultimately, if all three are in separate files, you need to call both --detection and --std.

The extensions of the three mandatory inputs can be specified with --hdu, --dhdu,
and --stdhdu. For a full discussion on what to give to these options, see the description
of --hdu in Section 4.1.2.1 [Input/Output options], page 252. To see their default values
(along with all the other options), run Segment with the --printparams (or -P) option.
Just recall that in the absence of --detection and --std, all three are assumed to be in
the same file. If you only want to see Segment’s default values for HDUs on your system,
run this command:

$ astsegment -P | grep hdu

By default Segment will convolve the input with a kernel to improve the signal-to-noise
ratio of true peaks. If you already have the convolved input dataset, you can pass it directly
to Segment for faster processing (using the --convolved and --chdu options). Just do not
forget that the convolved image must also be Sky-subtracted before calling Segment. If
a value/file is given to --sky, the convolved values will also be Sky subtracted internally.
Alternatively, if you prefer to give a kernel (with --kernel and --khdu), Segment can do
the convolution internally. To disable convolution, use --kernel=none.

--sky=STR/FLT

The Sky value(s) to subtract from the input. This option can either be given
a constant number or a file name containing a dataset (multiple values, per
pixel or per tile). By default, Segment will assume the input dataset is Sky
subtracted, so this option is not mandatory.

If the value cannot be read as a number, it is assumed to be a file name. When
the value is a file, the extension can be specified with --skyhdu. When it is
not a single number, the given dataset must either have the same size as the
output or the same size as the tessellation (so there is one pixel per tile, see
Section 4.8 [Tessellation], page 289).

When this option is given, its value(s) will be subtracted from the input and
the (optional) convolved dataset (given to --convolved) prior to starting the
segmentation process.

--skyhdu=STR/INT

The HDU/extension containing the Sky values. This is mandatory when the
value given to --sky is not a number. Please see the description of --hdu in
Section 4.1.2.1 [Input/Output options], page 252, for the different ways you can
identify a special extension.

--std=STR/FLT

The Sky standard deviation value(s) corresponding to the input. The value
can either be a constant number or a file name containing a dataset (multiple
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values, per pixel or per tile). The Sky standard deviation is mandatory for
Segment to operate.

If the value cannot be read as a number, it is assumed to be a file name. When
the value is a file, the extension can be specified with --skyhdu. When it is
not a single number, the given dataset must either have the same size as the
output or the same size as the tessellation (so there is one pixel per tile, see
Section 4.8 [Tessellation], page 289).

When this option is not called, Segment will assume the standard deviation
is a dataset and in a HDU/extension (--stdhdu) of another one of the input
file(s). If a file is given to --detection, it will assume that file contains the
standard deviation dataset, otherwise, it will look into input filename (the main
argument, without any option).

--stdhdu=INT/STR

The HDU/extension containing the Sky standard deviation values, when the
value given to --std is a file name. Please see the description of --hdu in
Section 4.1.2.1 [Input/Output options], page 252, for the different ways you
can identify a special extension.

--variance

The input Sky standard deviation value/dataset is actually variance. When this
option is called, the square root of input Sky standard deviation (see --std) is
used internally, not its raw value(s).

-d FITS

--detection=FITS

Detection map to use for segmentation. If given a value of all, Segment will
assume the whole dataset must be segmented, see below. If a detection map is
given, the extension can be specified with --dhdu. If not given, Segment will
assume the desired HDU/extension is in the main input argument (input file
specified with no option).

The final segmentation (clumps or objects) will only be over the non-zero pixels
of this detection map. The dataset must have the same size as the input image.
Only datasets with an integer type are acceptable for the labeled image, see
Section 4.5 [Numeric data types], page 277. If your detection map only has
integer values, but it is stored in a floating point container, you can use Gnu-
astro’s Arithmetic program (see Section 6.2 [Arithmetic], page 399) to convert
it to an integer container, like the example below:

$ astarithmetic float.fits int32 --output=int.fits

It may happen that the whole input dataset is covered by signal, for example,
when working on parts of the Andromeda galaxy, or nearby globular clusters
(that cover the whole field of view). In such cases, segmentation is necessary
over the complete dataset, not just specific regions (detections). By default Seg-
ment will first use the undetected regions as a reference to find the proper signal-
to-noise ratio of “true” clumps (give a purity level specified with --snquant).
Therefore, in such scenarios you also need to manually give a “true” clump
signal-to-noise ratio with the --clumpsnthresh option to disable looking into
the undetected regions, see Section 7.3.1.2 [Segmentation options], page 567.
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In such cases, is possible to make a detection map that only has the value 1

for all pixels (for example, using Section 6.2 [Arithmetic], page 399), but for
convenience, you can also use --detection=all.

--dhdu The HDU/extension containing the detection map given to --detection.
Please see the description of --hdu in Section 4.1.2.1 [Input/Output options],
page 252, for the different ways you can identify a special extension.

-k FITS

--kernel=FITS

The name of file containing kernel that will be used to convolve the input
image. The usage of this option is identical to NoiseChisel’s --kernel option
(Section 7.2.2.1 [NoiseChisel input], page 547). Please see the descriptions there
for more. To disable convolution, you can give it a value of none.

--khdu The HDU/extension containing the kernel used for convolution. For acceptable
values, please see the description of --hdu in Section 4.1.2.1 [Input/Output
options], page 252.

--convolved=FITS

The convolved image’s file name to avoid internal convolution by Segment. The
usage of this option is identical to NoiseChisel’s --convolved option. Please
see Section 7.2.2.1 [NoiseChisel input], page 547, for a thorough discussion of
the usefulness and best practices of using this option.

If you want to use the same convolution kernel for detection (with Section 7.2
[NoiseChisel], page 541) and segmentation, with this option, you can use the
same convolved image (that is also available in NoiseChisel) and avoid two
convolutions. However, just be careful to use the input to NoiseChisel as the
input to Segment also, then use the --sky and --std to specify the Sky and its
standard deviation (from NoiseChisel’s output). Recall that when NoiseChisel
is not called with --rawoutput, the first extension of NoiseChisel’s output is
the Sky-subtracted input (see Section 7.2.2.3 [NoiseChisel output], page 558).
So if you use the same convolved image that you fed to NoiseChisel, but use
NoiseChisel’s output with Segment’s --convolved, then the convolved image
will not be Sky subtracted.

--chdu The HDU/extension containing the convolved image (given to --convolved).
For acceptable values, please see the description of --hdu in Section 4.1.2.1
[Input/Output options], page 252.

-L INT[,INT]

--largetilesize=INT[,INT]

The size of the large tiles to use for identifying the clump S/N threshold over
the undetected regions. The usage of this option is identical to NoiseChisel’s
--largetilesize option (Section 7.2.2.1 [NoiseChisel input], page 547). Please
see the descriptions there for more.

The undetected regions can be a significant fraction of the dataset and finding
clumps requires sorting of the desired regions, which can be slow. To speed up
the processing, Segment finds clumps in the undetected regions over separate
large tiles. This allows it to have to sort a much smaller set of pixels and also
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to treat them independently and in parallel. Both these issues greatly speed it
up. Just be sure to not decrease the large tile sizes too much (less than 100
pixels in each dimension). It is important for them to be much larger than the
clumps.

7.3.1.2 Segmentation options

The options below can be used to configure every step of the segmentation process in the
Segment program. For a more complete explanation (with figures to demonstrate each
step), please see Section 3.2 of Akhlaghi and Ichikawa 2015 (https://arxiv.org/abs/
1505.01664), and also Section 7.3 [Segment], page 561. By default, Segment will fol-
low the procedure described in the paper to find the S/N threshold based on the noise
properties. This can be disabled by directly giving a trustable signal-to-noise ratio to the
--clumpsnthresh option.

Recall that you can always see the full list of Gnuastro’s options with the --help (see
Section 4.3 [Getting help], page 271), or --printparams (or -P) to see their values (see
Section 4.1.2.3 [Operating mode options], page 257).

-B FLT

--minskyfrac=FLT

Minimum fraction (value between 0 and 1) of Sky (undetected) areas in a large
tile. Only (large) tiles with a fraction of undetected pixels (Sky) greater than
this value will be used for finding clumps. The clumps found in the undetected
areas will be used to estimate a S/N threshold for true clumps. Therefore
this is an important option (to decrease) in crowded fields. Operationally,
this is almost identical to NoiseChisel’s --minskyfrac option (Section 7.2.2.2
[Detection options], page 549). Please see the descriptions there for more.

--minima Build the clumps based on the local minima, not maxima. By default, clumps
are built starting from local maxima (see Figure 8 of Akhlaghi and Ichikawa
2015 (https://arxiv.org/abs/1505.01664)). Therefore, this option can be
useful when you are searching for true local minima (for example, absorption
features).

-m INT

--snminarea=INT

The minimum area which a clump in the undetected regions should have in
order to be considered in the clump Signal to noise ratio measurement. If this
size is set to a small value, the Signal to noise ratio of false clumps will not be
accurately found. It is recommended that this value be larger than the value
to NoiseChisel’s --snminarea. Because the clumps are found on the convolved
(smoothed) image while the pseudo-detections are found on the input image.
You can use --checksn and --checksegmentation to see if your chosen value
is reasonable or not.

--checksn

Save the S/N values of the clumps over the sky and detected regions into sep-
arate tables. If --tableformat is a FITS format, each table will be written
into a separate extension of one file suffixed with _clumpsn.fits. If it is plain
text, a separate file will be made for each table (ending in _clumpsn_sky.txt

https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1505.01664
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and _clumpsn_det.txt). For more on --tableformat see Section 4.1.2.1 [In-
put/Output options], page 252.

You can use these tables to inspect the S/N values and their distribution (in
combination with the --checksegmentation option to see where the clumps
are). You can use Gnuastro’s Section 7.1 [Statistics], page 508, to make a
histogram of the distribution (ready for plotting in a text file, or a crude ASCII-
art demonstration on the command-line).

With this option, Segment will abort as soon as the two tables are created.
This allows you to inspect the steps leading to the final S/N quantile threshold,
this behavior can be disabled with --continueaftercheck.

--minnumfalse=INT

The minimum number of clumps over undetected (Sky) regions to identify the
requested Signal-to-Noise ratio threshold. Operationally, this is almost identi-
cal to NoiseChisel’s --minnumfalse option (Section 7.2.2.2 [Detection options],
page 549). Please see the descriptions there for more.

-c FLT

--snquant=FLT

The quantile of the signal-to-noise ratio distribution of clumps in undetected
regions, used to define true clumps. After identifying all the usable clumps in
the undetected regions of the dataset, the given quantile of their signal-to-noise
ratios is used to define the signal-to-noise ratio of a “true” clump. Effectively,
this can be seen as an inverse p-value measure. See Figure 9 and Section 3.2.1
of Akhlaghi and Ichikawa 2015 (https://arxiv.org/abs/1505.01664) for a
complete explanation. The full distribution of clump signal-to-noise ratios over
the undetected areas can be saved into a table with --checksn option and
visually inspected with --checksegmentation.

-v

--keepmaxnearriver

Keep a clump whose maximum (minimum if --minima is called) flux is 8-
connected to a river pixel. By default such clumps over detections are con-
sidered to be noise and are removed irrespective of their significance measure;
see Akhlaghi 2019 (https://arxiv.org/abs/1909.11230). Over large profiles,
that sink into the noise very slowly, noise can cause part of the profile (which
was flat without noise) to become a very large and with a very high Signal to
noise ratio. In such cases, the pixel with the maximum flux in the clump will
be immediately touching a river pixel.

-s FLT

--clumpsnthresh=FLT

The signal-to-noise threshold for true clumps. If this option is given, then the
segmentation options above will be ignored and the given value will be directly
used to identify true clumps over the detections. This can be useful if you have a
large dataset with similar noise properties. You can find a robust signal-to-noise
ratio based on a (sufficiently large) smaller portion of the dataset. Afterwards,
with this option, you can speed up the processing on the whole dataset. Other

https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1909.11230
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scenarios where this option may be useful is when, the image might not contain
enough/any Sky regions.

-G FLT

--gthresh=FLT

Threshold (multiple of the sky standard deviation added with the sky) to stop
growing true clumps. Once true clumps are found, they are set as the basis to
segment the detected region. They are grown until the threshold specified by
this option.

-y INT

--minriverlength=INT

The minimum length of a river between two grown clumps for it to be considered
in signal-to-noise ratio estimations. Similar to --snminarea, if the length of
the river is too short, the signal-to-noise ratio can be noisy and unreliable.
Any existing rivers shorter than this length will be considered as non-existent,
independent of their Signal to noise ratio. The clumps are grown on the input
image, therefore this value can be smaller than the value given to --snminarea.
Recall that the clumps were defined on the convolved image so --snminarea

should be larger.

-O FLT

--objbordersn=FLT

The maximum Signal to noise ratio of the rivers between two grown clumps
in order to consider them as separate ‘objects’. If the Signal to noise ratio of
the river between two grown clumps is larger than this value, they are defined
to be part of one ‘object’. Note that the physical reality of these ‘objects’ can
never be established with one image, or even multiple images from one broad-
band filter. Any method we devise to define ‘object’s over a detected region is
ultimately subjective.

Two very distant galaxies or satellites in one halo might lie in the same line
of sight and be detected as clumps on one detection. On the other hand, the
connection (through a spiral arm or tidal tail for example) between two parts
of one galaxy might have such a low surface brightness that they are broken
up into multiple detections or objects. In fact if you have noticed, exactly
for this purpose, this is the only Signal to noise ratio that the user gives into
NoiseChisel. The ‘true’ detections and clumps can be objectively identified
from the noise characteristics of the image, so you do not have to give any hand
input Signal to noise ratio.

--checksegmentation

A file with the suffix _seg.fits will be created. This file keeps all the relevant
steps in finding true clumps and segmenting the detections into multiple objects
in various extensions. Having read the paper or the steps above. Examining
this file can be an excellent guide in choosing the best set of parameters. Note
that calling this function will significantly slow NoiseChisel. In verbose mode
(without the --quiet option, see Section 4.1.2.3 [Operating mode options],
page 257) the important steps (along with their extension names) will also be
reported.
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With this option, NoiseChisel will abort as soon as the two tables are created.
This behavior can be disabled with --continueaftercheck.

7.3.1.3 Segment output

The main output of Segment are two label datasets (with integer types, separating the
dataset’s elements into different classes). They have HDU/extension names of CLUMPS and
OBJECTS.

Similar to all Gnuastro’s FITS outputs, the zero-th extension/HDU of the main output
file only contains header keywords and image or table. It contains the Segment input
files and parameters (option names and values) as FITS keywords. Note that if an option
name is longer than 8 characters, the keyword name is the second word. The first word
is HIERARCH. Also note that according to the FITS standard, the keyword names must be
in capital letters, therefore, if you want to use Grep to inspect these keywords, use the -i

option, like the example below.

$ astfits image_segmented.fits -h0 | grep -i snquant

By default, besides the CLUMPS and OBJECTS extensions, Segment’s output will also
contain the (technically redundant) sky-subtracted input dataset (INPUT-NO-SKY) and the
sky standard deviation dataset (SKY_STD, if it was not a constant number). This can
help in visually inspecting the result when viewing the images as a “Multi-extension data
cube” in SAO DS9 for example, (see Section 10.4 [Viewing FITS file contents with DS9 or
TOPCAT], page 680). You can simply flip through the extensions and see the same region
of the image and its corresponding clumps/object labels. It also makes it easy to feed
the output (as one file) into MakeCatalog when you intend to make a catalog afterwards
(see Section 7.4 [MakeCatalog], page 572. To remove these redundant extensions from the
output (for example, when designing a pipeline), you can use --rawoutput.

The OBJECTS and CLUMPS extensions can be used as input into Section 7.4 [MakeCatalog],
page 572, to generate a catalog for higher-level analysis. If you want to treat each clump
separately, you can give a very large value (or even a NaN, which will always fail) to the
--gthresh option (for example, --gthresh=1e10 or --gthresh=nan), see Section 7.3.1.2
[Segmentation options], page 567.

For a complete definition of clumps and objects, please see Section 3.2 of Akhlaghi and
Ichikawa 2015 (https://arxiv.org/abs/1505.01664) and Section 7.3.1.2 [Segmentation
options], page 567. The clumps are “true” local maxima (minima if --minima is called) and
their surrounding pixels until a local minimum/maximum (caused by noise fluctuations, or
another “true” clump). Therefore it may happen that some of the input detections are not
covered by clumps at all (very diffuse objects without any strong peak), while some objects
may contain many clumps. Even in those that have clumps, there will be regions that are
too diffuse. The diffuse regions (within the input detected regions) are given a negative
label (-1) to help you separate them from the undetected regions (with a value of zero).

Each clump is labeled with respect to its host object. Therefore, if an object has three
clumps for example, the clumps within it have labels 1, 2 and 3. As a result, if an initial
detected region has multiple objects, each with a single clump, all the clumps will have a
label of 1. The total number of clumps in the dataset is stored in the NCLUMPS keyword of
the CLUMPS extension and printed in the verbose output of Segment (when --quiet is not
called).

https://arxiv.org/abs/1505.01664
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The OBJECTS extension of the output will give a positive counter/label to every detected
pixel in the input. As described in Akhlaghi and Ichikawa [2015], the true clumps are grown
until a certain threshold. If the grown clumps touch other clumps and the connection is
strong enough, they are considered part of the same object. Once objects (grown clumps)
are identified, they are grown to cover the whole detected area.

The options to configure the output of Segment are listed below:

--continueaftercheck

Do not abort Segment after producing the check image(s). The usage of this op-
tion is identical to NoiseChisel’s --continueaftercheck option (Section 7.2.2.1
[NoiseChisel input], page 547). Please see the descriptions there for more.

--noobjects

Abort Segment after finding true clumps and do not continue with finding
options. Therefore, no OBJECTS extension will be present in the output. Each
true clump in CLUMPS will get a unique label, but diffuse regions will still have
a negative value.

To make a catalog of the clumps, the input detection map (where all the labels
are one) can be fed into Section 7.4 [MakeCatalog], page 572, along with the
input detection map to Segment (that only had a value of 1 for all detected
pixels) with --clumpscat. In this way, MakeCatalog will assume all the clumps
belong to a single “object”.

--grownclumps

In the output CLUMPS extension, store the grown clumps. If a detected region
contains no clumps or only one clump, then it will be fully given a label of 1
(no negative valued pixels).

--rawoutput

Only write the CLUMPS and OBJECTS datasets in the output file. Without this
option (by default), the first and last extensions of the output will the Sky-
subtracted input dataset and the Sky standard deviation dataset (if it was not
a number). When the datasets are small, these redundant extensions can make
it convenient to inspect the results visually or feed the output to Section 7.4
[MakeCatalog], page 572, for measurements. Ultimately both the input and
Sky standard deviation datasets are redundant (you had them before running
Segment). When the inputs are large/numerous, these extra dataset can be a
burden.� �

Save space: with the --rawoutput, Segment’s output will only be two labeled datasets
(only containing integers). Since they have no noise, such datasets can be compressed very
effectively (without any loss of data) with exceptionally high compression ratios. You can
use the following command to compress it with the best ratio:

$ gzip --best segment_output.fits

The resulting .fits.gz file can then be fed into any of Gnuastro’s programs directly,
without having to decompress it separately (it will just take them a little longer, because
they have to decompress it internally before use).
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When the input is a 2D image, to inspect NoiseChisel’s output you can configure SAO
DS9 in your Graphic User Interface (GUI) to open NoiseChisel’s output as a multi-extension
data cube. This will allow you to flip through the different extensions and visually inspect
the results. This process has been described for the GNOME GUI (most common GUI in
GNU/Linux operating systems) in Section 10.4 [Viewing FITS file contents with DS9 or
TOPCAT], page 680.

7.4 MakeCatalog

At the lowest level, a dataset (for example, an image) is just a collection of values, placed
after each other in any number of dimensions (for example, an image is a 2D dataset).
Each data-element (pixel) just has two properties: its position (relative to the rest) and its
value. In higher-level analysis, an entire dataset (an image for example) is rarely treated
as a singular entity14. You usually want to know/measure the properties of the (separate)
scientifically interesting targets that are embedded in it. For example, the magnitudes,
positions and elliptical properties of the galaxies that are in the image.

MakeCatalog is Gnuastro’s program for localized measurements over a dataset. In
other words, MakeCatalog is Gnuastro’s program to convert low-level datasets (like im-
ages), to high level catalogs. The role of MakeCatalog in a scientific analysis and the
benefits of its model (where detection/segmentation is separated from measurement) is dis-
cussed in Akhlaghi 2016 (https://arxiv.org/abs/1611.06387v1)15 and summarized in
Section 7.4.1 [Detection and catalog production], page 573. We strongly recommend read-
ing this short paper for a better understanding of this methodology. Understanding the
effective usage of MakeCatalog, will thus also help effective use of other (lower-level) Gnu-
astro’s programs like Section 7.2 [NoiseChisel], page 541, or Section 7.3 [Segment], page 561.

It is important to define your regions of interest for measurements before running Make-
Catalog. MakeCatalog is specialized in doing measurements accurately and efficiently.
Therefore MakeCatalog will not do detection, segmentation, or defining apertures on re-
quested positions in your dataset. Following Gnuastro’s modularity principle, there are
separate and highly specialized and customizable programs in Gnuastro for these other
jobs as shown below (for a usage example in a real-world analysis, see Section 2.1 [Gen-
eral program usage tutorial], page 23, and Section 2.2 [Detecting large extended targets],
page 81).

• Section 6.2 [Arithmetic], page 399: Detection with a simple threshold.

• Section 7.2 [NoiseChisel], page 541: Advanced detection.

• Section 7.3 [Segment], page 561: Segmentation (substructure over detections).

• Section 8.1 [MakeProfiles], page 629: Aperture creation for known positions.

These programs will/can return labeled dataset(s) to be fed into MakeCatalog. A labeled
dataset for measurement has the same size/dimensions as the input, but with integer valued
pixels that have the label/counter for each sub-set of pixels that must be measured together.
For example, all the pixels covering one galaxy in an image, get the same label.

14 You can derive the over-all properties of a complete dataset (1D table column, 2D image, or 3D data-
cube) treated as a single entity with Gnuastro’s Statistics program (see Section 7.1 [Statistics], page 508).

15 A published paper cannot undergo any more change, so this manual is the definitive guide.

https://arxiv.org/abs/1611.06387v1
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The requested measurements are then done on similarly labeled pixels. The final result
is a catalog where each row corresponds to the measurements on pixels with a specific label.
For example, the flux weighted average position of all the pixels with a label of 42 will be
written into the 42nd row of the output catalog/table’s central position column16. Similarly,
the sum of all these pixels will be the 42nd row in the sum column, etc. Pixels with labels
equal to, or smaller than, zero will be ignored by MakeCatalog. In other words, the number
of rows in MakeCatalog’s output is already known before running it (the maximum value
of the labeled dataset).

Before getting into the details of running MakeCatalog (in Section 7.4.7 [Invoking Make-
Catalog], page 608, we will start with a discussion on the basics of its approach to separating
detection from measurements in Section 7.4.1 [Detection and catalog production], page 573.
A very important factor in any measurement is understanding its validity range, or limits.
Therefore in Section 7.4.3 [Quantifying measurement limits], page 578, we will discuss how
to estimate the reliability of the detection and basic measurements. This section will con-
tinue with a derivation of elliptical parameters from the labeled datasets in Section 7.4.4
[Measuring elliptical parameters], page 589. For those who feel MakeCatalog’s existing
measurements/columns are not enough and would like to add further measurements, in
Section 7.4.5 [Adding new columns to MakeCatalog], page 591, a checklist of steps is pro-
vided for readily adding your own new measurements/columns.

7.4.1 Detection and catalog production

Most existing common tools in low-level astronomical data-analysis (for example, SExtrac-
tor17) merge the two processes of detection and measurement (catalog production) in one
program. However, in light of Gnuastro’s modularized approach (modeled on the Unix sys-
tem) detection is separated from measurements and catalog production. This modularity is
therefore new to many experienced astronomers and deserves a short review here. Further
discussion on the benefits of this methodology can be seen in Akhlaghi 2016 (https://
arxiv.org/abs/1611.06387v1).

As discussed in the introduction of Section 7.4 [MakeCatalog], page 572, detection (iden-
tifying which pixels to do measurements on) can be done with different programs. Their
outputs (a labeled dataset) can be directly fed into MakeCatalog to do the measurements
and write the result as a catalog/table. Beyond that, Gnuastro’s modular approach has
many benefits that will become clear as you get more experienced in astronomical data
analysis and want to be more creative in using your valuable data for the exciting scientific
project you are working on. In short the reasons for this modularity can be classified as
below:

• Simplicity/robustness of independent, modular tools: making a catalog is a logically
separate process from labeling (detection, segmentation, or aperture production). A
user might want to do certain operations on the labeled regions before creating a catalog
for them. Another user might want the properties of the same pixels/objects in another
image (another filter for example) to measure the colors or SED fittings.

Here is an example of doing both: suppose you have images in various broad band
filters at various resolutions and orientations. The image of one color will thus not lie

16 See Section 7.4.4 [Measuring elliptical parameters], page 589, for a discussion on this and the derivation
of positional parameters, which includes the center.

17 https://www.astromatic.net/software/sextractor

https://arxiv.org/abs/1611.06387v1
https://arxiv.org/abs/1611.06387v1
https://www.astromatic.net/software/sextractor
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exactly on another or even be in the same scale. However, it is imperative that the
same pixels be used in measuring the colors of galaxies.

To solve the problem, NoiseChisel can be run on the reference image to generate the
labeled detection image. Afterwards, the labeled image can be warped into the grid of
the other color (using Section 6.4 [Warp], page 492). MakeCatalog will then generate
the same catalog for both colors (with the different labeled images). It is currently
customary to warp the images to the same pixel grid, however, modification of the
scientific dataset is very harmful for the data and creates correlated noise. It is much
more accurate to do the transformations on the labeled image.

• Complexity of a monolith: Adding in a catalog functionality to the detector program
will add several more steps (and many more options) to its processing that can equally
well be done outside of it. This makes following what the program does harder for the
users and developers, it can also potentially add many bugs.

As an example, if the parameter you want to measure over one profile is not provided
by the developers of MakeCatalog. You can simply open this tiny little program and
add your desired calculation easily. This process is discussed in Section 7.4.5 [Adding
new columns to MakeCatalog], page 591. However, if making a catalog was part of
NoiseChisel for example, adding a new column/measurement would require a lot of
energy to understand all the steps and internal structures of that huge program. It
might even be so intertwined with its processing, that adding new columns might cause
problems/bugs in its primary job (detection).

7.4.2 Brightness, Flux, Magnitude and Surface brightness

Astronomical data pixels are usually in units of counts18 or electrons or either one divided
by seconds. To convert from the counts to electrons, you will need to know the instrument
gain. In any case, they can be directly converted to energy or energy/time using the basic
hardware (telescope, camera and filter) information (that is summarized in the zero point,
and we will discuss below). We will continue the discussion assuming the pixels are in units
of energy/time.

Brightness The brightness of an object is defined as its measured energy in units of time. If
our detector pixels directly measured the energy from the astronomical object19,
then the brightness would be the total sum of pixel values (energy) associated
to the object, divided by the exposure time. The flux of an object is defined
in units of energy/time/collecting-area. For an astronomical target, the flux
is therefore defined as its brightness divided by the area used to collect the
light from the source; or the telescope aperture (for example, in units of cm2).
Knowing the flux (f) and distance to the object (r), we can define its luminosity :
L = 4πr2f .

Therefore, while flux and luminosity are intrinsic properties of the object,
brightness depends on our detecting tools (hardware and software). In low-
level observational astronomy data analysis, we are usually more concerned

18 Counts are also known as analog to digital units (ADU).
19 In practice, the measured pixels don’t just count the astronomical object’s energy: imaging detectors

insert a certain bias level before the exposure, they amplify the photo-electrons, there are optical artifacts
like flat-fielding, and finally, there is the background light.
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with measuring the brightness, because it is the thing we directly measure from
the image pixels and create in catalogs. On the other hand, luminosity is used
in higher-level analysis (after image contents are measured as catalogs to de-
duce physical interpretations, because high-level things like distance/redshift
need to be calculated). At this stage, it is just important avoid confusion be-
tween luminosity and brightness because both have the same units of energy
per seconds.

Magnitude
Images of astronomical objects span over a very large range of brightness: the
Sun (as the brightest object) is roughly 2.560 = 1024 times brighter than the
fainter galaxies we can currently detect in the deepest images. Therefore dis-
cussing brightness directly will involve a large range of values which is inconve-
nient. So astronomers have chosen to use a logarithmic scale for the brightness
of astronomical objects.

But the logarithm can only be usable with a dimensionless value that is always
positive. Fortunately brightness is always positive (at least in theory20). To
remove the dimensions, we divide the brightness of the object (B) by a reference
brightness (Br). We then define a logarithmic scale as magnitude through the
relation below. The −2.5 factor in the definition of magnitudes is a legacy of
the our ancient colleagues and in particular Hipparchus of Nicaea (190-120 BC).

m−mr = −2.5 log10
(
B

Br

)

m is defined as the magnitude of the object andmr is the pre-defined magnitude
of the reference brightness. For estimating the error in measuring a magnitude,
see Section 7.4.3 [Quantifying measurement limits], page 578.

Zero point A unique situation in the magnitude equation above occurs when the reference
brightness is unity (Br = 1). This brightness will thus summarize all the
hardware-specific parameters discussed above (like the conversion of pixel values
to physical units) into one number. That reference magnitude is commonly
known as the Zero point magnitude because when B = Br = 1, the right side
of the magnitude definition above will be zero. Using the zero point magnitude
(Z), we can write the magnitude relation above in a more simpler format:

m = −2.5 log10(B) + Z

Gnuastro has an installed script to estimate the zero point of any image, see
Section 10.5 [Zero point estimation], page 684, (it contains practical tutorials to
help you get started fast). Having the zero point of an image, you can convert
its pixel values to physical units like microJanskys (or µJy). This enables

20 In practice, for very faint objects, if the background brightness is over-subtracted, we may end up with
a negative “brightness” or sum of pixels in a real object.



Chapter 7: Data analysis 576

direct pixel-based comparisons with images from other instruments21. Jansky
is a commonly used unit for measuring spectral flux density and one Jansky is
equivalent to 10−26W/m2/Hz (watts per square meter per hertz).

This conversion can be done with the fact that in the AB magnitude standard22,
3631Jy corresponds to the zero-th magnitude, therefore B ≡ 3631×106µJy and
m ≡ 0. We can therefore estimate the brightness (Bz, in µJy) corresponding
to the image zero point (Z) using this equation:

m− Z = −2.5 log10(B/Bz)

0− Z = −2.5 log10(
3631× 106

Bz
)

Bz = 3631× 10(6−
Z
2.5)µJy

Because the image zero point corresponds to a pixel value of 1, the Bz value
calculated above also corresponds to a pixel value of 1. Therefore you simply
have to multiply your image by Bz to convert it to µJy. Do not forget that
this only applies when your zero point was also estimated in the AB magnitude
system. On the command-line, you can estimate this value for a certain zero
point with AWK, then multiply it to all the pixels in the image with Section 6.2
[Arithmetic], page 399. For example, let’s assume you are using an SDSS image
with a zero point of 22.5:

bz=$(echo 22.5 | awk '{print 3631 * 10^(6-$1/2.5)}')

astarithmetic sdss.fits $bz x --output=sdss-in-muJy.fits

But in Gnuastro, it gets even easier: Arithmetic has an operator called counts-

to-jy. This will directly convert your image pixels (in units of counts) to
Janskys though a provided AB Magnitude-based zero point like below. See
Section 6.2.4 [Arithmetic operators], page 408, for more.

$ astarithmetic sdss.fits 22.5 counts-to-jy� �
Be careful with the exposure time: as described at the start of this section,
we are assuming your data are in units of counts/sec. As a result, the counts
you get from the command above, are only for one second of exposure! Please
see the discussion below in “Magnitude to counts” for more.
 	

Magnitude to counts (accounting for exposure time)
Until now, we had assumed that the data are in units of counts/sec. As a result,
the equations given above (in the “Zero point” item to convert magnitudes

21 Comparing data from different instruments assumes instrument and observation signatures are properly
corrected, things like the flat-field or the Sky absorption. It is also valid for pixel values, assuming that
factors that can change the morphology (like the Section 8.1.1.2 [Point spread function], page 631) are
the same.

22 https://en.wikipedia.org/wiki/AB_magnitude

https://en.wikipedia.org/wiki/AB_magnitude
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to pixel counts), give the count level for the reference (1 second) exposure.
But we rarely take 1 second exposures! It is therefore very important to take
the exposure time into account in scenarios like simulating observations with
varying exposure times (where you need to know how many counts the object of
a certain magnitude will add to a certain image with a certain exposure time).

To clarify the concept, let’s define C as the counted electrons (which has a linear
relation with the photon energy entering the CCD pixel). In this case, if an
object of brightness B is observed for t seconds, it will accumulate C = B × t
counts23. Therefore, the generic magnitude equation above can be written as:

m = −2.5 log10(B) + Z = −2.5 log10(C/t) + Z

From this, we can derive C(t) in relation to C(1), or counts from a 1 second
exposure, using this relation:

C(t) = t× 10(m−Z)/2.5 = t× C(1)

In other words, you should simply multiply the counts for one second with the
number of observed seconds.

Another approach is to shift the time-dependence of the counts into the zero
point (after all exposure time is also a hardware issue). Let’s derive the equation
below:

m = −2.5 log10(C/t) + Z = −2.5 log10(C) + 2.5 log10(t) + Z

Therefore, defining an exposure-time-dependent zero point as Z(t), we can
directly correlate a certain object’s magnitude with counts after an exposure of
t seconds:

m = −2.5 log10(C) + Z(t) where Z(t) = Z + 2.5 log10(t)

This solution is useful in programs like Section 7.4 [MakeCatalog], page 572,
or Section 8.1 [MakeProfiles], page 629, when you cannot (or do not want to:
because of the extra storage/speed costs) manipulate the values image (for
example, divide it by the exposure time to use a counts/sec zero point).

Surface brightness
Another important concept is the distribution of an object’s brightness over
its area. For this, we define the surface brightness to be the magnitude of
an object’s brightness divided by its solid angle over the celestial sphere (or
coverage in the sky, commonly in units of arcsec2). The solid angle is expressed
in units of arcsec2 because astronomical targets are usually much smaller than
one steradian. Recall that the steradian is the dimension-less SI unit of a solid
angle and 1 steradian covers 1/4π (almost 8%) of the full celestial sphere.

Surface brightness is therefore most commonly expressed in units of
mag/arcsec2. For example, when the brightness is measured over an area of A
arcsec2, then the surface brightness becomes:

23 Recall that counts another name for ADUs, which already includes the CCD gain.
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S = −2.5 log10(B/A) + Z = −2.5 log10(B) + 2.5 log10(A) + Z

In other words, the surface brightness (in units of mag/arcsec2) is related to the
object’s magnitude (m) and area (A, in units of arcsec2) through this equation:

S = m+ 2.5 log10(A)

A common mistake is to follow the mag/arcsec2 unit literally, and divide the
object’s magnitude by its area. But this is wrong because magnitude is a
logarithmic scale while area is linear. It is the brightness that should be divided
by the solid angle because both have linear scales. The magnitude of that ratio
is then defined to be the surface brightness.

One usual application of this is to convert an image’s pixel values to surface
brightness, when you know its zero point. This can be done with the two
simple commands below. First, we derive the pixel area (in arcsec2) then we
use Arithmetic to convert the pixels into surface brightness, see below for the
details.

$ zeropoint=22.5

$ pixarea=$(astfits image.fits --pixelareaarcsec2)

$ astarithmetic image.fits $zeropoint $pixarea counts-to-sb \

--output=image-sb.fits

See Section 6.2.1 [Reverse polish notation], page 399, for more on Arithmetic’s
notation and Section 6.2.4 [Arithmetic operators], page 408, for a description of
each operator. And see Section 2.1.20 [FITS images in a publication], page 66,
for a fully working tutorial on how to optimally convert a FITS image to a PDF
image for usage in a publication using the surface brightness conversion shown
above.� �
Do not warp or convolve magnitude or surface brightness images: Warping
an image involves calculating new pixel values (of the new pixel grid) from the
old pixel values. Convolution is also a process of finding the weighted mean
of pixel values. During these processes, many arithmetic operations are done
on the original pixel values, for example, addition or multiplication. However,
log10(a+ b) 6= log10(a) + log10(b). Therefore after calculating a magnitude or
surface brightness image, do not apply any such operations on it! If you need
to warp or convolve the image, do it before the conversion.
 	

7.4.3 Quantifying measurement limits

No measurement on a real dataset can be perfect: you can only reach a certain level/limit
of accuracy and a meaningful (scientific) analysis requires an understanding of these lim-
its. Different datasets have different noise properties and different detection methods (one
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method/algorithm/software that is run with a different set of parameters is considered as
a different detection method) will have different abilities to detect or measure certain kinds
of signal (astronomical objects) and their properties in the dataset. Hence, quantifying the
detection and measurement limitations with a particular dataset and analysis tool is the
most crucial/critical aspect of any high-level analysis. In two separate tutorials, we have
touched upon some of these points. So to see the discussions below in action (on real data),
see Section 2.1.14 [Measuring the dataset limits], page 50, and Section 2.2.4 [Image surface
brightness limit], page 93.

Here, we will review some of the most commonly used methods to quantify the limits
in astronomical data analysis and how MakeCatalog makes it easy to measure them. De-
pending on the higher-level analysis, there are more tests that must be done, but these are
relatively low-level and usually necessary in most cases. In astronomy, it is common to use
the magnitude (a unit-less scale) and physical units, see Section 7.4.2 [Brightness, Flux,
Magnitude and Surface brightness], page 574. Therefore the measurements discussed here
are commonly used in units of magnitudes.

7.4.3.1 Standard deviation vs error

The error and the standard deviation are sometimes confused with each other. Therefore,
before continuing with the various measurement limits below, let’s review these two fun-
damental concepts. Instead of going into the theoretical definitions of the two (which you
can see in their respective Wikipedia pages), we’ll discuss the concepts in a hands-on and
practical way here.

Let’s simulate an observation of the sky, but without any astronomical sources! In
other words, we only have a background flux level (from the sky emission). With the first
command below, let’s make an image called 1.fits that contains 200 × 200 pixels that
are filled with random noise from a Poisson distribution with a mean of 100 counts (the
flux from the background sky). With the second command, we’ll have a look at the image.
Recall that the Poisson distribution is equal to a normal distribution for large mean values
(as in this case).

$ astarithmetic 200 200 2 makenew 100 mknoise-poisson \

--output=1.fits

$ astscript-fits-view 1.fits

The standard deviation (σ) of the Poisson distribution is the square root of the mean,
see Section 6.2.3.1 [Photon counting noise], page 403. Note that due to the random nature
of the noise, the values reported in the next steps on your computer will be very slightly
different. To reproducible exactly the same values in different runs, see Section 6.2.3.4
[Generating random numbers], page 406, and for more on the first command, see Section 6.2
[Arithmetic], page 399.

Each pixel shows the result of one sampling from the Poisson distribution. In other words,
assuming the sky emission in our simulation is constant over our field of view, each pixel’s
value shows one measurement of the sky emission. Statistically speaking, a “measurement”
is a sampling from an underlying distribution of values. Through our measurements, we
aim to identify that underlying distribution (the “truth”)! With the command below, let’s
look at the pixel statistics of 1.fits (output is shown immediately under it).

$ aststatistics 1.fits



Chapter 7: Data analysis 580

Statistics (GNU Astronomy Utilities) 0.22.24-f3e8

-------

Input: 1.fits (hdu: 1)

-------

Number of elements: 40000

Minimum: 61

Maximum: 155

Median: 100

Mean: 100.044925

Standard deviation: 10.00066032

-------

Histogram:

| * *

| * * *

| * * * *

| * * * * *

| * * * * *

| * * ******** * *

| * ************* *

| * ****************** *

| ************************ *

| *********************************

|* ********************************************************** ** *

|----------------------------------------------------------------------

As expected, you see that the ASCII histogram nicely resembles a normal distribution.
The measured mean and standard deviation (σx) are also very similar to the input (mean
of 100, standard deviation of σ = 10). But the measured mean (and standard deviation)
aren’t exactly equal to the input!

Every time we make a different simulated image from the same distribution, the measured
mean and standard deviation will slightly differ. With the second command below, let’s
build 500 images like above and measure their mean and standard deviation. The outputs
will be written into a file (mean-stds.txt; in the first command we are deleting it to make
sure we write into an empty file within the loop). With the third command, let’s view the
top 10 rows:

$ rm -f mean-stds.txt

$ for i in $(seq 500); do \

astarithmetic 200 200 2 makenew 100 mknoise-poisson \

--output=$i.fits --quiet; \

aststatistics $i.fits --mean --std >> mean-stds.txt; \

echo "$i: complete"; \

done

$ asttable mean-stds.txt -Y --head=10

99.989381 9.936407

100.036622 10.059997

100.006054 9.985470
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99.944535 9.960069

100.050318 9.970116

100.002718 9.905395

100.067555 9.964038

100.027167 10.018562

100.051951 9.995859

100.000212 9.970293

From this table, you see that each simulation has produced a slightly different measured
mean and measured standard deviation (σx) that are just fluctuating around the input
mean (which was 100) and input standard deviation (σ = 10). Let’s have a look at the
distribution of mean measurements:

$ aststatistics mean-stds.txt -c1

Statistics (GNU Astronomy Utilities) 0.22.24-f3e8

-------

Input: mean-stds.txt

Column: 1

-------

Number of elements: 500

Minimum: 9.98183528700191e+01

Maximum: 1.00146490891332e+02

Mode: 99.99709739

Mode quantile: 0.49498998

Median: 9.99977393190436e+01

Mean: 99.99891826

Standard deviation: 0.04901635275

-------

Histogram:

| *

| * **

| ****** **** * *

| ****** **** * * *

| * * ************* * *

| * ****************** **

| * ********************* *** *

| * ***************************** ***

| *** ********************************** *

| *** ******************************************* **

| * ************************************************* ** *

|----------------------------------------------------------------------

The standard deviation of the various mean measurements above shows the scatter in
measuring the mean with an image of this size from this underlying distribution. This
is therefore defined as the standard error of the mean, or “error” for short (since most
measurements are actually the mean of a population) and shown with σ̂x̄.

From the example above, you see that the error is smaller than the standard deviation
(smaller when you have a larger sample). In fact, it can be shown (https://en.wikipedia.
org/wiki/Standard_error#Derivation) that this “error of the mean” (σx̄) is related to

https://en.wikipedia.org/wiki/Standard_error#Derivation
https://en.wikipedia.org/wiki/Standard_error#Derivation
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the distribution standard deviation (σ) through the following equation. Where N is the
number of points used to measure the mean in one sample (200 × 200 = 40000 in this
case). Note that the 10.0 below was reported as “standard deviation” in the first run of
aststatistics on 1.fits above):

σx̄ =
σ√
N

or σ̂x̄ ≈
σx√
N

=
10.0

200
= 0.05

Taking the considerations above into account, we should clearly distinguish the following
concepts when talking about the standard deviation or error:

Standard deviation of population
This is the standard deviation of the underlying distribution (10 in the example
above), and shown by σ. This is something you can never measure, and is just
the ideal value.

Standard deviation of mean
Ideal error of measuring the mean (assuming we know σ).

Standard deviation of sample (i.e., Standard deviation)
Measured Standard deviation from a sampling of the ideal distribution. This
is the second column of mean-stds.txt above and is shown with σx above. In
astronomical literature, this is simply referred to as the “standard deviation”.

In other words, the standard deviation is computed on the input itself and
MakeCatalog just needs a “values” file. For example, when measuring the
standard deviation of an astronomical object using MakeCatalog it is computed
directly from the input values.

Standard error (i.e., error)
Measurable scatter of measuring the mean (σ̂x̄) that can be estimated from the
size of the sample and the measured standard deviation (σx). In astronomical
literature, this is simply referred to as the “error”.

In other words, when asking for an “error” measurement with MakeCatalog, a
separate standard deviation dataset should be always provided. This dataset
should take into account all sources of scatter. For example, during the re-
duction of an image, the standard deviation dataset should take into account
the dispersion of each pixel that comes from the bias, dark, flat fielding, etc.
If this image is not available, it is possible to use the SKY_STD extension from
NoiseChisel as an estimation. For more see Section 7.2.2.3 [NoiseChisel output],
page 558.

7.4.3.2 Magnitude measurement error of each detection

The raw error in measuring the magnitude is only meaningful when the object’s magni-
tude is brighter than the upper-limit magnitude (see below). As discussed in Section 7.4.2
[Brightness, Flux, Magnitude and Surface brightness], page 574, the magnitude (M) of an
object with brightness B and zero point magnitude z can be written as:

M = −2.5 log10(B) + z
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Calculating the derivative with respect to B, we get:

dM

dB
=

−2.5
B × ln(10)

From the Tailor series (ΔM = dM/dB ×ΔB), we can write:

ΔM =

∣∣∣∣ −2.5ln(10)

∣∣∣∣× ΔB

B

But, ΔB/B is just the inverse of the Signal-to-noise ratio (S/N), so we can write the error
in magnitude in terms of the signal-to-noise ratio:

ΔM =
2.5

S/N × ln(10)

MakeCatalog uses this relation to estimate the magnitude errors. The signal-to-noise
ratio is calculated in different ways for clumps and objects, see Akhlaghi and Ichikawa 2015
(https://arxiv.org/abs/1505.01664)), but this single equation can be used to estimate
the measured magnitude error afterwards for any type of target.

7.4.3.3 Surface brightness error of each detection

We can derive the error in measuring the surface brightness based on the surface bright-
ness (SB) equation of Section 7.4.2 [Brightness, Flux, Magnitude and Surface brightness],
page 574, and the generic magnitude error (ΔM) of Section 7.4.3.2 [Magnitude measurement
error of each detection], page 582. Let’s set A to represent the area and ΔA to represent the
error in measuring the area. For more on ΔA, see the description of --spatialresolution
in Section 7.4.7.1 [MakeCatalog inputs and basic settings], page 609.

Δ(SB) = ΔM +

∣∣∣∣ −2.5ln(10)

∣∣∣∣× ΔA

A

In the surface brightness equation mentioned above, A is in units of arcsecond squared
and the conversion between arcseconds to pixels is a multiplication factor. Therefore as long
as A and ΔA have the same units, it does not matter if they are in arcseconds or pixels.
Since the measure of spatial resolution (or area error) is the FWHM of the PSF which is
usually defined in terms of pixels, its more intuitive to use pixels for A and ΔA.

7.4.3.4 Completeness limit of each detection

As the surface brightness of the objects decreases, the ability to detect them will also
decrease. An important statistic is thus the fraction of objects of similar morphology and
magnitude that will be detected with our detection algorithm/parameters in a given image.
This fraction is known as completeness. For brighter objects, completeness is 1: all bright
objects that might exist over the image will be detected. However, as we go to objects of
lower overall surface brightness, we will fail to detect a fraction of them, and fainter than

https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1505.01664
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a certain surface brightness level (for each morphology), nothing will be detectable in the
image: you will need more data to construct a “deeper” image. For a given profile and
dataset, the magnitude where the completeness drops below a certain level (usually above
90%) is known as the completeness limit.

Another important parameter in measuring completeness is purity: the fraction of true
detections to all detections. In effect purity is the measure of contamination by false de-
tections: the higher the purity, the lower the contamination. Completeness and purity are
anti-correlated: if we can allow a large number of false detections (that we might be able
to remove by other means), we can significantly increase the completeness limit.

One traditional way to measure the completeness and purity of a given sample is by
embedding mock profiles in regions of the image with no detection. However in such a
study we must be really careful to choose model profiles as similar to the target of interest
as possible.

7.4.3.5 Upper limit magnitude of each detection

Due to the noisy nature of data, it is possible to get arbitrarily faint magnitudes, especially
when you use labels from another image (for example see Section 2.1.15 [Working with
catalogs (estimating colors)], page 55). Given the scatter caused by the dataset’s noise,
values fainter than a certain level are meaningless: another similar depth observation will
give a radically different value. In such cases, measurements like the image magnitude
limit are not useful because it is estimated for a certain morphology and is given for the
whole image (it is a crude generalization; see see Section 7.4.3.6 [Magnitude limit of image],
page 585). You want a quality measure that is specific to each object.

For example, assume that you have done your detection and segmentation on one filter
and now you do measurements over the same labeled regions, but on other filters to mea-
sure colors (as we did in the tutorial Section 2.1.13 [Segmentation and making a catalog],
page 48). Some objects are not going to have any significant signal in the other filters, but
for example, you measure magnitude of 36 for one of them! This is clearly unreliable (no
dataset in current astronomy is able to detect such a faint signal). In another image with
the same depth, using the same filter, you might measure a magnitude of 30 for it, and yet
another might give you 33. Furthermore, the total sum of pixel values might actually be
negative in some images of the same depth (due to noise). In these cases, no magnitude can
be defined and MakeCatalog will place a NaN there (recall that a magnitude is a base-10
logarithm).

Using such unreliable measurements will directly affect our analysis, so we must not
use the raw measurements. When approaching the limits of your detection method, it is
therefore important to be able to identify such cases. But how can we know how reliable a
measurement of one object on a given dataset is?

When we confront such unreasonably faint magnitudes, there is one thing we can deduce:
that if something actually exists under our labeled pixels (possibly buried deep under the
noise), it’s inherent magnitude is fainter than an upper limit magnitude. To find this upper
limit magnitude, we place the object’s footprint (segmentation map) over a random part of
the image where there are no detections, and measure the sum of pixel values within the
footprint. Doing this a large number of times will give us a distribution of measurements
of the sum. The standard deviation (σ) of that distribution can be used to quantify the
upper limit magnitude for that particular object (given its particular shape and area):
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Mup,nσ = −2.5× log10 (nσm) + z [mag/target]

Traditionally, faint/small object photometry was done using fixed circular apertures (for
example, with a diameter of N arc-seconds) and there was not much processing involved
(to make a deep stack). Hence, the upper limit was synonymous with the surface brightness
limit discussed above: one value for the whole image. The problem with this simplified
approach is that the number of pixels in the aperture directly affects the final distribution
and thus magnitude. Also the image correlated noise might actually create certain patterns,
so the shape of the object can also affect the final result. Fortunately, with the much
more advanced hardware and software of today, we can make customized segmentation
maps (footprint) for each object and have enough computing power to actually place that
footprint over many random places. As a result, the per-target upper-limit magnitude and
general surface brightness limit have diverged.

When any of the upper-limit-related columns requested, MakeCatalog will randomly
place each target’s footprint over the undetected parts of the dataset as described above,
and estimate the required properties. The procedure is fully configurable with the options
in Section 7.4.7.2 [Upper-limit settings], page 613. You can get the full list of upper-limit
related columns of MakeCatalog with this command (the extra -- before --upperlimit is
necessary24):

$ astmkcatalog --help | grep -- --upperlimit

7.4.3.6 Magnitude limit of image

Suppose we have taken two images of the same field of view with the same CCD, once with a
smaller telescope, and once with a larger one. Because we used the same CCD, the noise will
be very similar. However, the larger telescope has gathered more light, therefore the same
star or galaxy will have a higher signal-to-noise ratio (S/N) in the image taken with the
larger one. The same applies for a stacked image of the field compared to a single-exposure
image of the same telescope.

This concept is used by some researchers to define the “magnitude limit” or “detection
limit” at a certain S/N (sometimes 10, 5 or 3 for example, also written as 10σ, 5σ or 3σ).
To do this, they measure the magnitude and signal-to-noise ratio of all the objects within
an image and measure the mean (or median) magnitude of objects at the desired S/N. A
fully working example of deriving the magnitude limit is available in the tutorials section:
Section 2.1.14 [Measuring the dataset limits], page 50.

However, this method should be used with extreme care! This is because the shape of
the object becomes important in this method: a sharper object will have a higher measured
S/N compared to a more diffuse object at the same original magnitude. Besides the inherent
shape/sharpness of the object, issues like the PSF also become important in this method
(because the finally observed shapes of objects are important here): two surveys with
the same surface brightness limit (see Section 7.4.3.7 [Surface brightness limit of image],
page 586) will have different magnitude limits if one is taken from space and the other from
the ground.

24 Without the extra --, grep will assume that --upperlimit is one of its own options, and will thus abort,
complaining that it has no option with this name.
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7.4.3.7 Surface brightness limit of image

As we make more observations on one region of the sky and add/combine the observations
into one dataset, both the signal and the noise increase. However, the signal increases much
faster than the noise: Assuming you add N datasets with equal exposure times, the signal
will increases as a multiple of N , while noise increases as

√
N . Therefore the signal-to-noise

ratio increases by a factor of
√
N . Visually, fainter (per pixel) parts of the objects/signal

in the image will become more visible/detectable. The noise-level is known as the dataset’s
surface brightness limit.

You can think of the noise as muddy water that is completely covering a flat ground25.
The signal (coming from astronomical objects in real data) will be summits/hills that start
from the flat sky level (under the muddy water) and their summits can sometimes reach
above the muddy water. Let’s assume that in your first observation the muddy water has
just been stirred and except a few small peaks, you cannot see anything through the mud.
As you wait and make more observations/exposures, the mud settles down and the depth
of the transparent water increases. As a result, more and more summits become visible and
the lower parts of the hills (parts with lower surface brightness) can be seen more clearly.
In this analogy26, height (from the ground) is the surface brightness and the height of the
muddy water at the moment you combine your data, is your surface brightness limit for
that moment.

The outputs of NoiseChisel include the Sky standard deviation (σ) on every group of
pixels (a tile) that were calculated from the undetected pixels in each tile, see Section 4.8
[Tessellation], page 289, and Section 7.2.2.3 [NoiseChisel output], page 558. Let’s take σm as
the median σ over the successful meshes in the image (prior to interpolation or smoothing).
It is recorded in the MEDSTD keyword of the SKY_STD extension of NoiseChisel’s output.

On different instruments, pixels cover different spatial angles over the sky. For example,
the width of each pixel on the ACS camera on the Hubble Space Telescope (HST) is roughly
0.05 seconds of arc, while the pixels of SDSS are each 0.396 seconds of arc (almost eight
times wider27). Nevertheless, irrespective of its sky coverage, a pixel is our unit of data
collection.

To start with, we define the low-level Surface brightness limit or depth, in units of
magnitude/pixel with the equation below (assuming the image has zero point magnitude z
and we want the nth multiple of σm).

SBnσ,pixel = −2.5× log10 (nσm) + z [mag/pixel]

As an example, the XDF survey covers part of the sky that the HST has observed the
most (for 85 orbits) and is consequently very small (∼ 4 minutes of arc, squared). On the
other hand, the CANDELS survey, is one of the widest multi-color surveys done by the

25 The ground is the sky value in this analogy, see Section 7.1.4 [Sky value], page 519. Note that this
analogy only holds for a flat sky value across the surface of the image or ground.

26 Note that this muddy water analogy is not perfect, because while the water-level remains the same all
over a peak, in data analysis, the Poisson noise increases with the level of data.

27 Ground-based instruments like the SDSS suffer from strong smoothing due to the atmosphere. There-
fore, increasing the pixel resolution (or decreasing the width of a pixel) will not increase the received
information).
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HST covering several fields (about 720 arcmin2) but its deepest fields have only 9 orbits
observation. The 1σ depth of the XDF and CANDELS-deep surveys in the near infrared
WFC3/F160W filter are respectively 34.40 and 32.45 magnitudes/pixel. In a single orbit
image, this same field has a 1σ depth of 31.32 magnitudes/pixel. Recall that a larger
magnitude corresponds to fainter objects, see Section 7.4.2 [Brightness, Flux, Magnitude
and Surface brightness], page 574.

The low-level magnitude/pixel measurement above is only useful when all the datasets
you want to use, or compare, have the same pixel size. However, you will often find yourself
using, or comparing, datasets from various instruments with different pixel scales (projected
pixel width, in arc-seconds). If we know the pixel scale, we can obtain a more easily com-
parable surface brightness limit in units of: magnitude/arcsec2. But another complication
is that astronomical objects are usually larger than 1 arcsec2. As a result, it is common to
measure the surface brightness limit over a larger (but fixed, depending on context) area.

Let’s assume that every pixel is p arcsec2 and we want the surface brightness limit
for an object covering A arcsec2 (so A/p is the number of pixels that cover an area of A
arcsec2). On the other hand, noise is added in RMS28, hence the noise level in A arcsec2

is nσm
√
A/p. But we want the result in units of arcsec2, so we should divide this by A

arcsec2: nσm
√
A/p/A = nσm

√
A/(pA2) = nσm/

√
pA. Plugging this into the magnitude

equation, we get the nσ surface brightness limit, over an area of A arcsec2, in units of
magnitudes/arcsec2:

SBnσ,Aarcsec2 = −2.5× log10

(
nσm√
pA

)
+ z [mag/arcsec2]

MakeCatalog will calculate the input dataset’s SBnσ,pixel and SBnσ,Aarcsec2 and will write
them as the SBLMAGPIX and SBLMAG keywords the output catalog(s), see Section 7.4.7.3
[MakeCatalog output], page 615. You can set your desired n-th multiple of σ and the A
arcsec2 area using the following two options respectively: --sfmagnsigma and --sfmagarea

(see Section 7.4.7.3 [MakeCatalog output], page 615). Just note that SBnσ,Aarcsec2 is only
calculated if the input has World Coordinate System (WCS). Without WCS, the pixel scale
cannot be derived.

As you saw in its derivation, the calculation above extrapolates the noise in one pixel
over all the input’s pixels! In other words, all pixels are treated independently in the
measurement of the standard deviation. It therefore implicitly assumes that the noise is
the same in all of the pixels. But this only happens in individual exposures: reduced data
will have correlated noise because they are a stack of many individual exposures that have
been warped (thus mixing the pixel values). A more accurate measure which will provide
a realistic value for every labeled region is known as the upper-limit magnitude, which is
discussed in the next section (Section 7.4.3.8 [Upper limit surface brightness of image],
page 588).

28 If you add three datasets with noise σ1, σ2 and σ3, the resulting noise level is σt =
√
σ21 + σ22 + σ23 , so

when σ1 = σ2 = σ3 ≡ σ, then σt = σ
√
3. In this case, the area A is covered by A/p pixels, so the noise

level is σt = σ
√
A/p.
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7.4.3.8 Upper limit surface brightness of image

As mentioned in Section 7.4.3.7 [Surface brightness limit of image], page 586, the surface
brightness limit assumes independent pixels when deriving the standard deviation (the main
input in the equation). It just extrapolates the standard deviation derived from one pixel
to the requested area. But as mentioned at the end of that section, we have correlated noise
in our science-ready (deep) images and the noise of the pixels are not independent.

Because of this, the surface brightness limit will always under-estimate the surface bright-
ness (give fainter values than what is statistically possible in the data for the requested area).
To account for the correlated noise in the images, we need to derive the standard deviation
over a group of pixels that fall within a certain footprint/shape. For example over a circular
aperture of radius 5.6419 arcsec, or a square with a side length of 10 arcsec. Depending on
the correlated noise systematics, the limit can be (very) different for different shapes, even
if they have the same area (as in the circle and square mentioned in the previous sentence:
both have an area of 100 arcsec2).

Therefore we need to derive the standard deviation that goes into the surface brightness
limit equation over a certain footprint/shape. To do that, we should:

1. Place the desired footprint many times randomly over all the undetected pixels in an
image. In MakeCatalog, the number of these random positions can be configured with
--upnum and you can check their positions with --checkuplim.

2. Calculate the sum of pixel values in each randomly placed footprint.

3. Calculate the sigma-clipped standard deviation of the resulting distribution (of sum of
pixel values in the randomly placed apertures). Therefore, each footprint’s measure-
ment is independent of the other.

4. Calculate the surface brightness of that standrad deviation (after multiplying it with
your desired multiple of sigma). For the definition of surface brightness, see Sec-
tion 7.4.2 [Brightness, Flux, Magnitude and Surface brightness], page 574.

If you have reviewed the previous sections, the measurements over randomly placed
apertures should remind you of Section 7.4.3.5 [Upper limit magnitude of each detection],
page 584. Generally, the “upper limit” prefix is given to all measurements with this way of
measurement. Therefore this limit is called “Upper limit surface brightness” of an image
(for a multiple of sigma, over a certain shape).

Traditionally a circular aperture of a fixed radius (in arcseconds) has been used. In
Gnuastro, a labeled image containing the desired shape/aperture can be generated with
MakeProfiles. The position of the label is irrelevant because the upper limit measurements
are done on the many randomly placed footprints in undetected regions (independent of
where the label is positioned). That labeled image should then be given to MakeCatalog,
while requesting --upperlimit-sb. Of course, all detected signal in the image needs to be
masked (set to blank/NaN) so MakeCatalog doesn’t use randomly placed apertures that
overlap with detected signal in the image.

Going into the implementation details can get pretty hard to follow in English, so a full
hands-on tutorial is available in the second half of Section 2.2.4 [Image surface brightness
limit], page 93. Read that tutorial with the same input images and run the commands, and
see each output image to get a good understanding of how to properly measure the upper
limit surface brightness of your images.
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7.4.4 Measuring elliptical parameters

The shape or morphology of a target is one of the most commonly desired parameters of
a target. Here, we will review the derivation of the most basic/simple morphological pa-
rameters: the elliptical parameters for a set of labeled pixels. The elliptical parameters are:
the (semi-)major axis, the (semi-)minor axis and the position angle along with the central
position of the profile. The derivations below follow the SExtractor manual derivations with
some added explanations for easier reading.

Let’s begin with one dimension for simplicity: Assume we have a set of N values Bi (for
example, showing the spatial distribution of a target’s brightness), each at position xi. The
simplest parameter we can define is the geometric center of the object (xg) (ignoring the
brightness values): xg = (

∑
i xi)/N . Moments are defined to incorporate both the value

(brightness) and position of the data. The first moment can be written as:

x =

∑
iBixi∑
iBi

This is essentially the weighted (by Bi) mean position. The geometric center (xg, defined
above) is a special case of this with all Bi = 1. The second moment is essentially the
variance of the distribution:

x2 ≡
∑
iBi(xi − x)2∑

iBi
=

∑
iBix

2
i∑

iBi
− 2x

∑
iBixi∑
iBi

+ x2 =

∑
iBix

2
i∑

iBi
− x2

The last step was done from the definition of x. Hence, the square root of x2 is the spatial
standard deviation (along the one-dimension) of this particular brightness distribution (Bi).
Crudely (or qualitatively), you can think of its square root as the distance (from x) which
contains a specific amount of the flux (depending on the Bi distribution). Similar to the
first moment, the geometric second moment can be found by setting all Bi = 1. So while
the first moment quantified the position of the brightness distribution, the second moment
quantifies how that brightness is dispersed about the first moment. In other words, it
quantifies how “sharp” the object’s image is.

Before continuing to two dimensions and the derivation of the elliptical parameters, let’s
pause for an important implementation technicality. You can ignore this paragraph and
the next two if you do not want to implement these concepts. The basic definition (first
definition of x2 above) can be used without any major problem. However, using this fraction
requires two runs over the data: one run to find x and another run to find x2 from x, this
can be slow. The advantage of the last fraction above, is that we can estimate both the
first and second moments in one run (since the −x2 term can easily be added later).

The logarithmic nature of floating point number digitization creates a complication how-
ever: suppose the object is located between pixels 10000 and 10020. Hence the target’s pixels
are only distributed over 20 pixels (with a standard deviation < 20), while the mean has
a value of ∼ 10000. The

∑
iB

2
i x

2
i will go to very very large values while the individual

pixel differences will be orders of magnitude smaller. This will lower the accuracy of our
calculation due to the limited accuracy of floating point operations. The variance only
depends on the distance of each point from the mean, so we can shift all position by a
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constant/arbitrary K which is much closer to the mean: x−K = x − K. Hence we can
calculate the second order moment using:

x2 =

∑
iBi(xi −K)2∑

iBi
− (x−K)2

The closer K is to x, the better (the sums of squares will involve smaller numbers), as
long as K is within the object limits (in the example above: 10000 ≤ K ≤ 10020), the
floating point error induced in our calculation will be negligible. For the most simplest
implementation, MakeCatalog takes K to be the smallest position of the object in each
dimension. Since K is arbitrary and an implementation/technical detail, we will ignore it
for the remainder of this discussion.

In two dimensions, the mean and variances can be written as:

x =

∑
iBixi
Bi

, x2 =

∑
iBix

2
i∑

iBi
− x2

y =

∑
iBiyi
Bi

, y2 =

∑
iBiy

2
i∑

iBi
− y2

xy =

∑
iBixiyi∑
iBi

− x× y

If an elliptical profile’s major axis exactly lies along the x axis, then x2 will be directly
proportional with the profile’s major axis, y2 with its minor axis and xy = 0. However, in
reality we are not that lucky and (assuming galaxies can be parameterized as an ellipse)
the major axis of galaxies can be in any direction on the image (in fact this is one of the
core principles behind weak-lensing by shear estimation). So the purpose of the remainder
of this section is to define a strategy to measure the position angle and axis ratio of some
randomly positioned ellipses in an image, using the raw second moments that we have
calculated above in our image coordinates.

Let’s assume we have rotated the galaxy by θ, the new second order moments are:

x2
θ = x2 cos2 θ + y2 sin2 θ − 2xy cos θ sin θ

y2θ = x2 sin2 θ + y2 cos2 θ + 2xy cos θ sin θ

xyθ = x2 cos θ sin θ − y2 cos θ sin θ + xy(cos2 θ − sin2 θ)

The best θ (θ0, where major axis lies along the xθ axis) can be found by:

∂x2
θ

∂θ

∣∣∣∣∣
θ0

= 0
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Taking the derivative, we get:

2 cos θ0 sin θ0(y2 − x2) + 2(cos2 θ0 − sin2 θ0)xy = 0

When x2 6= y2, we can write:

tan 2θ0 = 2
xy

x2 − y2
.

MakeCatalog uses the standard C math library’s atan2 function to estimate θ0, which we
define as the position angle of the ellipse. To recall, this is the angle of the major axis of
the ellipse with the x axis. By definition, when the elliptical profile is rotated by θ0, then
xyθ0 = 0, x2

θ0
will be the extent of the maximum variance and y2θ0 the extent of the minimum

variance (which are perpendicular for an ellipse). Replacing θ0 in the equations above for
xθ and yθ, we can get the semi-major (A) and semi-minor (B) lengths:

A2 ≡ x2
θ0

=
x2 + y2

2
+

√√√√(x2 − y2
2

)2

+ xy2

B2 ≡ y2θ0 =
x2 + y2

2
−

√√√√(x2 − y2
2

)2

+ xy2

As a summary, it is important to remember that the units of A and B are in pixels
(the standard deviation of a positional distribution) and that they represent the spatial
light distribution of the object in both image dimensions (rotated by θ0). When the object
cannot be represented as an ellipse, this interpretation breaks down: xyθ0 6= 0 and y2θ0 will
not be the direction of minimum variance.

7.4.5 Adding new columns to MakeCatalog

MakeCatalog is designed to allow easy addition of different measurements over a labeled
image; see Akhlaghi 2016 (https://arxiv.org/abs/1611.06387v1). A check-list style de-
scription of necessary steps to do that is described in this section. The common development
characteristics of MakeCatalog and other Gnuastro programs is explained in Chapter 13 [De-
veloping], page 928. We strongly encourage you to have a look at that chapter to greatly
simplify your navigation in the code. After adding and testing your column, you are most
welcome (and encouraged) to share it with us so we can add to the next release of Gnuastro
for everyone else to also benefit from your efforts.

MakeCatalog will first pass over each label’s pixels two times and do necessary
raw/internal calculations. Once the passes are done, it will use the raw information for
filling the final catalog’s columns. In the first pass it will gather mainly object information
and in the second run, it will mainly focus on the clumps, or any other measurement that
needs an output from the first pass. These two passes are designed to be raw summations:
no extra processing. This will allow parallel processing and simplicity/clarity. So if your
new calculation, needs new raw information from the pixels, then you will need to also
modify the respective mkcatalog_first_pass and mkcatalog_second_pass functions

https://arxiv.org/abs/1611.06387v1
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(both in bin/mkcatalog/mkcatalog.c) and define new raw table columns in main.h

(hopefully the comments in the code are clear enough).

In all these different places, the final columns are sorted in the same order (same order
as Section 7.4.7 [Invoking MakeCatalog], page 608). This allows a particular column/option
to be easily found in all steps. Therefore in adding your new option, be sure to keep it in
the same relative place in the list in all the separate places (it does not necessarily have to
be in the end), and near conceptually similar options.

main.h The objectcols and clumpcols enumerated variables (enum) define the
raw/internal calculation columns. If your new column requires new raw
calculations, add a row to the respective list. If your calculation requires any
other settings parameters, you should add a variable to the mkcatalogparams

structure.

ui.c If the new column needs raw calculations (an entry was added in objectcols

and clumpcols), specify which inputs it needs in ui_necessary_inputs, sim-
ilar to the other options. Afterwards, if your column includes any particular
settings (you needed to add a variable to the mkcatalogparams structure in
main.h), you should do the sanity checks and preparations for it here.

ui.h The option_keys_enum associates a unique value for each option to MakeCat-
alog. The options that have a short option version, the single character short
comment is used for the value. Those that do not have a short option version,
get a large integer automatically. You should add a variable here to identify
your desired column.

args.h This file specifies all the parameters for the GNU C library, Argp structure that
is in charge of reading the user’s options. To define your new column, just copy
an existing set of parameters and change the first, second and 5th values (the
only ones that differ between all the columns), you should use the macro you
defined in ui.h here.

columns.c

This file contains the main definition and high-level calculation of your new col-
umn through the columns_define_alloc and columns_fill functions. In the
first, you specify the basic information about the column: its name, units, com-
ments, type (see Section 4.5 [Numeric data types], page 277) and how it should
be printed if the output is a text file. You should also specify the raw/internal
columns that are necessary for this column here as the many existing examples
show. Through the types for objects and rows, you can specify if this column
is only for clumps, objects or both.

The second main function (columns_fill) writes the final value into the appro-
priate column for each object and clump. As you can see in the many existing
examples, you can define your processing on the raw/internal calculations here
and save them in the output.

mkcatalog.c

This file contains the low-level parsing functions. To be optimized, the pars-
ing is done in parallel through the mkcatalog_single_object function. This
function initializes the necessary arrays and calls the lower-level parse_objects
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and parse_clumps for actually going over the pixels. They are all heavily com-
mented, so you should be able to follow where to add your necessary low-level
calculations.

doc/gnuastro.texi

Update this manual and add a description for the new column.

7.4.6 MakeCatalog measurements

MakeCatalog’s output measurements/columns can be specified using command-line options
(Section 4.1.1.2 [Options], page 249). The current measurements in MakeCatalog are those
which only produce one final value for each label (for example, its magnitude: a single
number). All the different label’s measurements can be written as one column in a final
table/catalog that contains other columns for other similar single-number measurements.

In this case, all the different label’s measurements can be written as one column in a final
table/catalog that contains other columns for other similar single-number measurements.
The majority of this section is devoted to MakeCatalog’s single-valued measurements. How-
ever, MakeCatalog can also do measurements that produce more than one value for each
label. Currently the only such measurement is generation of spectra from 3D cubes with
the --spectrum option and it is discussed in the end of this section.

Command-line options are used to identify which measurements you want in the final
catalog(s) and in what order. If any of the options below is called on the command-line or
in any of the configuration files, it will be included as a column in the output catalog. The
order of the columns is in the same order as the options were seen by MakeCatalog (see
Section 4.2.2 [Configuration file precedence], page 269). Some of the columns apply to both
“objects” and “clumps” and some are particular to only one of them (for the definition of
“objects” and “clumps”, see Section 7.3 [Segment], page 561). Columns/options that are
unique to one catalog (only objects, or only clumps), are explicitly marked with [Objects]
or [Clumps] to specify the catalog they will be placed in.

7.4.6.1 Identifier columns

The identifier of each row (group of measurements) is usually the first thing you will be
requesting from MakeCatalog. Without the identifier, it is not clear which measurement
corresponds to which label for the input.

Since MakeCatalog can also optionally take sub-structure label (clumps; see Section 7.3
[Segment], page 561), there are various identifiers in general that are listed below. The
most generic (and shortest and easiest to type!) is the --ids option which can be used in
object-only or object-clump catalogs.

--i

--ids This is a unique option which can add multiple columns to the final catalog(s).
Calling this option will put the object IDs (--obj-id) in the objects catalog
and host-object-ID (--host-obj-id) and ID-in-host-object (--id-in-host-
obj) into the clumps catalog. Hence if only object catalogs are required, it has
the same effect as --obj-id.

--obj-id [Objects] ID of this object.
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-j

--host-obj-id

[Clumps] The ID of the object which hosts this clump.

--id-in-host-obj

[Clumps] The ID of this clump in its host object.

7.4.6.2 Position measurements in pixels

The position of a labeled region within your input dataset (in its own units) can be measured
with the options in this section. By “in its own units” we mean pixels in a 2D image or
voxels in a 3D cube. For example if the flux-weighted center of a label lies 123 pixels on the
horizontal and 456 pixels on the vertical, the --x and --y options will put a value of 123
and 456 in their respective columns. As you see below, there are various ways to define the
“position” of an object, so read the differences carefully to choose the one that corresponds
best to your usage.

-x

--x The flux weighted center of all objects and clumps along the first FITS axis
(horizontal when viewed in SAO DS9), see x in Section 7.4.4 [Measuring ellipti-
cal parameters], page 589. The weight has to have a positive value (pixel value
larger than the Sky value) to be meaningful! Specially when doing matched
photometry, this might not happen: no pixel value might be above the Sky
value. For such detections, the geometric center will be reported in this column
(see --geo-x). You can use --weight-area to see which was used.

-y

--y The flux weighted center of all objects and clumps along the second FITS axis
(vertical when viewed in SAO DS9). See --x.

-z

--z The flux weighted center of all objects and clumps along the third FITS axis.
See --x.

--geo-x The geometric center of all objects and clumps along the first FITS axis axis.
The geometric center is the average pixel positions irrespective of their pixel
values.

--geo-y The geometric center of all objects and clumps along the second FITS axis axis,
see --geo-x.

--geo-z The geometric center of all objects and clumps along the third FITS axis axis,
see --geo-x.

--min-val-x

Position of pixel with minimum value in objects and clumps, along the first
FITS axis.

--max-val-x

Position of pixel with maximum value in objects and clumps, along the first
FITS axis.
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--min-val-y

Position of pixel with minimum value in objects and clumps, along the first
FITS axis.

--max-val-y

Position of pixel with maximum value in objects and clumps, along the first
FITS axis.

--min-val-z

Position of pixel with minimum value in objects and clumps, along the first
FITS axis.

--max-val-z

Position of pixel with maximum value in objects and clumps, along the first
FITS axis.

--min-x The minimum position of all objects and clumps along the first FITS axis.

--max-x The maximum position of all objects and clumps along the first FITS axis.

--min-y The minimum position of all objects and clumps along the second FITS axis.

--max-y The maximum position of all objects and clumps along the second FITS axis.

--min-z The minimum position of all objects and clumps along the third FITS axis.

--max-z The maximum position of all objects and clumps along the third FITS axis.

--clumps-x

[Objects] The flux weighted center of all the clumps in this object along the
first FITS axis. See --x.

--clumps-y

[Objects] The flux weighted center of all the clumps in this object along the
second FITS axis. See --x.

--clumps-z

[Objects] The flux weighted center of all the clumps in this object along the
third FITS axis. See --x.

--clumps-geo-x

[Objects] The geometric center of all the clumps in this object along the first
FITS axis. See --geo-x.

--clumps-geo-y

[Objects] The geometric center of all the clumps in this object along the second
FITS axis. See --geo-x.

--clumps-geo-z

[Objects] The geometric center of all the clumps in this object along the third
FITS axis. See --geo-z.

7.4.6.3 Position measurements in WCS

The position of a labeled region within your input dataset (in the World Coordinate System,
or WCS) can be measured with the options in this section. As you see below, there are
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various ways to define the “position” of an object, so read the differences carefully to choose
the one that corresponds best to your usage.

The most common WCS coordinates are Right Ascension (RA) and Declination in an
equatorial system. Therefore, to simplify their usage, we have special --ra and --dec

options. However, the WCS of datasets are in Galactic coordinates, so to be generic, you
can use the --w1, --w2 or --w3 (if you have a 3D cube) options. In case your dataset’s WCS
is not in your desired system (for example it is Galactic, but you want equatorial 2000),
you can use the --wcscoordsys option of Gnuastro’s Fits program on the labeled image
before running MakeCatalog (see Section 5.1.1.2 [Keyword inspection and manipulation],
page 302).

-r

--ra Flux weighted right ascension of all objects or clumps, see --x. This is just
an alias for one of the lower-level --w1 or --w2 options. Using the FITS WCS
keywords (CTYPE), MakeCatalog will determine which axis corresponds to the
right ascension. If no CTYPE keywords start with RA, an error will be printed
when requesting this column and MakeCatalog will abort.

-d

--dec Flux weighted declination of all objects or clumps, see --x. This is just an
alias for one of the lower-level --w1 or --w2 options. Using the FITS WCS
keywords (CTYPE), MakeCatalog will determine which axis corresponds to the
declination. If no CTYPE keywords start with DEC, an error will be printed when
requesting this column and MakeCatalog will abort.

--w1 Flux weighted first WCS axis of all objects or clumps, see --x. The first WCS
axis is commonly used as right ascension in images.

--w2 Flux weighted second WCS axis of all objects or clumps, see --x. The second
WCS axis is commonly used as declination in images.

--w3 Flux weighted third WCS axis of all objects or clumps, see --x. The third WCS
axis is commonly used as wavelength in integral field unit data cubes.

--geo-w1 Geometric center in first WCS axis of all objects or clumps, see --geo-x. The
first WCS axis is commonly used as right ascension in images.

--geo-w2 Geometric center in second WCS axis of all objects or clumps, see --geo-x.
The second WCS axis is commonly used as declination in images.

--geo-w3 Geometric center in third WCS axis of all objects or clumps, see --geo-x. The
third WCS axis is commonly used as wavelength in integral field unit data
cubes.

--clumps-w1

[Objects] Flux weighted center in first WCS axis of all clumps in this object,
see --x. The first WCS axis is commonly used as right ascension in images.

--clumps-w2

[Objects] Flux weighted declination of all clumps in this object, see --x. The
second WCS axis is commonly used as declination in images.
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--clumps-w3

[Objects] Flux weighted center in third WCS axis of all clumps in this object,
see --x. The third WCS axis is commonly used as wavelength in integral field
unit data cubes.

--clumps-geo-w1

[Objects] Geometric center right ascension of all clumps in this object, see
--geo-x. The first WCS axis is commonly used as right ascension in images.

--clumps-geo-w2

[Objects] Geometric center declination of all clumps in this object, see --geo-x.
The second WCS axis is commonly used as declination in images.

--clumps-geo-w3

[Objects] Geometric center in third WCS axis of all clumps in this object, see
--geo-x. The third WCS axis is commonly used as wavelength in integral field
unit data cubes.

7.4.6.4 Brightness measurements

Within an image, pixels have both a position and a value. In the sections above all the mea-
surements involved position (see Section 7.4.6.2 [Position measurements in pixels], page 594,
or Section 7.4.6.3 [Position measurements in WCS], page 595). The measurements in this
section only deal with pixel values and ignore the pixel positions completely. In other words,
for the options of this section each labeled region within the input is just a group of val-
ues (and their associated error values if necessary), and they let you do various types of
measurements on the resulting distribution of values.

--sum The sum of all pixel values associated to this label (object or clump). Note that
if a sky value or image has been given, it will be subtracted before any column
measurement. For clumps, the ambient values (average of river pixels around
the clump, multiplied by the area of the clump) is subtracted, see --river-

mean. So the sum of all the clump-sums in the clump catalog of one object will
be smaller than the --clumps-sum column of the objects catalog.

If no usable pixels are present over the clump or object (for example, they are
all blank), the returned value will be NaN (note that zero is meaningful).

--sum-error

The (1σ) error in measuring the sum of values of a label (objects or clumps).

The returned value will be NaN when the label covers only NaN pixels in the
values image, or a pixel is NaN in the --instd image, but non-NaN in the
values image. The latter situation usually happens when there is a bug in the
previous steps of your analysis, and is important because those pixels with a
NaN in the --instd image may contribute significantly to the final error. If you
want to ignore those pixels in the error measurement, set them to zero (which
is a meaningful number in such scenarios).

--clumps-sum

[Objects] The total sum of the pixels covered by clumps (before subtracting
the river) within each object. This is simply the sum of --sum-no-river in
the clumps catalog (see below). If no usable pixels are present over the clump
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or object (for example, they are all blank), the stored value will be NaN (note
that zero is meaningful).

--sum-no-river

[Clumps] The sum of Sky (not river) subtracted clump pixel values. By defini-
tion, for the clumps, the average value of the rivers surrounding it are subtracted
from it for a first order accounting for contamination by neighbors.

If no usable pixels are present over the clump or object (for example, they are
all blank), the stored value will be NaN (note that zero is meaningful).

--mean The mean sky subtracted value of pixels within the object or clump. For clumps,
the average river flux is subtracted from the sky subtracted mean.

--std The standard deviation of the pixels within the object or clump. For clumps,
the river pixels are not subtracted because that is a constant (per pixel) value
and should not affect the standard deviation.

--median The median sky subtracted value of pixels within the object or clump. For
clumps, the average river flux is subtracted from the sky subtracted median.

--maximum

The maximum value of pixels within the object or clump. When the label
(object or clump) is larger than three pixels, the maximum is actually derived
by the mean of the brightest three pixels, not the largest pixel value of the same
label. This is because noise fluctuations can be very strong in the extreme values
of the objects/clumps due to Poisson noise (which gets stronger as the mean
gets higher). Simply using the maximum pixel value will create a strong scatter
in results that depend on the maximum (for example, the --fwhm option also
uses this value internally).

--sigclip-number

The number of elements/pixels in the dataset after sigma-clipping the object or
clump. The sigma-clipping parameters can be set with the --sigmaclip option
described in Section 7.4.7.1 [MakeCatalog inputs and basic settings], page 609.
For more on Sigma-clipping, see Section 2.10.2 [Sigma clipping], page 200.

--sigclip-median

The sigma-clipped median value of the object of clump’s pixel distribution. For
more on sigma-clipping and how to define it, see --sigclip-number.

--sigclip-mean

The sigma-clipped mean value of the object of clump’s pixel distribution. For
more on sigma-clipping and how to define it, see --sigclip-number.

--sigclip-std

The sigma-clipped standard deviation of the object of clump’s pixel distribution.
For more on sigma-clipping and how to define it, see --sigclip-number.

-m

--magnitude

The magnitude of clumps or objects, see --sum.
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--magnitude-error

The magnitude error of clumps or objects. The magnitude error is calculated
from the signal-to-noise ratio (see --sn and Section 7.4.3 [Quantifying measure-
ment limits], page 578). Note that until now this error assumes uncorrelated
pixel values and also does not include the error in estimating the aperture (or
error in generating the labeled image).

For now these factors have to be found by other means. Task 14124 (https://
savannah.gnu.org/task/index.php?14124) has been defined for work on
adding these sources of error too.

The returned value will be NaN when the label covers only NaN pixels in the
values image, or a pixel is NaN in the --instd image, but non-NaN in the
values image. The latter situation usually happens when there is a bug in the
previous steps of your analysis, and is important because those pixels with a
NaN in the --instd image may contribute significantly to the final error. If you
want to ignore those pixels in the error measurement, set them to zero (which
is a meaningful number in such scenarios).

--clumps-magnitude

[Objects] The magnitude of all clumps in this object, see --clumps-sum.

--upperlimit

The upper limit value (in units of the input image) for this object or clump.
This is the sigma-clipped standard deviation of the random distribution, multi-
plied by the value of --upnsigma). See Section 7.4.3 [Quantifying measurement
limits], page 578, and Section 7.4.7.2 [Upper-limit settings], page 613, for a com-
plete explanation. This is very important for the fainter and smaller objects in
the image where the measured magnitudes are not reliable.

--upperlimit-mag

The upper limit magnitude for this object or clump. See Section 7.4.3 [Quanti-
fying measurement limits], page 578, and Section 7.4.7.2 [Upper-limit settings],
page 613, for a complete explanation. This is very important for the fainter and
smaller objects in the image where the measured magnitudes are not reliable.

--upperlimit-onesigma

The 1σ upper limit value (in units of the input image) for this object or
clump. See Section 7.4.3 [Quantifying measurement limits], page 578, and Sec-
tion 7.4.7.2 [Upper-limit settings], page 613, for a complete explanation. When
--upnsigma=1, this column’s values will be the same as --upperlimit.

--upperlimit-sigma

The position of the label’s sum measured within the distribution of randomly
placed upperlimit measurements in units of the distribution’s σ or standard
deviation. See Section 7.4.3 [Quantifying measurement limits], page 578, and
Section 7.4.7.2 [Upper-limit settings], page 613, for a complete explanation.

--upperlimit-quantile

The position of the label’s sum within the distribution of randomly placed
upperlimit measurements as a quantile (value between 0 or 1). See Section 7.4.3
[Quantifying measurement limits], page 578, and Section 7.4.7.2 [Upper-limit

https://savannah.gnu.org/task/index.php?14124
https://savannah.gnu.org/task/index.php?14124
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settings], page 613, for a complete explanation. If the object is brighter than
the brightest randomly placed profile, a value of inf is returned. If it is less
than the minimum, a value of -inf is reported.

--upperlimit-skew

This column contains the non-parametric skew of the σ-clipped random dis-
tribution that was used to estimate the upper-limit magnitude. Taking µ as
the mean, ν as the median and σ as the standard deviation, the traditional
definition of skewness is defined as: (µ− ν)/σ.
This can be a good measure to see how much you can trust the random mea-
surements, or in other words, how accurately the regions with signal have been
masked/detected. If the skewness is strong (and to the positive), then you can
tell that you have a lot of undetected signal in the dataset, and therefore that
the upper-limit measurement (and other measurements) are not reliable.

--river-mean

[Clumps] The average of the river pixel values around this clump. River pixels
were defined in Akhlaghi and Ichikawa 2015 (https://arxiv.org/abs/1505.
01664). In short they are the pixels immediately outside of the clumps. This
value is used internally to find the sum (or magnitude) and signal to noise ra-
tio of the clumps. It can generally also be used as a scale to gauge the base
(ambient) flux surrounding the clump. In case there was no river pixels, then
this column will have the value of the Sky under the clump. So note that this
value is not sky subtracted.

--river-num

[Clumps] The number of river pixels around this clump, see --river-mean.

--river-min

[Clumps] Minimum river value around this clump, see --river-mean.

--river-max

[Clumps] Maximum river value around this clump, see --river-mean.

--sn The Signal to noise ratio (S/N) of all clumps or objects. See Akhlaghi and
Ichikawa (2015) for the exact equations used.

The returned value will be NaN when the label covers only NaN pixels in the
values image, or a pixel is NaN in the --instd image, but non-NaN in the
values image. The latter situation usually happens when there is a bug in the
previous steps of your analysis, and is important because those pixels with a
NaN in the --instd image may contribute significantly to the final error. If you
want to ignore those pixels in the error measurement, set them to zero (which
is a meaningful number).

--sky The sky flux (per pixel) value under this object or clump. This is actually the
mean value of all the pixels in the sky image that lie on the same position as
the object or clump.

--sky-std

The sky value standard deviation (per pixel) for this clump or object. This is
the square root of the mean variance under the object, or the root mean square.

https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1505.01664
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7.4.6.5 Surface brightness measurements

In astronomy, Surface brightness is most commonly measured in units of magnitudes per
arcsec2 (for the formal definition, see Section 7.4.2 [Brightness, Flux, Magnitude and Surface
brightness], page 574). Therefore it involves both the values of the pixels within each input
label (or output row) and their position.

--sb The surface brightness (in units of mag/arcsec2) of the labeled region (objects or
clumps). For more on the definition of the surface brightness, see Section 7.4.2
[Brightness, Flux, Magnitude and Surface brightness], page 574.

--sb-error

Error in measuring the surface brightness (the --sb column). This column
will use the value given to --spatialresolution in the processing (in pixels).
For more on --spatialresolution, see Section 7.4.7.1 [MakeCatalog inputs
and basic settings], page 609, and for the equation used to derive the surface
brightness error, see Section 7.4.3.3 [Surface brightness error of each detection],
page 583.

--upperlimit-sb

The upper-limit surface brightness (in units of mag/arcsec2) of this labeled
region (object or clump). In other words, this option measures the surface
brightness of noise within the footprint of each input label.

This is just a simple wrapper over lower-level columns: setting B and A as the
value in the columns --upperlimit and --area-arcsec2, we fill this column
by simply use the surface brightness equation of Section 7.4.2 [Brightness, Flux,
Magnitude and Surface brightness], page 574.

--half-sum-sb

Surface brightness (in units of mag/arcsec2) within the area that contains half
the total sum of the label’s pixels (object or clump). This is useful as a measure
of the sharpness of an astronomical object: for example a star will have very
few pixels at half the maximum, so its --half-sum-sb will be much brighter
than a galaxy at the same magnitude. Also consider --half-max-sb below.

This column just plugs in the values of half the value of the --sum column and
the --half-sum-area column, into the surface brightness equation. Therefore
please see the description in --half-sum-area to understand the systematics of
this column and potential biases (see Section 7.4.6.6 [Morphology measurements
(non-parametric)], page 602).

--half-max-sb

The surface brightness (in units of mag/arcsec2) within the region that contains
half the maximum value of the labeled region. Like --half-sum-sb this option
this is a good way to identify the “central” surface brightness of an object. To
know when this measurement is reasonable, see the description of --fwhm in
Section 7.4.6.6 [Morphology measurements (non-parametric)], page 602.

--sigclip-mean-sb

Surface brightness (over 1 pixel’s area in arcsec2) of the sigma-clipped mean
value of the pixel values distribution associated to each label (object or clump).
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This is useful in scenarios where your labels have approximately constant surface
brightness values after after removing outliers: for example in a radial profile,
see Section 10.2.1 [Invoking astscript-radial-profile], page 670).

In other scenarios it should be used with extreme care. For example over the
full area of a galaxy/star the pixel distribution is not constant (or symmetric
after adding noise), their pixel distributions are inherently skewed (with fewer
pixels in the center, having a very large value and many pixels in the outer
parts having lower values). Therefore, sigma-clipping is not meaningful for such
objects! For more on the definition of the surface brightness, see Section 7.4.2
[Brightness, Flux, Magnitude and Surface brightness], page 574, for more on
sigma-clipping, see Section 2.10.2 [Sigma clipping], page 200.

The error in this magnitude can be retrieved from the --sigclip-mean-sb-

delta column described below, and you can use the --sigclip-std-sb column
to find when the magnitude has become noise-dominated (signal-to-noise ratio
is roughly 1). See the description of these two options for more.

--sigclip-mean-sb-delta

Scatter in the --sigclip-mean-sb without using the standard deviation of each
pixel (that is given by --instd in Section 7.4.7.1 [MakeCatalog inputs and basic
settings], page 609). The scatter here is measured from the values of the label
themselves. This measurement is therefore most meaningful when you expect
the flux across one label to be constant (as in a radial profile for example).

This is calculated using the equation in Section 7.4.3.3 [Surface brightness error
of each detection], page 583, where ΔA = 0 (since sigma-clip is calculated per
pixel and there is no error in a single pixel). Within the equation to derive ΔM
(the error in magnitude, derived in Section 7.4.3.2 [Magnitude measurement er-
ror of each detection], page 582), the signal-to-noise ratio is defined by dividing
the sigma-clipped mean by the sigma-clipped standard deviation.

--sigclip-std-sb

The surface brightness of the sigma-clipped standard deviation of all the pixels
with the same label. For labels that are expected to have the same value in
all their pixels (for example each annulus of a radial profile) this can be used
to find the reliable (1σ) surface brightness for that label. In other words, if
--sigclip-mean-sb is fainter than the value of this column, you know that
noise is becoming significant. However, as described in --sigclip-mean-sb,
the sigma-clipped measurements of MakeCatalog should only be used in certain
situations like radial profiles, see the description there for more.

7.4.6.6 Morphology measurements (non-parametric)

Morphology defined as a way to quantify the “shape” of an object in your input image. This
includes both the position and value of the pixels within your input labels. There are many
ways to define the morphology of an object. In this section, we will review the available
non-parametric measures of morphology. By non-parametric, we mean that no functional
shape is assumed for the measurement.
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In Section 7.4.6.7 [Morphology measurements (elliptical)], page 606, you can see some
parametric elliptical measurements (which are only valid when the object is actually an
ellipse).

--num-clumps

[Objects] The number of clumps in this object.

--area The raw area (number of pixels/voxels) in any clump or object independent of
what pixel it lies over (if it is NaN/blank or unused for example).

--arcsec2-area

The used (non-blank in values image) area of the labeled region in units of arc-
seconds squared. This column is just the value of the --area column, multiplied
by the area of each pixel in the input image (in units of arcsec^2). Similar to
the --ra or --dec columns, for this option to work, the objects extension used
has to have a WCS structure.

--area-min-val

The number of pixels that are equal to the minimum value of the labeled region
(clump or object).

--area-max-val

The number of pixels that are equal to the maximum value of the labeled region
(clump or object).

--area-xy

Similar to --area, when the clump or object is projected onto the first two
dimensions. This is only available for 3-dimensional datasets. When work-
ing with Integral Field Unit (IFU) datasets, this projection onto the first two
dimensions would be a narrow-band image.

--fwhm The full width at half maximum (in units of pixels, along the semi-major axis) of
the labeled region (object or clump). The maximum value is estimated from the
mean of the top-three pixels with the highest values, see the description under
--maximum. The number of pixels that have half the value of that maximum are
then found (value in the --half-max-area column) and a radius is estimated
from the area. See the description under --half-sum-radius for more on
converting area to radius along major axis.

Because of its non-parametric nature, this column is most reliable on clumps
and should only be used in objects with great caution. This is because objects
can have more than one clump (peak with true signal) and multiple peaks are
not treated separately in objects, so the result of this column will be biased.

Also, because of its non-parametric nature, this FWHM it does not account for
the PSF, and it will be strongly affected by noise if the object is faint/diffuse
So when half the maximum value (which can be requested using the --maximum
column) is too close to the local noise level (which can be requested using the
--sky-std column), the value returned in this column is meaningless (its just
noise peaks which are randomly distributed over the area). You can there-
fore use the --maximum and --sky-std columns to remove, or flag, unreliable
FWHMs. For example, if a labeled region’s maximum is less than 2 times the
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sky standard deviation, the value will certainly be unreliable (half of that is
1σ!). For a more reliable value, this fraction should be around 4 (so half the
maximum is 2σ).

--half-max-area

The number of pixels with values larger than half the maximum flux within the
labeled region. This option is used to estimate --fwhm, so please read the notes
there for the caveats and necessary precautions.

--half-max-radius

The radius of region containing half the maximum flux within the labeled region.
This is just half the value reported by --fwhm.

--half-max-sum

The sum of the pixel values containing half the maximum flux within the la-
beled region (or those that are counted in --halfmaxarea). This option uses
the pixels within --fwhm, so please read the notes there for the caveats and
necessary precautions.

--half-sum-area

The number of pixels that contain half the object or clump’s total sum of pixels
(half the value in the --sum column). To count this area, all the non-blank
values associated with the given label (object or clump) will be sorted and
summed in order (starting from the maximum), until the sum becomes larger
than half the total sum of the label’s pixels.

This option is thus good for clumps (which are defined to have a single peak in
their morphology), but for objects you should be careful: if the object includes
multiple peaks/clumps at roughly the same level, then the area reported by this
option will be distributed over all the peaks.

--half-sum-radius

Radius (in units of pixels) derived from the area that contains half the total
sum of the label’s pixels (value reported by --halfsumarea). If the area is Ah
and the axis ratio is q, then the value returned in this column is

√
Ah/(πq).

This option is a good measure of the concentration of the observed (after PSF
convolution and noisy) object or clump, But as described below it underesti-
mates the effective radius. Also, it should be used in caution with objects that
may have multiple clumps. It is most reliable with clumps or objects that have
one or zero clumps, see the note under --halfsumarea.

Recall that in general, for an ellipse with semi-major axis a, semi-minor axis
b, and axis ratio q = b/a the area (A) is A = πab = πqa2. For a circle (where
q = 1), this simplifies to the familiar A = πa2.

This option should not be confused with the effective radius for Sérsic profiles,
commonly written as re. For more on the Sérsic profile and re, please see
Section 8.1.1.4 [Galaxies], page 633. Therefore, when re is meaningful for the
target (the target is elliptically symmetric and can be parameterized as a Sérsic
profile), re should be derived from fitting the profile with a Sérsic function which
has been convolved with the PSF. But from the equation above, you see that
this radius is derived from the raw image’s labeled values (after convolution,
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with no parametric profile), so this column’s value will generally be (much)
smaller than re, depending on the PSF, depth of the dataset, the morphology,
or if a fraction of the profile falls on the edge of the image.

In other words, this option can only be interpreted as an effective radius if there
is no noise and no PSF and the profile within the image extends to infinity (or
a very large multiple of the effective radius) and it not near the edge of the
image.

--frac-max1-area

--frac-max2-area

Number of pixels brighter than the given fraction(s) of the maximum pixel
value. For the maximum value, see the description of --maximum column. The
fraction(s) are given through the --frac-max option (that can take two values)
and is described in Section 7.4.7.1 [MakeCatalog inputs and basic settings],
page 609. Recall that in --halfmaxarea, the fraction is fixed to 0.5. Hence,
added with these two columns, you can sample three parts of the profile area.

--frac-max1-sum

--frac-max2-sum

Sum of pixels brighter than the given fraction(s) of the maximum pixel value.
For the maximum value, see the description of --maximum column below. The
fraction(s) are given through the --frac-max option (that can take two values)
and is described in Section 7.4.7.1 [MakeCatalog inputs and basic settings],
page 609. Recall that in --halfmaxsum, the fraction is fixed to 0.5. Hence,
added with these two columns, you can sample three parts of the profile’s sum
of pixels.

--frac-max1-radius

--frac-max2-radius

Radius (in units of pixels) derived from the area that contains the given frac-
tions of the maximum valued pixel(s) of the label’s pixels (value reported by
--frac-max1-area or --frac-max2-area). For the maximum value, see the
description of --maximum column below. The fractions are given through the
--frac-max option (that can take two values) and is described in Section 7.4.7.1
[MakeCatalog inputs and basic settings], page 609. Recall that in --fwhm, the
fraction is fixed to 0.5. Hence, added with these two columns, you can sample
three parts of the profile’s radius.

--clumps-area

[Objects] The total area of all the clumps in this object.

--weight-area

The area (number of pixels) used in the flux weighted position calculations.

--geo-area

The area of all the pixels labeled with an object or clump. Note that unlike
--area, pixel values are completely ignored in this column. For example, if a
pixel value is blank, it will not be counted in --area, but will be counted here.
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--geo-area-xy

Similar to --geo-area, when the clump or object is projected onto the first
two dimensions. This is only available for 3-dimensional datasets. When work-
ing with Integral Field Unit (IFU) datasets, this projection onto the first two
dimensions would be a narrow-band image.

7.4.6.7 Morphology measurements (elliptical)

When your target objects are sufficiently ellipse-like, you can use the measurements be-
low to quantify the various parameters of the ellipse. For details of how the elliptical
parameters are measured, see Section 7.4.4 [Measuring elliptical parameters], page 589.
For non-parametric morphological measurements, see Section 7.4.6.6 [Morphology measure-
ments (non-parametric)], page 602. The measures that start with --geo-* ignore the pixel
values and just do the measurements on the label’s “geometric” shape.

--semi-major

The pixel-value weighted root mean square (RMS) along the semi-major axis
of the profile (assuming it is an ellipse) in units of pixels.

--semi-minor

The pixel-value weighted root mean square (RMS) along the semi-minor axis
of the profile (assuming it is an ellipse) in units of pixels.

--axis-ratio

The pixel-value weighted axis ratio (semi-minor/semi-major) of the object or
clump.

--position-angle

The pixel-value weighted angle of the semi-major axis with the first FITS axis
in degrees.

--geo-semi-major

The geometric (ignoring pixel values) root mean square (RMS) along the semi-
major axis of the profile, assuming it is an ellipse, in units of pixels.

--geo-semi-minor

The geometric (ignoring pixel values) root mean square (RMS) along the semi-
minor axis of the profile, assuming it is an ellipse, in units of pixels.

--geo-axis-ratio

The geometric (ignoring pixel values) axis ratio of the profile, assuming it is an
ellipse.

--geo-position-angle

The geometric (ignoring pixel values) angle of the semi-major axis with the first
FITS axis in degrees.

7.4.6.8 Measurements per slice (spectra)

When the input is a 3D data cube, MakeCatalog has the following multi-valued measure-
ments per label. For a tutorial on how to use these options and interpret their values, see
Section 2.5 [Detecting lines and extracting spectra in 3D data], page 135.
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These options will do measurements on each 2D slice of the input 3D cube; hence the
common the format of --*-in-slice. Each slice usually corresponds to a certain wave-
length, you can also think of these measurements as spectra.

For each row (input label), each of the columns described here will contain multiple
values as a vector column. The number of measurements in each column is the number
of slices in the cube, or the size of the cube along the third dimension. To learn more
about vector columns and how to manipulate them, see Section 5.3.2 [Vector columns],
page 343. For example usage of these columns in the tutorial above, see Section 2.5.5 [3D
measurements and spectra], page 143, and Section 2.5.6 [Extracting a single spectrum and
plotting it], page 147.

There are two ways to do each measurement on a slice for each label:

Only label The measurement will only be done on the voxels in the slice that are associated
to that label. These types of per-slice measurement therefore have the following
properties:

• This will only be a measurement of that label and will not be affected by
any other label.

• The number of voxels used in each slice can be different (usually only one
or two voxels at the two extremes of the label (along the third dimension),
and many in the middle.

• Since most labels are localized along the third dimension (maybe only
covering 20 slices out of thousands!), many of the measurements (on slices
where the label doesn’t exist) will be NaN (for the sum measurements for
example) or 0 (for the area measurements).

Projected label
MakeCatalog will first project the 3D label into a 2D surface (along the third
dimension) to get its 2D footprint. Afterwards, all the voxels in that 2D foot-
print will be measured all slices. All these measurements will have a -proj-

component in their name. These types of per-slice measurement therefore has
the following properties:

• A measurement will be done on each slice of the cube.

• All measurements will be done on the same surface area.

• Labels can overlap when they are projected onto the first two FITS dimen-
sions (the spatial coordinates, not spectral). As a result, other emission
lines or objects may contaminate the resulting spectrum for each label.

To help separate other labels, MakeCatalog can do a third type of measurement
on each slice: measurements on the voxels that belong to other labels but over-
lap with the 2D projection. This can be used to see how much your projected
measurement is affected by other emission sources (on the projected spectra)
and also if multiple lines (labeled regions) belong to the same physical object.
These measurements contain -other- in their name.

--sum-in-slice

[Only label] Sum of values in each slice.

--sum-err-in-slice

[Only label] Error in ’–sum-in-slice’.
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--area-in-slice

[Only label] Number of labeled in each slice.

--sum-proj-in-slice

[Projected label] Sum of projected area in each slice.

--area-proj-in-slice:

[Projected label] Number of voxels that are used in --sum-proj-in-slice.

--sum-proj-err-in-slice

[Projected label] Error of --sum-proj-in-slice.

--area-other-in-slice

[Projected label] Area of other label in projected area on each slice.

--sum-other-in-slice

[Projected label] Sum of other label in projected area on each slice.

--sum-other-err-in-slice:

[Projected label] Area in --sum-other-in-slice.

7.4.7 Invoking MakeCatalog

MakeCatalog will do measurements and produce a catalog from a labeled dataset and
optional values dataset(s). The executable name is astmkcatalog with the following general
template

$ astmkcatalog [OPTION ...] InputImage.fits

One line examples:

## Create catalog with RA, Dec, Magnitude and Magnitude error,

## from Segment's output:

$ astmkcatalog --ra --dec --magnitude seg-out.fits

## Same catalog as above (using short options):

$ astmkcatalog -rdm seg-out.fits

## Write the catalog to a text table:

$ astmkcatalog -rdm seg-out.fits --output=cat.txt

## Output columns specified in `columns.conf':

$ astmkcatalog --config=columns.conf seg-out.fits

## Use object and clump labels from a K-band image, but pixel values

## from an i-band image.

$ astmkcatalog K_segmented.fits --hdu=DETECTIONS --clumpscat \

--clumpsfile=K_segmented.fits --clumpshdu=CLUMPS \

--valuesfile=i_band.fits

If MakeCatalog is to do processing (not printing help or option values), an input labeled
image should be provided. The options described in this section are those that are particular
to MakeProfiles. For operations that MakeProfiles shares with other programs (mainly
involving input/output or general processing steps), see Section 4.1.2 [Common options],
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page 251. Also see Chapter 4 [Common program behavior], page 247, for some general
characteristics of all Gnuastro programs including MakeCatalog.

The various measurements/columns of MakeCatalog are requested as options, either on
the command-line or in configuration files, see Section 4.2 [Configuration files], page 268.
The full list of available columns is available in Section 7.4.6 [MakeCatalog measurements],
page 593. Depending on the requested columns, MakeCatalog needs more than one input
dataset, for more details, please see Section 7.4.7.1 [MakeCatalog inputs and basic settings],
page 609. The upper-limit measurements in particular need several configuration options
which are thoroughly discussed in Section 7.4.7.2 [Upper-limit settings], page 613. Finally, in
Section 7.4.7.3 [MakeCatalog output], page 615, the output file(s) created by MakeCatalog
are discussed.

7.4.7.1 MakeCatalog inputs and basic settings

MakeCatalog works by using a localized/labeled dataset (see Section 7.4 [MakeCatalog],
page 572). This dataset maps/labels pixels to a specific target (row number in the final
catalog) and is thus the only necessary input dataset to produce a minimal catalog in any
situation. Because it only has labels/counters, it must have an integer type (see Section 4.5
[Numeric data types], page 277), see below if your labels are in a floating point container.
When the requested measurements only need this dataset (for example, --geo-x, --geo-y,
or --geo-area), MakeCatalog will not read any more datasets.

Low-level measurements that only use the labeled image are rarely sufficient for any high-
level science case. Therefore necessary input datasets depend on the requested columns in
each run. For example, let’s assume you want the brightness/magnitude and signal-to-noise
ratio of your labeled regions. For these columns, you will also need to provide an extra
dataset containing values for every pixel of the labeled input (to measure magnitude) and
another for the Sky standard deviation (to measure error). All such auxiliary input files have
to have the same size (number of pixels in each dimension) as the input labeled image. Their
numeric data type is irrelevant (they will be converted to 32-bit floating point internally).
For the full list of available measurements, see Section 7.4.6 [MakeCatalog measurements],
page 593.

The “values” dataset is used for measurements like brightness/magnitude, or
flux-weighted positions. If it is a real image, by default it is assumed to be already
Sky-subtracted prior to running MakeCatalog. If it is not, you use the --subtractsky

option to, so MakeCatalog reads and subtracts the Sky dataset before any processing. To
obtain the Sky value, you can use the --sky option of Section 7.1 [Statistics], page 508,
but the best recommended method is Section 7.2 [NoiseChisel], page 541, see Section 7.1.4
[Sky value], page 519.

MakeCatalog can also do measurements on sub-structures of detections. In other words,
it can produce two catalogs. Following the nomenclature of Segment (see Section 7.3 [Seg-
ment], page 561), the main labeled input dataset is known as “object” labels and the
(optional) sub-structure input dataset is known as “clumps”. If MakeCatalog is run with
the --clumpscat option, it will also need a labeled image containing clumps, similar to
what Segment produces (see Section 7.3.1.3 [Segment output], page 570). Since clumps are
defined within detected regions (they exist over signal, not noise), MakeCatalog uses their
boundaries to subtract the level of signal under them.
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There are separate options to explicitly request a file name and HDU/extension for each
of the required input datasets as fully described below (with the --*file format). When
each dataset is in a separate file, these options are necessary. However, one great advantage
of the FITS file format (that is heavily used in astronomy) is that it allows the storage
of multiple datasets in one file. So in most situations (for example, if you are using the
outputs of Section 7.2 [NoiseChisel], page 541, or Section 7.3 [Segment], page 561), all the
necessary input datasets can be in one file.

When none of the --*file options are given (for example --clumpsfile or
--valuesfile), MakeCatalog will assume the necessary input datasets are available
as HDUs in the file given as its argument (without any option). When the Sky or
Sky standard deviation datasets are necessary and the only --*file option called is
--valuesfile, MakeCatalog will search for these datasets (with the default/given HDUs)
in the file given to --valuesfile (before looking into the main argument file).

It may happen that your labeled objects image was created with a program that only
outputs floating point files. However, you know it only has integer valued pixels that are
stored in a floating point container. In such cases, you can use Gnuastro’s Arithmetic
program (see Section 6.2 [Arithmetic], page 399) to change the numerical data type of the
image (float.fits) to an integer type image (int.fits) with a command like below:

$ astarithmetic float.fits int32 --output=int.fits

To summarize: if the input file to MakeCatalog is the default/full output of Segment
(see Section 7.3.1.3 [Segment output], page 570) you do not have to worry about any of
the --*file options below. You can just give Segment’s output file to MakeCatalog as
described in Section 7.4.7 [Invoking MakeCatalog], page 608. To feed NoiseChisel’s output
into MakeCatalog, just change the labeled dataset’s header (with --hdu=DETECTIONS). The
full list of input dataset options and general setting options are described below.

-l FITS

--clumpsfile=FITS

The FITS file containing the labeled clumps dataset when --clumpscat is called
(see Section 7.4.7.3 [MakeCatalog output], page 615). When --clumpscat

is called, but this option is not, MakeCatalog will look into the main in-
put file (given as an argument) for the required extension/HDU (value to
--clumpshdu).

--clumpshdu=STR

The HDU/extension of the clump labels dataset. Only pixels with values above
zero will be considered. The clump labels dataset has to be an integer data type
(see Section 4.5 [Numeric data types], page 277) and only pixels with a value
larger than zero will be used. See Section 7.3.1.3 [Segment output], page 570,
for a description of the expected format.

-v FITS

--valuesfile=FITS

The file name of the (sky-subtracted) values dataset. When any of the columns
need values to associate with the input labels (for example, to measure the
sum of pixel values or magnitude of a galaxy, see Section 7.4.2 [Brightness,
Flux, Magnitude and Surface brightness], page 574), MakeCatalog will look
into a “values” for the respective pixel values. In most common processing,
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this is the actual astronomical image that the labels were defined, or detected,
over. The HDU/extension of this dataset in the given file can be specified with
--valueshdu. If this option is not called, MakeCatalog will look for the given
extension in the main input file.

--valueshdu=STR/INT

The name or number (counting from zero) of the extension containing the “val-
ues” dataset, see the descriptions above and those in --valuesfile for more.

-s FITS/FLT

--insky=FITS/FLT

Sky value as a single number, or the file name containing a dataset (different
values per pixel or tile). The Sky dataset is only necessary when --subtractsky

is called or when a column directly related to the Sky value is requested (cur-
rently --sky). This dataset may be a tessellation, with one element per tile
(see --oneelempertile of NoiseChisel’s Section 4.1.2.2 [Processing options],
page 255).

When the Sky dataset is necessary but this option is not called, MakeCatalog
will assume it is an HDU/extension (specified by --skyhdu) in one of the already
given files. First it will look for it in the --valuesfile (if it is given) and then
the main input file (given as an argument).

By default the values dataset is assumed to be already Sky subtracted, so this
dataset is not necessary for many of the columns.

--skyhdu=STR

HDU/extension of the Sky dataset, see --skyfile.

--subtractsky

Subtract the sky value or dataset from the values file prior to any processing.

-t STR/FLT

--instd=STR/FLT

Sky standard deviation value as a single number, or the file name containing
a dataset (different values per pixel or tile). With the --variance option you
can tell MakeCatalog to interpret this value/dataset as a variance image, not
standard deviation.

Important note: This must only be the SKY standard deviation or variance
(not including the signal’s contribution to the error). In other words, the fi-
nal standard deviation of a pixel depends on how much signal there is in it.
MakeCatalog will find the amount of signal within each pixel (while subtract-
ing the Sky, if --subtractsky is called) and account for the extra error due
to it’s value (signal). Therefore if the input standard deviation (or variance)
image also contains the contribution of signal to the error, then the final error
measurements will be over-estimated.

--stdhdu=STR

The HDU of the Sky value standard deviation image.

--variance

The dataset given to --instd (and --stdhdu has the Sky variance of every
pixel, not the Sky standard deviation.
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--forcereadstd

Read the input STD image even if it is not required by any of the requested
columns. This is because some of the output catalog’s metadata may need it,
for example, to calculate the dataset’s surface brightness limit (see Section 7.4.3
[Quantifying measurement limits], page 578, configured with --sfmagarea and
--sfmagnsigma in Section 7.4.7.3 [MakeCatalog output], page 615).

Furthermore, if the input STD image does not have the MEDSTD keyword (that is
meant to contain the representative standard deviation of the full image), with
this option, the median will be calculated and used for the surface brightness
limit.

-z FLT

--zeropoint=FLT

The zero point magnitude for the input image, see Section 7.4.2 [Brightness,
Flux, Magnitude and Surface brightness], page 574.

--sigmaclip FLT,FLT

The sigma-clipping parameters when any of the sigma-clipping related columns
are requested (for example, --sigclip-median or --sigclip-number).

This option takes two values: the first is the multiple of σ, and the second is
the termination criteria. If the latter is larger than 1, it is read as an integer
number and will be the number of times to clip. If it is smaller than 1, it is
interpreted as the tolerance level to stop clipping. See Section 2.10.2 [Sigma
clipping], page 200, for a complete explanation.

--frac-max=FLT[,FLT]

The fractions (one or two) of maximum value in objects or clumps to be
used in the related columns, for example, --frac-max1-area, --frac-max1-
sum or --frac-max1-radius, see Section 7.4.6 [MakeCatalog measurements],
page 593. For the maximum value, see the description of --maximum column
below. The value(s) of this option must be larger than 0 and smaller than 1
(they are a fraction). When only --frac-max1-area or --frac-max1-sum is
requested, one value must be given to this option, but if --frac-max2-area or
--frac-max2-sum are also requested, two values must be given to this option.
The values can be written as simple floating point numbers, or as fractions, for
example, 0.25,0.75 and 0.25,3/4 are the same.

--spatialresolution=FLT

The error in measuring spatial properties (for example, the area) in units of
pixels. You can think of this as the FWHM of the dataset’s PSF and is used in
measurements like the error in surface brightness (--sb-error, see Section 7.4.6
[MakeCatalog measurements], page 593). Ideally, images are taken in the op-
timal Nyquist sampling Section 6.3.2.7 [Sampling theorem], page 481, so the
default value for this option is 2. But in practice real images my be over-
sampled (usually ground-based images, where you will need to increase the
default value) or undersampled (some space-based images, where you will need
to decrease the default value).
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--inbetweenints

Output will contain one row for all integers between 1 and the largest label
in the input (irrespective of their existance in the input image). By default,
MakeCatalog’s output will only contain rows with integers that actually corre-
sponded to at least one pixel in the input dataset.

For example, if the input’s only labeled pixel values are 11 and 13, MakeCata-
log’s default output will only have two rows. If you use this option, it will have
13 rows and all the columns corresponding to integer identifiers that did not
correspond to any pixel will be 0 or NaN (depending on context).

7.4.7.2 Upper-limit settings

The upper-limit magnitude was discussed in Section 7.4.3 [Quantifying measurement lim-
its], page 578. Unlike other measured values/columns in MakeCatalog, the upper limit
magnitude needs several extra parameters which are discussed here. All the options spe-
cific to the upper-limit measurements start with up for “upper-limit”. The only exception
is --envseed that is also present in other programs and is general for any job requiring
random number generation in Gnuastro (see Section 6.2.3.4 [Generating random numbers],
page 406).

One very important consideration in Gnuastro is reproducibility. Therefore, the values
to all of these parameters along with others (like the random number generator type and
seed) are also reported in the comments of the final catalog when the upper limit magnitude
column is desired. The random seed that is used to define the random positions for each
object or clump is unique and set based on the (optionally) given seed, the total number of
objects and clumps and also the labels of the clumps and objects. So with identical inputs,
an identical upper-limit magnitude will be found. However, even if the seed is identical,
when the ordering of the object/clump labels differs between different runs, the result of
upper-limit measurements will not be identical.

MakeCatalog will randomly place the object/clump footprint over the dataset. When the
randomly placed footprint does not fall on any object or masked region (see --upmaskfile)
it will be used in the final distribution. Otherwise that particular random position will be
ignored and another random position will be generated. Finally, when the distribution has
the desired number of successfully measured random samples (--upnum) the distribution’s
properties will be measured and placed in the catalog.

When the profile is very large or the image is significantly covered by detections, it might
not be possible to find the desired number of samplings in a reasonable time. MakeProfiles
will continue searching until it is unable to find a successful position (since the last suc-
cessful measurement29), for a large multiple of --upnum (currently30 this is 10). If --upnum
successful samples cannot be found until this limit is reached, MakeCatalog will set the
upper-limit magnitude for that object to NaN (blank).

MakeCatalog will also print a warning if the range of positions available for the labeled
region is smaller than double the size of the region. In such cases, the limited range of
random positions can artificially decrease the standard deviation of the final distribution.

29 The counting of failed positions restarts on every successful measurement.
30 In Gnuastro’s source, this constant number is defined as the MKCATALOG_UPPERLIMIT_MAXFAILS_MULTIP

macro in bin/mkcatalog/main.h, see Section 3.2 [Downloading the source], page 225.
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If your dataset can allow it (it is large enough), it is recommended to use a larger range if
you see such warnings.

--upmaskfile=FITS

File name of mask image to use for upper-limit calculation. In some cases
(especially when doing matched photometry), the object labels specified in the
main input and mask image might not be adequate. In other words they do
not necessarily have to cover all detected objects: the user might have selected
only a few of the objects in their labeled image. This option can be used
to ignore regions in the image in these situations when estimating the upper-
limit magnitude. All the non-zero pixels of the image specified by this option
(in the --upmaskhdu extension) will be ignored in the upper-limit magnitude
measurements.

For example, when you are using labels from another image, you can give
NoiseChisel’s objects image output for this image as the value to this option. In
this way, you can be sure that regions with data do not harm your distribution.
See Section 7.4.3 [Quantifying measurement limits], page 578, for more on the
upper limit magnitude.

--upmaskhdu=STR

The extension in the file specified by --upmask.

--upnum=INT

The number of random samples to take for all the objects. A larger value to
this option will give a more accurate result (asymptotically), but it will also
slow down the process. When a randomly positioned sample overlaps with a
detected/masked pixel it is not counted and another random position is found
until the object completely lies over an undetected region. So you can be sure
that for each object, this many samples over undetected objects are made. See
the upper limit magnitude discussion in Section 7.4.3 [Quantifying measurement
limits], page 578, for more.

--uprange=INT,INT

The range/width of the region (in pixels) to do random sampling along each
dimension of the input image around each object’s position. This is not a
mandatory option and if not given (or given a value of zero in a dimension),
the full possible range of the dataset along that dimension will be used. This
is useful when the noise properties of the dataset vary gradually. In such cases,
using the full range of the input dataset is going to bias the result. However,
note that decreasing the range of available positions too much will also artifi-
cially decrease the standard deviation of the final distribution (and thus bias
the upper-limit measurement).

--envseed

Read the random number generator type and seed value from the environment
(see Section 6.2.3.4 [Generating random numbers], page 406). Random numbers
are used in calculating the random positions of different samples of each object.

--upsigmaclip=FLT,FLT

The raw distribution of random values will not be used to find the upper-
limit magnitude, it will first be σ-clipped (see Section 2.10.2 [Sigma clipping],
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page 200) to avoid outliers in the distribution (mainly the faint undetected
wings of bright/large objects in the image). This option takes two values: the
first is the multiple of σ, and the second is the termination criteria. If the
latter is larger than 1, it is read as an integer number and will be the number
of times to clip. If it is smaller than 1, it is interpreted as the tolerance level
to stop clipping. See Section 2.10.2 [Sigma clipping], page 200, for a complete
explanation.

--upnsigma=FLT

The multiple of the final (σ-clipped) standard deviation (or σ) used to measure
the upper-limit sum or magnitude.

--checkuplim=INT[,INT]

Print a table of positions and measured values for all the full random distribu-
tion used for one particular object or clump. If only one integer is given to this
option, it is interpreted to be an object’s label. If two values are given, the first
is the object label and the second is the ID of requested clump within it.

The output is a table with three columns (whether it is FITS or plain-text is
determined with the --tableformat option, see Section 4.1.2.1 [Input/Output
options], page 252). The first two columns are the pixel X,Y positions of the
center of each label’s tile (see next paragraph), in each random sampling of
this particular object/clump. The third column is the measured flux over that
region. If the region overlapped with a detection or masked pixel, then its
measured value will be a NaN (not-a-number). The total number of rows is
thus unknown before running. However, if an upper-limit measurement was
made in the main output of MakeCatalog, you can be sure that the number of
rows with non-NaN measurements is the number given to the --upnum option.

The “tile” of each label is defined by the minimum and maximum positions of
each label: values of the --min-x, --max-x, --min-y and --max-y columns in
the main output table for each label. Therefore, the tile center position that is
recorded in the output of this column ignores the distribution of labeled pixels
within the tile.

Precise interpretation of the position is only relevant when the footprint of
your label is highly un-symmetrical and you want to use this catalog to insert
your object into the image. In such a case, you can also ask for --min-x

and --min-y and manually calculate their difference with the following two
positional measurements of your desired label: --geo-x and --geo-y (which
report the label’s “geometric” center; only using the label positions ignoring
any “values”) or --x and --y (which report the value-weighted center of the
label). Adding the difference with the position reported by this column, will
let you define alternative “center”s for your label in particular situations (this
will usually not be necessary!). For more on these positional columns, see
Section 7.4.6.2 [Position measurements in pixels], page 594.

7.4.7.3 MakeCatalog output

After it has completed all the requested measurements (see Section 7.4.6 [MakeCatalog
measurements], page 593), MakeCatalog will store its measurements in table(s). If an output
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filename is given (see --output in Section 4.1.2.1 [Input/Output options], page 252), the
format of the table will be deduced from the name. When it is not given, the input name
will be appended with a _cat suffix (see Section 4.9 [Automatic output], page 290) and
its format will be determined from the --tableformat option, which is also discussed in
Section 4.1.2.1 [Input/Output options], page 252. --tableformat is also necessary when
the requested output name is a FITS table (recall that FITS can accept ASCII and binary
tables, see Section 5.3 [Table], page 340).

By default (when --spectrum or --clumpscat are not called) only a single catalog/table
will be created for the labeled “objects”.

• if --clumpscat is called, a secondary catalog/table will also be created for “clumps”
(one of the outputs of the Segment program, for more on “objects” and “clumps”, see
Section 7.3 [Segment], page 561). In short, if you only have one labeled image, you do
not have to worry about clumps and just ignore this.

• When --spectrum is called, it is not mandatory to specify any single-valued measure-
ment columns. In this case, the output will only be the spectra of each labeled region
within a 3D datacube. For more, see the description of --spectrum in Section 7.4.6
[MakeCatalog measurements], page 593.

When possible, MakeCatalog will also measure the full input’s noise level (also known
as surface brightness limit, see Section 7.4.3 [Quantifying measurement limits], page 578).
Since these measurements are related to the noise and not any particular labeled object,
they are stored as keywords in the output table. Furthermore, they are only possible when a
standard deviation image has been loaded (done automatically for any column measurement
that involves noise, for example, --sn, --magnitude-error or --sky-std). But if you just
want the surface brightness limit and no noise-related column, you can use --forcereadstd.
All these keywords start with SBL (for “surface brightness limit”) and are described below:

SBLSTD Per-pixel standard deviation. If a MEDSTD keyword exists in the standard devi-
ation dataset, then that value is directly used.

SBLNSIG Sigma multiple for surface brightness limit (value you gave to --sfmagnsigma),
used for SBLMAGPX and SBLMAG.

SBLMAGPX Per-pixel surface brightness limit (in units of magnitudes/pixel).

SBLAREA Area (in units of arcsec2) used in SBLMAG (value you gave to --sfmagarea).

SBLMAG Surface brightness limit of data calculated over SBLAREA (in units of
mag/arcsec2).

When any of the upper-limit measurements are requested, the input parameters for the
upper-limit measurement are stored in the keywords starting with UP: UPNSIGMA, UPNUMBER,
UPRNGNAM, UPRNGSEE, UPSCMLTP, UPSCTOL. These are primarily input arguments, so they
correspond to the options with a similar name.

The full list of MakeCatalog’s options relating to the output file format and keywords
are listed below. See Section 7.4.6 [MakeCatalog measurements], page 593, for specifying
which columns you want in the final catalog.
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-C

--clumpscat

Do measurements on clumps and produce a second catalog (only devoted to
clumps). When this option is given, MakeCatalog will also look for a secondary
labeled dataset (identifying substructure) and produce a catalog from that. For
more on the definition on “clumps”, see Section 7.3 [Segment], page 561.

When the output is a FITS file, the objects and clumps catalogs/tables will be
stored as multiple extensions of one FITS file. You can use Section 5.3 [Table],
page 340, to inspect the column meta-data and contents in this case. However,
in plain text format (see Section 4.7.2 [Gnuastro text table format], page 285),
it is only possible to keep one table per file. Therefore, if the output is a text
file, two output files will be created, ending in _o.txt (for objects) and _c.txt

(for clumps).

--noclumpsort

Do not sort the clumps catalog based on object ID (only relevant with
--clumpscat). This option will benefit the performance31 of MakeCatalog
when it is run on multiple threads and the position of the rows in the clumps
catalog is irrelevant (for example, you just want the number-counts).

MakeCatalog does all its measurements on each object independently and in
parallel. As a result, while it is writing the measurements on each object’s
clumps, it does not know how many clumps there were in previous objects.
Each thread will just fetch the first available row and write the information of
clumps (in order) starting from that row. After all the measurements are done,
by default (when this option is not called), MakeCatalog will reorder/permute
the clumps catalog to have both the object and clump ID in an ascending order.

If you would like to order the catalog later (when it is a plain text file), you can
run the following command to sort the rows by object ID (and clump ID within
each object), assuming they are respectively the first and second columns:

$ awk '!/^#/' out_c.txt | sort -g -k1,1 -k2,2

--sfmagnsigma=FLT

Value to multiply with the median standard deviation (from a MEDSTD keyword
in the Sky standard deviation image) for estimating the surface brightness limit.
Note that the surface brightness limit is only reported when a standard devia-
tion image is read, in other words a column using it is requested (for example,
--sn) or --forcereadstd is called.

This value is a per-pixel value, not per object/clump and is not found over an
area or aperture, like the common 5σ values that are commonly reported as a
measure of depth or the upper-limit measurements (see Section 7.4.3 [Quanti-
fying measurement limits], page 578).

--sfmagarea=FLT

Area (in arc-seconds squared) to convert the per-pixel estimation of
--sfmagnsigma in the comments section of the output tables. Note that the

31 The performance boost due to --noclumpsort can only be felt when there are a huge number of objects.
Therefore, by default the output is sorted to avoid miss-understandings or bugs in the user’s scripts
when the user forgets to sort the outputs.
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surface brightness limit is only reported when a standard deviation image is
read, in other words a column using it is requested (for example, --sn) or
--forcereadstd is called.

Note that this is just a unit conversion using the World Coordinate System
(WCS) information in the input’s header. It does not actually do any mea-
surements on this area. For random measurements on any area, please use the
upper-limit columns of MakeCatalog (see the discussion on upper-limit mea-
surements in Section 7.4.3 [Quantifying measurement limits], page 578).

7.5 Match

Data can come come from different telescopes, filters, software and even different configu-
rations for a single software. As a result, one of the primary things to do after generating
catalogs from each of these sources (for example, with Section 7.4 [MakeCatalog], page 572),
is to find which sources in one catalog correspond to which in the other(s). In other words,
to ‘match’ the two catalogs with each other.

Gnuastro’s Match program is in charge of such operations. The nearest objects in the
two catalogs, within the given aperture, will be found and given as output. The aperture
can be a circle or an ellipse with any orientation.

7.5.1 Matching algorithms

Matching involves two catalogs, let’s call them catalog A (with N rows) and catalog B (with
M rows). The most basic matching algorithm that immediately comes to mind is this: for
each row in A (let’s call it Ai), go over all the rows in B (Bj, where 0 < j < M) and
calculate the distance |Bj − Ai|. If this distance is less than a certain acceptable distance
threshold (or radius, or aperture), consider Ai and Bj as a match.

This basic parsing algorithm is very computationally expensive: N ×M distances have
to measured, and calculating the distance requires a square root and power of 2: in 2

dimensions it would be
√
(Bix −Aix)2 + (Biy −Aiy)2. If an elliptical aperture is necessary,

it can even get more complicated, see Section 8.1.1.1 [Defining an ellipse and ellipsoid],
page 629. Such operations are not simple, and will consume many cycles of your CPU! As
a result, this basic algorithm will become terribly slow as your datasets grow in size. For
example, when N or M exceed hundreds of thousands (which is common in the current days
with datasets like the European Space Agency’s Gaia mission). Therefore that basic parsing
algorithm will take too much time and more efficient ways to find the nearest neighbor need
to be found. Gnuastro’s Match currently has algorithms for finding the nearest neighbor:

Sort-based In this algorithm, we will use a moving window over the sorted datasets:

1. Sort the two datasets by their first coordinate. Therefore Ai < Aj (when
i < j; only in first coordinate), and similarly, sort the elements of B based
on the first coordinate.

2. Use the radial distance threshold to define the width of a moving interval
over both A and B. Therefore, with a single parsing of both simultaneously,
for each A-point, we can find all the elements in B that are sufficiently near
to it (within the requested aperture).



Chapter 7: Data analysis 619

This method has some caveats: 1) It requires sorting, which can again be slow
on large numbers. 2) It can only be done on a single CPU thread! So it
cannot benefit from the modern CPUs with many threads. 3) There is no way
to preserve intermediate information for future matches, for example, this can
greatly help when one of the matched datasets is always the same. To use this
sorting method in Match, use --kdtree=disable.

k-d tree based
The k-d tree concept is much more abstract, but powerful (addressing all the
caveats of the sort-based method described above.). In short a k-d tree is a
partitioning of a k-dimensional space (“k” is just a place-holder, so together
with “d” for dimension, “k-d” means “any number of dimensions”!). The k-d
tree of table A is another table with the same number of rows, but only two
integer columns: the integers contain the row indexs (counting from zero) of the
left and right “branch” (in the “tree”) of that row. With a k-d tree we can find
the nearest point with much fewer (statistically) checks, compared to always
parsing from the top-down. For more on the k-d tree concept and Gnuastro’s
implementation, please see Section 12.3.19 [K-d tree (kdtree.h)], page 857.

When given two catalogs (like the command below), Gnuastro’s Match will
internally construct a k-d tree for catalog A (the first catalog given to it) and
use the k-d tree of A, for finding the nearest B-point(s) to each A-point (this
is done in parallel on all available CPU threads, unless you specify a certain
number of threads to use with --numthreads, see Section 4.4 [Multi-threaded
operations], page 274)

$ astmatch A.fits --ccol1=ra,dec B.fits --ccol2=RA,DEC \

--aperture=1/3600

However, optionally, you can also build the k-d tree of A and save it into a file,
with a separate call to Match, like below

$ astmatch A.fits --ccol1=ra,dec --kdtree=build \

--output=A-kdtree.fits

This external k-d tree (A-kdtree.fits) can be fed to Match later (to avoid
having to reconstruct it every time you want to match a new catalog with A)
like below for matching both B.fits and C.fits with A.fits. Note that the
same --kdtree option above, is now given the file name of the k-d tree, instead
of build.

$ astmatch A.fits --ccol1=ra,dec --kdtree=A-kdtree.fits \

B.fits --ccol2=RA,DEC --aperture=1/3600 \

--output=A-B.fits

$ astmatch A.fits --ccol1=ra,dec --kdtree=A-kdtree.fits \

C.fits --ccol2=RA,DEC --aperture=1/3600 \

--output=A-C.fits

Irrespective of how the k-d tree is made ready (by importing or by constructing
internally), it will be used to find the nearest A-point to each B-point. The k-d
tree is parsed independently (on different CPU threads) for each row of B.

There is just one technical issue however: when there is no neighbor within the
acceptable distance of the k-d tree, it is forced to parse all elements to confirm
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that there is no match! Therefore if one catalog only covers a small portion (in
the coordinate space) of the other catalog, the k-d tree algorithm will be forced
to parse the full k-d tree for the majority of points! This will dramatically
decrease the running speed of Match. Therefore, Match first divides the range
of the first input in all its dimensions into bins that have a width of the requested
aperture (similar to a histogram), and will only do the k-d tree based search
when the point in catalog B actually falls within a bin that has at least one
element in A.

Above, we described different ways of finding the Ai that is nearest to each Bj. But
this is not the whole matching process! Let’s go ahead with a “basic” description of what
happens next... You may be tempted to remove Ai from the search of matches for Bk (where
k > j). Therefore, as you go down B (and more matches are found), you have to calculate
less distances (there are fewer elements in A that remain to be checked). However, this will
introduce an important bias: Ai may actually be closer to Bk than to Bj! But because Bj
happened to be before Bk in your table, Ai was removed from the potential search domain
of Bk. The good match (Bk with Ai will therefore be lost, and replaced by a false match
between Bj and Ai!

In a single-dimensional match, this bias depends on the sorting of your two datasets
(leading to different matches if you shuffle your datasets). But it will get more complex as
you add dimensionality. For example, catalogs derived from 2D images or 3D cubes, where
you have 2 and 3 different coordinates for each point.

To address this problem, in Gnuastro (the Match program, or the matching functions of
the library) similar to above, we first parse over the elements of B. But we will not associate
the first nearest-neighbor with a match! Instead, we will use an array (with the number of
rows in A, let’s call it “B-in-A”) to keep the list of all nearest element(s) in B that match
each A-point. Once all the points in B are parsed, each A-point in B-in-A will (possibly)
have a sorted list of B-points (there may be multiple B-points that fall within the acceptable
aperture of each A-point). In the previous example, the i element (corresponding to Ai) of
B-in-A will contain the following list of B-points: Bj and Bk.

A new array (with the number of points in B, let’s call it A-in-B) is then used to find
the final match. We parse over B-in-A (that was completed above), and from it extract
the nearest B-point to each A-point (Bk for Ai in the example above). If this is the first
A-point that is found for this B-point, then we put this A-point into A-in-B (in the example
above, element k is filled with Ak). If another A-point was previously found for this B-point,
then the distance of the two A-points to that B-point are compared, and the A-point with
the smaller distance is kept in A-in-B. This will give us the best match between the two
catalogs, independent of any sorting issues. Both the B-in-A and A-in-B will also keep the
distances, so distances are only measured once.

In summary, here are the points to consider when selecting an algorithm, or the order of
your inputs (for optimal speed, the match will be the same):

• For larger datasets, the k-d tree based method (when running on all threads possible)
is much more faster than the classical sort-based method.

• The k-d tree is constructed for the first input table and the multi-threading is done
on the rows of the second input table. The construction of a larger dataset’s k-d tree
will take longer, but multi-threading will work better when you have more rows. As
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a result, the optimal way to place your inputs is to give the smaller input table (with
fewer rows) as the first argument (so its k-d tree is constructed), and the larger table
as the second argument (so its rows are checked in parallel).

• If you always need to match against one catalog (that is large!), the k-d tree construction
itself can take a significant fraction of the running time. Therefore you can save its k-d
tree into a file and simply give it to later calls, like the example given in the description
of the k-d algorithm mentioned above.

7.5.2 Invoking Match

When given two catalogs, Match finds the rows that are nearest to each other within an
input aperture. The executable name is astmatch with the following general template

$ astmatch [OPTION ...] input-1 input-2

One line examples:

## 1D wavelength match (within 5 angstroms) of the two inputs.

## The wavelengths are in the 5th and 10th columns respectively.

$ astmatch --aperture=5e-10 --ccol1=5 --ccol2=10 in1.fits in2.txt

## Find the row that is closest to (RA,DEC) of (12.3456,6.7890)

## with a maximum distance of 1 arcseconds (1/3600 degrees).

## The coordinates can also be given in sexagesimal.

$ astmatch input1.txt --ccol1=ra,dec --coord=12.3456,6.7890 \

--aperture=1/3600

## Find matching rows of two catalogs with a circular aperture

## of width 2 (same unit as position columns: pixels in this case).

$ astmatch input1.txt input2.fits --aperture=2 \

--ccol1=X,Y --ccol2=IMG_X,IMG_Y

## Similar to before, but the output is created by merging various

## columns from the two inputs: columns 1, RA, DEC from the first

## input, followed by all columns starting with `MAG' and the `BRG'

## column from second input and the 10th column from first input.

$ astmatch input1.txt input2.fits --aperture=1/3600 \

--ccol1=ra,dec --ccol2=RAJ2000,DEJ2000 \

--outcols=a1,aRA,aDEC,b/^MAG/,bBRG,a10

## Assuming both inputs have the same column metadata (same name

## and numeric type), the output will contain all the rows of the

## first input, appended with the non-matching rows of the second

## input (good when you need to merge multiple catalogs that

## may have matching items, which you do not want to repeat).

$ astmatch input1.fits input2.fits --ccol1=RA,DEC --ccol2=RA,DEC \

--aperture=1/3600 --notmatched --outcols=_all

## Match the two catalogs within an elliptical aperture of 1 and 2

## arc-seconds along RA and Dec respectively.
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$ astmatch --aperture=1/3600,2/3600 in1.fits in2.txt

## Match the RA and DEC columns of the first input with the RA_D

## and DEC_D columns of the second within a 0.5 arcseconds aperture.

$ astmatch --ccol1=RA,DEC --ccol2=RA_D,DEC_D --aperture=0.5/3600 \

in1.fits in2.fits

## Match in 3D (RA, Dec and Wavelength).

$ astmatch --ccol1=2,3,4 --ccol2=2,3,4 -a0.5/3600,0.5/3600,5e-10 \

in1.fits in2.txt

Match will find the rows that are nearest to each other in two catalogs (given some
coordinate columns). Alternatively, it can construct the k-d tree of one catalog to save
in a FITS file for future matching of the same catalog with many others. To understand
the inner working of Match and its algorithms, see Section 7.5.1 [Matching algorithms],
page 618.

When matching, two catalogs are necessary for input. But for constructing a k-d tree,
only a single catalog should be given. The input tables can be plain text tables or FITS
tables, for more see Section 4.7 [Tables], page 282. But other ways of feeding inputs area
also supported:

• The first catalog can also come from the standard input (for example, a pipe that
feeds the output of a previous command to Match, see Section 4.1.4 [Standard input],
page 264);

• When you only want to match one point with another catalog, you can use the --coord
option to avoid creating a file for the second input catalog.

Match follows the same basic behavior of all Gnuastro programs as fully described in
Chapter 4 [Common program behavior], page 247. If the first input is a FITS file, the
common --hdu option (see Section 4.1.2.1 [Input/Output options], page 252) should be
used to identify the extension. When the second input is FITS, the extension must be
specified with --hdu2.

When --quiet is not called, Match will print its various processing phases (including
the number of matches found) in standard output (on the command-line). When matches
are found, by default, two tables will be output (if in FITS format, as two HDUs). Each
output table will contain the re-arranged rows of the respective input table. In other words,
both tables will have the same number of rows, and row N in both corresponds to the
10th match between the two. If no matches are found, the columns of the output table(s)
will have zero rows (with proper meta-data). The output format can be changed with the
following options:

• --outcols: The output will be a single table with rows chosen from either of the two
inputs in any order.

• --notmatched: The output tables will contain the rows that did not match between
the two tables. If called with --outcols, the output will be a single table with all
non-matched rows of both tables.

• --logasoutput: The output will be a single table with the contents of the log file, see
below.
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If no output file name is given with the --output option, then automatic output Sec-
tion 4.9 [Automatic output], page 290, will be used to determine the output name(s).
Depending on --tableformat (see Section 4.1.2.1 [Input/Output options], page 252), the
output will be a (possibly multi-extension) FITS file or (possibly two) plain text file(s).
Generally, giving a filename to --output is recommended.

When the --log option is called (see Section 4.1.2.3 [Operating mode options],
page 257), and there was a match, Match will also create a file named astmatch.fits (or
astmatch.txt, depending on --tableformat, see Section 4.1.2.1 [Input/Output options],
page 252) in the directory it is run in. This log table will have three columns. The first
and second columns show the matching row/record number (counting from 1) of the first
and second input catalogs respectively. The third column is the distance between the two
matched positions. The units of the distance are the same as the given coordinates (given
the possible ellipticity, see description of --aperture below). When --logasoutput is
called, no log file (with a fixed name) will be created. In this case, the output file (possibly
given by the --output option) will have the contents of this log file.� �
--log is not thread-safe: As described above, when --logasoutput is not called, the Log
file has a fixed name for all calls to Match. Therefore if a separate log is requested in two
simultaneous calls to Match in the same directory, Match will try to write to the same
file. This will cause problems like unreasonable log file, undefined behavior, or a crash.
Remember that --log is mainly intended for debugging purposes, if you want the log
file with a specific name, simply use --logasoutput (which will also be faster, since no
arranging of the input columns is necessary).
 	
-H STR

--hdu2=STR

The extension/HDU of the second input if it is a FITS file. When it is not a
FITS file, this option’s value is ignored. For the first input, the common option
--hdu must be used.

-k STR

--kdtree=STR

Select the algorithm and/or the way to construct or import the k-d tree. A
summary of the four acceptable strings for this option are described here for
completeness. However, for a much more detailed discussion on Match’s algo-
rithms with examples, see Section 7.5.1 [Matching algorithms], page 618.

internal Construct a k-d tree for the first input internally (within the same
run of Match), and parallelize over the rows of the second to find
the nearest points. This is the default algorithm/method used by
Match (when this option is not called).

build Only construct a k-d tree of a single input and abort. The name of
the k-d tree is value to --output.

CUSTOM-FITS-FILE

Use the given FITS file as a k-d tree (that was previously con-
structed with Match itself) of the first input, and do not construct
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any k-d tree internally. The FITS file should have two columns with
an unsigned 32-bit integer data type and a KDTROOT keyword that
contains the index of the root of the k-d tree. For more on Gnu-
astro’s k-d tree format, see Section 12.3.19 [K-d tree (kdtree.h)],
page 857.

disable Do not use the k-d tree algorithm for finding the nearest neighbor,
instead, use the sort-based method.

--kdtreehdu=STR

The HDU of the FITS file, when a FITS file is given to the --kdtree option
that was described above.

--outcols=STR[,STR,[...]]

Columns (from both inputs) to write into a single matched table output. The
value to --outcols must be a comma-separated list of column identifiers (num-
ber or name, see Section 4.7.3 [Selecting table columns], page 287). The ex-
pected format depends on --notmatched and explained below. By default
(when --nomatched is not called), the number of rows in the output will be
equal to the number of matches. However, when --notmatched is called, all the
rows (from the requested columns) of the first input are placed in the output,
and the not-matched rows of the second input are inserted afterwards (useful
when you want to merge unique entries of multiple catalogs into one).

Default (only matching rows)
The first character of each string specifies the input catalog: a

for the first and b for the second. The rest of the characters of
the string will be directly used to identify the proper column(s) in
the respective table. See Section 4.7.3 [Selecting table columns],
page 287, for how columns can be specified in Gnuastro.

For example, the output of --outcols=a1,bRA,bDEC will have three
columns: the first column of the first input, along with the RA and
DEC columns of the second input.

If the string after a or b is _all, then all the columns of the re-
spective input file will be written in the output. For example, the
command below will print all the input columns from the first cat-
alog along with the 5th column from the second:

$ astmatch a.fits b.fits --outcols=a_all,b5

_all can be used multiple times, possibly on both inputs. Tip: if
an input’s column is called _all (an unlikely name!) and you do
not want all the columns from that table the output, use its column
number to avoid confusion.

Another example is given in the one-line examples above. Com-
pared to the default case (where two tables with all their columns)
are saved separately, using this option is much faster: it will only
read and re-arrange the necessary columns and it will write a single
output table. Combined with regular expressions in large tables,
this can be a very powerful and convenient way to merge various
tables into one.
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When --coord is given, no second catalog will be read. The sec-
ond catalog will be created internally based on the values given
to --coord. So column names are not defined and you can only
request integer column numbers that are less than the number of
coordinates given to --coord. For example, if you want to find the
row matching RA of 1.2345 and Dec of 6.7890, then you should use
--coord=1.2345,6.7890. But when using --outcols, you cannot
give bRA, or b25.

With --notmatched

Only the column names/numbers should be given (for example,
--outcols=RA,DEC,MAGNITUDE). It is assumed that both input
tables have the requested column(s) and that the numerical data
types of each column in each input (with same name) is the same
as the corresponding column in the other. Therefore if one input
has a MAGNITUDE column with a 32-bit floating point type, but the
MAGNITUDE column of the other is 64-bit floating point, Match will
crash with an error. The metadata of the columns will come from
the first input.

As an example, let’s assume input1.txt and input2.fits each
have a different number of columns and rows. However, they both
have the RA (64-bit floating point), DEC (64-bit floating point) and
MAGNITUDE (32-bit floating point) columns. If input1.txt has 100
rows and input2.fits has 300 rows (such that 50 of them match
within 1 arcsec of the first), then the output of the command above
will have 100+(300−50) = 350 rows and only three columns. Other
columns in each catalog, which may be different, are ignored.

$ astmatch input1.txt --ccol1=RA,DEC \

input2.fits --ccol2=RA,DEC \

--aperture=1/3600 \

--notmatched --outcols=RA,DEC,MAGNITUDE

-l

--logasoutput

The output file will have the contents of the log file: indexes in the two catalogs
that match with each other along with their distance, see description of the log
file above.

When this option is called, a separate log file will not be created and the output
will not contain any of the input columns (either as two tables containing the
re-arranged columns of each input, or a single table mixing columns), only their
indices in the log format.

--notmatched

Write the non-matching rows into the outputs, not the matched ones. By
default, this will produce two output tables, that will not necessarily have the
same number of rows. However, when called with --outcols, it is possible to
import non-matching rows of the second into the first. See the description of
--outcols for more.
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-c INT/STR[,INT/STR]

--ccol1=INT/STR[,INT/STR]

The coordinate columns of the first input. The number of dimensions for the
match is determined by the number of comma-separated values given to this
option. The values can be the column number (counting from 1), exact col-
umn name or a regular expression. For more, see Section 4.7.3 [Selecting table
columns], page 287. See the one-line examples above for some usages of this
option.

-C INT/STR[,INT/STR]

--ccol2=INT/STR[,INT/STR]

The coordinate columns of the second input. See the example in --ccol1 for
more.

-d FLT[,FLT]

--coord=FLT[,FLT]

Manually specify the coordinates to match against the given catalog. With
this option, Match will not look for a second input file/table and will directly
use the coordinates given to this option. When the coordinates are RA and
Dec, the comma-separated values can either be in degrees (a single number), or
sexagesimal (_h_m_ for RA, _d_m_ for Dec, or _:_:_ for both).

When this option is called, the output changes in the following ways: 1) when
--outcols is specified, for the second input, it can only accept integer numbers
that are less than the number of values given to this option, see description of
that option for more. 2) By default (when --outcols is not used), only the
matching row of the first table will be output (a single file), not two separate
files (one for each table).

This option is good when you have a (large) catalog and only want to match
a single coordinate to it (for example, to find the nearest catalog entry to
your desired point). With this option, you can write the coordinates on the
command-line and thus avoid the need to make a single-row file.

-a FLT[,FLT[,FLT]]

--aperture=FLT[,FLT[,FLT]]

Parameters of the aperture for matching. The values given to this option can
be fractions, for example, when the position columns are in units of degrees,
1/3600 can be used to ask for one arc-second. The interpretation of the values
depends on the requested dimensions (determined from --ccol1 and --ccol2)
and how many values are given to this option.

When multiple objects are found within the aperture, the match is defined as
the nearest one. In a multi-dimensional dataset, when the aperture is a general
ellipse or ellipsoid (and not a circle or sphere), the distance is calculated in the
elliptical space along the major axis. For the defintion of this distance, see rel
in Section 8.1.1.1 [Defining an ellipse and ellipsoid], page 629.

1D match The aperture/interval can only take one value: half of the interval
around each point (maximum distance from each point).

2D match In a 2D match, the aperture can be a circle, an ellipse aligned in
the axes or an ellipse with a rotated major axis. To simply the
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usage, you can determine the shape based on the number of free
parameters for each.

1 number for example, --aperture=2. The aperture will be a
circle of the given radius. The value will be in the
same units as the columns in --ccol1 and --ccol2).

2 numbers for example, --aperture=3,4e-10. The aperture will
be an ellipse (if the two numbers are different) with the
respective value along each dimension. The numbers
are in units of the first and second axis. In the example
above, the semi-axis value along the first axis will be 3
(in units of the first coordinate) and along the second
axis will be 4×10−10 (in units of the second coordinate).
Such values can happen if you are comparing catalogs
of a spectra for example. If more than one object exists
in the aperture, the nearest will be found along the
major axis as described in Section 8.1.1.1 [Defining an
ellipse and ellipsoid], page 629.

3 numbers for example, --aperture=2,0.6,30. The aperture will
be an ellipse (if the second value is not 1). The first
number is the semi-major axis, the second is the axis
ratio and the third is the position angle (in degrees).
If multiple matches are found within the ellipse, the
distance (to find the nearest) is calculated along the
major axis in the elliptical space, see Section 8.1.1.1
[Defining an ellipse and ellipsoid], page 629.

3D match The aperture (matching volume) can be a sphere, an ellipsoid
aligned on the three axes or a genenral ellipsoid rotated in any di-
rection. To simplifythe usage, the shape can be determined based
on the number of values given to this option.

1 number for example, --aperture=3. The matching volume will
be a sphere of the given radius. The value is in the same
units as the input coordinates.

3 numbers for example, --aperture=4,5,6e-10. The aperture
will be a general ellipsoid with the respective extent
along each dimension. The numbers must be in the
same units as each axis. This is very similar to the two
number case of 2D inputs. See there for more.

6 numbers for example, --aperture=4,0.5,0.6,10,20,30. The
numbers represent the full general ellipsoid definition
(in any orientation). For the definition of a general
ellipsoid, see Section 8.1.1.1 [Defining an ellipse and
ellipsoid], page 629. The first number is the semi-major
axis. The second and third are the two axis ratios. The
last three are the three Euler angles in units of degrees
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in the ZXZ order as fully described in Section 8.1.1.1
[Defining an ellipse and ellipsoid], page 629.



629

8 Data modeling

In order to fully understand observations after initial analysis on the image, it is very
important to compare them with the existing models to be able to further understand both
the models and the data. The tools in this chapter create model galaxies and will provide
2D fittings to be able to understand the detections.

8.1 MakeProfiles

MakeProfiles will create mock astronomical profiles from a catalog, either individually or
together in one output image. In data analysis, making a mock image can act like a
calibration tool, through which you can test how successfully your detection technique is
able to detect a known set of objects. There are commonly two aspects to detecting: the
detection of the fainter parts of bright objects (which in the case of galaxies fade into the
noise very slowly) or the complete detection of an over-all faint object. Making mock galaxies
is the most accurate (and idealistic) way these two aspects of a detection algorithm can be
tested. You also need mock profiles in fitting known functional profiles with observations.

MakeProfiles was initially built for extra galactic studies, so currently the only astro-
nomical objects it can produce are stars and galaxies. We welcome the simulation of any
other astronomical object. The general outline of the steps that MakeProfiles takes are the
following:

1. Build the full profile out to its truncation radius in a possibly over-sampled array.

2. Multiply all the elements by a fixed constant so its total magnitude equals the desired
total magnitude.

3. If --individual is called, save the array for each profile to a FITS file.

4. If --nomerged is not called, add the overlapping pixels of all the created profiles to the
output image and abort.

Using input values, MakeProfiles adds the World Coordinate System (WCS) headers of
the FITS standard to all its outputs (except PSF images!). For a simple test on a set of
mock galaxies in one image, there is no need for the third step or the WCS information.

However in complicated simulations like weak lensing simulations, where each galaxy
undergoes various types of individual transformations based on their position, those trans-
formations can be applied to the different individual images with other programs. After
all the transformations are applied, using the WCS information in each individual profile
image, they can be merged into one output image for convolution and adding noise.

8.1.1 Modeling basics

In the subsections below, first a review of some very basic information and concepts behind
modeling a real astronomical image is given. You can skip this subsection if you are already
sufficiently familiar with these concepts.

8.1.1.1 Defining an ellipse and ellipsoid

The PSF, see Section 8.1.1.2 [Point spread function], page 631, and galaxy radial profiles
are generally defined on an ellipse. Therefore, in this section we will start defining an ellipse
on a pixelated 2D surface. Labeling the major axis of an ellipse a, and its minor axis with
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b, the axis ratio is defined as: q ≡ b/a. The major axis of an ellipse can be aligned in any
direction, therefore the angle of the major axis with respect to the horizontal axis of the
image is defined to be the position angle of the ellipse and in this book, we show it with θ.

Our aim is to put a radial profile of any functional form f(r) over an ellipse. Hence we
need to associate a radius/distance to every point in space. Let’s define the radial distance
rel as the distance on the major axis to the center of an ellipse which is located at ic and
jc (in other words rel ≡ a). We want to find rel of a point located at (i, j) (in the image
coordinate system) from the center of the ellipse with axis ratio q and position angle θ.
First the coordinate system is rotated1 by θ to get the new rotated coordinates of that
point (ir, jr):

ir(i, j) = +(ic − i) cos θ + (jc − j) sin θ

jr(i, j) = −(ic − i) sin θ + (jc − j) cos θ

Recall that an ellipse is defined by (ir/a)
2+(jr/b)

2 = 1 and that we defined rel ≡ a. Hence,
multiplying all elements of the ellipse definition with r2el we get the elliptical distance at
this point point located: rel =

√
i2r + (jr/q)2. To place the radial profiles explained below

over an ellipse, f(rel) is calculated based on the functional radial profile desired.

An ellipse in 3D, or an ellipsoid (https://en.wikipedia.org/wiki/Ellipsoid), can
be defined following similar principles as before. Labeling the major (largest) axis length as
a, the second and third (in a right-handed coordinate system) axis lengths can be labeled
as b and c. Hence we have two axis ratios: q1 ≡ b/a and q2 ≡ c/a. The orientation of the
ellipsoid can be defined from the orientation of its major axis. There are many ways to
define 3D orientation and order matters. So to be clear, here we use the ZXZ (or Z1X2Z3)
proper Euler angles (https://en.wikipedia.org/wiki/Euler_angles) to define the 3D
orientation. In short, when a point is rotated in this order, we first rotate it around the Z
axis (third axis) by α, then about the (rotated) X axis by β and finally about the (rotated)
Z axis by γ.

Following the discussion in Section 6.4.2 [Merging multiple warpings], page 495, we can
define the full rotation with the following matrix multiplication. However, here we are
rotating the coordinates, not the point. Therefore, both the rotation angles and rotation
order are reversed. We are also not using homogeneous coordinates (see Section 6.4.1 [Linear
warping basics], page 493) since we are not concerned with translation in this context:

 irjr
kr

 =

 cosγ sinγ 0
−sinγ cosγ 0

0 0 1

 1 0 0
0 cosβ sinβ
0 −sinβ cosβ

 cosα sinα 0
−sinα cosα 0

0 0 1

 ic − ijc − j
kc − k


Recall that an ellipsoid can be characterized with (ir/a)

2 + (jr/b)
2 + (kr/c)

2 = 1, so
similar to before (rel ≡ a), we can find the ellipsoidal radius at pixel (i, j, k) as: rel =√
i2r + (jr/q1)2 + (kr/q2)2.

1 Do not confuse the signs of sin with the rotation matrix defined in Section 6.4.1 [Linear warping basics],
page 493. In that equation, the point is rotated, here the coordinates are rotated and the point is fixed.

https://en.wikipedia.org/wiki/Ellipsoid
https://en.wikipedia.org/wiki/Euler_angles
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MakeProfiles builds the profile starting from the nearest element (pixel in an image) in
the dataset to the profile center. The profile value is calculated for that central pixel using
Monte Carlo integration, see Section 8.1.1.5 [Sampling from a function], page 633. The next
pixel is the next nearest neighbor to the central pixel as defined by rel. This process goes
on until the profile is fully built upto the truncation radius. This is done fairly efficiently
using a breadth first parsing strategy2 which is implemented through an ordered linked list.

Using this approach, we build the profile by expanding the circumference. Not one more
extra pixel has to be checked (the calculation of rel from above is not cheap in CPU terms).
Another consequence of this strategy is that extending MakeProfiles to three dimensions
becomes very simple: only the neighbors of each pixel have to be changed. Everything else
after that (when the pixel index and its radial profile have entered the linked list) is the
same, no matter the number of dimensions we are dealing with.

8.1.1.2 Point spread function

Assume we have a ‘point’ source, or a source that is far smaller than the maximum resolution
(a pixel). When we take an image of it, it will ‘spread’ over an area. To quantify that spread,
we can define a ‘function’. This is how the “point spread function” or the PSF of an image
is defined.

This ‘spread’ can have various causes, for example, in ground-based astronomy, due to
the atmosphere. In practice we can never surpass the ‘spread’ due to the diffraction of the
telescope aperture (even in Space!). Various other effects can also be quantified through
a PSF. For example, the simple fact that we are sampling in a discrete space, namely the
pixels, also produces a very small ‘spread’ in the image.

Convolution is the mathematical process by which we can apply a ‘spread’ to an image,
or in other words blur the image, see Section 6.3.1.1 [Convolution process], page 470. The
sum of pixels of an image should remain unchanged after convolution. Therefore, it is
important that the sum of all the pixels of the PSF be unity. The PSF image also has to
have an odd number of pixels on its sides so one pixel can be defined as the center.

In MakeProfiles, the PSF can be set by the two methods explained below:

Parametric functions
A known mathematical function is used to make the PSF. In this case, only the
parameters to define the functions are necessary and MakeProfiles will make a
PSF based on the given parameters for each function. In both cases, the center
of the profile has to be exactly in the middle of the central pixel of the PSF
(which is automatically done by MakeProfiles). When talking about the PSF,
usually, the full width at half maximum or FWHM is used as a scale of the
width of the PSF.

Gaussian In the older papers, and to a lesser extent even today, some re-
searchers use the 2D Gaussian function to approximate the PSF of
ground based images. In its most general form, a Gaussian function
can be written as:

f(r) = a exp

(−(x− µ)2
2σ2

)
+ d

2 http://en.wikipedia.org/wiki/Breadth-first_search

http://en.wikipedia.org/wiki/Breadth-first_search
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Since the center of the profile is pre-defined, µ and d are con-
strained. a can also be found because the function has to be nor-
malized. So the only important parameter for MakeProfiles is the σ.
In the Gaussian function we have this relation between the FWHM
and σ:

FWHMg = 2
√
2 ln 2σ ≈ 2.35482σ

Moffat The Gaussian profile is much sharper than the images taken from
stars on photographic plates or CCDs. Therefore in 1969, Moffat
proposed this functional form for the image of stars:

f(r) = a

[
1 +

(
r

α

)2
]−β

Again, a is constrained by the normalization, therefore two param-
eters define the shape of the Moffat function: α and β. The radial
parameter is α which is related to the FWHM by

FWHMm = 2α
√
21/β − 1

Comparing with the PSF predicted from atmospheric turbulence
theory with a Moffat function, Trujillo et al.3 claim that β should
be 4.765. They also show how the Moffat PSF contains the Gaus-
sian PSF as a limiting case when β →∞.

An input FITS image
An input image file can also be specified to be used as a PSF. If the sum of its
pixels are not equal to 1, the pixels will be multiplied by a fraction so the sum
does become 1.

Gnuastro has tools to extract the non-parametric (extended) PSF of any im-
age as a FITS file (assuming there are a sufficient number of stars in it), see
Section 2.3 [Building the extended PSF], page 103. This method is not perfect
(will have noise if you do not have many stars), but it is the actual PSF of the
data that is not forced into any parametric form.

While the Gaussian is only dependent on the FWHM, the Moffat function is also de-
pendent on β. Comparing these two functions with a fixed FWHM gives the following
results:

• Within the FWHM, the functions do not have significant differences.

• For a fixed FWHM, as β increases, the Moffat function becomes sharper.

• The Gaussian function is much sharper than the Moffat functions, even when β is large.

3 Trujillo, I., J. A. L. Aguerri, J. Cepa, and C. M. Gutierrez (2001). “The effects of seeing on Sérsic
profiles - II. The Moffat PSF”. In: MNRAS 328, pp. 977—985.
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8.1.1.3 Stars

In MakeProfiles, stars are generally considered to be a point source. This is usually the case
for extra galactic studies, where nearby stars are also in the field. Since a star is only a
point source, we assume that it only fills one pixel prior to convolution. In fact, exactly for
this reason, in astronomical images the light profiles of stars are one of the best methods to
understand the shape of the PSF and a very large fraction of scientific research is preformed
by assuming the shapes of stars to be the PSF of the image.

8.1.1.4 Galaxies

Today, most practitioners agree that the flux of galaxies can be modeled with one or a few
generalized de Vaucouleur’s (or Sérsic) profiles.

I(r) = Ie exp

(
−bn

[(
r

re

)1/n

− 1

])

Gérard de Vaucouleurs (1918-1995) was first to show in 1948 that this function resembles
the galaxy light profiles, with the only difference that he held n fixed to a value of 4.
Twenty years later in 1968, J. L. Sérsic showed that n can have a variety of values and
does not necessarily need to be 4. This profile depends on the effective radius (re) which is
defined as the radius which contains half of the profile’s 2-dimensional integral to infinity
(see Section 8.1.3 [Profile magnitude], page 635). Ie is the flux at the effective radius.
The Sérsic index n is used to define the concentration of the profile within re and bn is a
constant dependent on n. MacArthur et al.4 show that for n > 0.35, bn can be accurately
approximated using this equation:

bn = 2n− 1

3
+

4

405n
+

46

25515n2
+

131

1148175n3
− 2194697

30690717750n4

8.1.1.5 Sampling from a function

A pixel is the ultimate level of accuracy to gather data, we cannot get any more accurate
in one image, this is known as sampling in signal processing. However, the mathematical
profiles which describe our models have infinite accuracy. Over a large fraction of the area
of astrophysically interesting profiles (for example, galaxies or PSFs), the variation of the
profile over the area of one pixel is not too significant. In such cases, the elliptical radius (rel)
of the center of the pixel can be assigned as the final value of the pixel, (see Section 8.1.1.1
[Defining an ellipse and ellipsoid], page 629).

As you approach their center, some galaxies become very sharp (their value significantly
changes over one pixel’s area). This sharpness increases with smaller effective radius and
larger Sérsic values. Thus rendering the central value extremely inaccurate. The first
method that comes to mind for solving this problem is integration. The functional form
of the profile can be integrated over the pixel area in a 2D integration process. However,

4 MacArthur, L. A., S. Courteau, and J. A. Holtzman (2003). “Structure of Disk-dominated Galaxies. I.
Bulge/Disk Parameters, Simulations, and Secular Evolution”. In: ApJ 582, pp. 689—722.
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unfortunately numerical integration techniques also have their limitations and when such
sharp profiles are needed they can become extremely inaccurate.

The most accurate method of sampling a continuous profile on a discrete space is by
choosing a large number of random points within the boundaries of the pixel and taking
their average value (or Monte Carlo integration). This is also, generally speaking, what
happens in practice with the photons on the pixel. The number of random points can be
set with --numrandom.

Unfortunately, repeating this Monte Carlo process would be extremely time and CPU
consuming if it is to be applied to every pixel. In order to not loose too much accuracy,
in MakeProfiles, the profile is built using both methods explained below. The building of
the profile begins from its central pixel and continues (radially) outwards. Monte Carlo
integration is first applied (which yields Fr), then the central pixel value (Fc) is calculated
on the same pixel. If the fractional difference (|Fr −Fc|/Fr) is lower than a given tolerance
level (specified with --tolerance) MakeProfiles will stop using Monte Carlo integration
and only use the central pixel value.

The ordering of the pixels in this inside-out construction is based on
r =

√
(ic − i)2 + (jc − j)2, not rel, see Section 8.1.1.1 [Defining an ellipse and

ellipsoid], page 629. When the axis ratios are large (near one) this is fine. But when they
are small and the object is highly elliptical, it might seem more reasonable to follow rel
not r. The problem is that the gradient is stronger in pixels with smaller r (and larger rel)
than those with smaller rel. In other words, the gradient is strongest along the minor axis.
So if the next pixel is chosen based on rel, the tolerance level will be reached sooner and
lots of pixels with large fractional differences will be missed.

Monte Carlo integration uses a random number of points. Thus, every time you run it,
by default, you will get a different distribution of points to sample within the pixel. In the
case of large profiles, this will result in a slight difference of the pixels which use Monte
Carlo integration each time MakeProfiles is run. To have a deterministic result, you have to
fix the random number generator properties which is used to build the random distribution.
This can be done by setting the GSL_RNG_TYPE and GSL_RNG_SEED environment variables
and calling MakeProfiles with the --envseed option. To learn more about the process of
generating random numbers, see Section 6.2.3.4 [Generating random numbers], page 406.

The seed values are fixed for every profile: with --envseed, all the profiles have the
same seed and without it, each will get a different seed using the system clock (which is
accurate to within one microsecond). The same seed will be used to generate a random
number for all the sub-pixel positions of all the profiles. So in the former, the sub-pixel
points checked for all the pixels undergoing Monte carlo integration in all profiles will be
identical. In other words, the sub-pixel points in the first (closest to the center) pixel of
all the profiles will be identical with each other. All the second pixels studied for all the
profiles will also receive an identical (different from the first pixel) set of sub-pixel points
and so on. As long as the number of random points used is large enough or the profiles are
not identical, this should not cause any systematic bias.

8.1.1.6 Oversampling

The steps explained in Section 8.1.1.5 [Sampling from a function], page 633, do give an
accurate representation of a profile prior to convolution. However, in an actual observation,



Chapter 8: Data modeling 635

the image is first convolved with or blurred by the atmospheric and instrument PSF in a
continuous space and then it is sampled on the discrete pixels of the camera.

In order to more accurately simulate this process, the unconvolved image and the PSF
are created on a finer pixel grid. In other words, the output image is a certain odd-integer
multiple of the desired size, we can call this ‘oversampling’. The user can specify this
multiple as a command-line option. The reason this has to be an odd number is that the
PSF has to be centered on the center of its image. An image with an even number of pixels
on each side does not have a central pixel.

The image can then be convolved with the PSF (which should also be oversampled on
the same scale). Finally, image can be sub-sampled to get to the initial desired pixel size
of the output image. After this, mock noise can be added as explained in the next section.
This is because unlike the PSF, the noise occurs in each output pixel, not on a continuous
space like all the prior steps.

8.1.2 If convolving afterwards

In case you want to convolve the image later with a given point spread function, make sure
to use a larger image size. After convolution, the profiles become larger and a profile that
is normally completely outside of the image might fall within it.

On one axis, if you want your final (convolved) image to be m pixels and your PSF is
2n+1 pixels wide, then when calling MakeProfiles, set the axis size to m+2n, not m. You
also have to shift all the pixel positions of the profile centers on the that axis by n pixels
to the positive.

After convolution, you can crop the outer n pixels with the section crop box specification
of Crop: --section=n+1:*-n,n+1:*-n (according to the FITS standard, counting is from
1 so we use n+1) assuming your PSF is a square, see Section 6.1.2 [Crop section syntax],
page 388. This will also remove all discrete Fourier transform artifacts (blurred sides) from
the final image. To facilitate this shift, MakeProfiles has the options --xshift, --yshift
and --prepforconv, see Section 8.1.4 [Invoking MakeProfiles], page 636.

8.1.3 Profile magnitude

To find the profile’s total magnitude, (see Section 7.4.2 [Brightness, Flux, Magnitude and
Surface brightness], page 574), it is customary to use the 2D integration of the flux to
infinity. However, in MakeProfiles we do not follow this idealistic approach and apply a
more realistic method to find the total magnitude: the sum of all the pixels belonging to
a profile within its predefined truncation radius. Note that if the truncation radius is not
large enough, this can be significantly different from the total integrated light to infinity.

An integration to infinity is not a realistic condition because no galaxy extends indef-
initely (important for high Sérsic index profiles), pixelation can also cause a significant
difference between the actual total pixel sum value of the profile and that of integration
to infinity, especially in small and high Sérsic index profiles. To be safe, you can specify a
large enough truncation radius for such compact high Sérsic index profiles.

If oversampling is used then the pixel value is calculated using the over-sampled image,
see Section 8.1.1.6 [Oversampling], page 634, which is much more accurate. The profile is
first built in an array completely bounding it with a normalization constant of unity (see
Section 8.1.1.4 [Galaxies], page 633). Taking V to be the desired pixel value and S to be
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the sum of the pixels in the created profile, every pixel is then multiplied by V/S so the
sum is exactly V .

If the --individual option is called, this same array is written to a FITS file. If not,
only the overlapping pixels of this array and the output image are kept and added to the
output array.

8.1.4 Invoking MakeProfiles

MakeProfiles will make any number of profiles specified in a catalog either individually or
in one image. The executable name is astmkprof with the following general template

$ astmkprof [OPTION ...] [Catalog]

One line examples:

## Make an image with profiles in catalog.txt (with default size):

$ astmkprof catalog.txt

## Make the profiles in catalog.txt over image.fits:

$ astmkprof --background=image.fits catalog.txt

## Make a Moffat PSF with FWHM 3pix, beta=2.8, truncation=5

$ astmkprof --kernel=moffat,3,2.8,5 --oversample=1

## Make profiles in catalog, using RA and Dec in the given column:

$ astmkprof --ccol=RA_CENTER --ccol=DEC_CENTER --mode=wcs catalog.txt

## Make a 1500x1500 merged image (oversampled 500x500) image along

## with an individual image for all the profiles in catalog:

$ astmkprof --individual --oversample 3 --mergedsize=500,500 cat.txt

The parameters of the mock profiles can either be given through a catalog (which stores
the parameters of many mock profiles, see Section 8.1.4.1 [MakeProfiles catalog], page 637),
or the --kernel option (see Section 8.1.4.3 [MakeProfiles output dataset], page 648). The
catalog can be in the FITS ASCII, FITS binary format, or plain text formats (see Section 4.7
[Tables], page 282). A plain text catalog can also be provided using the Standard input (see
Section 4.1.4 [Standard input], page 264). The columns related to each parameter can be
determined both by number, or by match/search criteria using the column names, units, or
comments, with the options ending in col, see below.

Without any file given to the --background option, MakeProfiles will make a zero-valued
image and build the profiles on that (its size and main WCS parameters can also be defined
through the options described in Section 8.1.4.3 [MakeProfiles output dataset], page 648).
Besides the main/merged image containing all the profiles in the catalog, it is also possible
to build individual images for each profile (only enclosing one full profile to its truncation
radius) with the --individual option.

If an image is given to the --background option, the pixels of that image are used as
the background value for every pixel hence flux value of each profile pixel will be added to
the pixel in that background value. You can disable this with the --clearcanvas option
(which will initialize the background to zero-valued pixels and build profiles over that).
With the --background option, the values to all options relating to the “canvas” (output
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size and WCS) will be ignored if specified: --oversample, --mergedsize, --prepforconv,
--crpix, --crval, --cdelt, --cdelt, --pc, cunit and ctype.

The sections below discuss the options specific to MakeProfiles based on context: the
input catalog settings which can have many rows for different profiles are discussed in
Section 8.1.4.1 [MakeProfiles catalog], page 637, in Section 8.1.4.2 [MakeProfiles profile set-
tings], page 641, we discuss how you can set general profile settings (that are the same for all
the profiles in the catalog). Finally Section 8.1.4.3 [MakeProfiles output dataset], page 648,
and Section 8.1.4.4 [MakeProfiles log file], page 652, discuss the outputs of MakeProfiles
and how you can configure them. Besides these, MakeProfiles also supports all the common
Gnuastro program options that are discussed in Section 4.1.2 [Common options], page 251,
so please flip through them is well for a more comfortable usage.

When building 3D profiles, there are more degrees of freedom. Hence, more columns are
necessary and all the values related to dimensions (for example, size of dataset in each di-
mension and the WCS properties) must also have 3 values. To allow having an independent
set of default values for creating 3D profiles, MakeProfiles also installs a astmkprof-3d.conf
configuration file (see Section 4.2 [Configuration files], page 268). You can use this for de-
fault 3D profile values. For example, if you installed Gnuastro with the prefix /usr/local

(the default location, see Section 3.3.1.2 [Installation directory], page 233), you can benefit
from this configuration file by running MakeProfiles like the example below. As with all
configuration files, if you want to customize a given option, call it before the configuration
file.

$ astmkprof --config=/usr/local/etc/gnuastro/astmkprof-3d.conf \

catalog.txt

To further simplify the process, you can define a shell alias in any startup file (for
example, ~/.bashrc, see Section 3.3.1.2 [Installation directory], page 233). Assuming that
you installed Gnuastro in /usr/local, you can add this line to the startup file (you may
put it all in one line, it is broken into two lines here for fitting within page limits).

alias astmkprof-3d="astmkprof \

--config=/usr/local/etc/gnuastro/astmkprof-3d.conf"

Using this alias, you can call MakeProfiles with the name astmkprof-3d (instead of
astmkprof). It will automatically load the 3D specific configuration file first, and then
parse any other arguments, options or configuration files. You can change the default
values in this 3D configuration file by calling them on the command-line as you do with
astmkprof5.

Please see Section 2.4 [Sufi simulates a detection], page 124, for a very complete tutorial
explaining how one could use MakeProfiles in conjunction with other Gnuastro’s programs
to make a complete simulated image of a mock galaxy.

8.1.4.1 MakeProfiles catalog

The catalog containing information about each profile can be in the FITS ASCII, FITS
binary, or plain text formats (see Section 4.7 [Tables], page 282). The latter can also be
provided using standard input (see Section 4.1.4 [Standard input], page 264). Its columns

5 Recall that for single-invocation options, the last command-line invocation takes precedence over all
previous invocations (including those in the 3D configuration file). See the description of --config in
Section 4.1.2.3 [Operating mode options], page 257.
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can be ordered in any desired manner. You can specify which columns belong to which
parameters using the set of options discussed below. For example, through the --rcol

and --tcol options, you can specify the column that contains the radial parameter for each
profile and its truncation respectively. See Section 4.7.3 [Selecting table columns], page 287,
for a thorough discussion on the values to these options.

The value for the profile center in the catalog (the --ccol option) can be a floating point
number so the profile center can be on any sub-pixel position. Note that pixel positions
in the FITS standard start from 1 and an integer is the pixel center. So a 2D image
actually starts from the position (0.5, 0.5), which is the bottom-left corner of the first pixel.
When a --background image with WCS information is provided, or you specify the WCS
parameters with the respective options6, you may also use RA and Dec to identify the center
of each profile (see the --mode option below).

In MakeProfiles, profile centers do not have to be in (overlap with) the final image. Even
if only one pixel of the profile within the truncation radius overlaps with the final image
size, the profile is built and included in the final image. Profiles that are completely out
of the image will not be created (unless you explicitly ask for it with the --individual

option). You can use the output log file (created with --log to see which profiles were
within the image, see Section 4.1.2 [Common options], page 251.

If PSF profiles (Moffat or Gaussian, see Section 8.1.1.2 [Point spread function], page 631)
are in the catalog and the profiles are to be built in one image (when --individual is not
used), it is assumed they are the PSF(s) you want to convolve your created image with.
So by default, they will not be built in the output image but as separate files. The sum of
pixels of these separate files will also be set to unity (1) so you are ready to convolve, see
Section 6.3.1.1 [Convolution process], page 470. As a summary, the position and magnitude
of PSF profile will be ignored. This behavior can be disabled with the --psfinimg option.
If you want to create all the profiles separately (with --individual) and you want the sum
of the PSF profile pixels to be unity, you have to set their magnitudes in the catalog to the
zero point magnitude and be sure that the central positions of the profiles do not have any
fractional part (the PSF center has to be in the center of the pixel).

The list of options directly related to the input catalog columns is shown below.

--ccol=STR/INT

Center coordinate column for each dimension. This option must be called two
times to define the center coordinates in an image. For example, --ccol=RA
and --ccol=DEC (along with --mode=wcs) will inform MakeProfiles to look into
the catalog columns named RA and DEC for the Right Ascension and Declination
of the profile centers.

--fcol=INT/STR

The functional form of the profile with one of the values below depending on the
desired profile. The column can contain either the numeric codes (for example,
‘1’) or string characters (for example, ‘sersic’). The numeric codes are easier
to use in scripts which generate catalogs with hundreds or thousands of profiles.

6 The options to set the WCS are the following: --crpix, --crval, --cdelt, --cdelt, --pc, cunit and
ctype. Just recall that these options are only used if --background is not given: if the image you give
to --background does not have WCS, these options will not be used and you cannot use WCS-mode
coordinates like RA or Dec.
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The string format can be easier when the catalog is to be written/checked by
hand/eye before running MakeProfiles. It is much more readable and provides
a level of documentation. All Gnuastro’s recognized table formats (see Sec-
tion 4.7.1 [Recognized table formats], page 283) accept string type columns. To
have string columns in a plain text table/catalog, see Section 4.7.2 [Gnuastro
text table format], page 285.

• Sérsic profile with ‘sersic’ or ‘1’.

• Moffat profile with ‘moffat’ or ‘2’.

• Gaussian profile with ‘gaussian’ or ‘3’.

• Point source with ‘point’ or ‘4’.

• Flat profile with ‘flat’ or ‘5’.

• Circumference profile with ‘circum’ or ‘6’. A fixed value will be used for
all pixels less than or equal to the truncation radius (rt) and greater than
rt − w (w is the value to the --circumwidth).

• Radial distance profile with ‘distance’ or ‘7’. At the lowest level, each
pixel only has an elliptical radial distance given the profile’s shape and
orientation (see Section 8.1.1.1 [Defining an ellipse and ellipsoid], page 629).
When this profile is chosen, the pixel’s elliptical radial distance from the
profile center is written as its value. For this profile, the value in the
magnitude column (--mcol) will be ignored.

You can use this for checks or as a first approximation to define your
own higher-level radial function. In the latter case, just note that the
central values are going to be incorrect (see Section 8.1.1.5 [Sampling from
a function], page 633).

• Custom radial profile with ‘custom-prof’ or ‘8’. The values to use for
each radial interval should be in the table given to --customtable. By
default, once the profile is built with the given values, it will be scaled to
have a total magnitude that you have requested in the magnitude column
of the profile (in --mcol). If you want the raw values in the 2D profile
(to ignore the magnitude column), use --mcolnocustprof. For more, see
the description of --customtable in Section 8.1.4.2 [MakeProfiles profile
settings], page 641.

• Azimuthal angle profile with ‘azimuth’ or ‘9’. Every pixel within the trun-
cation radius will be given its azimuthal angle (in degrees, from 0 to 360)
from the major axis. In combination with the radial distance profile, you
can now create complex features in polar coordinates, such as tidal tails
or tidal shocks (using the Arithmetic program to mix the radius and az-
imuthal angle through a function to create your desired features).

• Custom image with ‘custom-img’ or ‘10’. The image(s) to use should
be given to the --customimg option (which can be called multiple times
for multiple images). To identify which one of the images (given to
--customimg) should be used, you should specify their counter in the
“radius” column below. For more, see the description of custom-img in
Section 8.1.4.2 [MakeProfiles profile settings], page 641.
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--rcol=STR/INT

The radius parameter of the profiles. Effective radius (re) if Sérsic, FWHM if
Moffat or Gaussian.

For a custom image profile, this option is not interpreted as a radius, but as a
counter (identifying which one of the images given to --customimg should be
used for each row).

--ncol=STR/INT

The Sérsic index (n) or Moffat β.

--pcol=STR/INT

The position angle (in degrees) of the profiles relative to the first FITS axis
(horizontal when viewed in SAO DS9). When building a 3D profile, this is the
first Euler angle: first rotation of the ellipsoid major axis from the first FITS
axis (rotating about the third axis). See Section 8.1.1.1 [Defining an ellipse and
ellipsoid], page 629.

--p2col=STR/INT

Second Euler angle (in degrees) when building a 3D ellipsoid. This is the second
rotation of the ellipsoid major axis (following --pcol) about the (rotated) X
axis. See Section 8.1.1.1 [Defining an ellipse and ellipsoid], page 629. This
column is ignored when building a 2D profile.

--p3col=STR/INT

Third Euler angle (in degrees) when building a 3D ellipsoid. This is the third
rotation of the ellipsoid major axis (following --pcol and --p2col) about the
(rotated) Z axis. See Section 8.1.1.1 [Defining an ellipse and ellipsoid], page 629.
This column is ignored when building a 2D profile.

--qcol=STR/INT

The axis ratio of the profiles (minor axis divided by the major axis in a 2D
ellipse). When building a 3D ellipse, this is the ratio of the major axis to the
semi-axis length of the second dimension (in a right-handed coordinate system).
See q1 in Section 8.1.1.1 [Defining an ellipse and ellipsoid], page 629.

--q2col=STR/INT

The ratio of the ellipsoid major axis to the third semi-axis length (in a right-
handed coordinate system) of a 3D ellipsoid. See q1 in Section 8.1.1.1 [Defining
an ellipse and ellipsoid], page 629. This column is ignored when building a 2D
profile.

--mcol=STR/INT

The total pixelated magnitude of the profile within the truncation radius, see
Section 8.1.3 [Profile magnitude], page 635.

--tcol=STR/INT

The truncation radius of this profile. By default it is in units of the radial
parameter of the profile (the value in the --rcol of the catalog). If --tunitinp
is given, this value is interpreted in units of pixels (prior to oversampling)
irrespective of the profile.
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8.1.4.2 MakeProfiles profile settings

The profile parameters that differ between each created profile are specified through the
columns in the input catalog and described in Section 8.1.4.1 [MakeProfiles catalog],
page 637. Besides those there are general settings for some profiles that do not differ
between one profile and another, they are a property of the general process. For example,
how many random points to use in the monte-carlo integration, this value is fixed for all
the profiles. The options described in this section are for configuring such properties.

--mode=STR

Interpret the center position columns (--ccol in Section 8.1.4.1 [MakeProfiles
catalog], page 637) in image or WCS coordinates. This option thus accepts
only two values: img and wcs. It is mandatory when a catalog is being used as
input.

-r

--numrandom

The number of random points used in the central regions of the profile, see
Section 8.1.1.5 [Sampling from a function], page 633.

-e

--envseed

Use the value to the GSL_RNG_SEED environment variable to generate the ran-
dom Monte Carlo sampling distribution, see Section 8.1.1.5 [Sampling from a
function], page 633, and Section 6.2.3.4 [Generating random numbers], page 406.

-t FLT

--tolerance=FLT

The tolerance to switch from Monte Carlo integration to the central pixel value,
see Section 8.1.1.5 [Sampling from a function], page 633.

-p

--tunitinp

The truncation column of the catalog is in units of pixels. By default, the
truncation column is considered to be in units of the radial parameters of the
profile (--rcol). Read it as ‘t-unit-in-p’ for ‘truncation unit in pixels’.

-f

--mforflatpix

When making fixed value profiles (“flat”, “circumference” or “point” profiles,
see ‘--fcol’), do not use the value in the column specified by ‘--mcol’ as the
magnitude. Instead use it as the exact value that all the pixels of these profiles
should have. This option is irrelevant for other types of profiles. This option
is very useful for creating masks, or labeled regions in an image. Any integer,
or floating point value can used in this column with this option, including NaN

(or ‘nan’, or ‘NAN’, case is irrelevant), and infinities (inf, -inf, or +inf).

For example, with this option if you set the value in the magnitude column
(--mcol) to NaN, you can create an elliptical or circular mask over an image
(which can be given as the argument), see Section 6.1.3 [Blank pixels], page 388.
Another useful application of this option is to create labeled elliptical or circu-
lar apertures in an image. To do this, set the value in the magnitude column
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to the label you want for this profile. This labeled image can then be used
in combination with NoiseChisel’s output (see Section 7.2.2.3 [NoiseChisel out-
put], page 558) to do aperture photometry with MakeCatalog (see Section 7.4
[MakeCatalog], page 572).

Alternatively, if you want to mark regions of the image (for example, with an
elliptical circumference) and you do not want to use NaN values (as explained
above) for some technical reason, you can get the minimum or maximum value
in the image7 using Arithmetic (see Section 6.2 [Arithmetic], page 399), then use
that value in the magnitude column along with this option for all the profiles.

Please note that when using MakeProfiles on an already existing image, you
have to set ‘--oversample=1’. Otherwise all the profiles will be scaled up
based on the oversampling scale in your configuration files (see Section 4.2
[Configuration files], page 268) unless you have accounted for oversampling in
your catalog.

--mcolissum

The value given in the “magnitude” column (specified by --mcol, see Sec-
tion 8.1.4.1 [MakeProfiles catalog], page 637) must be interpreted as total sum
of pixel values, not magnitude (which is measured from the total sum and zero
point, see Section 7.4.2 [Brightness, Flux, Magnitude and Surface brightness],
page 574). When this option is called, the zero point magnitude (value to the
--zeropoint option) is ignored and the given value must have the same units
as the input dataset’s pixels.

Recall that the total profile magnitude that is specified with in the --mcol

column of the input catalog is not an integration to infinity, but the actual sum
of pixels in the profile (until the desired truncation radius). See Section 8.1.3
[Profile magnitude], page 635, for more on this point.

--mcolnocustprof

Do not touch (re-scale) the custom profile that should be inserted in custom-

prof profile (see the description of --fcol in Section 8.1.4.1 [MakeProfiles
catalog], page 637, or the description of --customtable below). By default,
MakeProfiles will scale (multiply) the custom image’s pixels to have the desired
magnitude (or sum of pixels if --mcolissum is called) in that row.

--mcolnocustimg

Do not touch (re-scale) the custom image that should be inserted in custom-img

profile (see the description of --fcol in Section 8.1.4.1 [MakeProfiles catalog],
page 637). By default, MakeProfiles will scale (multiply) the custom image’s
pixels to have the desired magnitude (or sum of pixels if --mcolissum is called)
in that row.

--magatpeak

The magnitude column in the catalog (see Section 8.1.4.1 [MakeProfiles catalog],
page 637) will be used to set the value only for the profile’s peak (maximum)

7 The minimum will give a better result, because the maximum can be too high compared to most pixels
in the image, making it harder to display.
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pixel, not the full profile. Note that this is the flux of the profile’s peak (maxi-
mum) pixel in the final output of MakeProfiles. So beware of the oversampling,
see Section 8.1.1.6 [Oversampling], page 634.

This option can be useful if you want to check a mock profile’s total magnitude
at various truncation radii. Without this option, no matter what the truncation
radius is, the total magnitude will be the same as that given in the catalog. But
with this option, the total magnitude will become brighter as you increase the
truncation radius.

In sharper profiles, sometimes the accuracy of measuring the peak profile flux is
more than the overall object sum or magnitude. In such cases, with this option,
the final profile will be built such that its peak has the given magnitude, not
the total profile.� �
CAUTION: If you want to use this option for comparing with observations,
please note that MakeProfiles does not do convolution. Unless you have decon-
volved your data, your images are convolved with the instrument and atmo-
spheric PSF, see Section 8.1.1.2 [Point spread function], page 631. Particularly
in sharper profiles, the flux in the peak pixel is strongly decreased after con-
volution. Also note that in such cases, besides deconvolution, you will have to
set --oversample=1 otherwise after resampling your profile with Warp (see
Section 6.4 [Warp], page 492), the peak flux will be different.
 	

--customtable FITS/TXT

The filename of the table to use in the custom radial profiles (see description
of --fcol in Section 8.1.4.1 [MakeProfiles catalog], page 637. This can be a
plain-text table, or FITS table, see Section 4.7.1 [Recognized table formats],
page 283, if it is a FITS table, you can use --customtablehdu to specify which
HDU should be used (described below).

A custom radial profile can have any value you want for a given radial profile
(including NaN/blank values). Each interval is defined by its minimum (inclu-
sive) and maximum (exclusive) radius, when a pixel center falls within a radius
interval, the value specified for that interval will be used. If a pixel is not in
the given intervals, a value of 0.0 will be used for that pixel.

The table should have 3 columns as shown below. If the intervals are contiguous
(the maximum value of the previous interval is equal to the minimum value of an
interval) and the intervals all have the same size (difference between minimum
and maximum values) the creation of these profiles will be fast. However, if the
intervals are not sorted and contiguous, MakeProfiles will parse the intervals
from the top of the table and use the first interval that contains the pixel center
(this may slow it down).

Column 1: The interval’s minimum radius.

Column 2: The interval’s maximum radius.

Column 3: The value to be used for pixels within the given interval (including
NaN/blank).
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Gnuastro’s column arithmetic in the Table program has the sorted-to-

interval operator that will generate the first two columns from a single
column (your radial profile). See the description of that operator in
Section 5.3.3 [Column arithmetic], page 346, and the example below.

By default, once a 2D image is constructed for the radial profile, it will be
scaled such that its total magnitude corresponds to the value in the magnitude
column (--mcol) of the main input catalog. If you want to disable the scaling
and use the raw values in your custom profile (in other words: you want to
ignore the magnitude column) you need to call --mcolnocustprof (see above).

In the example below, we’ll start with a certain radial profile, and use this option
to build its 2D representation in an image (recall that you can build radial
profiles with Section 10.2 [Generate radial profile], page 670). But first, we will
need to use the sorted-to-interval to build the necessary input format (see
Section 5.3.3 [Column arithmetic], page 346).

$ cat radial.txt

# Column 1: RADIUS [pix ,f32,] Radial distance

# Column 2: MEAN [input-units,f32,] Mean of values.

0.0 1.00000

1.0 0.50184

1.4 0.37121

2.0 0.26414

2.2 0.23427

2.8 0.17868

3.0 0.16627

3.1 0.15567

3.6 0.13132

4.0 0.11404

## Convert the radius in each row to an interval

$ asttable radial.txt --output=interval.fits \

-c'arith RADIUS sorted-to-interval',MEAN

## Inspect the table containing intervals

$ asttable interval.fits -ffixed

-0.500000 0.500000 1.000000

0.500000 1.200000 0.501840

1.200000 1.700000 0.371210

1.700000 2.100000 0.264140

2.100000 2.500000 0.234270

2.500000 2.900000 0.178680

2.900000 3.050000 0.166270

3.050000 3.350000 0.155670

3.350000 3.800000 0.131320

3.800000 4.200000 0.114040

## Build the 2D image of the profile from the interval.
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$ echo "1 7 7 8 10 2.5 0 1 1 2" \

| astmkprof --mergedsize=13,13 --oversample=1 \

--customtable=interval.fits \

--output=image.fits

## View the created FITS image.

$ astscript-fits-view image.fits --ds9scale=minmax

Recall that if you want your image pixels to have the same values as the MEAN

column in your profile, you should run MakeProfiles with --mcolnocustprof.

In case you want to build the profile using Section 10.2 [Generate radial pro-
file], page 670, be sure to use the --oversample option of astscript-radial-
profile. The higher the oversampling, the better your result will be. For
example you can run the following script to see the effect (also see bug 65106
(https://savannah.gnu.org/bugs/?65106)). But don’t take the oversam-
pling too high: both the radial profile script and MakeProfiles will become
slower and the precision of your results will decrease.

#!/bin/bash

# Function to avoid repeating code: first generate a radial profile

# with a certain oversampling, then build a 2D profile from it):

# The first argument is the oversampling, the second is the suffix.

gen_rad_make_2dprf () {

# Generate the radial profile

radraw=$bdir/radial-profile-$2.fits

astscript-radial-profile $prof -o$radraw \

--oversample=$1 \

--zeroisnotblank

# Generate the custom table format

custraw=$bdir/customtable-$2.fits

asttable $radraw --output=interval.fits \

-c'arith RADIUS sorted-to-interval',MEAN \

-o$custraw

# Build the 2D profile.

prof2draw=$bdir/prof2d-$2.fits

echo "1 $xc $yc 8 30 0 0 1 0 1" \

| astmkprof --customtable=$custraw \

--mergedsize=$xw,$yw \

--output=$prof2draw \

--mcolnocustprof \

--oversample=1 \

--clearcanvas \

--mode=img

}

https://savannah.gnu.org/bugs/?65106
https://savannah.gnu.org/bugs/?65106
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# Directory to hold built files

bdir=build

if ! [ -d $bdir ]; then mkdir $bdir; fi

# Build a Gaussian profile in the center of an image to start with.

prof=$bdir/prof.fits

astmkprof --kernel=gaussian,2,5 -o$prof

# Find the center pixel of the image

xw=$(astfits $prof --keyvalue=NAXIS1 --quiet)

yw=$(astfits $prof --keyvalue=NAXIS2 --quiet)

xc=$(echo $xw | awk '{print int($1/2)+1}')

yc=$(echo $yw| awk '{print int($1/2)+1}')

# Generate two 2D radial profiles, one with an oversampling of 1

# and another with an oversampling of 5.

gen_rad_make_2dprf 1 "raw"

gen_rad_make_2dprf 5 "oversample"

# View the two images beside each other:

astscript-fits-view $bdir/prof2d-raw.fits \

$bdir/prof2d-oversample.fits

--customtablehdu INT/STR

The HDU/extension in the FITS file given to --customtable.

--customimg=STR[,STR]

A custom FITS image that should be used for the custom-img profiles (see
the description of --fcol in Section 8.1.4.1 [MakeProfiles catalog], page 637).
Multiple files can be given to this option (separated by a comma), and this
option can be called multiple times itself (useful when many custom image
profiles should be added). If the HDU of the images are different, you can use
--customimghdu (described below).

Through the “radius” column, MakeProfiles will know which one of the images
given to this option should be used in each row. For example, let’s assume your
input catalog (cat.fits) has the following contents (output of first command
below), and you call MakeProfiles like the second command below to insert four
profiles into the background back.fits image.

The first profile below is Sersic (with an --fcol, or 4-th column, code of 1).
So MakeProfiles builds the pixels of the first profile, and all column values are
meaningful. However, the second, third and fourth inserted objects are custom
images (with an --fcol code of 10). For the custom image profiles, you see that
the radius column has values of 1 or 2. This tells MakeProfiles to use the first
image given to --customimg (or gal-1.fits) for the second and fourth inserted
objects. The second image given to --customimage (or gal-2.fits) will be
used for the third inserted object. Finally, all three custom image profiles have
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different magnitudes, and the values in --ncol, --pcol, --qcol and --tcol

are ignored.

$ cat cat.fits

1 53.15506 -27.785165 1 20 1 20 0.6 25 5

2 53.15602 -27.777887 10 1 0 0 0 22 0

3 53.16440 -27.775876 10 2 0 0 0 24 0

4 53.16849 -27.787406 10 1 0 0 0 23 0

$ astmkprof cat.fits --mode=wcs --zeropoint=25.68 \

--background=back.fits --output=out.fits \

--customimg=gal-1.fits --customimg=gal-2.fits

--customimghdu=INT/STR

The HDU(s) of the images given to --customimghdu. If this option is only
called once, but --customimg is called many times, MakeProfiles will assume
that all images given to --customimg have the same HDU. Otherwise (if the
number of HDUs is equal to the number of images), then each image will use
its corresponding HDU.

-X INT,INT

--shift=INT,INT

Shift all the profiles and enlarge the image along each dimension. To better
understand this option, please see n in Section 8.1.2 [If convolving afterwards],
page 635. This is useful when you want to convolve the image afterwards. If
you are using an external PSF, be sure to oversample it to the same scale used
for creating the mock images. If a background image is specified, any possible
value to this option is ignored.

-c

--prepforconv

Shift all the profiles and enlarge the image based on half the width of the first
Moffat or Gaussian profile in the catalog, considering any possible oversampling
see Section 8.1.2 [If convolving afterwards], page 635. --prepforconv is only
checked and possibly activated if --xshift and --yshift are both zero (after
reading the command-line and configuration files). If a background image is
specified, any possible value to this option is ignored.

-z FLT

--zeropoint=FLT

The zero point magnitude of the input. For more on the zero point magni-
tude, see Section 7.4.2 [Brightness, Flux, Magnitude and Surface brightness],
page 574.

-w FLT

--circumwidth=FLT

The width of the circumference if the profile is to be an elliptical circumference
or annulus. See the explanations for this type of profile in --fcol.
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-R

--replace

Do not add the pixels of each profile over the background, or other profiles.
But replace the values.

By default, when two profiles overlap, the final pixel value is the sum of all the
profiles that overlap on that pixel. This is the expected situation when dealing
with physical object profiles like galaxies or stars/PSF. However, when Make-
Profiles is used to build integer labeled images (for example, in Section 2.1.17
[Aperture photometry], page 62), this is not the expected situation: the sum of
two labels will be a new label. With this option, the pixels are not added but
the largest (maximum) value over that pixel is used. Because the maximum
operator is independent of the order of values, the output is also thread-safe.

8.1.4.3 MakeProfiles output dataset

MakeProfiles takes an input catalog uses basic properties that are defined there to build a
dataset, for example, a 2D image containing the profiles in the catalog. In Section 8.1.4.1
[MakeProfiles catalog], page 637, and Section 8.1.4.2 [MakeProfiles profile settings],
page 641, the catalog and profile settings were discussed. The options of this section, allow
you to configure the output dataset (or the canvas that will host the built profiles).

-k FITS

--background=FITS

A background image FITS file to build the profiles on. The extension that
contains the image should be specified with the --backhdu option, see below.
When a background image is specified, it will be used to derive all the infor-
mation about the output image. Hence, the following options will be ignored:
--mergedsize, --oversample, --crpix, --crval (generally, all other WCS
related parameters) and the output’s data type (see --type in Section 4.1.2.1
[Input/Output options], page 252).

The background image will act like a canvas to build the profiles on: profile
pixel values will be summed with the background image pixel values. With the
--replace option you can disable this behavior and replace the profile pixels
with the background pixels. If you want to use all the image information above,
except for the pixel values (you want to have a blank canvas to build the profiles
on, based on an input image), you can call --clearcanvas, to set all the input
image’s pixels to zero before starting to build the profiles over it (this is done
in memory after reading the input, so nothing will happen to your input file).

-B STR/INT

--backhdu=STR/INT

The header data unit (HDU) of the file given to --background.

-C

--clearcanvas

When an input image is specified (with the --background option, set all its
pixels to 0.0 immediately after reading it into memory. Effectively, this will
allow you to use all its properties (described under the --background option),
without having to worry about the pixel values.
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--clearcanvas can come in handy in many situations, for example, if you
want to create a labeled image (segmentation map) for creating a catalog (see
Section 7.4 [MakeCatalog], page 572). In other cases, you might have modeled
the objects in an image and want to create them on the same frame, but without
the original pixel values.

-E STR/INT,FLT[,FLT,[...]]

--kernel=STR/INT,FLT[,FLT,[...]]

Only build one kernel profile with the parameters given as the values to this
option. The different values must be separated by a comma (,). The first value
identifies the radial function of the profile, either through a string or through
a number (see description of --fcol in Section 8.1.4.1 [MakeProfiles catalog],
page 637). Each radial profile needs a different total number of parameters:
Sérsic and Moffat functions need 3 parameters: radial, Sérsic index or Moffat
β, and truncation radius. The Gaussian function needs two parameters: radial
and truncation radius. The point function does not need any parameters and
flat and circumference profiles just need one parameter (truncation radius).

The PSF or kernel is a unique (and highly constrained) type of profile: the sum
of its pixels must be one, its center must be the center of the central pixel (in an
image with an odd number of pixels on each side), and commonly it is circular,
so its axis ratio and position angle are one and zero respectively. Kernels are
commonly necessary for various data analysis and data manipulation steps (for
example, see Section 6.3 [Convolve], page 469, and Section 7.2 [NoiseChisel],
page 541. Because of this it is inconvenient to define a catalog with one row
and many zero valued columns (for all the non-necessary parameters). Hence,
with this option, it is possible to create a kernel with MakeProfiles without the
need to create a catalog. Here are some examples:

--kernel=moffat,3,2.8,5

A Moffat kernel with FWHM of 3 pixels, β = 2.8 which is truncated
at 5 times the FWHM.

--kernel=gaussian,2,3

A circular Gaussian kernel with FWHM of 2 pixels and truncated
at 3 times the FWHM.

This option may also be used to create a 3D kernel. To do that, two small mod-
ifications are necessary: add a -3d (or -3D) to the profile name (for example,
moffat-3d) and add a number (axis-ratio along the third dimension) to the end
of the parameters for all profiles except point. The main reason behind pro-
viding an axis ratio in the third dimension is that in 3D astronomical datasets,
commonly the third dimension does not have the same nature (units/sampling)
as the first and second.

For example, in IFU (optical) or Radio data cubes, the first and second dimen-
sions are commonly spatial/angular positions (like RA and Dec) but the third
dimension is wavelength or frequency (in units of Angstroms for Herz). Because
of this different nature (which also affects the processing), it may be necessary
for the kernel to have a different extent in that direction.
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If the 3rd dimension axis ratio is equal to 1.0, then the kernel will be a spheroid.
If it is smaller than 1.0, the kernel will be button-shaped: extended less in the
third dimension. However, when it islarger than 1.0, the kernel will be bullet-
shaped: extended more in the third dimension. In the latter case, the radial
parameter will correspond to the length along the 3rd dimension. For example,
let’s have a look at the two examples above but in 3D:

--kernel=moffat-3d,3,2.8,5,0.5

An ellipsoid Moffat kernel with FWHM of 3 pixels, β = 2.8 which
is truncated at 5 times the FWHM. The ellipsoid is circular in the
first two dimensions, but in the third dimension its extent is half
the first two.

--kernel=gaussian-3d,2,3,1

A spherical Gaussian kernel with FWHM of 2 pixels and truncated
at 3 times the FWHM.

Of course, if a specific kernel is needed that does not fit the constraints imposed
by this option, you can always use a catalog to define any arbitrary kernel. Just
call the --individual and --nomerged options to make sure that it is built
as a separate file (individually) and no “merged” image of the input profiles is
created.

-x INT,INT

--mergedsize=INT,INT

The number of pixels along each axis of the output, in FITS order.
This is before over-sampling. For example, if you call MakeProfiles with
--mergedsize=100,150 --oversample=5 (assuming no shift due for later
convolution), then the final image size along the first axis will be 500 by 750
pixels. Fractions are acceptable as values for each dimension, however, they
must reduce to an integer, so --mergedsize=150/3,300/3 is acceptable but
--mergedsize=150/4,300/4 is not.

When viewing a FITS image in DS9, the first FITS dimension is in the horizon-
tal direction and the second is vertical. As an example, the image created with
the example above will have 500 pixels horizontally and 750 pixels vertically.

If a background image is specified, this option is ignored.

-s INT

--oversample=INT

The scale to over-sample the profiles and final image. If not an odd number,
will be added by one, see Section 8.1.1.6 [Oversampling], page 634. Note that
this --oversample will remain active even if an input image is specified. If your
input catalog is based on the background image, be sure to set --oversample=1.

--psfinimg

Build the possibly existing PSF profiles (Moffat or Gaussian) in the catalog
into the final image. By default they are built separately so you can convolve
your images with them, thus their magnitude and positions are ignored. With
this option, they will be built in the final image like every other galaxy profile.
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To have a final PSF in your image, make a point profile where you want the
PSF and after convolution it will be the PSF.

-i

--individual

If this option is called, each profile is created in a separate FITS file within
the same directory as the output and the row number of the profile (starting
from zero) in the name. The file for each row’s profile will be in the same
directory as the final combined image of all the profiles and will have the final
image’s name as a suffix. So for example, if the final combined image is named
./out/fromcatalog.fits, then the first profile that will be created with this
option will be named ./out/0_fromcatalog.fits.

Since each image only has one full profile out to the truncation radius the profile
is centered and so, only the sub-pixel position of the profile center is important
for the outputs of this option. The output will have an odd number of pixels.
If there is no oversampling, the central pixel will contain the profile center. If
the value to --oversample is larger than unity, then the profile center is on
any of the central --oversample’d pixels depending on the fractional value of
the profile center.

If the fractional value is larger than half, it is on the bottom half of the central
region. This is due to the FITS definition of a real number position: The center
of a pixel has fractional value 0.00 so each pixel contains these fractions: .5 –
.75 – .00 (pixel center) – .25 – .5.

-m

--nomerged

Do not make a merged image. By default after making the profiles, they are
added to a final image with side lengths specified by --mergedsize if they
overlap with it.

The options below can be used to define the world coordinate system (WCS) properties of
the MakeProfiles outputs. The option names are deliberately chosen to be the same as the
FITS standard WCS keywords. See Section 8 of Pence et al [2010] (https://doi.org/10.
1051/0004-6361/201015362) for a short introduction to WCS in the FITS standard8.

If you look into the headers of a FITS image with WCS for example, you will see all
these names but in uppercase and with numbers to represent the dimensions, for example,
CRPIX1 and PC2_1. You can see the FITS headers with Gnuastro’s Section 5.1 [Fits],
page 295, program using a command like this: $ astfits -p image.fits.

If the values given to any of these options does not correspond to the number of dimen-
sions in the output dataset, then no WCS information will be added. Also recall that if
you use the --background option, all of these options are ignored. Such that if the image

8 The world coordinate standard in FITS is a very beautiful and powerful concept to link/associate
datasets with the outside world (other datasets). The description in the FITS standard (link above)
only touches the tip of the ice-burg. To learn more please see Greisen and Calabretta [2002] (https://
doi.org/10.1051/0004-6361:20021326), Calabretta and Greisen [2002] (https://doi.org/10.1051/
0004-6361:20021327), Greisen et al. [2006] (https://doi.org/10.1051/0004-6361:20053818), and
Calabretta et al. (http://www.atnf.csiro.au/people/mcalabre/WCS/dcs_20040422.pdf)

https://doi.org/10.1051/0004-6361/201015362
https://doi.org/10.1051/0004-6361/201015362
https://doi.org/10.1051/0004-6361:20021326
https://doi.org/10.1051/0004-6361:20021326
https://doi.org/10.1051/0004-6361:20021327
https://doi.org/10.1051/0004-6361:20021327
https://doi.org/10.1051/0004-6361:20053818
http://www.atnf.csiro.au/people/mcalabre/WCS/dcs_20040422.pdf
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given to --background does not have any WCS, the output of MakeProfiles will also not
have any WCS, even if these options are given9.

--crpix=FLT,FLT

The pixel coordinates of the WCS reference point. Fractions are acceptable for
the values of this option.

--crval=FLT,FLT

The WCS coordinates of the Reference point. Fractions are acceptable for the
values of this option. The comma-separated values can either be in degrees
(a single number), or sexagesimal (_h_m_ for RA, _d_m_ for Dec, or _:_:_ for
both). In any case, the final value that will be written in the CRVAL keyword
will be a floating point number in degrees (according to the FITS standard).

--cdelt=FLT,FLT

The resolution (size of one data-unit or pixel in WCS units) of the
non-oversampled dataset. Fractions are acceptable for the values of this
option.

--pc=FLT,FLT,FLT,FLT

The PC matrix of the WCS rotation, see the FITS standard (link above) to
better understand the PC matrix.

--cunit=STR,STR

The units of each WCS axis, for example, deg. Note that these values are part
of the FITS standard (link above). MakeProfiles will not complain if you use
non-standard values, but later usage of them might cause trouble.

--ctype=STR,STR

The type of each WCS axis, for example, RA---TAN and DEC--TAN. Note that
these values are part of the FITS standard (link above). MakeProfiles will not
complain if you use non-standard values, but later usage of them might cause
trouble.

8.1.4.4 MakeProfiles log file

Besides the final merged dataset of all the profiles, or the individual datasets (see Sec-
tion 8.1.4.3 [MakeProfiles output dataset], page 648), if the --log option is called Make-
Profiles will also create a log file in the current directory (where you run MockProfiles). See
Section 4.1.2 [Common options], page 251, for a full description of --log and other options
that are shared between all Gnuastro programs. The values for each column are explained
in the first few commented lines of the log file (starting with # character). Here is a more
complete description.

• An ID (row number of profile in input catalog).

• The total magnitude of the profile in the output dataset. When the profile does not
completely overlap with the output dataset, this will be different from your input
magnitude.

9 If you want to add profiles and WCS over the background image (to produce your output), you need
more than one command: 1. You should use --mergedsize in MakeProfiles to manually set the output
number of pixels equal to your desired background image (so the background is zero). In this mode, you
can use these WCS-related options to define the WCS. 2. Then use Arithmetic to add the pixels of your
mock image to the background (see Section 6.2 [Arithmetic], page 399.



Chapter 8: Data modeling 653

• The number of pixels (in the oversampled image) which used Monte Carlo integration
and not the central pixel value, see Section 8.1.1.5 [Sampling from a function], page 633.

• The fraction of flux in the Monte Carlo integrated pixels.

• If an individual image was created, this column will have a value of 1, otherwise it will
have a value of 0.
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9 High-level calculations

After the reduction of raw data (for example, with the programs in Chapter 6 [Data ma-
nipulation], page 385) you will have reduced images/data ready for processing/analyzing
(for example, with the programs in Chapter 7 [Data analysis], page 508). But the pro-
cessed/analyzed data (or catalogs) are still not enough to derive any scientific result. Even
higher-level analysis is still needed to convert the observed magnitudes, sizes or volumes
into physical quantities that we associate with each catalog entry or detected object which
is the purpose of the tools in this section.

9.1 CosmicCalculator

To derive higher-level information regarding our sources in extra-galactic astronomy, cos-
mological calculations are necessary. In Gnuastro, CosmicCalculator is in charge of such
calculations. Before discussing how CosmicCalculator is called and operates (in Section 9.1.3
[Invoking CosmicCalculator], page 659), it is important to provide a rough but mostly self
sufficient review of the basics and the equations used in the analysis. In Section 9.1.1
[Distance on a 2D curved space], page 654, the basic idea of understanding distances in a
curved and expanding 2D universe (which we can visualize) are reviewed. Having solidified
the concepts there, in Section 9.1.2 [Extending distance concepts to 3D], page 659, the
formalism is extended to the 3D universe we are trying to study in our research.

The focus here is obtaining a physical insight into these equations (mainly for the use
in real observational studies). There are many books thoroughly deriving and proving all
the equations with all possible initial conditions and assumptions for any abstract universe,
interested readers can study those books.

9.1.1 Distance on a 2D curved space

The observations to date (for example, the Planck 2015 results), have not measured1 the
presence of significant curvature in the universe. However to be generic (and allow its
measurement if it does in fact exist), it is very important to create a framework that allows
non-zero uniform curvature. However, this section is not intended to be a fully thorough and
mathematically complete derivation of these concepts. There are many references available
for such reviews that go deep into the abstract mathematical proofs. The emphasis here is
on visualization of the concepts for a beginner.

As 3D beings, it is difficult for us to mentally create (visualize) a picture of the curvature
of a 3D volume. Hence, here we will assume a 2D surface/space and discuss distances
on that 2D surface when it is flat and when it is curved. Once the concepts have been
created/visualized here, we will extend them, in Section 9.1.2 [Extending distance concepts
to 3D], page 659, to a real 3D spatial slice of the Universe we live in and hope to study.

To be more understandable (actively discuss from an observer’s point of view) let’s
assume there’s an imaginary 2D creature living on the 2D space (which might be curved
in 3D). Here, we will be working with this creature in its efforts to analyze distances in its
2D universe. The start of the analysis might seem too mundane, but since it is difficult to

1 The observations are interpreted under the assumption of uniform curvature. For a relativistic alternative
to dark energy (and maybe also some part of dark matter), non-uniform curvature may be even be more
critical, but that is beyond the scope of this brief explanation.
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imagine a 3D curved space, it is important to review all the very basic concepts thoroughly
for an easy transition to a universe that is more difficult to visualize (a curved 3D space
embedded in 4D).

To start, let’s assume a static (not expanding or shrinking), flat 2D surface similar to
Figure 9.1 and that the 2D creature is observing its universe from point A. One of the
most basic ways to parameterize this space is through the Cartesian coordinates (x, y). In
Figure 9.1, the basic axes of these two coordinates are plotted. An infinitesimal change in
the direction of each axis is written as dx and dy. For each point, the infinitesimal changes
are parallel with the respective axes and are not shown for clarity. Another very useful
way of parameterizing this space is through polar coordinates. For each point, we define
a radius (r) and angle (φ) from a fixed (but arbitrary) reference axis. In Figure 9.1 the
infinitesimal changes for each polar coordinate are plotted for a random point and a dashed
circle is shown for all points with the same radius.

A
r

dr
dφ

x

y

Figure 9.1: Two dimensional Cartesian and polar coordinates on a flat plane.

Assuming an object is placed at a certain position, which can be parameterized as
(x, y), or (r, φ), a general infinitesimal change in its position will place it in the coordinates
(x+dx, y+dy), or (r+dr, φ+dφ). The distance (on the flat 2D surface) that is covered by
this infinitesimal change in the static universe (dss, the subscript signifies the static nature
of this universe) can be written as:

ds2s = dx2 + dy2 = dr2 + r2dφ2

The main question is this: how can the 2D creature incorporate the (possible) curvature
in its universe when it’s calculating distances? The universe that it lives in might equally
be a curved surface like Figure 9.2. The answer to this question but for a 3D being (us)
is the whole purpose to this discussion. Here, we want to give the 2D creature (and later,
ourselves) the tools to measure distances if the space (that hosts the objects) is curved.

Figure 9.2 assumes a spherical shell with radius R as the curved 2D plane for simplicity.
The 2D plane is tangent to the spherical shell and only touches it at A. This idea will be
generalized later. The first step in measuring the distance in a curved space is to imagine
a third dimension along the z axis as shown in Figure 9.2. For simplicity, the z axis is
assumed to pass through the center of the spherical shell. Our imaginary 2D creature
cannot visualize the third dimension or a curved 2D surface within it, so the remainder of
this discussion is purely abstract for it (similar to us having difficulty in visualizing a 3D
curved space in 4D). But since we are 3D creatures, we have the advantage of visualizing
the following steps. Fortunately the 2D creature is already familiar with our mathematical
constructs, so it can follow our reasoning.
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With the third axis added, a generic infinitesimal change over the full 3D space corre-
sponds to the distance:

ds2s = dx2 + dy2 + dz2 = dr2 + r2dφ2 + dz2.

R

r

z

R − z θ

x

y

z

A

O

φ

P

P ′r

l

Figure 9.2: 2D spherical shell (centered on O) and flat plane (light gray) tangent to it
at point A.

It is very important to recognize that this change of distance is for any point in the 3D
space, not just those changes that occur on the 2D spherical shell of Figure 9.2. Recall that
our 2D friend can only do measurements on the 2D surfaces, not the full 3D space. So we
have to constrain this general change to any change on the 2D spherical shell. To do that,
let’s look at the arbitrary point P on the 2D spherical shell. Its image (P ′) on the flat plain
is also displayed. From the dark gray triangle, we see that

sin θ =
r

R
, cos θ =

R− z
R

.

These relations allow the 2D creature to find the value of z (an abstract dimension for it)
as a function of r (distance on a flat 2D plane, which it can visualize) and thus eliminate z.
From sin2 θ + cos2 θ = 1, we get z2 − 2Rz + r2 = 0 and solving for z, we find:

z = R

1±
√
1− r2

R2

 .
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The ± can be understood from Figure 9.2: For each r, there are two points on the sphere,
one in the upper hemisphere and one in the lower hemisphere. An infinitesimal change in
r, will create the following infinitesimal change in z:

dz =
∓r
R

(
1√

1− r2/R2

)
dr.

Using the positive signed equation instead of dz in the ds2s equation above, we get:

ds2s =
dr2

1− r2/R2
+ r2dφ2.

The derivation above was done for a spherical shell of radius R as a curved 2D surface.
To generalize it to any surface, we can define K = 1/R2 as the curvature parameter. Then
the general infinitesimal change in a static universe can be written as:

ds2s =
dr2

1−Kr2
+ r2dφ2.

Therefore, whenK > 0 (and curvature is the same everywhere), we have a finite universe,
where r cannot become larger than R as in Figure 9.2. When K = 0, we have a flat plane
(Figure 9.1) and a negative K will correspond to an imaginary R. The latter two cases may
be infinite in area (which is not a simple concept, but mathematically can be modeled with
r extending infinitely), or finite-area (like a cylinder is flat everywhere with ds2s = dx2 + dy2,
but finite in one direction in size).

A very important issue that can be discussed now (while we are still in 2D and can
actually visualize things) is that −→r is tangent to the curved space at the observer’s position.
In other words, it is on the gray flat surface of Figure 9.2, even when the universe if curved:
−→r = P ′ − A. Therefore for the point P on a curved space, the raw coordinate r is the
distance to P ′, not P . The distance to the point P (at a specific coordinate r on the flat
plane) over the curved surface (thick line in Figure 9.2) is called the proper distance and
is displayed with l. For the specific example of Figure 9.2, the proper distance can be
calculated with: l = Rθ (θ is in radians). Using the sin θ relation found above, we can find
l as a function of r:

θ = sin−1
(
r

R

)
→ l(r) = R sin−1

(
r

R

)

R is just an arbitrary constant and can be directly found fromK, so for cleaner equations,
it is common practice to set R = 1, which gives: l(r) = sin−1 r. Also note that when R = 1,
then l = θ. Generally, depending on the curvature, in a static universe the proper distance
can be written as a function of the coordinate r as (from now on we are assuming R = 1):

l(r) = sin−1(r) (K > 0), l(r) = r (K = 0), l(r) = sinh−1(r) (K < 0).
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With l, the infinitesimal change of distance can be written in a more simpler and abstract
form of

ds2s = dl2 + r2dφ2.

Until now, we had assumed a static universe (not changing with time). But our obser-
vations so far appear to indicate that the universe is expanding (it is not static). Since
there is no reason to expect the observed expansion is unique to our particular position of
the universe, we expect the universe to be expanding at all points with the same rate at
the same time. Therefore, to add a time dependence to our distance measurements, we can
include a multiplicative scaling factor, which is a function of time: a(t). The functional
form of a(t) comes from the cosmology, the physics we assume for it: general relativity, and
the choice of whether the universe is uniform (‘homogeneous’) in density and curvature or
inhomogeneous. In this section, the functional form of a(t) is irrelevant, so we can avoid
these issues.

With this scaling factor, the proper distance will also depend on time. As the universe
expands, the distance between two given points will shift to larger values. We thus define
a distance measure, or coordinate, that is independent of time and thus does not ‘move’.
We call it the comoving distance and display with χ such that: l(r, t) = χ(r)a(t). We have
therefore, shifted the r dependence of the proper distance we derived above for a static
universe to the comoving distance:

χ(r) = sin−1(r) (K > 0), χ(r) = r (K = 0), χ(r) = sinh−1(r) (K < 0).

Therefore, χ(r) is the proper distance to an object at a specific reference time: t = tr
(the r subscript signifies “reference”) when a(tr) = 1. At any arbitrary moment (t 6= tr)
before or after tr, the proper distance to the object can be scaled with a(t).

Measuring the change of distance in a time-dependent (expanding) universe only makes
sense if we can add up space and time2. But we can only add bits of space and time together
if we measure them in the same units: with a conversion constant (similar to how 1000 is
used to convert a kilometer into meters). Experimentally, we find strong support for the
hypothesis that this conversion constant is the speed of light (or gravitational waves3) in a
vacuum. This speed is postulated to be constant4 and is almost always written as c. We
can thus parameterize the change in distance on an expanding 2D surface as

ds2 = c2dt2 − a2(t)ds2s = c2dt2 − a2(t)(dχ2 + r2dφ2).

2 In other words, making our space-time consistent with Minkowski space-time geometry. In this geometry,
different observers at a given point (event) in space-time split up space-time into ‘space’ and ‘time’ in
different ways, just like people at the same spatial position can make different choices of splitting up a
map into ‘left–right’ and ‘up–down’. This model is well supported by twentieth and twenty-first century
observations.

3 The speed of gravitational waves was recently found to be very similar to that of light in vacuum, see
LIGO Collaboration 2017 (https://arxiv.org/abs/1710.05834).

4 In natural units, speed is measured in units of the speed of light in vacuum.

https://arxiv.org/abs/1710.05834
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9.1.2 Extending distance concepts to 3D

The concepts of Section 9.1.1 [Distance on a 2D curved space], page 654, are here extended
to a 3D space that might be curved. We can start with the generic infinitesimal distance
in a static 3D universe, but this time in spherical coordinates instead of polar coordinates.
θ is shown in Figure 9.2, but here we are 3D beings, positioned on O (the center of the
sphere) and the point O is tangent to a 4D-sphere. In our 3D space, a generic infinitesimal
displacement will correspond to the following distance in spherical coordinates:

ds2s = dx2 + dy2 + dz2 = dr2 + r2(dθ2 + sin2 θdφ2).

Like the 2D creature before, we now have to assume an abstract dimension which we
cannot visualize easily. Let’s call the fourth dimension w, then the general change in
coordinates in the full four dimensional space will be:

ds2s = dr2 + r2(dθ2 + sin2 θdφ2) + dw2.

But we can only work on a 3D curved space, so following exactly the same steps and
conventions as our 2D friend, we arrive at:

ds2s =
dr2

1−Kr2
+ r2(dθ2 + sin2 θdφ2).

In a non-static universe (with a scale factor a(t)), the distance can be written as:

ds2 = c2dt2 − a2(t)[dχ2 + r2(dθ2 + sin2 θdφ2)].

9.1.3 Invoking CosmicCalculator

CosmicCalculator will calculate cosmological variables based on the input parameters. The
executable name is astcosmiccal with the following general template

$ astcosmiccal [OPTION...] ...

One line examples:

## Print basic cosmological properties at redshift 2.5:

$ astcosmiccal -z2.5

## Only print Comoving volume over 4pi stradian to z (Mpc^3):

$ astcosmiccal --redshift=0.8 --volume

## Print redshift and age of universe when Lyman-alpha line is

## at 6000 angstrom (another way to specify redshift).

$ astcosmiccal --obsline=Ly-alpha,6000 --age

## Print luminosity distance, angular diameter distance and age



Chapter 9: High-level calculations 660

## of universe in one row at redshift 0.4

$ astcosmiccal -z0.4 -LAg

## Assume Lambda and matter density of 0.7 and 0.3 and print

## basic cosmological parameters for redshift 2.1:

$ astcosmiccal -l0.7 -m0.3 -z2.1

## Print wavelength of all pre-defined spectral lines when

## Lyman-alpha is observed at 4000 Angstroms.

$ astcosmiccal --obsline=Ly-alpha,4000 --listlinesatz

The input parameters (current matter density, etc.) can be given as command-line
options or in the configuration files, see Section 4.2 [Configuration files], page 268. For a
definition of the different parameters, please see the sections prior to this. If no redshift is
given, CosmicCalculator will just print its input parameters and abort. For a full list of the
input options, please see Section 9.1.3.1 [CosmicCalculator input options], page 660.

Without any particular output requested (and only a given redshift), CosmicCalculator
will print all basic cosmological calculations (one per line) with some explanations before
each. This can be good when you want a general feeling of the conditions at a specific
redshift. Alternatively, if any specific calculation(s) are requested (its possible to call more
than one), only the requested value(s) will be calculated and printed with one character
space between them. In this case, no description or units will be printed. See Section 9.1.3.2
[CosmicCalculator basic cosmology calculations], page 661, for the full list of these options
along with some explanations how when/how they can be useful.

Another common operation in observational cosmology is dealing with spectral lines at
different redshifts. CosmicCalculator also has features to help in such situations, please see
Section 9.1.3.3 [CosmicCalculator spectral line calculations], page 664.

9.1.3.1 CosmicCalculator input options

The inputs to CosmicCalculator can be specified with the following options:

-z FLT

--redshift=FLT

The redshift of interest. There are two other ways that you can specify the
target redshift: 1) Spectral lines and their observed wavelengths, see --obsline.
2) Velocity, see --velocity. Hence this option cannot be called with --obsline

or --velocity.

-y FLT

--velocity=FLT

Input velocity in km/s. The given value will be converted to redshift internally,
and used in any subsequent calculation. This option is thus an alternative to
--redshift or --obsline, it cannot be used with them. The conversion will
be done with the more general and accurate relativistic equation of 1 + z =√
(c+ v)/(c− v), not the simplified z ≈ v/c.

-H FLT

--H0=FLT Current expansion rate (in km sec−1 Mpc−1).
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-l FLT

--olambda=FLT

Cosmological constant density divided by the critical density in the current
Universe (ΩΛ,0).

-m FLT

--omatter=FLT

Matter (including massive neutrinos) density divided by the critical density in
the current Universe (Ωm,0).

-r FLT

--oradiation=FLT

Radiation density divided by the critical density in the current Universe (Ωr,0).

-O STR/FLT,FLT

--obsline=STR/FLT,FLT

Find the redshift to use in next steps based on the rest-frame and observed
wavelengths of a line. This option is thus an alternative to --redshift or
--velocity, it cannot be used with them.

The first argument identifies the line. It can be one of the standard names, or
any rest-frame wavelength in Angstroms. The second argument is the observed
wavelength of that line. For example, --obsline=Ly-alpha,6000 is the same
as --obsline=1215.64,6000. Wavelengths are assumed to be in Angstroms
by default (other units can be selected with --lineunit, see Section 9.1.3.3
[CosmicCalculator spectral line calculations], page 664).

The list of pre-defined names for the lines in Gnuastro’s database is available
by running

$ astcosmiccal --listlines

9.1.3.2 CosmicCalculator basic cosmology calculations

By default, when no specific calculations are requested, CosmicCalculator will print a com-
plete set of all its calculators (one line for each calculation, see Section 9.1.3 [Invoking
CosmicCalculator], page 659). The full list of calculations can be useful when you do not
want any specific value, but just a general view. In other contexts (for example, in a batch
script or during a discussion), you know exactly what you want and do not want to be
distracted by all the extra information.

You can use any number of the options described below in any order. When any of these
options are requested, CosmicCalculator’s output will just be a single line with a single space
between the (possibly) multiple values. In the example below, only the tangential distance
along one arc-second (in kpc), absolute magnitude conversion, and age of the universe at
redshift 2 are printed (recall that you can merge short options together, see Section 4.1.1.2
[Options], page 249).

$ astcosmiccal -z2 -sag

8.585046 44.819248 3.289979

Here is one example of using this feature in scripts: by adding the following two lines in
a script to keep/use the comoving volume with varying redshifts:

z=3.12
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vol=$(astcosmiccal --redshift=$z --volume)

In a script, this operation might be necessary for a large number of objects (several of
galaxies in a catalog for example). So the fact that all the other default calculations are
ignored will also help you get to your result faster.

If you are indeed dealing with many (for example, thousands) of redshifts, using Cosmic-
Calculator is not the best/fastest solution. Because it has to go through all the configuration
files and preparations for each invocation. To get the best efficiency (least overhead), we
recommend using Gnuastro’s cosmology library (see Section 12.3.35 [Cosmology library
(cosmology.h)], page 908). CosmicCalculator also calls the library functions defined there
for its calculations, so you get the same result with no overhead. Gnuastro also has li-
braries for easily reading tables into a C program, see Section 12.3.10 [Table input output
(table.h)], page 788. Afterwards, you can easily build and run your C program for the
particular processing with Section 12.2 [BuildProgram], page 732.

If you just want to inspect the value of a variable visually, the description (which comes
with units) might be more useful. In such cases, the following command might be better.
The other calculations will also be done, but they are so fast that you will not notice on
modern computers (the time it takes your eye to focus on the result is usually longer than
the processing: a fraction of a second).

$ astcosmiccal --redshift=0.832 | grep volume

The full list of CosmicCalculator’s specific calculations is present below in two groups:
basic cosmology calculations and those related to spectral lines. In case you have forgot the
units, you can use the --help option which has the units along with a short description.

-e

--usedredshift

The redshift that was used in this run. In many cases this is the main in-
put parameter to CosmicCalculator, but it is useful in others. For example,
in combination with --obsline (where you give an observed and rest-frame
wavelength and would like to know the redshift) or with --velocity (where
you specify the velocity instead of redshift). Another example is when you run
CosmicCalculator in a loop, while changing the redshift and you want to keep
the redshift value with the resulting calculation.

-Y

--usedvelocity

The velocity (in km/s) that was used in this run. The conversion from redshift
will be done with the more general and accurate relativistic equation of 1+ z =√
(c+ v)/(c− v), not the simplified z ≈ v/c.

-G

--agenow The current age of the universe (given the input parameters) in Ga (Giga an-
num, or billion years).

-C

--criticaldensitynow

The current critical density (given the input parameters) in grams per cubic
centimeter (g/cm3).
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-d

--properdistance

The proper distance (at the current time, i.e. in comoving units) to an object
at the given redshift in Megaparsecs (Mpc). See Section 9.1.1 [Distance on a
2D curved space], page 654, for a description of the proper distance.

-A

--angulardiamdist

The angular diameter distance to an object at a given redshift in Megaparsecs
(Mpc).

-s

--arcsectandist

The tangential distance covered by 1 arc-second at a given redshift in physical
(not comoving) kiloparsecs (kpc). This can be useful when trying to estimate
the resolution or pixel scale of an instrument (usually in units of arc-seconds)
required for a galaxy of a given physical size at a given redshift.

For an arc subtending one degree at a high redshift z, multiplying the result by
3600 will, of course, give the (tangential) length of an arc subtending one degree,
but it will still be in physical units. However, at one degree, the comoving
separation for redshifts from 1 to 10 is about 100 Mpc give or take 50% or so
for nearly ΛCDM models. In other words, this is the cosmic web scale, where
comoving units usually make more sense than physical units, e.g. for large-
scale structure correlation functions or the baryon acoustic oscillation scale.
If comoving units are appropriate, as will typically be the case for the degree
scale, you must also multiply by (1 + z).

-L

--luminositydist

The luminosity distance to object at given redshift in Megaparsecs (Mpc).

-u

--distancemodulus

The distance modulus at given redshift.

-a

--absmagconv

The conversion factor (addition) to absolute magnitude. Note that this is prac-
tically the distance modulus added with −2.5 log (1 + z) for the desired redshift
based on the input parameters. Once the apparent magnitude and redshift of
an object is known, this value may be added with the apparent magnitude to
give the object’s absolute magnitude.

-g

--age Age of the universe at given redshift in Ga (Giga annum, or billion years).

-b

--lookbacktime

The look-back time to a given redshift in Ga (Giga annum, or billion years).
The look-back time at a given redshift is defined as the current age of the
universe (--agenow) minus the age of the universe at the given redshift.
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-c

--criticaldensity

The critical density at given redshift in grams per centimeter-cube (g/cm3).

-v

--onlyvolume

The comoving volume in cubic Megaparsecs (Mpc3) through to the desired
redshift, based on the input parameters.

9.1.3.3 CosmicCalculator spectral line calculations

At different redshifts, observed spectral lines are shifted compared to their rest frame wave-
lengths with this simple relation: λobs = λrest(1 + z). Although this relation is very simple
and can be done for one line in the head (or a simple calculator!), it slowly becomes tiring
when dealing with a lot of lines or redshifts, or some precision is necessary. The options
in this section are thus provided to greatly simplify usage of this simple equation, and also
helping by storing a list of pre-defined spectral line wavelengths.

For example, if you want to know the wavelength of the Hα line (at 6562.8 Angstroms
in rest frame), when Lyα is at 8000 Angstroms, you can call CosmicCalculator like the first
example below. And if you want the wavelength of all pre-defined spectral lines at this
redshift, you can use the second command.

$ astcosmiccal --obsline=lyalpha,8000 --lineatz=halpha

$ astcosmiccal --obsline=lyalpha,8000 --listlinesatz

Bellow you can see the printed/output calculations of CosmicCalculator that are related
to spectral lines. Note that --obsline is an input parameter, so it is discussed (with the
full list of known lines) in Section 9.1.3.1 [CosmicCalculator input options], page 660.

--listlines

List the pre-defined rest frame spectral line wavelengths and their names on
standard output, then abort CosmicCalculator. The units of the displayed
wavelengths for each line can be determined with --lineunit (see below).

When this option is given, other operations on the command-line will be ig-
nored. This is convenient when you forget the specific name of the spectral line
used within Gnuastro, or when you forget the exact wavelength of a certain
line.

These names can be used with the options that deal with spectral lines, for
example, --obsline and --lineatz (Section 9.1.3.2 [CosmicCalculator basic
cosmology calculations], page 661).

The format of the output list is a two-column table, with Gnuastro’s text table
format (see Section 4.7.2 [Gnuastro text table format], page 285). Therefore, if
you are only looking for lines in a specific range, you can pipe the output into
Gnuastro’s table program and use its --range option on the wavelength (first)
column. For example, if you only want to see the lines between 4000 and 6000
Angstroms, you can run this command:

$ astcosmiccal --listlines \

| asttable --range=wavelength,4000,6000
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And if you want to use the list later and have it as a table in a file, you can
easily add the --output (or -o) option to the asttable command, and specify
the filename, for example, --output=lines.fits or --output=lines.txt.

--listlinesatz

Similar to --listlines (above), but the printed wavelength is not in the rest
frame, but redshifted to the given redshift. Recall that the redshift can be
specified by --redshift directly or by --obsline, see Section 9.1.3.1 [Cosmic-
Calculator input options], page 660. For an example usage of this option, see
Section 2.5.1 [Viewing spectra and redshifted lines], page 135.

-i STR/FLT

--lineatz=STR/FLT

The wavelength of the specified line at the redshift given to CosmicCalculator.
The line can be specified either by its name or directly as a number (its wave-
length). The units of the displayed wavelengths for each line can be determined
with --lineunit (see below).

To get the list of pre-defined names for the lines and their wavelength, you
can use the --listlines option, see Section 9.1.3.1 [CosmicCalculator input
options], page 660. In the former case (when a name is given), the returned
number is in units of Angstroms. In the latter (when a number is given),
the returned value is the same units of the input number (assuming it is a
wavelength).

--lineunit=STR

The units to display line wavelengths above. It can take the following four
values. If you need any other unit, please contact us at bug-gnuastro@gnu.org.

m Meter.

micro-m Micrometer or 10−6m.

nano-m Nanometer, or 10−9m.

angstrom Angstrom or 10−10m; the default unit when this option is not called.
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10 Installed scripts

Gnuastro’s programs (introduced in previous chapters) are designed to be highly modular
and thus contain lower-level operations on the data. However, in many contexts, certain
higher-level are also shared between many contexts. For example, a sequence of calls to
multiple Gnuastro programs, or a special way of running a program and treating the output.
To facilitate such higher-level data analysis, Gnuastro also installs some scripts on your
system with the (astscript-) prefix (in contrast to the other programs that only have the
ast prefix).

Like all of Gnuastro’s source code, these scripts are also heavily commented. They
are written in portable shell scripts (command-line environments), which does not need
compilation. Therefore, if you open the installed scripts in a text editor, you can actually
read them1. For example, with this command (just replace nano with your favorite text
editor, like emacs or vim):

$ nano $(which astscript-NAME)

Shell scripting is the same language that you use when typing on the command-line.
Therefore shell scripting is much more widely known and used compared to C (the lan-
guage of other Gnuastro programs). Because Gnuastro’s installed scripts do higher-level
operations, customizing these scripts for a special project will be more common than the
programs.

These scripts also accept options and are in many ways similar to the programs (see
Section 4.1.2 [Common options], page 251) with some minor differences:

• Currently they do not accept configuration files themselves. However, the configuration
files of the Gnuastro programs they call are indeed parsed and used by those programs.

As a result, they do not have the following options: --checkconfig, --config,
--lastconfig, --onlyversion, --printparams, --setdirconf and --setusrconf.

• They do not directly allocate any memory, so there is no --minmapsize.

• They do not have an independent --usage option: when called with --usage, they
just recommend running --help.

• The output of --help is not configurable like the programs (see Section 4.3.2 [--help],
page 272).

• The scripts will commonly use your installed shell and other basic command-line tools
(for example, AWK or SED). Different systems have different versions and implemen-
tations of these basic tools (for example, GNU/Linux systems use GNU Bash, GNU
AWK and GNU SED which are far more advanced and up to date then the minimalist
AWK and SED of most other systems). Therefore, unexpected errors in these tools
might come up when you run these scripts on non-GNU/Linux operating systems. If
you do confront such strange errors, please submit a bug report so we fix it as soon as
possible (see Section 1.9 [Report a bug], page 15).

1 Gnuastro’s installed programs (those only starting with ast) are not human-readable. They are written
in C and need to be compiled before execution. Compilation optimizes the steps into the low-level
hardware CPU instructions/language to improve efficiency. Because compiled programs do not need an
interpreter like Bash on every run, they are much faster and more independent than scripts. To read
the source code of the programs, look into the bin/progname directory of Gnuastro’s source (Section 3.2
[Downloading the source], page 225). If you would like to read more about why C was chosen for the
programs, please see Section 13.1 [Why C programming language?], page 928.



Chapter 10: Installed scripts 667

10.1 Sort FITS files by night

FITS images usually contain (several) keywords for preserving important dates. In particu-
lar, for lower-level data, this is usually the observation date and time (for example, stored in
the DATE-OBS keyword value). When analyzing observed datasets, many calibration steps
(like the dark, bias or flat-field), are commonly calculated on a per-observing-night basis.

However, the FITS standard’s date format (YYYY-MM-DDThh:mm:ss.ddd) is based on the
western (Gregorian) calendar. Dates that are stored in this format are complicated for
automatic processing: a night starts in the final hours of one calendar day, and extends
to the early hours of the next calendar day. As a result, to identify datasets from one
night, we commonly need to search for two dates. However calendar peculiarities can make
this identification very difficult. For example, when an observation is done on the night
separating two months (like the night starting on March 31st and going into April 1st),
or two years (like the night starting on December 31st 2018 and going into January 1st,
2019). To account for such situations, it is necessary to keep track of how many days are
in a month, and leap years, etc.

Gnuastro’s astscript-sort-by-night script is created to help in such important sce-
narios. It uses Section 5.1 [Fits], page 295, to convert the FITS date format into the Unix
epoch time (number of seconds since 00:00:00 of January 1st, 1970), using the --datetosec
option. The Unix epoch time is a single number (integer, if not given in sub-second preci-
sion), enabling easy comparison and sorting of dates after January 1st, 1970.

You can use this script as a basis for making a much more highly customized sorting
script. Here are some examples

• If you need to copy the files, but only need a single extension (not the whole file), you
can add a step just before the making of the symbolic links, or copies, and change it to
only copy a certain extension of the FITS file using the Fits program’s --copy option,
see Section 5.1.1.1 [HDU information and manipulation], page 299.

• If you need to classify the files with finer detail (for example, the purpose of the dataset),
you can add a step just before the making of the symbolic links, or copies, to specify a
file-name prefix based on other certain keyword values in the files. For example, when
the FITS files have a keyword to specify if the dataset is a science, bias, or flat-field
image. You can read it and to add a sci-, bias-, or flat- to the created file (after
the --prefix) automatically.

For example, let’s assume the observing mode is stored in the hypothetical MODE key-
word, which can have three values of BIAS-IMAGE, SCIENCE-IMAGE and FLAT-EXP. With
the step below, you can generate a mode-prefix, and add it to the generated link/copy
names (just correct the filename and extension of the first line to the script’s variables):

modepref=$(astfits infile.fits -h1 \

| sed -e"s/'/ /g" \

| awk '$1=="MODE"{ \

if($3=="BIAS-IMAGE") print "bias-"; \

else if($3=="SCIENCE-IMAGE") print "sci-"; \

else if($3==FLAT-EXP) print "flat-"; \

else print $3, "NOT recognized"; exit 1}')

Here is a description of it. We first use astfits to print all the keywords in extension
1 of infile.fits. In the FITS standard, string values (that we are assuming here) are
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placed in single quotes (’) which are annoying in this context/use-case. Therefore, we
pipe the output of astfits into sed to remove all such quotes (substituting them with
a blank space). The result is then piped to AWK for giving us the final mode-prefix:
with $1=="MODE", we ask AWK to only consider the line where the first column is
MODE. There is an equal sign between the key name and value, so the value is the third
column ($3 in AWK). We thus use a simple if-else structure to look into this value
and print our custom prefix based on it. The output of AWK is then stored in the
modepref shell variable which you can add to the link/copy name.

With the solution above, the increment of the file counter for each night will be inde-
pendent of the mode. If you want the counter to be mode-dependent, you can add a
different counter for each mode and use that counter instead of the generic counter for
each night (based on the value of modepref). But we will leave the implementation of
this step to you as an exercise.

10.1.1 Invoking astscript-sort-by-night

This installed script will read a FITS date formatted value from the given keyword, and
classify the input FITS files into individual nights. For more on installed scripts please see
(see Chapter 10 [Installed scripts], page 666). This script can be used with the following
general template:

$ astscript-sort-by-night [OPTION...] FITS-files

One line examples:

## Use the DATE-OBS keyword

$ astscript-sort-by-night --key=DATE-OBS /path/to/data/*.fits

## Make links to the input files with the `img-' prefix

$ astscript-sort-by-night --link --prefix=img- /path/to/data/*.fits

This script will look into a HDU/extension (--hdu) for a keyword (--key) in the given
FITS files and interpret the value as a date. The inputs will be separated by "night"s
(11:00a.m to next day’s 10:59:59a.m, spanning two calendar days, exact hour can be set
with --hour).

The default output is a list of all the input files along with the following two columns:
night number and file number in that night (sorted by time). With --link a symbolic link
will be made (one for each input) that contains the night number, and number of file in
that night (sorted by time), see the description of --link for more. When --copy is used
instead of a link, a copy of the inputs will be made instead of symbolic link.

Below you can see one example where all the target-*.fits files in the data directory
should be separated by observing night according to the DATE-OBS keyword value in their
second extension (number 1, recall that HDU counting starts from 0). You can see the
output after the ls command.

$ astscript-sort-by-night -pimg- -h1 -kDATE-OBS data/target-*.fits

$ ls

img-n1-1.fits img-n1-2.fits img-n2-1.fits ...

The outputs can be placed in a different (already existing) directory by including that
directory’s name in the --prefix value, for example, --prefix=sorted/img- will put them
all under the sorted directory.
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This script can be configured like all Gnuastro’s programs (through command-line op-
tions, see Section 4.1.2 [Common options], page 251), with some minor differences that are
described in Chapter 10 [Installed scripts], page 666. The particular options to this script
are listed below:

-h STR

--hdu=STR

The HDU/extension to use in all the given FITS files. All of the given FITS
files must have this extension.

-k STR

--key=STR

The keyword name that contains the FITS date format to classify/sort by.

-H FLT

--hour=FLT

The hour that defines the next “night”. By default, all times before 11:00a.m
are considered to belong to the previous calendar night. If a sub-hour value
is necessary, it should be given in units of hours, for example, --hour=9.5

corresponds to 9:30a.m.� �
Dealing with time zones: The time that is recorded in --key may be in UTC
(Universal Time Coordinate). However, the organization of the images taken
during the night depends on the local time. It is possible to take this into
account by setting the --hour option to the local time in UTC.

For example, consider a set of images taken in Auckland (New Zealand,
UTC+12) during different nights. If you want to classify these images by
night, you have to know at which time (in UTC time) the Sun rises (or any
other separator/definition of a different night). For example, if your observing
night finishes before 9:00a.m in Auckland, you can use --hour=21. Because
in Auckland the local time of 9:00 corresponds to 21:00 UTC.
 	

-l

--link Create a symbolic link for each input FITS file. This option cannot be used with
--copy. The link will have a standard name in the following format (variable
parts are written in CAPITAL letters and described after it):

PnN-I.fits

P This is the value given to --prefix. By default, its value is ./

(to store the links in the directory this script was run in). See the
description of --prefix for more.

N This is the night-counter: starting from 1. N is just incremented
by 1 for the next night, no matter how many nights (without any
dataset) there are between two subsequent observing nights (its just
an identifier for each night which you can easily map to different
calendar nights).

I File counter in that night, sorted by time.
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-c

--copy Make a copy of each input FITS file with the standard naming convention
described in --link. With this option, instead of making a link, a copy is
made. This option cannot be used with --link.

-p STR

--prefix=STR

Prefix to append before the night-identifier of each newly created link or copy.
This option is thus only relevant with the --copy or --link options. See the
description of --link for how it is used. For example, with --prefix=img-,
all the created file names in the current directory will start with img-, making
outputs like img-n1-1.fits or img-n3-42.fits.

--prefix can also be used to store the links/copies in another directory rel-
ative to the directory this script is being run (it must already exist). For
example, --prefix=/path/to/processing/img- will put all the links/copies
in the /path/to/processing directory, and the files (in that directory) will all
start with img-.

--stdintimeout=INT

Number of micro-seconds to wait for standard input within this script. This
does not correspond to general inputs into the script, inputs to the script should
always be given as a file. However, within the script, pipes are often used to
pass the output of one program to another. The value given to this option will
be passed to those internal pipes. When running this script, if you confront an
error, saying “No input!”, you should be able to fix it by giving a larger number
to this option (the default value is 10000000 micro-seconds or 10 seconds).

10.2 Generate radial profile

The 1 dimensional radial profile of an object is an important parameter in many aspects
of astronomical image processing. For example, you want to study how the light of a
galaxy is distributed as a function of the radial distance from the center. In other cases,
the radial profile of a star can show the PSF (see Section 8.1.1.2 [Point spread function],
page 631). Gnuastro’s astscript-radial-profile script is created to obtain such radial
profiles for one object within an image. This script uses Section 8.1 [MakeProfiles], page 629,
to generate elliptical apertures with the values equal to the distance from the center of the
object and Section 7.4 [MakeCatalog], page 572, for measuring the values over the apertures.

10.2.1 Invoking astscript-radial-profile

This installed script will measure the radial profile of an object within an image. A general
overview of this script has been published in Infante-Sainz et al. 2024) (https://arxiv.
org/abs/2401.05303); please cite it if this script proves useful in your research. For more
on installed scripts please see (see Chapter 10 [Installed scripts], page 666). This script can
be used with the following general template:

$ astscript-radial-profile [OPTION...] FITS-file

Examples:

## Generate the radial profile with default options (assuming the

https://arxiv.org/abs/2401.05303
https://arxiv.org/abs/2401.05303
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## object is in the center of the image, and using the mean).

$ astscript-radial-profile image.fits

## Generate the radial profile centered at x=44 and y=37 (in pixels),

## up to a radial distance of 19 pixels, use the mean value.

$ astscript-radial-profile image.fits --center=44,37 --rmax=19

## Generate the radial profile centered at x=44 and y=37 (in pixels),

## up to a radial distance of 100 pixels, compute sigma clipped

## mean and standard deviation (sigclip-mean and sigclip-std) using

## 5 sigma and 0.1 tolerance (default is 3 sigma and 0.2 tolerance).

$ astscript-radial-profile image.fits --center=44,37 --rmax=100 \

--sigmaclip=5,0.1 \

--measure=sigclip-mean,sigclip-std

## Generate the radial profile centered at RA=20.53751695,

## DEC=0.9454292263, up to a radial distance of 88 pixels,

## axis ratio equal to 0.32, and position angle of 148 deg.

## Name the output table as `radial-profile.fits'

$ astscript-radial-profile image.fits --mode=wcs \

--center=20.53751695,0.9454292263 \

--rmax=88 --axis-ratio=0.32 \

--position-angle=148 -oradial-profile.fits

## Generate the radial profile centered at RA=40.062675270971,

## DEC=-8.1511992735126, up to a radial distance of 20 pixels,

## and calculate the SNR using the INPUT-NO-SKY and SKY-STD

## extensions of the NoiseChisel output file.

$ astscript-radial-profile image_detected.fits -hINPUT-NO-SKY \

--mode=wcs --measure=sn \

--center=40.062675270971,-8.1511992735126 \

--rmax=20 --stdhdu=SKY_STD

## Generate the radial profile centered at RA=40.062675270971,

## DEC=-8.1511992735126, up to a radial distance of 20 pixels,

## and compute the SNR with a fixed value for std, std=10.

$ astscript-radial-profile image.fits -h1 --mode=wcs --rmax=20 \

--center=40.062675270971,-8.1511992735126 \

--measure=sn --instd=10

## Generate the radial profile centered at X=1201, Y=1201 pixels, up

## to a radial distance of 20 pixels and compute the median and the

## SNR using the first extension of sky-std.fits as the dataset for std

## values.

$ astscript-radial-profile image.fits -h1 --mode=img --rmax=20 \

--center=1201,1201 --measure=median,sn \

--instd=sky-std.fits
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This installed script will read a FITS image and will use it as the basis for constructing
the radial profile. The output radial profile is a table (FITS or plain-text) containing the
radial distance from the center in the first row and the specified measurements in the other
columns (mean, median, sigclip-mean, sigclip-median, etc.).

To measure the radial profile, this script needs to generate temporary files. All these
temporary files will be created within the directory given to the --tmpdir option. When
--tmpdir is not called, a temporary directory (with a name based on the inputs) will be
created in the running directory. If the directory does not exist at run-time, this script will
create it. After the output is created, this script will delete the directory by default, unless
you call the --keeptmp option.

With the default options, the script will generate a circular radial profile using the mean
value and centered at the center of the image. In order to have more flexibility, several
options are available to configure for the desired radial profile. In this sense, you can change
the center position, the maximum radius, the axis ratio and the position angle (elliptical
apertures are considered), the operator for obtaining the profiles, and others (described
below).� �
Debug your profile: to debug your results, especially close to the center of your object,
you can see the radial distance associated to every pixel in your input. To do this, use
--keeptmp to keep the temporary files, and compare crop.fits (crop of your input image
centered on your desired coordinate) with apertures.fits (radial distance of each pixel).
 	� �
Finding properties of your elliptical target: you want to measure the radial profile of a
galaxy, but do not know its exact location, position angle or axis ratio. To obtain these
values, you can use Section 7.2 [NoiseChisel], page 541, to detect signal in the image,
feed it to Section 7.3 [Segment], page 561, to do basic segmentation, then use Section 7.4
[MakeCatalog], page 572, to measure the center (--x and --y in MakeCatalog), axis ratio
(--axis-ratio) and position angle (--position-angle).
 	� �
Masking other sources: The image of an astronomical object will usually have many other
sources with your main target. A crude solution is to use sigma-clipped measurements for
the profile. However, sigma-clipped measurements can easily be biased when the number
of sources at each radial distance increases at larger distances. Therefore a robust solution
is to mask all other detections within the image. You can use Section 7.2 [NoiseChisel],
page 541, and Section 7.3 [Segment], page 561, to detect and segment the sources, then
set all pixels that do not belong to your target to blank using Section 6.2 [Arithmetic],
page 399, (in particular, its where operator).
 	
-h STR

--hdu=STR

The HDU/extension of the input image to use.
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-o STR

--output=STR

Filename of measured radial profile. It can be either a FITS table, or plain-text
table (determined from your given file name suffix).

-c FLT[,FLT[,...]]

--center=FLT[,FLT[,...]]

The central position of the radial profile. This option is used for placing the
center of the profiles. This parameter is used in Section 6.1 [Crop], page 385,
to center and crop the region. The positions along each dimension must be
separated by a comma (,) and fractions are also acceptable. The number of
values given to this option must be the same as the dimensions of the input
dataset. The units of the coordinates are read based on the value to the --mode
option, see below.

-O STR

--mode=STR

Interpret the center position of the object (values given to --center) in image
or WCS coordinates. This option thus accepts only two values: img or wcs. By
default, it is --mode=img.

-R FLT

--rmax=FLT

Maximum radius for the radial profile (in pixels). By default, the radial profile
will be computed up to a radial distance equal to the maximum radius that fits
into the image (assuming circular shape).

-P INT

--precision=INT

The precision (number of digits after the decimal point) in resolving the radius.
The default value is --precision=0 (or -P0), and the value cannot be larger
than 6. A higher precision is primarily useful when the very central few pixels
are important for you. A larger precision will over-resolve larger radial regions,
causing scatter to significantly affect the measurements.

For example, in the command below, we will generate the radial profile of an
imaginary source (at RA,DEC of 1.23,4.567) and check the output without
setting a precision:

$ astscript-radial-profile image.fits --center=1.23,4.567 \

--mode=wcs --measure=mean,area --rmax=10 \

--output=radial.fits --quiet

$ asttable radial.fits --head=10 -ffixed -p4

0.0000 0.0139 1

1.0000 0.0048 8

2.0000 0.0023 16

3.0000 0.0015 20

4.0000 0.0011 24

5.0000 0.0008 40

6.0000 0.0006 36

7.0000 0.0005 48
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8.0000 0.0004 56

9.0000 0.0003 56

Let’s repeat the command above, but use a precision of 3 to resolve more finer
details of the radial profile, while only printing the top 10 rows of the profile:

$ astscript-radial-profile image.fits --center=1.23,4.567 \

--mode=wcs --measure=mean,area --rmax=10 \

--precision=3 --output=radial.fits --quiet

$ asttable radial.fits --head=10 -ffixed -p4

0.0000 0.0139 1

1.0000 0.0056 4

1.4140 0.0040 4

2.0000 0.0027 4

2.2360 0.0024 8

2.8280 0.0018 4

3.0000 0.0017 4

3.1620 0.0016 8

3.6050 0.0013 8

4.0000 0.0011 4

Do you see how many more radii have been added? Between 1.0 and 2.0, we
now have one extra radius, between 2.0 to 3.0, we have two new radii and so
on. If you go to larger and larger radii, you will notice that they get resolved
into many sub-components and the number of pixels used in each measurement
will not be significant (you can already see that in the comparison above).
This has two problems: 1. statistically, the scatter in larger radii (where the
signal-to-noise ratio is usually low will make it hard to interpret the profile. 2.
technically, the output table will have many more rows!� �
Use higher precision only for small radii: If you want to look at the whole
profile (or the outer parts!), don’t set the precision, the default mode is usually
more than enough! But when you are targeting the very central few pixels
(usually less than a pixel radius of 5), use a higher precision.
 	

-v INT

--oversample=INT

Oversample the input dataset to the fraction given to this option. Therefore
if you set --rmax=20 for example, and --oversample=5, your output will have
100 rows (without --oversample it will only have 20 rows). Unless the object is
heavily undersampled (the pixels are larger than the actual object), this method
provides a much more accurate result and there are sufficient number of pixels
to get the profile accurately.

Due to the discrete nature of pixels, if you use this option to oversample your
profile, set --precision=0. Otherwise, your profile will become step-like (with
several radii having a single value).
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-u INT

--undersample=INT

Undersample the input dataset by the number given to this option. This option
is for considering larger apertures than the original pixel size (aperture size is
equal to 1 pixel). For example, if a radial profile computed by default has 100
different radii (apertures of 1 pixel width), by considering --undersample=2

the radial profile will be computed over apertures of 2 pixels, so the final radial
profile will have 50 different radii. This option is good to measure over a larger
number of pixels to improve the measurement.

-Q FLT

--axis-ratio=FLT

The axis ratio of the apertures (minor axis divided by the major axis in a 2D
ellipse). By default (when this option is not given), the radial profile will be
circular (axis ratio of 1). This parameter is used as the option --qcol in the
generation of the apertures with astmkprof.

-p FLT

--position-angle=FLT

The position angle (in degrees) of the profiles relative to the first FITS axis
(horizontal when viewed in SAO DS9). By default, it is --position-angle=0,
which means that the semi-major axis of the profiles will be parallel to the first
FITS axis.

-a FLT,FLT

--azimuth=FLT,FLT

Limit the profile to the given azimuthal angle range (two numbers given to this
option, in degrees, from 0 to 360) from the major axis (defined by --position-

angle). The radial profile will therefore be created on a wedge-like shape, not
the full circle/ellipse. The pixel containing the center of the profile will always
be included in the profile (because it contains all azimuthal angles!).

If the first angle is smaller than the second (for example, --azimuth=10,80),
the region between, or inside, the two angles will be used. Otherwise (for
example, --azimuth=80,10), the region outside the two angles will be used.
The latter case can be useful when you want to ignore part of the 2D shape
(for example, due to a bright star that can be contaminating it).

You can visually see the shape of the region used by running this script with
--keeptmp and viewing the values.fits and apertures.fits files of the
temporary directory with a FITS image viewer like Section A.1 [SAO DS9],
page 959. You can use Section 10.4 [Viewing FITS file contents with DS9 or
TOPCAT], page 680, to open them together in one instance of DS9, with both
frames matched and locked (for easy comparison in case you want to zoom-in
or out). For example, see the commands below (based on your target object,
just change the image name, center, position angle, etc.):

## Generate the radial profile

$ astscript-radial-profile image.fits --center=1.234,6.789 \

--mode=wcs --rmax=50 --position-angle=20 \

--axis-ratio=0.8 --azimuth=95,150 --keeptmp \
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--tmpdir=radial-tmp

## Visually check the values and apertures used.

$ astscript-fits-view radial-tmp/values.fits \

radial-tmp/apertures.fits

-m STR

--measure=STR

The operator for measuring the values over each radial distance. The val-
ues given to this option will be directly passed to Section 7.4 [MakeCatalog],
page 572. As a consequence, all MakeCatalog measurements like the magni-
tude, magnitude error, median, mean, signal-to-noise ratio (S/N), std, surface
brightness, sigclip-mean, and sigclip-number can be used here. For a full list
of MakeCatalog’s measurements, please run astmkcatalog --help or see Sec-
tion 7.4.6 [MakeCatalog measurements], page 593. Multiple values can be given
to this option, each separated by a comma. This option can also be called mul-
tiple times.� �
Masking background/foreground objects: For crude rejection of outliers, you
can use sigma-clipping using MakeCatalog measurements like --sigclip-

mean or --sigclip-mean-sb (see Section 7.4.6 [MakeCatalog measurements],
page 593). To properly mask the effect of background/foreground objects
from your target object’s radial profile, you can use astscript-psf-stamp

script, see Section 10.8.3 [Invoking astscript-psf-stamp], page 705, and feed it
the output of Section 7.3 [Segment], page 561. This script will mask unwanted
objects from the image that is later used to measure the radial profile.
 	
Some measurements by MakeCatalog require a per-pixel sky standard deviation
(for example, magnitude error or S/N). Therefore when asking for such mea-
surements, use the --instd option (described below) to specify the per-pixel
sky standard deviation over each pixel. For other measurements like the mag-
nitude or surface brightness, MakeCatalog will need a Zero point, which you
can set with the --zeropoint option.

For example, by setting --measure=mean,sigclip-mean --measure=median,
the mean, sigma-clipped mean and median values will be computed. The output
radial profile will have 4 columns in this order: radial distance, mean, sigma-
clipped and median. By default (when this option is not given), the mean of
all pixels at each radial position will be computed.

-s FLT,FLT

--sigmaclip=FLT,FLT

Sigma clipping parameters: only relevant if sigma-clipping operators are re-
quested by --measure. For more on sigma-clipping, see Section 2.10.2 [Sigma
clipping], page 200. If given, the value to this option is directly passed to the
--sigmaclip option of Section 7.4 [MakeCatalog], page 572, see Section 7.4.7.1
[MakeCatalog inputs and basic settings], page 609. By default (when this op-
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tion is not given), the default values within MakeCatalog will be used. To see
the default value of this option in MakeCatalog, you can run this command:

$ astmkcatalog -P | grep " sigmaclip "

-z FLT

--zeropoint=FLT

The Zero point of the input dataset. This is necessary when you request mea-
surements like magnitude, or surface brightness.

-Z

--zeroisnotblank

Account for zero-valued pixels in the profile. By default, such pixels are not
considered (when this script crops the necessary region of the image before
generating the profile). The long format of this option is identical to a similarly
named option in Crop (see Section 6.1.4 [Invoking Crop], page 389). When this
option is called, it is passed directly to Crop, therefore the zero-valued pixels
are not considered as blank and used in the profile creation.

-i FLT/STR

--instd=FLT/STR

Sky standard deviation as a single number (FLT) or as the filename (STR)
containing the image with the std value for each pixel (the HDU within the file
should be given to the --stdhdu option mentioned below). This is only nec-
essary when the requested measurement (value given to --measure) by Make-
Catalog needs the Standard deviation (for example, the signal-to-noise ratio or
magnitude error). If your measurements do not require a standard deviation,
it is best to ignore this option (because it will slow down the script).

-d INT/STR

--stdhdu=INT/STR

HDU/extension of the sky standard deviation image specified with --instd.

-t STR

--tmpdir=STR

Several intermediate files are necessary to obtain the radial profile. All of these
temporal files are saved into a temporal directory. With this option, you can
directly specify this directory. By default (when this option is not called),
it will be built in the running directory and given an input-based name. If
the directory does not exist at run-time, this script will create it. Once the
radial profile has been obtained, this directory is removed. You can disable the
deletion of the temporary directory with the --keeptmp option.

-k

--keeptmp

Do not delete the temporary directory (see description of --tmpdir above).
This option is useful for debugging. For example, to check that the profiles
generated for obtaining the radial profile have the desired center, shape and
orientation.

--cite Give BibTeX and acknowledgment information for citing this script within your
paper. For more, see Operating mode options.
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10.3 SAO DS9 region files from table

Once your desired catalog (containing the positions of some objects) is created (for example,
with Section 7.4 [MakeCatalog], page 572, Section 7.5 [Match], page 618, or Section 5.3
[Table], page 340) it often happens that you want to see your selected objects on an image
for a feeling of the spatial properties of your objects. For example, you want to see their
positions relative to each other.

In this section we describe a simple installed script that is provided within Gnuastro
for converting your given columns to an SAO DS9 region file to help in this process. SAO
DS92 is one of the most common FITS image visualization tools in astronomy and is free
software.

10.3.1 Invoking astscript-ds9-region

This installed script will read two positional columns within an input table and generate an
SAO DS9 region file to visualize the position of the given objects over an image. For more
on installed scripts please see (see Chapter 10 [Installed scripts], page 666). This script can
be used with the following general template:

## Use the RA and DEC columns of 'table.fits' for the region file.

$ astscript-ds9-region table.fits --column=RA,DEC \

--output=ds9.reg

## Select objects with a magnitude between 18 to 20, and generate the

## region file directly (through a pipe), each region with radius of

## 0.5 arcseconds.

$ asttable table.fits --range=MAG,18:20 --column=RA,DEC \

| astscript-ds9-region --column=1,2 --radius=0.5

## With the first command, select objects with a magnitude of 25 to 26

## as red regions in 'bright.reg'. With the second command, select

## objects with a magnitude between 28 to 29 as a green region and

## show both.

$ asttable cat.fits --range=MAG_F160W,25:26 -cRA,DEC \

| astscript-ds9-region -c1,2 --color=red -obright.reg

$ asttable cat.fits --range=MAG_F160W,28:29 -cRA,DEC \

| astscript-ds9-region -c1,2 --color=green \

--command="ds9 image.fits -regions bright.reg"

The input can either be passed as a named file, or from standard input (a pipe). Only the
--column option is mandatory (to specify the input table columns): two columns from the
input table must be specified, either by name (recommended) or number. You can optionally
also specify the region’s radius, width and color of the regions with the --radius, --width
and --color options, otherwise default values will be used for these (described under each
option).

The created region file will be written into the file name given to --output. When
--output is not called, the default name of ds9.reg will be used (in the running direc-
tory). If the file exists before calling this script, it will be overwritten, unless you pass

2 http://ds9.si.edu

http://ds9.si.edu
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the --dontdelete option. Optionally you can also use the --command option to give the
full command that should be run to execute SAO DS9 (see example above and description
below). In this mode, the created region file will be deleted once DS9 is closed (unless you
pass the --dontdelete option). A full description of each option is given below.

-h INT/STR

--hdu INT/STR

The HDU of the input table when a named FITS file is given as input. The
HDU (or extension) can be either a name or number (counting from zero). For
more on this option, see Section 4.1.2.1 [Input/Output options], page 252.

-c STR,STR

--column=STR,STR

Identifiers of the two positional columns to use in the DS9 region file from the
table. They can either be in WCS (RA and Dec) or image (pixel) coordinates.
The mode can be specified with the --mode option, described below.

-n STR

--namecol=STR

The column containing the name (or label) of each region. The type of the
column (numeric or a character-based string) is irrelevant: you can use both
types of columns as a name or label for the region. This feature is useful when
you need to recognize each region with a certain ID or property (for example,
magnitude or redshift).

-m wcs|img

--mode=wcs|org

The coordinate system of the positional columns (can be either --mode=wcs and
--mode=img). In the WCS mode, the values within the columns are interpreted
to be RA and Dec. In the image mode, they are interpreted to be pixel X and
Y positions. This option also affects the interpretation of the value given to
--radius. When this option is not explicitly given, the columns are assumed
to be in WCS mode.

-C STR

--color=STR

The color to use for created regions. These will be directly interpreted by SAO
DS9 when it wants to open the region file so it must be recognizable by SAO
DS9. As of SAO DS9 8.2, the recognized color names are black, white, red,
green, blue, cyan, magenta and yellow. The default color (when this option
is not called) is green

-w INT

--width=INT

The line width of the regions. These will be directly interpreted by SAO DS9
when it wants to open the region file so it must be recognizable by SAO DS9.
The default value is 1.
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-r FLT

--radius=FLT

The radius of all the regions. In WCS mode, the radius is assumed to be in
arc-seconds, in image mode, it is in pixel units. If this option is not explicitly
given, in WCS mode the default radius is 1 arc-seconds and in image mode it
is 3 pixels.

--dontdelete

If the output file name exists, abort the program and do not over-write the
contents of the file. This option is thus good if you want to avoid accidentally
writing over an important file. Also, do not delete the created region file when
--command is given (by default, when --command is given, the created region
file will be deleted after SAO DS9 closes).

-o STR

--output=STR

Write the created SAO DS9 region file into the name given to this option. If not
explicitly given on the command-line, a default name of ds9.reg will be used.
If the file already exists, it will be over-written, you can avoid the deletion (or
over-writing) of an existing file with the --dontdelete.

--command="STR"

After creating the region file, run the string given to this option as a command-
line command. The SAO DS9 region command will be appended to the end of
the given command. Because the command will mostly likely contain white-
space characters it is recommended to put the given string in double quotations.

For example, let’s assume --command="ds9 image.fits -zscale". After mak-
ing the region file (assuming it is called ds9.reg), the following command will
be executed:

ds9 image.fits -zscale -regions ds9.reg

You can customize all aspects of SAO DS9 with its command-line options,
therefore the value of this option can be as long and complicated as you like.
For example, if you also want the image to fit into the window, this option
will be: --command="ds9 image.fits -zscale -zoom to fit". You can see
the SAO DS9 command-line descriptions by clicking on the “Help” menu and
selecting “Reference Manual”. In the opened window, click on “Command Line
Options”.

10.4 Viewing FITS file contents with DS9 or TOPCAT

The FITS definition allows for multiple extensions (or HDUs) inside one FITS file. Each
HDU can have a completely independent dataset inside of it. One HDU can be a table,
another can be an image and another can be another independent image. For example,
each image HDU can be one CCD of a multi-CCD camera, or in processed images one can
be the deep science image and the next can be its weight map, alternatively, one HDU can
be an image, and another can be the catalog/table of objects within it.

The most common software for viewing FITS images is SAO DS9 (see Section A.1 [SAO
DS9], page 959) and for plotting tables, TOPCAT is the most commonly used tool in
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astronomy (see Section A.2 [TOPCAT], page 960). After installing them (as described in
the respective appendix linked in the previous sentence), you can open any number of FITS
images or tables with DS9 or TOPCAT with the commands below:

$ ds9 image-a.fits image-b.fits

$ topcat table-a.fits table-b.fits

But usually the default mode is not enough. For example, in DS9, the window can be
too small (not covering the height of your monitor), you probably want to match and lock
multiple images, you have a favorite color map that you prefer to use, or you may want to
open a multi-extension FITS file as a cube.

Using the simple commands above, you need to manually do all these in the DS9 window
once it opens and this can take several tens of seconds (which is enough to distract you from
what you wanted to inspect). For example, if you have a multi-extension file containing
2D images, one way to load and switch between each 2D extension is to take the following
steps in the SAO DS9 window: “File”→“Open Other”→“Open Multi Ext Cube” and then
choose the Multi extension FITS file in your computer’s file structure.

The method above is a little tedious to do every time you want view a multi-extension
FITS file. A different series of steps is also necessary if you the extensions are 3D data
cubes (since they are already cubes, and should be opened as multi-frame). Furthermore,
if you have multiple images and want to “match” and “lock” them (so when you zoom-in
to one, all get zoomed-in) you will need several other sequence of menus and clicks.

Fortunately SAO DS9 also provides command-line options that you can use to specify
a particular behavior before/after opening a file. One of those options is -mecube which
opens a FITS image as a multi-extension data cube (treating each 2D extension as a slice
in a 3D cube). This allows you to flip through the extensions easily while keeping all the
settings similar. Just to avoid confusion, note that SAO DS9 does not follow the GNU style
of separating long and short options as explained in Section 4.1.1 [Arguments and options],
page 248. In the GNU style, this ‘long’ (multi-character) option should have been called
like --mecube, but SAO DS9 follows its own conventions.

For example, try running $ds9 -mecube foo.fits to see the effect (for example, on the
output of Section 7.2 [NoiseChisel], page 541). If the file has multiple extensions, a small
window will also be opened along with the main DS9 window. This small window allows
you to slide through the image extensions of foo.fits. If foo.fits only consists of one
extension, then SAO DS9 will open as usual.

On the other hand, for visualizing the contents of tables (that are also commonly stored
in the FITS format), you need to call a different software (most commonly, people use
TOPCAT, see Section A.2 [TOPCAT], page 960). And to make things more inconvenient,
by default both of these are only installed as command-line software, so while you are
navigating in your GUI, you need to open a terminal there, and run these commands. All
of the issues above are the founding purpose of the installed script that is introduced in
Section 10.4.1 [Invoking astscript-fits-view], page 681.

10.4.1 Invoking astscript-fits-view

Given any number of FITS files, this script will either open SAO DS9 (for images or cubes)
or TOPCAT (for tables) to visualize their contents in a graphic user interface (GUI). For
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more on installed scripts please see (see Chapter 10 [Installed scripts], page 666). This
script can be used with the following general template:

$ astscript-fits-view [OPTION] input.fits [input-b.fits ...]

One line examples

## Call TOPCAT to load all the input FITS tables.

$ astscript-fits-view table-*.fits

## Call SAO DS9 to open all the input FITS images.

$ astscript-fits-view image-*.fits

This script will use Gnuastro’s Section 5.1 [Fits], page 295, program to see if the file is
a table or image. If the first input file contains an image HDU, then the sequence of files
will be given to Section A.1 [SAO DS9], page 959. Otherwise, the input(s) will be given to
Section A.2 [TOPCAT], page 960, to visualize (plot) as tables. When opening DS9 it will
also inspect the dimensionality of the first image HDU of the first input and open it slightly
differently when the input is 2D or 3D:

2D DS9’s -mecube will be used to open all the 2D extensions of each input file
as a “Multi-extension cube”. A “Cube” window will also be opened with DS9
that can be used to slide/flip through each extensions. When multiple files are
given, each file will be in one “frame”.

3D DS9’s -multiframe option will be used to open all the extensions in a separate
“frame” (since each input is already a 3D cube, the -mecube option can be
confusing). To flip through the extensions (while keeping the slice fixed), click
the “frame” button on the top row of buttons, then use the last four buttons of
the bottom row ("first", "previous", "next" and "last") to change between the
extensions. If multiple files are given, there will be a separate frame for each
HDU of each input (each HDU’s name or number will be put in square brackets
after its name).� �

Double-clicking on FITS file to open DS9 or TOPCAT: for those graphic user interface
(GUI) that follow the freedesktop.org standards (including GNOME, KDS Plasma, or
Xfce) Gnuastro installs a fits-view.desktop file to instruct your GUI to call this script
for opening FITS files when you click on them. To activate this feature take the following
steps:

1. Run the following command, while replacing PREFIX. If you do not know what to put
in PREFIX, run which astfits on the command-line, and extract PREFIX from the
output (the string before /bin/astfits). For more, see Section 3.3.1.2 [Installation
directory], page 233.

ln -sf PREFIX/share/gnuastro/astscript-fits-view.desktop \

~/.local/share/applications/

2. Right-click on a FITS file, and choose these items in order (based on GNOME,
may be different in KDE or Xfce): “Open with other application”→“View all
applications”→“astscript-fits-view”.
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This script takes the following options

-h STR

--hdu=STR

The HDU(s), or extension(s), of the input dataset(s) to display. The value can
be the HDU name (a string) or number (the first HDU is counted from 0). If
there are multiple inputs, this option needs to be called multiple times: the first
input will be opened with the first call to this option, the second input with
the second call and etc. If you want to open the same HDU of all your inputs,
you don’t need to repeat this option, use --globalhdu instead.

-g STR

--globalhdu=STR

The HDU/extension name or number to use for all inputs. Note that HDU
counting starts from 0. If --hdu called, it takes precedence over this.

-p STR

--prefix=STR

Directory to search for SAO DS9 or TOPCAT’s executables (assumed to be
ds9 and topcat). If not called they will be assumed to be present in your PATH
(see Section 3.3.1.2 [Installation directory], page 233). If you do not have them
already installed, their installation directories are available in Section A.1 [SAO
DS9], page 959, and Section A.2 [TOPCAT], page 960, (they can be installed in
non-system-wide locations that do not require administrator/root permissions).

-s STR

--ds9scale=STR

The string to give to DS9’s -scale option. You can use this option to use
a different scaling. The Fits-view script will place -scale before your given
string when calling DS9. If you do not call this option, the default behavior
is to cal DS9 with: -scale mode zscale or --ds9scale="mode zscale" when
using this script.

The Fits-view script has the following aliases to simplify the calling of this
option (and avoid the double-quotations and mode in the example above):

zscale or --ds9scale=zscale equivalent to --ds9scale="mode zscale".

minmax or --ds9scale=minmax equivalent to --ds9scale="mode minmax".

-c=FLT,FLT

--ds9center=FLT,FLT

The central coordinate for DS9’s view of the FITS image after it opens. This
is equivalent to the “Pan” button in DS9. The nature of the coordinates will
be determined by the --ds9mode option that is described below.

-O img/wcs

--ds9mode=img/wcs

The coordinate system (or mode) to interpret the values given to --ds9center.
This can either be img (or DS9’s “Image” coordinates) or wcs (or DS9’s “wcs
fk5” coordinates).
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-g INTxINT

--ds9geometry=INTxINT

The initial DS9 window geometry (value to DS9’s -geometry option).

-m

--ds9colorbarmulti

Do not show a single color bar for all the loaded images. By default this script
will call DS9 in a way that a single color bar is shown for any number of images.
A single color bar is preferred for two reasons: 1) when there are a lot of images,
they consume a large fraction of the display area. 2) the color-bars are locked
by this script, so there is no difference between! With this option, you can have
separate color bars under each image.

10.5 Zero point estimation

Through the “zero point”, we are able to give physical units to the pixel values of an image
(often in units of “counts” or ADUs) and thus compare them with other images (as well as
measurements that are done on them). The zero point is therefore an important calibration
of pixel values (as astromerty is a calibration of the pixel positions). The fundamental
concepts behind the zero point are described in Section 7.4.2 [Brightness, Flux, Magnitude
and Surface brightness], page 574. We will therefore not go deeper into the basics here and
stick to the practical aspects of it.

The purpose of Gnuastro’s astscript-zeropoint script is to obtain the zero point of an
image by considering another image (where the zero point is already known), or a catalog.
In the The operation involves multiple lower-level programs in a standard series of steps.
For example, when using another image, the script will take the following steps:

1. Download the Gaia catalog that overlaps with the input image using Gnuastro’s Query
program (see Section 5.4 [Query], page 375). This is done to determine the stars within
the image3.

2. Perform aperture photometry4 with Section 8.1 [MakeProfiles], page 629, Section 7.4
[MakeCatalog], page 572. We will assume a zero point of 0 for the input image. If the
reference is an image, then we should perform aperture photometry also in that image.

3. Match the two catalogs5 with Section 7.5 [Match], page 618.

4. The difference between the input and reference magnitudes should be independent of
the magnitude of the stars. This does not hold when the stars are saturated in one/both
the images (giving us a bright-limit for the magnitude range to use) or for stars fainter
than a certain magnitude, where the signal-to-noise ratio drops significantly in one/both
images (giving us a faint limit for the magnitude range to use).

5. Since a zero point of 0 was used for the input image, the magnitude difference above
(in the reliable magnitude range) is the zero point of the input image.

In the “Tutorials” chapter of this Gnuastro book, there are two tutorials dedicated to
the usage of this script. The first uses an image as a reference (Section 2.7.1 [Zero point

3 Stars have an almost identical shape in the image (as opposed to galaxies for example), using confirmed
stars will produce a more reliable result.

4 For a complete tutorial on aperture photometry, see Section 2.1.17 [Aperture photometry], page 62.
5 For a tutorial on matching catalogs, see Section 2.1.18 [Matching catalogs], page 63).
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tutorial with reference image], page 166) and the second uses a catalog (Section 2.7.2 [Zero
point tutorial with reference catalog], page 175). For the full set of options an a detailed
description of each, see Section 10.5.1 [Invoking astscript-zeropoint], page 685.

10.5.1 Invoking astscript-zeropoint

This installed script will calculate the zero point of an input image to calibrate it. A general
overview of this script has been published in Eskandarlou et al. 2023 (https://arxiv.org/
abs/2312.04263); please cite it if this script proves useful in your research. The reference
can be an image or catalog (which have been previously calibrated) The executable name
is astscript-zeropoint, with the following general template:

## Using a reference image in four apertures.

$ astscript-zeropoint image.fits --hdu=1 \

--refimgs=ref-img1.fits,ref-img2.fits \

--refimgshdu=1,1 \

--refimgszp=22.5,22.5 \

--aperarcsec=1.5,2,2.5,3 \

--magnituderange=16,18 \

--output=output.fits

## Using a reference catalog

$ astscript-zeropoint image.fits --hdu=1 \

--refcat=cat.fits \

--refcathdu=1 \

--aperarcsec=1.5,2,2.5,3 \

--magnituderange=16,18 \

--output=output.fits

To learn more about the core concepts behind the zero point, please see Section 7.4.2
[Brightness, Flux, Magnitude and Surface brightness], page 574. For a practical review of
how to optimally use this script and ways to interpret its results, we have two tutorials:
Section 2.7.1 [Zero point tutorial with reference image], page 166, and Section 2.7.2 [Zero
point tutorial with reference catalog], page 175.

To find the zero point of your input image, this script can use a reference image (that
already has a zero point) or a reference catalog (that just has magnitudes). In any case, it is
mandatory to identify at least one aperture for aperture photometry over the image (using
--aperarcsec). If reference image(s) is(are) given, it is mandatory to specify its(their)
zero point(s) using the --refimgszp option (it can take a separate value for each reference
image). When a catalog is given, it should already contain the magnitudes of the object
(you can specify which column to use).

This script will not estimate the zero point based on all the objects in the reference
image or catalog. It will first query Gaia database and only select objects have a significant
parallax (because Gaia’s algorithms sometimes confuse galaxies and stars based on pure
morphology). You can bypass this step (which needs internet connection and can only be
used on real data, not simulations) using the --starcat option described in Section 10.5.1.2
[astscript-zeropoint options], page 686. This script will then match the catalog of stars
(either through Gaia or --starcat) with the reference catalog and only use them. If the
reference is an image, it will simply use the stars catalog to do aperture photometry.

https://arxiv.org/abs/2312.04263
https://arxiv.org/abs/2312.04263
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By default, this script will estimate the number of available threads and run all inde-
pendent steps in parallel on those threads. To control this behavior (and allow it to only
run on a certain number of threads), you can use the --numthreads option.

During its operation, this script will build a temporary file in the running directory that
will be deleted once it is finished. The --tmpdir option can be used to manually set the
temporary directory’s location at any location in your file system. The --keeptmp option
can be used to stop the deletion of that directory (useful for when you want to debug the
script or better understand what it does).

10.5.1.1 astscript-zeropoint output

The output will be a multi-extension FITS table. The first table in the output gives the
zero point and its standard deviation for all the requested apertures. This gives you the
ability to inspect them and select the best. The other table(s) give the exact measurements
for each star that was used (if you use --keepzpap, it will be for all your apertures, if
not, only for the aperture with the smallest standard deviation). For a full tutorial on how
to interpret the output of this script, see Section 2.7.1 [Zero point tutorial with reference
image], page 166,

If you just want the estimated zero point with the least standard deviation, this script
will write it as a FITS keyword in the first table of the output.

ZPAPER Read as “Zero Point APERture”. This shows the aperture radius (in arcsec-
onds) that had the smallest standard deviation in the estimated zero points.

ZPVALUE The zero point estimation for the aperture of ZPAPER.

ZPSTD The standard deviation of the zero point (for all the stars used, within the
aperture of ZPAPER).

ZPMAGMIN The minimum (brightest) magnitude used to estimate the zero point.

ZPMAGMAX The maximum (faintest) magnitude used to estimate the zero point.

A simple way to see these keywords, or read the value of one is shown below. For more
on viewing and manipulating FITS keywords, see Section 5.1.1.2 [Keyword inspection and
manipulation], page 302.

## See all the keywords written by this script (that start with 'ZP')

$ astfits out.fits -h1 | grep ^ZP

## If you just want the zero point

$ astfits jplus-zeropoint.fits -h1 --keyvalue=ZPVALUE

10.5.1.2 astscript-zeropoint options

All the operating phases of the this script can be customized through the options below.

-h STR/INT

--hdu=STR/INT

The HDU/extension of the input image to use.

-o STR

--output=STR

The name of the output file produced by this script. See Section 10.5.1.1
[astscript-zeropoint output], page 686, for the format of its contents.
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-N INT

--numthreads=INT

The number of threads to use. By default this script will attempt to find the
number of available threads at run-time and will use them.

-a FLT,[FLT]

--aperarcsec=FLT,[FLT]

The radius/radii (in arc seconds) of aperture(s) used in aperture photometry of
the input image. This option can take many values (to check different apertures
and find the best for a more accurate zero point estimation). If a reference image
is used, the same aperture radii will be used for aperture photometry there.

-M FLT,FLT

--magnituderange=FLT,FLT

Range of the magnitude for finding the best aperture and zero point. Very
bright stars get saturated and fainter stars are affected too much by noise.
Therefore, it is important to limit the range of magnitudes used in estimating
the zero point. A full tutorial is given in Section 2.7.1 [Zero point tutorial with
reference image], page 166.

-S STR

--starcat=STR

Name of catalog containing the RA and Dec of positions for aperture photome-
try in the input image and reference (catalog or image). If not given, the Gaia
database will be queried for all stars that overlap with the input image (see
Section 5.4.1 [Available databases], page 376).

This option is therefore useful in the following scenarios (among others):

• No internet connection.

• Many images having a major overlap in the sky, making it inefficient to
query Gaia for every image separately: you can query the larger area (con-
taining all the images) once, and directly give the downloaded table to all
the separate runs of this script. Especially if the field is wide, the download
time can be the slowest part of this script.

• In simulations (where you have a pre-defined list of stars).

Through the --starcathdu, --starcatra and --starcatdec options described
below, you can specify the HDU, RA column and Dec Column within this file.

The reference image or catalog probably have many objects that are not stars.
But it is only stars that have the same shape (the PSF) across the image6.
Therefore

--starcathdu=STR/INT

The HDU name or number in file given to --starcat (described above) that
contains the table of RA and Dec positions for aperture photometry. If not
given, it is assumed that the table is in HDU number 1 (counting from 0).

6 The PSF itself can vary across the field of view; but that is second-order for this analysis.
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--starcatra=STR/INT

The column name or number (in the table given to --starcat) that contains
the Right Ascension.

--starcatdec=STR/INT

The column name or number (in the table given to --starcat) that contains
the Declination.

-c STR

--refcat=STR

Reference catalog used to estimate the zero point of the input image. This op-
tion is mutually exclusive with (cannot be given at the same time as) --refimgs.
This catalog should have RA, Dec and Magnitude of the stars (that match with
Gaia or --starcat).

-C STR/INT

--refcathdu=STR/INT

The HDU/extension of the reference catalog will be calculated.

-r STR

--refcatra=STR

Right Ascension column name of the reference catalog.

-d STR

--refcatdec=STR

Declination column name of the reference catalog.

-m STR

--refcatmag=STR

Magnitude column name of the reference catalog.

-s FLT

--matchradius=FLT

Matching radius of stars (in arc seconds) and reference catalog in arc-seconds.
By default it is 0.2 arc seconds.

-R STR,[STR]

--refimgs=STR,[STR]

Reference image(s) for estimating the zero point. This option can take any
number of separate file names, separated by a comma. The HDUs of each
reference image should be given to the refimgshdu option. In case the images
are in separate HDUs of the same file, you need to repeat the file name here.
This option is mutually exclusive with (cannot be given at the same time as)
--refimgs.

-H STR/INT

--refimgshdu=STR/INT

HDU/Extension name of number of the reference files. The number of values
given to this option should be the same as the number of reference image(s).



Chapter 10: Installed scripts 689

-z FLT,[FLT]

--refimgszp=FLT,[FLT]

Zero point of the reference image(s). The number of values given to this should
be the same as the number of names given to --refimgs.

-K

--keepzpap

Keep the table of separate zero points found for each star for all apertures. By
default, this table is only present for the aperture that had the least standard
deviation in the estimated zero point.

-t

--tmpdir Directory to keep temporary files during the execution of the script. If the
directory does not exist at run$-$time, this script will create it. By default,
upon completion of the script, this directory will be deleted. However, if you
would like to keep the intermediate files, you can use the --keeptmp option.

-k

--keeptmp

Its recommended to not remove the temporary directory (see description of
--keeptmp). This option is useful for debugging and checking the outputs of
internal steps.

--mksrc=STR

Use a non-standard Makefile for the Makefile to call. This option is primar-
ily useful during the development of this script and its Makefile, not for nor-
mal/regular user. So if you are not developing this script, you can safely ignore
this option. When this option is given, the default installed Makefile will not
be used: the file given to this option will be read by make (within the script)
instead.

--cite Give BibTeX and acknowledgment information for citing this script within your
paper. For more, see Operating mode options.

10.6 Pointing pattern simulation

Astronomical images are often composed of many single exposures. When the science topic
does not depend on the time of observation (for example galaxy evolution), after completing
the observations, we stack those single exposures into one “deep” image. Designing the
strategy to take those single exposures is therefore a very important aspect of planning
your astronomical observation. There are many reasons for taking many short exposures
instead of one long exposure:

• Modern astronomical telescopes have very high precision (with pixels that are often
much smaller than an arc-second or 1/3600 degrees. However, the Earth is orbiting the
Sun at a very high speed of roughly 15 degrees every hour! Keeping the (often very
large!) telescopes in track with this fast moving sky is not easy; such that most cannot
continue accurate tracking more than 10 minutes.

• For ground-based observations, the turbulence of the atmosphere changes very fast (on
the scale of minutes!). So if you plan to observe at 10 minutes and at the start of your
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observations the seeing is good, it may happen that on the 8th minute, it becomes bad.
This will affect the quality of your final exposure!

• When an exposure is taken, the instrument/environment imprint a lot of artifacts on it.
One common example that we also see in normal cameras is vignetting (https://en.
wikipedia.org/wiki/Vignetting); where the center receives a larger fraction of the
incoming light than the periphery). In order to characterize and remove such artifacts
(which depend on many factors at the precision that we need in astronomy!), we need
to take many exposures of our science target.

• By taking many exposures we can build a stack that has a higher resolution; this is
often done in under-sampled data, like those in the Hubble Space Telescope (HST) or
James Webb Space Telescope (JWST).

• The scientific target can be larger than the field of view of your telescope and camera.

In the jargon of observational astronomers, each exposure is also known as a “dither”
(literally/generally meaning “trembling” or “vibration”). This name was chosen because
two exposures are not usually taken on exactly the same position of the sky (known as
“pointing”). In order to improve all the item above, we often move the center of the field
of view from one exposure to the next. In most cases this movement is small compared to
the field of view, so most of the central part of the final stack has a fixed depth, but the
edges are shallower (conveying a sense of vibration). When the spacing between pointings
is large, they are known as an “offset”. A “pointing” is used to refer to either a dither or
an offset.

For example see Figures 3 and 4 of Illingworth et al. 2013 (https://arxiv.org/pdf/
1305.1931.pdf) which show the exposures that went into the XDF survey. The pointing
pattern can also be large compared to the field of view, for example see Figure 1 of Trujillo
et al. 2021 (https://arxiv.org/pdf/2109.07478.pdf), which show the pointing strategy
for the LIGHTS survey. These types of images (where each pixel contains the number of
exposures, or time, that were used in it) are known as exposure maps.

The pointing pattern therefore is strongly defined by the science case (high-level purpose
of the observation) and your telescope’s field of view. For example in the XDF survey is
focused on very high redshift (most distant!) galaxies. These are very small objects and
within that small footprint (of just 1 arcmin) we have thousands of them. However, the
LIGHTS survey is focused on the halos of large nearby galaxies (that can be more than 10
arcminutes wide!).

In Section 10.6.1 [Invoking astscript-pointing-simulate], page 690, of Gnuastro’s Chap-
ter 10 [Installed scripts], page 666, is described in detail. This script is designed to simplify
the process of selecting the best pointing pattern for your observation strategy. For a
practical tutorial on using this script, see Section 2.8 [Pointing pattern design], page 176.

10.6.1 Invoking astscript-pointing-simulate

This installed script will simulate a final stacked image from a certain pointing pattern
(given as a table). A general overview of this script has been published in Akhlaghi
(2023) (https://ui.adsabs.harvard.edu/abs/2023RNAAS...7..211A); please cite it if
this script proves useful in your research. The executable name is astscript-pointing-
simulate, with the following general template:

$ astscript-pointing-simulate [OPTION...] pointings.fits

https://en.wikipedia.org/wiki/Vignetting
https://en.wikipedia.org/wiki/Vignetting
https://arxiv.org/pdf/1305.1931.pdf
https://arxiv.org/pdf/1305.1931.pdf
https://arxiv.org/pdf/2109.07478.pdf
https://ui.adsabs.harvard.edu/abs/2023RNAAS...7..211A
https://ui.adsabs.harvard.edu/abs/2023RNAAS...7..211A
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Examples (for a tutorial, see Section 2.8 [Pointing pattern design], page 176):

$ astscript-pointing-simulate pointing.fits --output=stack.fits \

--img=image.fits --center=10,10 --width=1,1

The default output of this script is a stacked image that results from placing the given
image (given to --img) in the pointings of a pointing pattern. The Right Ascension (RA)
and Declination (Dec) of each pointing is given in the main input catalog (pointing.fits
in the example above). The center and width of the final stack (both in degrees by default)
should be specified using the --width option. Therefore, in order to successfully run, this
script at least needs the following four inputs:

Pointing positions
A table containing the RA and Dec of each pointing (the only input argument).
The actual column names that contain them can be set with the --racol and
--deccol options (see below).

An image This is used for its distortion and rotation, its pixel values and position on the
sky will be ignored. The file containing the image should be given to the --img
option.

Stack’s central coordinate
The central RA and Dec of the finally produced stack (given to the --center

option).

Stack’s width
The width (in degrees) of the final stack (given to the --width option).

This script will ignore the pixel values of the reference image (given to --img) and
the Reference coordinates (values to CRVAL1 and CRVAL2 in its WCS keywords). For each
pointing pointing, this script will put the given RA and Dec into the CRVAL1 and CRVAL2

keywords of a copy of the input (not changing the input in anyway), and reset that input’s
pixel values to 1. The script will then warp the modified copy into the final pixel grid
(correcting any rotation and distortions that are used from the original input). This process
is done for all the pointing points in parallel. Finally, all the exposures in the pointing list
are stacked together to produce an exposure map (showing how many exposures go into
each pixel of the final stack.

Except for the table of pointing positions, the rest of the inputs and settings are config-
ured through Section 4.1.1.2 [Options], page 249, just note the restrictions in Chapter 10
[Installed scripts], page 666.

-o STR

--output=STR

Name of the output. The output is an image of the requested size (--width)
and position (--center) in the sky, but each pixel will contain the number
of exposures that go into it after the pointing has been done. See description
above for more.

-h STR/INT

--hdu=STR/INT

The name or counter (counting from zero; from the FITS standard) of HDU
containing the table of pointing pointing positions (the file name of this table
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is the main input argument to this script). For more, see the description of this
option in Section 4.1.2.1 [Input/Output options], page 252.

-i STR

--img=STR

The references image. The pixel values and central location in this image will be
ignored by the script. The only relevant information within this script are the
WCS properties (except for CRVAL1 and CRVAL2, which connect it to a certain
position on the sky) and image size. See the description above for more.

-H STR/INT

--imghdu=STR/INT

The name or counter (counting from zero; from the FITS standard) of the HDU
containing the reference image (file name should be given to the --img option).
If not given, a default value of 1 is assumed; so this is not a mandatory option.

-r STR/INT

--racol=STR/INT

The name or counter (counting from 1; from the FITS standard) of the column
containing the Right Ascension (RA) of each pointing to be used in the pointing
pattern. The file containing the table is given to this script as its only argument.

-d STR/INT

--deccol=STR/INT

The name or counter (counting from 1; from the FITS standard) of the column
containing the Declination (Dec) of each pointing to be used in the pointing
pattern. The file containing the table is given to this script as its only argument.

-C FLT,FLT

--center=FLT,FLT

The central RA and Declination of the final stack in degrees.

-w FLT,FLT

--width=FLT,FLT

The width of the final stack in degrees. If --widthinpix is given, the two values
given to this option will be interpreted as degrees.

--widthinpix

Interpret the values given to --width as number of pixels along each dimension),
and not as degrees.

--ctype=STR,STR

The projection of the output stack (CTYPEi keyword in the FITS WCS stan-
dard). For more, see the description of the same option in Section 6.4.4.1 [Align
pixels with WCS considering distortions], page 499.

--hook-warp-before='STR'

Command to run before warping each exposure into the output pixel grid.
By default, the exposure is immediately warped to the final pixel grid, but in
some scenarios it is necessary to do some operations on the exposure before
warping (for example account for vignetting; see Section 2.8.6 [Accounting for
non-exposed pixels], page 189). The warping of each exposure is done in parallel
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by default; therefore there are pre-defined variables that you should use for the
input and output file names of your command:

$EXPOSURE

Input: name of file with the same size as the reference image with all
pixels having a fixed value of 1. The WCS has also been corrected
based on the pointing pattern.

$TOWARP Output: name of the expected output of your hook. If it is not
created by your script, the script will complain and abort. This file
will be given to Warp to be warped into the output pixel grid.

For an example of using hooks with an extended discussion, see Section 2.8
[Pointing pattern design], page 176, and Section 2.8.6 [Accounting for non-
exposed pixels], page 189.

To develop your command, you can use --hook-warp-before='...; echo

GOOD; exit 1' (where ... can be replaced by any command) and run the
script on a single thread (with --numthreads=1) to produce a single file and
simplify the checking that your desired operation works as expected. All the
files will be within the temporary directory (see --tmpdir).

--hook-warp-after='STR'

Command to run after the warp of each exposure into the output pixel grid,
but before the stacking of all exposures. For more on hooks, see the description
of --hook-warp-before, Section 2.8 [Pointing pattern design], page 176, and
Section 2.8.6 [Accounting for non-exposed pixels], page 189.

$WARPED Input: name of file containing the warped exposure in the output
pixel grid.

$TOWARP Output: name of the expected output of your hook. If it is not
created by your script, the script will complain and abort. This file
will be stacked from the same file for all exposures into the final
output.

--stack-operator="STR"

The operator to use for stacking the warped individual exposures into the final
output of this script. For the full list, see Section 6.2.4.7 [Stacking operators],
page 421. By default it is the sum operator (to produce an output exposure
map). For an example usage, see the tutorial in Section 2.8 [Pointing pattern
design], page 176.

--mksrc=STR

Use a non-standard Makefile for the Makefile to call. This option is primar-
ily useful during the development of this script and its Makefile, not for nor-
mal/regular usage. So if you are not developing this script, you can safely ignore
this option. When this option is given, the default installed Makefile will not
be used: the file given to this option will be read by make (within the script)
instead.
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-t STR

--tmpdir=STR

Name of directory containing temporary files. If not given, a temporary direc-
tory will be created in the running directory with a long name using some of
the input options. By default, this temporary directory will be deleted after
the output is created. You can disable the deletion of the temporary directory
(useful for debugging!) with the --keeptmp option.

Using this option has multiple benefits in larger pipelines:

• You can avoid conflicts in case the used inputs in the default name are the
same.

• You can put this directory somewhere else in the running file system to
avoid mixing output files with your source, or to use other storage hardware
that are mounted on the running file system.

-k

--keeptmp

Keep the temporary directory (and do not delete it).

-?

--help Print a list of all the options, along with a short description and context for the
program. For more, see Operating mode options.

-N INT

--numthreads=INT

The number of threads to use for parallel operations (warping the input into
the different pointing points). If not given (by default), the script will try to
find the number of available threads on the running system and use that. For
more, see Operating mode options.

--cite Give BibTeX and acknowledgment information for citing this script within your
paper. For more, see Operating mode options.

-q

--quiet Do not print the series of commands or their outputs in the terminal. For more,
see Operating mode options.

-V

--version

Print the version of the running Gnuastro along with a copyright notice and
list of authors that contributed to this script. For more, see Operating mode

options.

10.7 Color images with gray faint regions

Typical astronomical images have a very wide range of pixel values and generally, it is diffi-
cult to show the entire dynamical range in a color image. For example, by using Section 5.2
[ConvertType], page 314, it is possible to obtain a color image with three FITS images as
each of the Red-Green-Blue (or RGB) color channels. However, depending on the pixel
distribution, it could be very difficult to see the different regions together (faint and bright
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objects at the same time). In something like DS9, you end up changing the color map
parameters to see the regions you are most interested in.

The reason is that images usually have a lot of faint pixels (near to the sky background
or noise values), and few bright pixels (corresponding to the center of stars, galaxies, etc.)
that can be millions of times brighter! As a consequence, by considering the images without
any modification, it is extremely hard to visualize the entire range of values in a color image.
This is because standard color formats like JPEG, TIFF or PDF are defined as 8-bit integer
precision, while astronomical data are usually 32-bit floating point! To solve this issue, it
is possible to perform some transformations of the images and then obtain the color image.

This is actually what the current script does: it makes some non-linear transformations
and then uses Gnuastro’s ConvertType to generate the color image. There are several pa-
rameters and options in order to change the final output that are described in Section 10.7.1
[Invoking astscript-color-faint-gray], page 695. A full tutorial describing this script with ac-
tual data is available in Section 2.6 [Color images with full dynamic range], page 151. A
general overview of this script is published in Infante-Sainz et al. 2024 (https://arxiv.
org/abs/2401.03814); please cite it if this script proves useful in your research.

10.7.1 Invoking astscript-color-faint-gray

This installed script will consider several images to combine them into a single color image
to visualize the full dynamic range. The executable name is astscript-color-faint-gray,
with the following general template:

$ astscript-color-faint-gray [OPTION...] r.fits g.fits b.fits

Examples (for a tutorial, see Section 2.6 [Color images with full dynamic range], page 151):

## Generate a color image from three images with default options.

$ astscript-color-faint-gray r.fits g.fits b.fits -g1 --output color.pdf

## Generate a color image, consider the minimum value to be zero.

$ astscript-color-faint-gray r.fits g.fits b.fits -g1 \

--minimum=0.0 --output=color.jpg

## Generate a color image considering different zero points, minimum

## values, weights, and also increasing the contrast.

$ astscript-color-faint-gray r.fits g.fits b.fits -g1 \

-z=22.4 -z=25.5 -z=24.6 \

-m=-0.1 -m=0.0 -m=0.1 \

-w=1 -w=2 -w=3 \

--contrast=3 \

--output=color.tiff

This script takes three inputs images to generate a RGB color image as the output. The
order of the images matters, reddest (longest wavelength) filter (R), green (an intermediate
wavelength) filter (G) and bluest (shortest wavelength). In astronomy, these can be any
filter (for example from infra-red, radio, optical or x-ray); the “RGB” designation is from
the general definition of colors (see https://en.wikipedia.org/wiki/RGB_color_spaces)
These images are internally manipulated by a series of non-linear transformations and nor-
malized to homogenize and finally combine them into a color image. In general, for typical

https://arxiv.org/abs/2401.03814
https://arxiv.org/abs/2401.03814
https://en.wikipedia.org/wiki/RGB_color_spaces
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astronomical images, the default output is an image with bright pixels in color and noise
pixels in black.

The option --minimum sets the minimum value to be shown and it is a key parameter,
it uses to be a value close to the sky background level. The current non-linear transfor-
mation is from Lupton et al. 2004 (https://ui.adsabs.harvard.edu/abs/2004PASP..
116..133L), which we call the “asinh” transformation. The two important parameters that
control this transformation are --qthresh and --stretch. With the option --coloronly,
it is possible to generate a color image with the background in black: bright pixels in color
and the sky background (or noise) values in black. It is possible to provide a fourth image
(K) that will be used for showing the gray region: R, G, B, K

The generation of a good color image is something that requires several trials, so we
encourage the user to play with the different parameters cleverly. After some testing, we
find it useful to follow the steps. For a more complete description of the logic of the process,
see the dedicated tutorial in Section 2.6 [Color images with full dynamic range], page 151.

1. Use the default options to estimate the parameters. By running the script with no
options at all, it will estimate the parameters and they will be printed on the command-
line.

2. Select a good sky background value of the images. If the sky background has been
subtracted, a minimum value of zero could be a good option: --minimum=0.0.

3. Focus on the bright regions to tweak --qbright and --stretch. First, try low values
of --qbright to show the bright parts. Then, adjust --stretch to show the fainter
regions around bright parts. Overall, play with these two parameters to show the color
regions appropriately.

4. Change --colorval to separate the color and black regions. This is the lowest value
of the threshold image that is shown in color.

5. Change --grayval to separate the black and gray regions. This is highest value of the
threshold image that is shown in gray.

6. Use --checkparams to check the pixel value distributions.

7. Use --keeptmp to not remove the threshold image and check it.

A full description of each option is given below:

-h

--hdu=STR/INT

Input HDU name or counter (counting from 0) for each input FITS file. If the
same HDU should be used from all the FITS files, you can use the --globalhdu
option described below to avoid repeating this option.

-g

--globalhdu=STR/INT

Use the value given to this option (a HDU name or a counter, starting from 0)
for the HDU identifier of all the input FITS files. This is useful when all the
inputs are distributed in different files, but have the same HDU in those files.

-o

--output Output color image name. The output can be in any of the recognized output
formats of ConvertType (including PDF, JPEG and TIFF).

https://ui.adsabs.harvard.edu/abs/2004PASP..116..133L
https://ui.adsabs.harvard.edu/abs/2004PASP..116..133L
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-m

--minimum=FLT

Minimum value to be mapped for each R, G, B, and K FITS images. If a single
value is given to this option it will be used for all the input images.

This parameter controls the smallest visualized pixel value. In general, it is a
good decision to set this value close to the sky background level. This value
can dramatically change the output color image (especially when there are large
negative values in the image that you do not intend to visualize).

-Z

--zeropoint=FLT

Zero point value for each R, G, B, and K FITS images. If a single value is
given, it is used for all the input images.

Internally, the zero point values are used to transform the pixel values in units
of Janskys. The units are not important for a color image, but the fact that
the images are photometrically calibrated is important for obtaining an output
color image whose color distribution is realistic.

-w

--weight=FLT

Relative weight for each R, G, B channel. With this parameter, it is possible
to change the importance of each channel to modify the color balance of the
image.

For example, -w=1 -w=2 -w=5 indicates that the B band will be 5 times more
important than the R band, and that the G band is 2 times more important
than the R channel. In this particular example, the combination will be done
as colored = (1×R+2×G+5×B)/(1+2+5) = 0.125×R+0.250×G+0.625×B.

In principle, a color image should recreate “real” colors, but “real” is a very
subjective matter and with this option, it is possible to change the color bal-
ance and make it more aesthetically interesting. However, be careful to avoid
confusing the viewers of your image and report the weights with the filters you
used for each channel. It is up to the user to use this parameter carefully.

-Q

--qbright=FLT

It is one of the parameters that control the asinh transformation. It should be
used in combination with --stretch. In general, it has to be set to low values
to better show the brightest regions. Afterwards, adjust --stretch to set the
linear stretch (show the intermediate/faint structures).

-s

--stretch=FLT

It is one of the parameters that control the asinh transformation. It should
be used in combination with --qbright. It is used for bringing out the
faint/intermediate bright structures of the image that are shown linearly. In
general, this parameter is chosen after setting --qbright to a low value.
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� �
The asinh transformation. The asinh transformation is done on the stacked R,
G, B image. It consists in the modification of the stacked image (I) in order
to show the entire dynamical range appropriately following the expression:
f(I) = asinh( qbright · stretch ·I)/ qbright. See Section 2.6 [Color images
with full dynamic range], page 151, for a complete tutorial that shows the
intricacies of this transformation with step-by-step examples.
 	

--coloronly

By default, the fainter parts of the image are shown in grayscale (not color,
since colored noise is not too informative). With this option, the output image
will be fully in color with the background (noise pixels) in black.

--colorval=FLT

The value that separates the color and black regions. By default, it ranges from
100 (all pixels becoming in color) to 0 (all pixels becoming black). Check the
histogram FOR COLOR and GRAY THRESHOLDS with the option --checkparams for
selecting a good value.

--grayval=FLT

This parameter defines the value that separates the black and gray regions.
It ranges from 100 (all pixels becoming black) to 0 (all pixels becoming
white). Check the histogram FOR COLOR and GRAY THRESHOLDS with the option
--checkparams to select the value.

--regions=STR

Labeled image, identifying the pixels to use for color (value 2), those to use
for black (value 1) and those to use for gray (value 0). When this option is
given the --colorval and --grayval options will be ignored. This gives you
the freedom to select the pixels to show in color, black or gray based on any
criteria that is relevant for your purpose. For an example of using this option
to get a physically motivated threshold, see Section 2.6.4 [Manually setting
color-black-gray regions], page 161.
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� �
IMPORTANT NOTE. The options --colorval and --grayval are related
one to each other. They are defined from the threshold image (an image gen-
erated in the temporary directory) named colorgray_threshold.fits. By
default, this image is computed from the stack and later asinh-transformation
of the three R, G, B channels. Its pixel values range between 100 (brightest) to
0 (faintest). The --colorval value computed by default is the median of this
image. Pixels above this value are shown in color. Pixels below this value are
shown in gray. Regions of pure black color can be defined with the --grayval
option if this value is between 0 and --colorval. In other words. Color region
are defined by those pixels between 100 and --colorval. Pure black region
are defined by those pixels between --colorval to grayval. Gray region are
defined by those pixels between --grayval to 0.

If a fourth image is provided as the “K” channel, then this image is used as
the threshold image. See Section 2.6 [Color images with full dynamic range],
page 151, for a complete tutorial.
 	

--colorkernelfwhm=FLT

Gaussian kernel FWHM (in pixels) for convolving the color regions. Sometimes,
a convolution of the color regions (bright pixels) is desired to further increase
their signal-to-noise ratio (but make them look smoother). With this option,
the kernel will be created internally and convolved with the colored regions.

--graykernelfwhm=FLT

Gaussian kernel FWHM (in pixels) for convolving the background image. Some-
times, a convolution of the background image is necessary to smooth the noisier
regions and increase their signal-to-noise ratios. With this option, the kernel
will be created internally and convolved with the colored regions.

-b

--bias=FLT

Change the brightness of the final image. By increasing this value, a pedestal
value will be added to the color image. This option is rarely useful, it is most
common to use --contrast, see below.

-c

--contrast=FLT

Change the contrast of the final image. The transformation is: output =
contrast× image + brightness.

-G

--gamma=FLT

Gamma exponent value for a gamma transformation. This transformation is
not linear: output = imagegamma. This option overrides --bias or --contrast.

--markoptions=STR

Options to draw marks on the final output image. Anything given to this
option is passed directly to ConvertType in order to draw marks on the output
image. For example, if you construct a table named marks.txt that contains
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the column names: x, y, shape, size, axis ratio, angle, color; you will execute
the script with the following option: --markoptions="--marks=markers.txt

--markcoords=x,y --markshape=shape --marksize=size,axisratio

--markrotate=angle --markcolor=color". See Section 5.2.5.3 [Drawing
with vector graphics], page 334, for more information on how to draw markers
and Section 2.6.5 [Weights, contrast, markers and other customizations],
page 163, for a tutorial.

--checkparams

Print the statistics of intermediate images that are used for estimating the
parameters. This option is useful to decide the optimum set of parameters.

--keeptmp

Do not remove the temporary directory. This is useful for debugging and check-
ing the outputs of internal steps.

--cite Give BibTeX and acknowledgment information for citing this script within your
paper. For more, see Operating mode options.

-q

--quiet Do not print the series of commands or their outputs in the terminal. For more,
see Operating mode options.

-V

--version

Print the version of the running Gnuastro along with a copyright notice and
list of authors that contributed to this script. For more, see Operating mode

options.

10.8 PSF construction and subtraction

The point spread function (PSF) describes how the light of a point-like source is affected by
several optical scattering effects (atmosphere, telescope, instrument, etc.). Since the light of
all astrophysical sources undergoes all these effects, characterizing the PSF is key in astro-
nomical analysis (for small and large objects). Consequently, having a good characterization
of the PSF is fundamental to any analysis.

In some situations7 a parametric (analytical) model is sufficient for the PSF (such as
Gaussian or Moffat, see Section 8.1.1.2 [Point spread function], page 631). However, once
you are interested in objects that are larger than a handful of pixels, it is almost impossible
to find an analytic function to adequately characterize the PSF. Therefore, it is necessary
to obtain an empirical (non-parametric) and extended PSF. In this section we describe a
set of installed scrips in Gnuastro that will let you construct the non-parametric PSF using
point-like sources. They allow you to derive the PSF from the same astronomical images
that the science is derived from (without assuming any analytical function).

The scripts are based on the concepts described in Infante-Sainz et al. 2020 (https://
arxiv.org/abs/1911.01430). But to be complete, we first give a summary of the logic and
overview of their combined usage in Section 10.8.1 [Overview of the PSF scripts], page 701.

7 An example scenario where a parametric PSF may be enough: you are only interested in very small,
high redshift objects that only extended a handful of pixels.

https://arxiv.org/abs/1911.01430
https://arxiv.org/abs/1911.01430
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Furthermore, before going into the technical details of each script, we encourage you to go
through the tutorial that is devoted to this at Section 2.3 [Building the extended PSF],
page 103. The tutorial uses a real dataset and includes all the logic and reasoning behind
every step of the usage in every installed script.

10.8.1 Overview of the PSF scripts

To obtain an extended and non-parametric PSF, several steps are necessary and we will go
through them here. The fundamental ideas of the following methodology are thoroughly
described in Infante-Sainz et al. 2020 (https://arxiv.org/abs/1911.01430). A full tu-
torial is also available in Section 2.3 [Building the extended PSF], page 103. The tutorial
will go through the full process on a pre-selected dataset, but will describe the logic behind
every step in away that can easily be modified/generalized to other datasets.

This section is basically just a summary of that tutorial. We could have put all these steps
into one large program (installed script), however this would introduce several problems.
The most prominent of these problems are:

• The command would require many options, making it very complex to run every time.

• You usually have many stars in an image, and many of the steps can be optimized
or parallelized depending on the particular analysis scenario. Predicting all the possi-
ble optimizations for all the possible usage scenarios would make the code extremely
complex (filled with many unforeseen bugs!).

Therefore, following the modularity principle of software engineering, after several years
of working on this, we have broken the full job into the smallest number of independent
steps as separate scripts. All scripts are independent of each other, meaning this that you
are free to use all of them as you wish (for example, only some of them, using another
program for a certain step, using them for other purposes, or running independent parts in
parallel).

For constructing the PSF from your dataset, the first step is to obtain a catalog of stars
within it (you cannot use galaxies to build the PSF!). But you cannot blindly use all the
stars either! For example, we do not want contamination from other bright, and nearby
objects. The first script below is therefore designed for selecting only good star candidates
in your image. It will use different criteria, for example, good parallax (where available, to
avoid confusion with galaxies), not being near to bright stars, axis ratio, etc. For more on
this script, see Section 10.8.2 [Invoking astscript-psf-select-stars], page 702.

Once the catalog of stars is constructed, another script is in charge of making appropriate
stamps of the stars. Each stamp is a cropped image of the star with the desired size,
normalization of the flux, and mask of the contaminant objects. For more on this script,
see Section 10.8.3 [Invoking astscript-psf-stamp], page 705, After obtaining a set of star
stamps, they can be stacked for obtaining the combined PSF from many stars (for example,
with Section 6.2.4.7 [Stacking operators], page 421).

In the combined PSF, the masked background objects of each star’s image will be covered
and the signal-to-noise ratio will increase, giving a very nice view of the “clean” PSF.
However, it is usually necessary to obtain different regions of the same PSF from different
stars. For example, to construct the far outer wings of the PSF, it is necessary to consider
very bright stars. However, these stars will be saturated in the most inner part, and

https://arxiv.org/abs/1911.01430
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immediately outside of the saturation level, they will be deformed due to non-linearity
effects. Consequently, fainter stars are necessary for the inner regions.

Therefore, you need to repeat the steps above for certain stars (in a certain magnitude
range) to obtain the PSF in certain radial ranges. For example, in Infante-Sainz et al. 2020
(https://arxiv.org/abs/1911.01430), the final PSF was constructed from three regions
(and thus, using stars from three ranges in magnitude). In other cases, we even needed
four groups of stars! But in the example dataset from the tutorial, only two groups are
necessary (see Section 2.3 [Building the extended PSF], page 103).

Once clean stacks of different parts of the PSF have been constructed through the steps
above, it is therefore necessary to blend them all into one. This is done by finding a common
radial region in both, and scaling the inner region by a factor to add with the outer region.
This is not trivial, therefore, a third script is in charge of it, see Section 10.8.4 [Invoking
astscript-psf-unite], page 709.

Having constructed the PSF as described above (or by any other procedure), it can be
scaled to the magnitude of the various stars in the image to get subtracted (and thus remove
the extended/bright wings; better showing the background objects of interest). Note that
the absolute flux of a PSF is meaningless (and in fact, it is usually normalized to have
a total sum of unity!), so it should be scaled. We therefore have another script that will
calculate the scale (multiplication) factor of the PSF for each star. For more on the scaling
script, see Section 10.8.5 [Invoking astscript-psf-scale-factor], page 711.

Once the flux factor has been computed, a final script is in charge of placing the scaled
PSF over the proper location in the image, and subtracting it. It is also possible to only
obtain the modeled star by the PSF. For more on the scaling and positioning script, see
Section 10.8.6 [Invoking astscript-psf-subtract], page 714.

As mentioned above, in the following sections, each script has its own documentation
and list of options for very detailed customization (if necessary). But if you are new to these
scripts, before continuing, we recommend that you do the tutorial Section 2.3 [Building the
extended PSF], page 103. Just do not forget to run every command, and try to tweak its
steps based on the logic to nicely understand it.

10.8.2 Invoking astscript-psf-select-stars

This installed script will select good star candidates for constructing a PSF. It will consider
stars within a given range of magnitudes without nearby contaminant objects. To do that,
it allows to the user to specify different options described here. A complete tutorial is
available to show the operation of this script as a modular component to extract the PSF
of a dataset: Section 2.3 [Building the extended PSF], page 103. The executable name is
astscript-psf-select-stars, with the following general template:

$ astscript-psf-select-stars [OPTION...] FITS-file

Examples:

## Select all stars within 'image.fits' with magnitude in range

## of 6 to 10; only keeping those that are less than 0.02 degrees

## from other nearby stars.

$ astscript-psf-select-stars image.fits \

--magnituderange=6,10 --mindistdeg=0.02

https://arxiv.org/abs/1911.01430
https://arxiv.org/abs/1911.01430
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The input of this script is an image, and the output is a catalog of stars with magnitude in
the requested range of magnitudes (provided with --magnituderange). The output catalog
will also only contain stars that are sufficiently distant (--mindistdeg) from all other
brighter, and some fainter stars. It is possible to consider different datasets with the option
--dataset (by default, Gaia DR3 dataset is considered) All stars that are --faintmagdiff
fainter than the faintest limit will also be accounted for, when selecting good stars. The
--magnituderange, and --mindistdeg are mandatory: if not specified the code will abort.

The output of this script is a file whose name can be specified with the (optional)
--output option. If not given, an automatically generated name will be used for the
output. A full description of each option is given below.

-h STR/INT

--hdu=STR/INT

The HDU/extension of the input image to use.

-S STR

--segmented=STR

Optional segmentation file obtained by Section 7.3 [Segment], page 561. It
should have two extensions (CLUMPS and OBJECTS). If given, a catalog of CLUMPS
will be computed and matched with the Gaia catalog to reject those objects
that are too elliptical (see --minaxisratio). The matching will occur on an
aperture (in degrees) specified by --matchaperturedeg.

-a FLT

--matchaperturedeg=FLT

This option determines the aperture (in degrees) for matching the catalog from
gaia with the clumps catalog that is produced by the segmentation image given
to --segmented. The default value is 10 arc-seconds.

-c STR

--catalog=STR

Optional reference catalog to use for selecting stars (instead of querying an
external catalog like Gaia). When this option is given, --dataset (described
below) will be ignored and no internet connection will be necessary.

-d STR

--dataset=STR

Optional dataset to query (see Section 5.4 [Query], page 375). It should contain
the database and dataset entries to Query. Its value will be immediately given
to astquery. By default, its value is gaia --dataset=dr3 (so it connects to
the Gaia database and requests the data release 3). For example, if you want
to use VizieR’s Gaia DR3 instead (for example due to a maintenance on ESA’s
Gaia servers), you should use --dataset="vizier --dataset=gaiadr3".

It is possible to specify a different dataset from which the catalog is downloaded.
In that case, the necessary column names may also differ, so you also have to
set --refcatra, --refcatdec and --field. See their description for more.
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-r STR

--refcatra=STR

The name of the column containing the Right Ascension (RA) in the requested
dataset (--dataset). If the user does not determine this option, the default
value is assumed to be ra.

-d STR

--refcatdec=STR

The name of the column containing the Declination (Dec) in the requested
dataset (--dataset). If the user does not determine this option, the default
value is assumed to be dec.

-f STR

--field=STR

The name of the column containing the magnitude in the requested dataset
(--dataset). The output will only contain stars that have a value in this col-
umn, between the values given to --magnituderange (see below). By default,
the value of this option is phot_g_mean_mag (that corresponds to the name of
the magnitude of the G-band in the Gaia catalog).

-m FLT,FLT

--magnituderange=FLT,FLT

The acceptable range of values for the column in --field. This option is
mandatory and no default value is assumed.

-p STR,STR

--parallaxanderrorcolumn=STR,STR

With this option the user can provide the parallax and parallax error column
names in the requested dataset. When given, the output will only contain stars
for which the parallax value is smaller than three times the parallax error. If the
user does not provide this option, the script will not use parallax information
for selecting the stars. In the case of Gaia, if you want to use parallax to further
limit the good stars, you can pass parallax,parallax_error.

-D FLT

--mindistdeg=FLT

Stars with nearby bright stars closer than this distance are rejected. The default
value is 1 arc minute. For fainter stars (when constructing the center of the
PSF), you should decrease the value.

-b INT

--brightmag=INT

The brightest star magnitude to avoid (should be brighter than the brightest
of --magnituderange). The basic idea is this: if a user asks for stars with
magnitude 6 to 10 and one of those stars is near a magnitude 3 star, that star
(with a magnitude of 6 to 10) should be rejected because it is contaminated.
But since the catalog is constrained to stars of magnitudes 6-10, the star with
magnitude 3 is not present and cannot be compared with! Therefore, when
considering proximity to nearby stars, it is important to use a larger magnitude
range than the user’s requested magnitude range for good stars. The acceptable
proximity is defined by --mindistdeg.
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With this option, you specify the brightest limit for the proximity check. The
default value is a magnitude of −10, so you’ll rarely need to change or customize
this option!

The faint limit of the proximity check is specified by --faintmagdiff. As
the name suggests, this is a “diff” or relative value. The default value is 4.
Therefore if the user wants to build the PSF with stars in the magnitude range
of 6 to 10, the faintest stars used for the proximity check will have a magnitude
of 14: 10 + 4. In summary, by default, the proximity check will be done with
stars in the magnitude range −10 to 14.

-F INT

--faintmagdiff

The magnitude difference of the faintest star used for proximity checks to
the faintest limit of --magnituderange. For more, see the description of
--brightmag.

-Q FLT

--minaxisratio=FLT

Minimum acceptable axis ratio for the selected stars. In other words, only stars
with axis ratio between --minaxisratio to 1.0 will be selected. Default value
is --minaxisratio=0.9. Recall that the axis ratio is only used when you also
give a segmented image with --segmented.

-t

--tmpdir Directory to keep temporary files during the execution of the script. If the
directory does not exist at run-time, this script will create it. By default, upon
completion of the script, this directory will be deleted. However, if you would
like to keep the intermediate files, you can use the --keeptmp option.

-k

--keeptmp

Do not remove the temporary directory (see description of --keeptmp). This
option is useful for debugging and checking the outputs of internal steps.

-o STR

--output=STR

The output name of the final catalog containing good stars.

10.8.3 Invoking astscript-psf-stamp

This installed script will generate a stamp of fixed size, centered at the provided coordinates
(performing sub-pixel re-gridding if necessary) and normalized at a certain normalization
radius. Optionally, it will also mask all the other background sources. A complete tutorial
is available to show the operation of this script as a modular component to extract the PSF
of a dataset: Section 2.3 [Building the extended PSF], page 103. The executable name is
astscript-psf-stamp, with the following general template:

$ astscript-psf-stamp [OPTION...] FITS-file

Examples:

## Make a stamp around (x,y)=(53,69) of width=151 pixels.

## Normalize the stamp within the radii 20 and 30 pixels.
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$ astscript-psf-stamp image.fits --mode=img \

--center=53,69 --widthinpix=151,151 --normradii=20,30 \

--output=stamp.fits

## Iterate over a catalog with positions of stars that are

## in the input image. Use WCS coordinates.

$ asttable catalog.fits | while read -r ra dec mag; do \

astscript-psf-stamp image.fits \

--mode=wcs \

--center=$ra,$dec \

--normradii=20,30 \

--widthinpix=150,150 \

--output=stamp-"$ra"-"$dec".fits; done

The input is an image from which the stamp of the stars are constructed. The output
image will have the following properties:

• A certain width (specified by --widthinpix in pixels).

• Centered at the coordinate specified by the option --center (it can be in image/pixel
or WCS coordinates, see --mode). If no center is specified, then it is assumed that the
object of interest is already in the center of the image.

• If the given coordinate has sub-pixel elements (for example, pixel coordinates
1.234,4.567), the pixel grid of the output will be warped so your given coordinate
falls in the center of the central pixel of the final output. This is very important
for building the central parts of the PSF, but not too effective for the middle or
outer parts (to speed up the program in such cases, you can disable it with the
--nocentering option).

• Normalized “normalized” by the value computed within the ring around the center (at
a radial distance between the two radii specified by the option --normradii). If no
normalization ring is considered, the output will not be normalized.

In the following cases, this script will produce a fully NaN-valued stamp (of the size given
to --widthinpix). A fully NaN image can safely be used with the stacking operators of
Arithmetic (see Section 6.2.4.7 [Stacking operators], page 421) because they will be ignored.
In case you do not want to waste storage with fully NaN images, you can compress them
with gzip --best output.fits, and give the resulting .fits.gz file to Arithmetic.

• The requested box (center coordinate with desired width) is not within the input image
at all.

• If a normalization radius is requested, and all the pixels within the normalization radii
are NaN. Here are some scenarios that this can happen: 1) You have a saturated star
(where the saturated pixels are NaN), and your normalization radius falls within the
saturated region. 2) The star is outside the image by more than your larger normaliza-
tion radius (so there are no pixels for doing normalization), but the full stamp width
still overlaps part of the image.

The full set of options are listed below for optimal customization in different scenarios:
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-h STR

--hdu=STR

The HDU/extension of the input image to use.

-O STR

--mode=STR

Interpret the center position of the object (values given to --center) in image
or WCS coordinates. This option thus accepts only two values: img or wcs.

-c FLT,FLT

--center=FLT,FLT

The central position of the object. This option is used for placing the center
of the stamp. This parameter is used in Section 6.1 [Crop], page 385, to center
and crop the image. The positions along each dimension must be separated by
a comma (,). The units of the coordinates are read based on the value to the
--mode option, see the examples above.

The given coordinate for the central value can have sub-pixel elements (for
example, it falls on coordinate 123.4,567.8 of the input image pixel grid). In
such cases, after cropping, this script will use Gnuastro’s Section 6.4 [Warp],
page 492, to shift (or translate) the pixel grid by −0.4 pixels along the horizontal
and 1− 0.8 = 0.2 pixels along the vertical. Finally the newly added pixels (due
to the warping) will be trimmed to have your desired coordinate exactly in the
center of the central pixel of the output. This is very important (critical!) when
you are constructing the central part of the PSF. But for the outer parts it is
not too effective, so to avoid wasting time for the warping, you can simply use
--nocentering to disable it.

-d

--nocentering

Do not do the sub-pixel centering to a new pixel grid. See the description of
the --center option for more.

-W INT,INT

--widthinpix=INT,INT

Size (width) of the output image stamp in pixels. The size of the output image
will be always an odd number of pixels. As a consequence, if the user specify
an even number, the final size will be the specified size plus 1 pixel. This is
necessary to place the specified coordinate (given to --center) in the center
of the central pixel. This is very important (and necessary) in the case of the
centers of stars, therefore a sub-pixel translation will be performed internally
to ensure this.

-n FLT,FLT

--normradii=FLT,FLT

Minimum and maximum radius of ring to normalize the image. This option
takes two values, separated by a comma (,). The first value is the inner radius,
the second is the outer radius.
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-S STR

--segment=STR

Optional filename of a segmentation image from Segment’s output (must con-
tain the CLUMPS and OBJECT HDUs). For more on the definition of “objects”
and “clumps”, see Section 7.3 [Segment], page 561. If given, Segment’s output
is used to mask all background sources from the large foreground object (a
bright star):

• Objects that are not the central object.

• Clumps (within the central object) that are not the central clump.

The result is that all objects and clumps that contaminate the central source are
masked, while the diffuse flux of the central object remains. The non masked
object and clump labels are kept into the header of the output image. The
keywords are CLABEL and OLABEL. If no segmentation image is used, then their
values are set to none.

-T FLT

--snthresh=FLT

Mask all the pixels below the given signal-to-noise ratio (S/N) threshold. This
option is only valid with the --segment option (it will use the SKY_STD extension
of the Section 7.3.1.3 [Segment output], page 570. This threshold is applied
prior to the possible normalization or centering of the stamp. After all pixels
below the given threshold are masked, the mask is also dilated by one level to
avoid single pixels above the threshold (which are mainly due to noise when the
threshold is lower).

After applying the signal-to-noise threshold (if it is requested), any extra pixels
that are not connected to the central target are also masked. Such pixels can
remain in rivers between bright clumps and will cause problem in the final stack,
if they are not masked.

This is useful for increasing the S/N of inner parts of each region of the finally
stacked PSF. As the stars (that are to be stacked) become fainter, the S/N of
their outer parts (at a fixed radius) decreases. The stack of a higher-S/N image
with a lower-S/N image will have an S/N that is lower than the higher one.
But we can still use the inner parts of those fainter stars (that have sufficiently
high S/N).

-N STR

--normop=STR

The operator for measuring the values within the ring defined by the option
--normradii. The operator given to this option will be directly passed to the
radial profile script astscript-radial-profile, see Section 10.2 [Generate
radial profile], page 670. As a consequence, all MakeCatalog measurements
(median, mean, sigclip-mean, sigclip-number, etc.) can be used here. For a full
list of MakeCatalog’s measurements, please run astmkcatalog --help. The
final normalization value is saved into the header of the output image with the
keyword NORMVAL. If no normalization is done, then the value is set to 1.0.
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-Q FLT

--axis-ratio=FLT

The axis ratio of the radial profiles for computing the normalization value. By
default (when this option is not given), the radial profile will be circular (axis
ratio of 1). This parameter is used directly in the astscript-radial-profile
script.

-p FLT

--position-angle=FLT

The position angle (in degrees) of the profiles relative to the first FITS axis
(horizontal when viewed in SAO DS9). By default, it is --position-angle=0,
which means that the semi-major axis of the profiles will be parallel to the first
FITS axis. This parameter is used directly in the astscript-radial-profile
script.

-s FLT,FLT

--sigmaclip=FLT,FLT

Sigma clipping parameters: only relevant if sigma-clipping operators are re-
quested by --normop. For more on sigma-clipping, see Section 2.10.2 [Sigma
clipping], page 200.

-t

--tmpdir Directory to keep temporary files during the execution of the script. If the
directory does not exist at run-time, this script will create it. By default, upon
completion of the script, this directory will be deleted. However, if you would
like to keep the intermediate files, you can use the --keeptmp option.

-k

--keeptmp

Do not remove the temporary directory (see description of --keeptmp). This
option is useful for debugging and checking the outputs of internal steps.

-o STR

--output=STR

Filename of stamp image. By default the name of the stamp will be a combi-
nation of the input image name, the name of the script, and the coordinates of
the center. For example, if the input image is named image.fits and the center
is --center=33,78, then the output name wil be: image stamp 33 78.fits The
main reason of setting this name is to have an unique name for each stamp by
default.

10.8.4 Invoking astscript-psf-unite

This installed script will join two PSF images at a given radius. This operation is commonly
used when merging (uniting) the inner and outer parts of the PSF. A complete tutorial is
available to show the operation of this script as a modular component to extract the PSF
of a dataset: Section 2.3 [Building the extended PSF], page 103. The executable name is
astscript-psf-unite, with the following general template:

$ astscript-psf-unite [OPTION...] FITS-file

Examples:

## Multiply inner.fits by 3 and put it in the center (within a radius of
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## 25 pixels) of outer.fits. The core goes up to a radius of 25 pixels.

$ astscript-psf-unite outer.fits \

--core=inner.fits --scale=3 \

--radius=25 --output=joined.fits

## Same example than the above, but considering an

## ellipse (instead of a circle).

$ astscript-psf-unite outer.fits \

--core=inner.fits --scale=3 \

--radius=25 --axis-ratio=0.5 \

--position-angle=40 --output=joined.fits

The junction is done by considering the input image as the outer part. The central part
is specified by FITS image given to --inner and it is multiplied by the factor --scale. All
pixels within --radius (in pixels) of the center of the outer part are then replaced with the
inner image.

The scale factor to multiply with the inner part has to be explicitly provided (see the
description of --scale below). Note that this script assumes that PSF is centered in both
images. More options are available with the goal of obtaining a good junction. A full
description of each option is given below.

-h STR

--hdu=STR

The HDU/extension of the input image to use.

-i STR

--inner=STR

Filename of the inner PSF. This image is considered to be the central part of
the PSF. It will be cropped at the radius specified by the option --radius, and
multiplied by the factor specified by --scale. After that, it will be appended
to the outer part (input image).

-I STR

--innerhdu=STR

The HDU/extension of the inner PSF (option --inner).

-f FLT

--scale=FLT

Factor by which the inner part (--inner) is multiplied. This factor is necessary
to put the two different parts of the PSF at the same flux level. A convenient
way of obtaining this value is by using the script astscript-model-scale-

factor, see Section 10.8.5 [Invoking astscript-psf-scale-factor], page 711. There
is also a full tutorial on using all the astscript-psf-* installed scripts together,
see Section 2.3 [Building the extended PSF], page 103. We recommend doing
that tutorial before starting to work on your own datasets.

-r FLT

--radius=FLT

Radius (in pixels) at which the junction of the images is done. All pixels in the
outer image within this radius (from its center) will be replaced with the pixels
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of the inner image (that has been scaled). By default, a circle is assumed for
the shape of the inner region, but this can be tweaked with --axis-ratio and
--position-angle (see below).

-Q FLT

--axisratio=FLT

Axis ratio of ellipse to define the inner region. By default this option has a
value of 1.0, so all central pixels (of the outer image) within a circle of radius
--radius are replaced with the scaled inner image pixels. With this option,
you can customize the shape of pixels to take from the inner and outer profiles.

For a PSF, it will usually not be necessary to change this option: even if the PSF
is non-circular, the inner and outer parts will both have the same ellipticity. So
if the scale factor is chosen accurately, using a circle to select which pixels from
the inner image to use in the outer image will be irrelevant.

-p FLT

--position-angle=FLT

Position angle of the ellipse (in degrees) to define which central pixels of the
outer image to replace with the scaled inner image. Similar to --axis-ratio

(see above).

-t

--tmpdir Directory to keep temporary files during the execution of the script. If the
directory does not exist at run-time, this script will create it. By default, upon
completion of the script, this directory will be deleted. However, if you would
like to keep the intermediate files, you can use the --keeptmp option.

-k

--keeptmp

Do not remove the temporary directory (see description of --keeptmp). This
option is useful for debugging and checking the outputs of internal steps.

10.8.5 Invoking astscript-psf-scale-factor

This installed script will compute the multiplicative factor (scale) that is necessary to match
the PSF to a given star. The match in flux is done within a ring of pixels. It can also be
used to compute the scale factor to multiply the inner part of the PSF with the outer part
during the creation of a PSF. A complete tutorial is available to show the operation of this
script as a modular component to extract the PSF of a dataset: Section 2.3 [Building the
extended PSF], page 103. The executable name is astscript-psf-scale-factor, with the
following general template:

$ astscript-psf-scale-factor [OPTION...] FITS-file

Examples:

## Compute the scale factor for the object at (x,y)=(53,69) for

## the PSF (psf.fits). Compute it in the ring 20-30 pixels.

$ astscript-psf-scale-factor image.fits --mode=img \

--center=53,69 --normradii=20,30 --psf=psf.fits

## Iterate over a catalog with RA,Dec positions of stars that are in



Chapter 10: Installed scripts 712

## the input image to compute their scale factors.

$ asttable catalog.fits | while read -r ra dec mag; do \

astscript-psf-scale-factor image.fits \

--mode=wcs \

--psf=psf.fits \

--center=$ra,$dec --quiet \

--normradii=20,30 > scale-"$ra"-"$dec".txt; done

The input should be an image containing the star that you want to match in flux with
the PSF. The output will be a single number that is printed on the command-line. That
number is the multiplicative factor to scale the PSF image (given to --psf) to match in
flux with the given star (which is located in --center coordinate of the input image). The
scale factor will be calculated within the ring of pixels specified by the option --normradii.

All the pixels within this ring will be separated from both the PSF and input images.
For the input image, around the selected coordinate; while masking all other sources (see
--segment). The finally selected pixels of the input image will then be divided by those of
the PSF image. This gives us an image containing one scale factor per pixel. The finally
reported value is the sigma-clipped median of all the scale factors in the finally-used pixels.
To fully understand the process on first usage, we recommend that you run this script with
--keeptmp and inspect the files inside of the temporary directory.

The most common use-cases of this scale factor are:

1. To find the factor for joining two different parts of the same PSF, see Section 10.8.4
[Invoking astscript-psf-unite], page 709.

2. When modeling a star in order to subtract it using the PSF, see Section 10.8.6 [Invoking
astscript-psf-subtract], page 714.

For a full tutorial on how to use this script along with the other astscript-psf-* scripts
in Gnuastro, please see Section 2.3 [Building the extended PSF], page 103. To allow full
customizability, the following options are available with this script.

-h STR

--hdu=STR

The HDU/extension of the input image to use.

-p STR

--psf=STR

Filename of the PSF image. The PSF is assumed to be centered in this image.

-P STR

--psfhdu=STR

The HDU/extension of the PSF image.

-c FLT,FLT

--center=FLT,FLT

The central position of the object to scale with the PSF. This parameter is
passed to Gnuastro’s Crop program make a crop for further processing (see
Section 6.1 [Crop], page 385). The positions along each dimension must be
separated by a comma (,). The units of the coordinates are interpreted based
on the value to the --mode option (see below).
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The given coordinate for the central value can have sub-pixel elements (for
example, it falls on coordinate 123.4,567.8 of the input image pixel grid). In
such cases, after cropping, this script will use Gnuastro’s Section 6.4 [Warp],
page 492, to shift (or translate) the pixel grid by −0.4 pixels along the horizontal
and 1− 0.8 = 0.2 pixels along the vertical. Finally the newly added pixels (due
to the warping) will be trimmed to have your desired coordinate exactly in
the center of the central pixel of the output. This is very important (critical!)
when you are constructing the central part of the PSF. But for the very far
outer parts it may not too effective (should be checked), or the target object
may have already been centered at the requested coordinate. In such cases,
to avoid wasting time for the warping, you can simply use --nocentering to
disable sub-pixel centering.

-d

--nocentering

Do not do the sub-pixel centering to a new pixel grid. See the description of
the --center option for more.

-O STR

--mode=STR

Interpret the center position of the object (values given to --center) in image
or WCS coordinates. This option thus accepts only two values: img or wcs.

-n INT,INT

--normradii=INT,INT

Inner (inclusive) and outer (exclusive) radii (in units of pixels) around the
central position in which the scale factor is computed. The option takes two
values separated by a comma (,). The first value is the inner radius, the second
is the outer radius. These two radii define a ring of pixels around the center
that is used for obtaining the scale factor value.

-W INT,INT

--widthinpix=INT,INT

Size (width) of the image stamp in pixels. This is an intermediate product
computed internally by the script. By default, the size of the stamp is auto-
matically set to be as small as possible (i.e., two times the external radius of
the ring specified by --normradii) to make the computation fast. As a conse-
quence, this option is only relevant for checking and testing that everything is
fine (debugging; it will usually not be necessary).

-S STR

--segment=STR

Optional filename of a segmentation image from Segment’s output (must con-
tain the CLUMPS and OBJECT HDUs). For more on the definition of “objects”
and “clumps”, see Section 7.3 [Segment], page 561. If given, Segment’s output
is used to mask all background sources from the large foreground object (a
bright star):

• Objects that are not the central object.

• Clumps (within the central object) that are not the central clump.
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The result is that all objects and clumps that contaminate the central source
are masked, while the diffuse flux of the central object remains.

-s FLT,FLT

--sigmaclip=FLT,FLT

Sigma clipping parameters used in the end to find the final scale factor from the
distribution of all pixels used. For more on sigma-clipping, see Section 2.10.2
[Sigma clipping], page 200.

-t

--tmpdir Directory to keep temporary files during the execution of the script. If the
directory does not exist at run-time, this script will create it. By default, upon
completion of the script, this directory will be deleted. However, if you would
like to keep the intermediate files, you can use the --keeptmp option.

-k

--keeptmp

Do not remove the temporary directory (see description of --keeptmp). This
option is useful for debugging and checking the outputs of internal steps.

10.8.6 Invoking astscript-psf-subtract

This installed script will put the provided PSF into a given position within the input image
(implementing sub-pixel adjustments where necessary), and then it will subtract it. It is
aimed at modeling and subtracting the scattered light field of an input image. It is also
possible to obtain the modeled star with the PSF (and not make the subtraction of it from
the original image).

A complete tutorial is available to show the operation of this script as a modular com-
ponent to extract the PSF of a dataset: Section 2.3 [Building the extended PSF], page 103.
The executable name is astscript-psf-subtract, with the following general template:

$ astscript-psf-subtract [OPTION...] FITS-file

Examples:

## Multiply the PSF (psf.fits) by 3 and subtract it from the

## input image (image.fits) at the pixel position (x,y)=(53,69).

$ astscript-psf-subtract image.fits \

--psf=psf.fits \

--mode=img \

--scale=3 \

--center=53,69 \

--output=star-53_69.fits

## Iterate over a catalog with positions of stars that are

## in the input image. Use WCS coordinates.

$ asttable catalog.fits | while read -r ra dec mag; do

scale=$(cat scale-"$ra"_"$dec".txt)

astscript-psf-subtract image.fits \

--mode=wcs \

--psf=psf.fits \
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--scale=$scale \

--center=$ra,$dec; done

The input is an image from which the star is considered. The result is the same image
but with the star subtracted (modeled by the PSF). The modeling of the star is done with
the PSF image specified with the option --psf, and flux-scaled with the option --scale at
the position defined by --center. Instead of obtaining the PSF-subtracted image, it is also
possible to obtain the modeled star by the PSF. To do that, use the option --modelonly.
With this option, the output will be an image with the same size as the original one with
the PSF situated in the star coordinates and flux-scaled. In this case, the region not covered
by the PSF are set to zero values.

Note that this script works over individual objects. As a consequence, to generate a
scattered light field of many stars, it is necessary to make multiple calls. A full description
of each option is given below.

-h STR

--hdu=STR

The HDU/extension of the input image to use.

-p STR

--psf=STR

Filename of the PSF image. The PSF is assumed to be centered in this image.

-P STR

--psfhdu=STR

The HDU/extension of the PSF image.

-O STR

--mode=STR

Interpret the center position of the object (values given to --center) in image
or WCS coordinates. This option thus accepts only two values: img or wcs.

-c FLT,FLT

--center=FLT,FLT

The central position of the object. This parameter is used in Section 6.1 [Crop],
page 385, to center and crop the image. The positions along each dimension
must be separated by a comma (,). The number of values given to this option
must be the same as the dimensions of the input dataset. The units of the
coordinates are read based on the value to the --mode option, see above.

If the central position does not fall in the center of a pixel in the input image,
the PSF is resampled with sub-pixel change in the pixel grid before subtraction.

-s FLT

--scale=FLT

Factor by which the PSF (--psf) is multiplied. This factor is necessary to put
the PSF with the desired flux level. A convenient way of obtaining this value
is by using the script astscript-scale-factor, see Section 10.8.5 [Invoking
astscript-psf-scale-factor], page 711. For a full tutorial on using the astscript-
psf-* scripts together, see Section 2.3 [Building the extended PSF], page 103.
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-t

--tmpdir Directory to keep temporary files during the execution of the script. If the
directory does not exist at run-time, this script will create it. By default, upon
completion of the script, this directory will be deleted. However, if you would
like to keep the intermediate files, you can use the --keeptmp option.

-k

--keeptmp

Do not remove the temporary directory (see description of --keeptmp). This
option is useful for debugging and checking the outputs of internal steps.

-m

--modelonly

Do not make the subtraction of the modeled star by the PSF. This option is
useful when the user wants to obtain the scattered light field given by the PSF
modeled star.
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11 Makefile extensions (for GNU Make)

Make (https://en.wikipedia.org/wiki/Make_(software)) is a build automation tool.
It can greatly help manage your analysis workflow, even very complex projects with thou-
sands of files and hundreds of processing steps. In this book, we have discussed Make
previously in the context of parallelization (see Section 4.4.2 [How to run simultaneous op-
erations], page 276). For example, Maneage (http://maneage.org) uses Make to organize
complex and reproducible workflows, see Akhlaghi et al. 2021 (https://arxiv.org/abs/
2006.03018).

GNU Make is the most common and powerful implementation of Make, with many
unique additions to the core POSIX standard of Make. One of those features is the ability
to add extensions using a dynamic library (that Gnuastro provides). For the details of this
feature from GNU Make’s own manual, see its Loading dynamic objects (https://www.
gnu.org/software/make/manual/html_node/Loading-Objects.html) section. Through
this feature, Gnuastro provides additional Make functions that are useful in the context of
data analysis.

To use this feature, Gnuastro has to be built in shared library more. Gnuastro’s Make
extensions will not work if you build Gnuastro without shared libraries (for example, when
you configure Gnuastro with --disable-shared or --debug).

11.1 Loading the Gnuastro Make functions

To load Gnuastro’s Make functions in your Makefile, you should use the load command of
GNU Make in your Makefile. The load command should be given Gnuastro’s libgnuastro_
make.so dynamic library, which has been specifically written for being called by GNUMake.
The generic command looks like this (the /PATH/TO part should be changed):

load /PATH/TO/lib/libgnuastro_make.so

Here are the possible replacements of the /PATH/TO component:

/usr/local

If you installed Gnuastro from source and did not use the --prefix option at
configuration time, you should use this base directory.

/usr/ If you installed Gnuastro through your operating system’s package manager, it
is highly likely that Gnuastro’s library is here.

~/.local If you installed Gnuastro from source, but used --prefix to install Gnuastro
in your home directory (as described in Section 3.3.1.2 [Installation directory],
page 233).

If you cannot find libgnuastro_make.so in the locations above, the command below
should give you its location. It assumes that the libraries are in the same base directory as
the programs (which is usually the case).

$ which astfits | sed -e's|bin/astfits|lib/libgnuastro_make.so|'

https://en.wikipedia.org/wiki/Make_(software)
http://maneage.org
https://arxiv.org/abs/2006.03018
https://arxiv.org/abs/2006.03018
https://www.gnu.org/software/make/manual/html_node/Loading-Objects.html
https://www.gnu.org/software/make/manual/html_node/Loading-Objects.html
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11.2 Makefile functions of Gnuastro

All Gnuastro Make functions start with the ast- prefix (similar to the programs on the
command-line, but with a dash). After you have loaded Gnuastro’s shared library for
Makefiles within your Makefile, you can call these functions just like any Make function.
For instructions on how to load Gnuastro’s Make functions, see Section 11.1 [Loading the
Gnuastro Make functions], page 717.

There are two types of Make functions in Gnuastro’s Make extensions: 1) Basic opera-
tions on text which is more general than astronomy or Gnuastro, see Section 11.2.1 [Text
functions for Makefiles], page 718). 2) Operations that are directly related to astronomy
(mostly FITS files) and Gnuastro, see Section 11.2.2 [Astronomy functions for Makefiles],
page 721).� �
Difference between ‘=’ or ‘:=’ for variable definition When you define a variable with ‘=’,
its value is expanded only when used, not when defined. However, when you use ‘:=’, it
is immediately expanded when defined. Therefore the location of a ‘:=’ variable in the
Makefile matters: if used before its definition, it will be empty! Those defined by ‘=’ can be
used even before they are defined! On the other hand, if your variable invokes functions
(like foreach or wildcard), it is better to use ‘:=’. Otherwise, each time the value is
used, the function will be expanded (possibly may times) and this will reduce the speed
of your pipeline. For more, see the The two flavors of variables (https://www.gnu.org/
software/make/manual/html_node/Flavors.html) in the GNU Make manual.
 	
11.2.1 Text functions for Makefiles

The functions described below operate on simple strings (plain text). They are therefore
generic (not limited to astronomy/FITS), but because they are commonly necessary in
astronomical data analysis pipelines and are not available anywhere else, we have included
them in Gnuastro. The names of these functions start with ast-text-* and each has a
fully working example to demonstrate its usage.

$(ast-text-to-upper STRING)

Returns the input string but with all characters in UPPER-CASE. For example,
the following minimal Makefile will print FOOO BAAR UGGH word of the list.

load /usr/local/lib/libgnuastro_make.so

list = fOOo bAar UggH

ulist := $(ast-text-to-upper $(list))

all:; echo $(ulist)

$(ast-text-to-lower STRING)

Returns the input string but with all characters in lower-case. For example,
the following minimal Makefile will print fooo baar uggh word of the list.

load /usr/local/lib/libgnuastro_make.so

list = fOOo bAar UggH

list := $(ast-text-to-lower $(list))

all:; echo $(ulist)

https://www.gnu.org/software/make/manual/html_node/Flavors.html
https://www.gnu.org/software/make/manual/html_node/Flavors.html
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$(ast-text-contains STRING, TEXT)

Returns all white-space-separated words in TEXT that contain the STRING, re-
moving any words that do not match. For example, the following minimal
Makefile will only print the bAaz Aah word of the list.

load /usr/local/lib/libgnuastro_make.so

list = fooo baar bAaz uggh Aah

all:

echo $(ast-text-contains Aa, $(list))

This can be thought of as Make’s own filter function, but if it would accept
two patterns in a format like this $(filter %Aa%,$(list)) (for the example
above). In fact, the first sentence describing this function is taken from the
Make manual’s first sentence that describes the filter function! However,
unfortunately Make’s filter function only accepts a single %, not two!

$(ast-text-not-contains STRING, TEXT)

Returns all white-space-separated words in TEXT that do not contain the
STRING, removing any words that do not match. This is the inverse of the
ast-text-contains function. For example, the following minimal Makefile
will print fooo baar uggh word of the list.

load /usr/local/lib/libgnuastro_make.so

list = fooo baar bAaz uggh Aah

all:

echo $(ast-text-not-contains Aa, $(list))

$(ast-text-prev-in-list TARGET, LIST)

Returns the word in LIST that is previous to TARGET. If TARGET is the first word
of the list, or is not within it at all, this function will return an empty string
(nothing).

One scenario when this function can be useful is when you want a list of higher-
level targets to always be executed in sequence (even when Make is run in
parallel). But you want their lower-level prerequisites to be executed in parallel.

The fully working example below shows this in practice: the “final” target
depends on the sub-components a.fits, b.fits, c.fits and d.fits. But each
one of these has seven dependencies (for example a.fits depends on the sub-
sub-components a-1.fits, a-2.fits, a-3.fits, ...). Without this function,
Make will first build all the sub-sub-components first, then the sub-components
and ultimately the final target.

When the files are small and there aren’t too many of them, this is not a prob-
lem. But when you hundreds/thousands of sub-sub-components, your computer
may not have the capacity to hold them all in storage or RAM (during process-
ing). In such cases, you want to build the sub-components to built in series,
but the sub-sub-components of each sub-component to be built in parallel. This
function allows just this in an easy manner as below: the sub-sub-components
of each sub-component depend on the previous sub-component.
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To see the effect of this function put the example below in a Makefile and run
make -j12 (to simultaneously exectute 12 jobs); then comment/remove this
function (so there is no prerequisite in $(subsubs)) and re-run make -j12.

# Basic settings

all: final

.SECONDEXPANSION:

load /usr/local/lib/libgnuastro_make.so

# 4 sub-components (alphabetic), each with 7

# sub-sub-components (numeric).

subids = a b c d

subsubids = 1 2 3 4 5 6 7

subs := $(foreach s, $(subids), $(s).fits)

subsubs := $(foreach s, $(subids), \

$(foreach ss, $(subsubids), \

$(s)-$(ss).fits))

# Build the sub-components:

$(subsubs): %.fits: $$(ast-text-prev-in-list \

$$(word 1, $$(subst -, ,%)).fits, \

$(subs))

@echo "$@: $^"

# Build the final components

$(subs): %.fits: $$(foreach s, $(subsubids), %-$$(s).fits)

@echo "$@: $^"

# Final

final: $(subs)

@echo "$@: $^"

As you see, when this function is present, the sub-sub-components of each sub-
component are executed in parallel, while at each moment, only a single sub-
component’s prerequisites are being made. Without this function, make first
builds all the sub-sub-components, then goes to the sub-components. There
can be any level of components between these, allowing this operation to be
as complex as necessary in your data analysis pipeline. Unfortunately the
.NOTPARALLEL target of GNU Make doesn’t allow this level of customization.

$(ast-text-prev-batch-in-list TARGET, NUM, LIST)

Returns the previous batch of NUM words in LIST (in relation to the batch
containing TARGET). In the special case that NUM=1, this is equivalent to the
ast-text-prev-in-list function that is described above.

Here is one scenario where this function is useful: in astronomy datasets are
can easily be very large. Therefore, some Make recipes in your pipeline may
require a lot of memory; such that executing them on all the available threads
(for example 12 threads with -j12) will immediately occupy all your RAM,
causing a crash in your pipeline. However, let’s assume that you have sufficient
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RAM to execute 4 targets of those recipes in parallel. Therefore while you want
all the other steps of your pipeline to be using all 12 threads, you want one rule
to only build 4 targets at any time.

The example below demonstrates the usage of this function in a minimal work-
ing example of the scenario above: we want to build 15 targets, but in batches
of 4 target at a time, irrespective of how many threads Make was executed with.

load /usr/local/lib/libgnuastro_make.so

.SECONDEXPANSION:

targets := $(foreach i,$(shell seq 15),a-$(i).fits)

all: $(targets)

$(targets): $$(ast-text-prev-batch-in-list $$@,4,$(targets))

@echo "$@: $^"

If you place the example above in a plain-text file called Makefile (correcting
for the TAB at the start of the recipe), and run Make on 12 threads, you will
see an output like below. The targets in each batch are not ordered (and the
order may change in different runs) because they have been run in parallel.

$ make -j12

a-1.fits:

a-3.fits:

a-2.fits:

a-4.fits:

a-5.fits: a-1.fits a-2.fits a-3.fits a-4.fits

a-6.fits: a-1.fits a-2.fits a-3.fits a-4.fits

a-8.fits: a-1.fits a-2.fits a-3.fits a-4.fits

a-7.fits: a-1.fits a-2.fits a-3.fits a-4.fits

a-9.fits: a-5.fits a-6.fits a-7.fits a-8.fits

a-11.fits: a-5.fits a-6.fits a-7.fits a-8.fits

a-12.fits: a-5.fits a-6.fits a-7.fits a-8.fits

a-10.fits: a-5.fits a-6.fits a-7.fits a-8.fits

a-13.fits: a-9.fits a-10.fits a-11.fits a-12.fits

a-15.fits: a-9.fits a-10.fits a-11.fits a-12.fits

a-14.fits: a-9.fits a-10.fits a-11.fits a-12.fits

11.2.2 Astronomy functions for Makefiles

FITS files (the standard data format in astronomy) have unique features (header keywords
and HDUs) that can greatly help designing workflows in Makefiles. The Makefile extension
functions of this section allow you to optimally use those features within your pipelines.
Besides FITS, when designing your workflow/pipeline with Gnuastro, there are also special
features like version checking that simplify your design.

$(ast-version-is STRING)

Returns 1 if the version of the used Gnuastro is equal to STRING, and 0 other-
wise. This is useful/critical for obtaining reproducible results on different sys-
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tems. It can be used in combination with Conditionals in Make (https://www.
gnu.org/software/make/manual/html_node/Conditionals.html) to ensure
the required version of Gnuastro is going to be used in your workflow.

For example, in the minimal working Makefile below, we are using it to specify
if the default (first) target (all) should have any prerequisites (and let the
workflow start), or if it should simply print a message (that the required version
of Gnuastro isn’t installed) and abort (without any prerequisites).

load /usr/local/lib/libgnuastro_make.so

gnuastro-version = 0.19

ifeq ($(ast-version-is $(gnuastro-version)),1)

all: paper.pdf

else

all:; @echo "Please use Gnuastro $(gnuastro-version)"

endif

result.fits: input.fits

astnoisechisel $< --output=$@

paper.pdf: result.fits

pdflatex --halt-on-error paper.tex

$(ast-fits-with-keyvalue KEYNAME, KEYVALUES, HDU, FITS_FILES)

Will select only the FITS files (from a list of many in FITS_FILES, non-
FITS files are ignored), where the KEYNAME keyword has the value(s) given
in KEYVALUES. Only the HDU given in the HDU argument will be checked. Ac-
cording to the FITS standard, the keyword name is not case sensitive, but the
keyword value is.

For example, if you have many FITS files in the /datasets/images directory,
the minimal Makefile below will put those with a value of BAR or BAZ for the
FOO keyword in HDU number 1 in the selected Make variable. Notice how
there is no comma between BAR and BAZ: you can specify any series of values.

load /usr/local/lib/libgnuastro_make.so

files := $(wildcard /datasets/images/*.fits)

selected := $(ast-fits-with-keyvalue FOO, BAR BAZ, 1, $(files))

all:

echo "Full: $(words $(files)) files";

echo "Selected: $(words $(selected)) files"

$(ast-fits-unique-keyvalues KEYNAME, HDU, FITS_FILES)

Will return the unique values given to the given FITS keyword (KEYNAME) in
the given HDU of all the input FITS files (non-FITS files are ignored). For
example, after the commands below, the keyvalues variable will contain the
unique values given to the FOO keyword in HDU number 1 of all the FITS files
in /datasets/images/*.fits.

https://www.gnu.org/software/make/manual/html_node/Conditionals.html
https://www.gnu.org/software/make/manual/html_node/Conditionals.html
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files := $(wildcard /datasets/images/*.fits)

keyvalues := $(ast-fits-unique-keyvalues FOO, 1, $(files))

This is useful when you do not know the full range of values a-priori. For
example, let’s assume that you are looking at a night’s observations with a
telescope and the purpose of the FITS image is written in the OBJECT keyword
of the image (which we can assume is in HDU number 1). This keyword can
have the name of the various science targets (for example, NGC123 and M31) and
calibration targets (for example, BIAS and FLAT). The list of science targets
is different from project to project, such that in one night, you can observe
multiple projects. But the calibration frames have unique names. Knowing the
calibration keyword values, you can extract the science keyword values of the
night with the command below (feeding the output of this function to Make’s
filter-out function).

calib = BIAS FLAT

files := $(wildcard /datasets/images/*.fits)

science := $(filter-out $(calib), \

$(ast-fits-unique-keyvalues OBJECT, 1, $(files)))

The science variable will now contain the unique science targets that were
observed in your selected FITS images. You can use it to group the various
exposures together in the next stages to make separate stacks of deep images
for each science target (you can select FITS files based on their keyword values
using the ast-fits-with-keyvalue function, which is described separately in
this section).
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12 Library

Each program in Gnuastro that was discussed in the prior chapters (or any program in
general) is a collection of functions that is compiled into one executable file which can
communicate directly with the outside world. The outside world in this context is the
operating system. By communication, we mean that control is directly passed to a program
from the operating system with a (possible) set of inputs and after it is finished, the program
will pass control back to the operating system. For programs written in C and C++, the
unique main function is in charge of this communication.

Similar to a program, a library is also a collection of functions that is compiled into one
executable file. However, unlike programs, libraries do not have a main function. Therefore
they cannot communicate directly with the outside world. This gives you the chance to
write your own main function and call library functions from within it. After compiling
your program into a binary executable, you just have to link it to the library and you are
ready to run (execute) your program. In this way, you can use Gnuastro at a much lower-
level, and in combination with other libraries on your system, you can significantly boost
your creativity.

This chapter starts with a basic introduction to libraries and how you can use them
in Section 12.1 [Review of library fundamentals], page 724. The separate functions in
the Gnuastro library are then introduced (classified by context) in Section 12.3 [Gnuastro
library], page 736. If you end up routinely using a fixed set of library functions, with a well-
defined input and output, it will be much more beneficial if you define a program for the
job. Therefore, in its Section 3.2.2 [Version controlled source], page 226, Gnuastro comes
with the Section 13.4.2 [The TEMPLATE program], page 938, to easily define your own
programs(s).

12.1 Review of library fundamentals

Gnuastro’s libraries are written in the C programming language. In Section 13.1 [Why C
programming language?], page 928, we have thoroughly discussed the reasons behind this
choice. C was actually created to write Unix, thus understanding the way C works can
greatly help in effectively using programs and libraries in all Unix-like operating systems.
Therefore, in the following subsections some important aspects of C, as it relates to libraries
(and thus programs that depend on them) on Unix are reviewed. First we will discuss
header files in Section 12.1.1 [Headers], page 725, and then go onto Section 12.1.2 [Linking],
page 728. This section finishes with Section 12.1.3 [Summary and example on libraries],
page 731. If you are already familiar with these concepts, please skip this section and go
directly to Section 12.3 [Gnuastro library], page 736.

In theory, a full operating system (or any software) can be written as one function. Such a
software would not need any headers or linking (that are discussed in the subsections below).
However, writing that single function and maintaining it (adding new features, fixing bugs,
documentation, etc.) would be a programmer or scientist’s worst nightmare! Furthermore,
all the hard work that went into creating it cannot be reused in other software: every other
programmer or scientist would have to re-invent the wheel. The ultimate purpose behind
libraries (which come with headers and have to be linked) is to address this problem and
increase modularity: “the degree to which a system’s components may be separated and
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recombined” (from Wikipedia). The more modular the source code of a program or library,
the easier maintaining it will be, and all the hard work that went into creating it can be
reused for a wider range of problems.

12.1.1 Headers

C source code is read from top to bottom in the source file, therefore program components
(for example, variables, data structures and functions) should all be defined or declared
closer to the top of the source file: before they are used. Defining something in C or C++
is jargon for providing its full details. Declaring it, on the other-hand, is jargon for only
providing the minimum information needed for the compiler to pass it temporarily and fill
in the detailed definition later.

For a function, the declaration only contains the inputs and their data-types along with
the output’s type1. The definition adds to the declaration by including the exact details of
what operations are done to the inputs to generate the output. As an example, take this
simple summation function:

double

sum(double a, double b)

{

return a + b;

}

What you see above is the definition of this function: it shows you (and the compiler)
exactly what it does to the two double type inputs and that the output also has a double

type. Note that a function’s internal operations are rarely so simple and short, it can be
arbitrarily long and complicated. This unreasonably short and simple function was chosen
here for ease of reading. The declaration for this function is:

double

sum(double a, double b);

You can think of a function’s declaration as a building’s address in the city, and the definition
as the building’s complete blueprints. When the compiler confronts a call to a function
during its processing, it does not need to know anything about how the inputs are processed
to generate the output. Just as the postman does not need to know the inner structure
of a building when delivering the mail. The declaration (address) is enough. Therefore by
declaring the functions once at the start of the source files, we do not have to worry about
defining them after they are used.

Even for a simple real-world operation (not a simple summation like above!), you will
soon need many functions (for example, some for reading/preparing the inputs, some for
the processing, and some for preparing the output). Although it is technically possible,
managing all the necessary functions in one file is not easy and is contrary to the modularity
principle (see Section 12.1 [Review of library fundamentals], page 724), for example, the
functions for preparing the input can be usable in your other projects with a different
processing. Therefore, as we will see later (in Section 12.1.2 [Linking], page 728), the
functions do not necessarily need to be defined in the source file where they are used. As
long as their definitions are ultimately linked to the final executable, everything will be
fine. For now, it is just important to remember that the functions that are called within

1 Recall that in C, functions only have one output.
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one source file must be declared within the source file (declarations are mandatory), but
not necessarily defined there.

In the spirit of modularity, it is common to define contextually similar functions in one
source file. For example, in Gnuastro, functions that calculate the median, mean and other
statistical functions are defined in lib/statistics.c, while functions that deal directly
with FITS files are defined in lib/fits.c.

Keeping the definition of similar functions in a separate file greatly helps their manage-
ment and modularity, but this fact alone does not make things much easier for the caller’s
source code: recall that while definitions are optional, declarations are mandatory. So if
this was all, the caller would have to manually copy and paste (include) all the declarations
from the various source files into the file they are working on now. To address this prob-
lem, programmers have adopted the header file convention: the header file of a source code
contains all the declarations that a caller would need to be able to use any of its functions.
For example, in Gnuastro, lib/statistics.c (file containing function definitions) comes
with lib/gnuastro/statistics.h (only containing function declarations).

The discussion above was mainly focused on functions, however, there are many more
programming constructs such as preprocessor macros and data structures. Like functions,
they also need to be known to the compiler when it confronts a call to them. So the header
file also contains their definitions or declarations when they are necessary for the functions.

Preprocessor macros (or macros for short) are replaced with their defined value by the
preprocessor before compilation. Conventionally they are written only in capital letters
to be easily recognized. It is just important to understand that the compiler does not
see the macros, it sees their fixed values. So when a header specifies macros you can do
your programming without worrying about the actual values. The standard C types (for
example, int, or float) are very low-level and basic. We can collect multiple C types into
a structure for a higher-level way to keep and pass-along data. See Section 12.3.6.1 [Generic
data container (gal_data_t)], page 755, for some examples of macros and data structures.

The contents in the header need to be included into the caller’s source code with a
special preprocessor command: #include <path/to/header.h>. As the name suggests,
the preprocessor goes through the source code prior to the processor (or compiler). One of
its jobs is to include, or merge, the contents of files that are mentioned with this directive in
the source code. Therefore the compiler sees a single entity containing the contents of the
main file and all the included files. This allows you to include many (sometimes thousands
of) declarations into your code with only one line. Since the headers are also installed with
the library into your system, you do not even need to keep a copy of them for each separate
program, making things even more convenient.

Try opening some of the .c files in Gnuastro’s lib/ directory with a text editor
to check out the include directives at the start of the file (after the copyright notice).
Let’s take lib/fits.c as an example. You will notice that Gnuastro’s header files (like
gnuastro/fits.h) are indeed within this directory (the fits.h file is in the gnuastro/

directory). You will notice that files like stdio.h, or string.h are not in this directory
(or anywhere within Gnuastro).
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On most systems the basic C header files (like stdio.h and string.h mentioned above)
are located in /usr/include/2. Your compiler is configured to automatically search that
directory (and possibly others), so you do not have to explicitly mention these directories.
Go ahead, look into the /usr/include directory and find stdio.h for example. When the
necessary header files are not in those specific libraries, the preprocessor can also search
in places other than the current directory. You can specify those directories with this
preprocessor option3:

-I DIR “Add the directory DIR to the list of directories to be searched for header
files. Directories named by ’-I’ are searched before the standard system include
directories. If the directory DIR is a standard system include directory, the
option is ignored to ensure that the default search order for system directories
and the special treatment of system headers are not defeated...” (quoted from
the GNU Compiler Collection manual). Note that the space between I and the
directory is optional and commonly not used.

If the preprocessor cannot find the included files, it will abort with an error. In fact a
common error when building programs that depend on a library is that the compiler does not
know where a library’s header is (see Section 3.3.5 [Known issues], page 244). So you have
to manually tell the compiler where to look for the library’s headers with the -I option. For
a small software with one or two source files, this can be done manually (see Section 12.1.3
[Summary and example on libraries], page 731). However, to enhance modularity, Gnuastro
(and most other bin/libraries) contain many source files, so the compiler is invoked many
times4. This makes manual addition or modification of this option practically impossible.

To solve this problem, in the GNU build system, there are conventional environment
variables for the various kinds of compiler options (or flags). These environment variables
are used in every call to the compiler (they can be empty). The environment variable used
for the C preprocessor (or CPP) is CPPFLAGS. By giving CPPFLAGS a value once, you can
be sure that each call to the compiler will be affected. See Section 3.3.5 [Known issues],
page 244, for an example of how to set this variable at configure time.

As described in Section 3.3.1.2 [Installation directory], page 233, you can select the top
installation directory of a software using the GNU build system, when you ./configure

it. All the separate components will be put in their separate sub-directory under that, for
example, the programs, compiled libraries and library headers will go into $prefix/bin

(replace $prefix with a directory), $prefix/lib, and $prefix/include respectively. For
enhanced modularity, libraries that contain diverse collections of functions (like GSL, WC-
SLIB, and Gnuastro), put their header files in a sub-directory unique to themselves. For
example, all Gnuastro’s header files are installed in $prefix/include/gnuastro. In your
source code, you need to keep the library’s sub-directory when including the headers from
such libraries, for example, #include <gnuastro/fits.h>5. Not all libraries need to follow
this convention, for example, CFITSIO only has one header (fitsio.h) which is directly
installed in $prefix/include.

2 The include/ directory name is taken from the pre-processor’s #include directive, which is also the
motivation behind the ‘I’ in the -I option to the pre-processor.

3 Try running Gnuastro’s make and find the directories given to the compiler with the -I option.
4 Nearly every command you see being executed after running make is one call to the compiler.
5 the top $prefix/include directory is usually known to the compiler
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12.1.2 Linking

To enhance modularity, similar functions are defined in one source file (with a .c suffix, see
Section 12.1.1 [Headers], page 725, for more). After running make, each human-readable,
.c file is translated (or compiled) into a computer-readable “object” file (ending with .o).
Note that object files are also created when building programs, they are not particular
to libraries. Try opening Gnuastro’s lib/ and bin/progname/ directories after running
make to see these object files6. Afterwards, the object files are linked together to create an
executable program or a library.

The object files contain the full definition of the functions in the respective .c file along
with a list of any other function (or generally “symbol”) that is referenced there. To get
a list of those functions you can use the nm program which is part of GNU Binutils. For
example, from the top Gnuastro directory, run:

$ nm bin/arithmetic/arithmetic.o

This will print a list of all the functions (more generally, ‘symbols’) that were called within
bin/arithmetic/arithmetic.c along with some further information (for example, a T

in the second column shows that this function is actually defined here, U says that it is
undefined here). Try opening the .c file to check some of these functions for yourself. Run
info nm for more information.

To recap, the compiler created the separate object files mentioned above for each .c file.
The linker will then combine all the symbols of the various object files (and libraries) into
one program or library. In the case of Arithmetic (a program) the contents of the object
files in bin/arithmetic/ are copied (and re-ordered) into one final executable file which
we can run from the operating system.

There are two ways to link all the necessary symbols: static and dynamic/shared. When
the symbols (computer-readable function definitions in most cases) are copied into the
output, it is called static linking. When the symbols are kept in their original file and only
a reference to them is kept in the executable, it is called dynamic, or shared linking.

Let’s have a closer look at the executable to understand this better: we will assume
you have built Gnuastro without any customization and installed Gnuastro into the default
/usr/local/ directory (see Section 3.3.1.2 [Installation directory], page 233). If you tried
the nm command on one of Arithmetic’s object files above, then with the command below
you can confirm that all the functions that were defined in the object file above (had a T in
the second column) are also defined in the astarithmetic executable:

$ nm /usr/local/bin/astarithmetic

These symbols/function have been statically linked (copied) in the final executable. But
you will notice that there are still many undefined symbols in the executable (those with a
U in the second column). One class of such functions are Gnuastro’s own library functions
that start with ‘gal_’:

$ nm /usr/local/bin/astarithmetic | grep gal_

These undefined symbols (functions) are present in another file and will be linked to
the Arithmetic program every time you run it. Therefore they are known as dynamically

6 Gnuastro uses GNU Libtool for portable library creation. Libtool will also make a .lo file for each .c

file when building libraries (.lo files are human-readable).
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linked libraries7. As we saw above, static linking is done when the executable is being built.
However, when a program is dynamically linked to a library, at build-time, the library’s
symbols are only checked with the available libraries: they are not actually copied into
the program’s executable. Every time you run the program, the (dynamic) linker will be
activated and will try to link the program to the installed library before the program starts.

If you want all the libraries to be statically linked to the executables, you have to tell
Libtool (which Gnuastro uses for the linking) to disable shared libraries at configure time8:

$ configure --disable-shared

Try configuring Gnuastro with the command above, then build and install it (as described
in Section 1.1 [Quick start], page 1). Afterwards, check the gal_ symbols in the installed
Arithmetic executable like before. You will see that they are actually copied this time
(have a T in the second column). If the second column does not convince you, look at the
executable file size with the following command:

$ ls -lh /usr/local/bin/astarithmetic

It should be around 4.2 Megabytes with this static linking. If you configure and build
Gnuastro again with shared libraries enabled (which is the default), you will notice that it
is roughly 100 Kilobytes!

This huge difference would have been very significant in the old days, but with the
roughly Terabyte storage drives commonly in use today, it is negligible. Fortunately, output
file size is not the only benefit of dynamic linking: since it links to the libraries at run-time
(rather than build-time), you do not have to rebuild a higher-level program or library when
an update comes for one of the lower-level libraries it depends on. You just install the new
low-level library and it will automatically be used/linked next time in the programs that
use it. To be fair, this also creates a few complications9:

• Reproducibility: Even though your high-level tool has the same version as before, with
the updated library, you might not get the same results.

• Broken links: if some functions have been changed or removed in the updated library,
then the linker will abort with an error at run-time. Therefore you need to rebuild
your higher-level program or library.

To see a list of all the shared libraries that are needed for a program or a shared library
to run, you can use GNU C library’s ldd10 program, for example:

$ ldd /usr/local/bin/astarithmetic

Library file names (in their installation directory) start with a lib and their ending
(suffix) shows if they are static (.a) or dynamic (.so), as described below. The name of
the library is in the middle of these two, for example, libgsl.a or libgnuastro.a (GSL

7 Do not confuse dynamically linked libraries with dynamically loaded libraries. The former (that is
discussed here) are only loaded once at the program startup. However, the latter can be loaded anytime
during the program’s execution, they are also known as plugins.

8 Libtool is very common and is commonly used. Therefore, you can use this option to configure on most
programs using the GNU build system if you want static linking.

9 Both of these can be avoided by joining the mailing lists of the lower-level libraries and checking the
changes in newer versions before installing them. Updates that result in such behaviors are generally
heavily emphasized in the release notes.

10 If your operating system is not using the GNU C library, you might need another tool.



Chapter 12: Library 730

and Gnuastro’s static libraries), and libgsl.so.23.0.0 or libgnuastro.so.4.0.0 (GSL
and Gnuastro’s shared library, the numbers may be different).

• A static library is known as an archive file and has the .a suffix. A static library is not
an executable file.

• A shared library ends with the .so.X.Y.Z suffix and is executable. The three numbers
in the suffix, describe the version of the shared library. Shared library versions are
defined to allow multiple versions of a shared library simultaneously on a system and
to help detect possible updates in the library and programs that depend on it by the
linker.

It is very important to mention that this version number is different from the software
version number (see Section 1.7 [Version numbering], page 11), so do not confuse the
two. See the “Library interface versions” chapter of GNU Libtool for more.

For each shared library, we also have two symbolic links ending with .so.X and .so.
They are automatically set by the installer, but you can change them (point them to
another version of the library) when you have multiple versions of a library on your
system.

Libraries that are built with GNU Libtool (including Gnuastro and its dependencies),
build both static and dynamic libraries by default and install them in prefix/lib/ directory
(for more on prefix, see Section 3.3.1.2 [Installation directory], page 233). In this way,
programs depending on the libraries can link with them however they prefer. See the
contents of /usr/local/lib with the command below to see both the static and shared
libraries available there, along with their executable nature and the symbolic links:

$ ls -l /usr/local/lib/

To link with a library, the linker needs to know where to find the library. At compilation
time, these locations can be passed to the linker with two separate options (see Section 12.1.3
[Summary and example on libraries], page 731, for an example) as described below. You
can see these options and their usage in practice while building Gnuastro (after running
make):

-L DIR Will tell the linker to look into DIR for the libraries. For example,
-L/usr/local/lib, or -L/home/yourname/.local/lib. You can make
multiple calls to this option, so the linker looks into several directories at
compilation time. Note that the space between L and the directory is optional
and commonly ignored (written as -LDIR).

-lLIBRARY

Specify the unique library identifier/name (not containing directory or
shared/dynamic nature) to be linked with the executable. As discussed above,
library file names have fixed parts which must not be given to this option.
So -lgsl will guide the linker to either look for libgsl.a or libgsl.so

(depending on the type of linking it is suppose to do). You can link many
libraries by repeated calls to this option.

Very important: The place of this option on the compiler’s command matters.
This is often a source of confusion for beginners, so let’s assume you have asked
the linker to link with library A using this option. As soon as the linker confronts
this option, it looks into the list of the undefined symbols it has found until that
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point and does a search in library A for any of those symbols. If any pending
undefined symbol is found in library A, it is used. After the search in undefined
symbols is complete, the contents of library A are completely discarded from
the linker’s memory. Therefore, if a later object file or library uses an unlinked
symbol in library A, the linker will abort after it has finished its search in all
the input libraries or object files.

As an example, Gnuastro’s gal_fits_img_read function depends on the fits_
read_pix function of CFITSIO (specified with -lcfitsio, which in turn de-
pends on the cURL library, called with -lcurl). So the proper way to link
something that uses this function is -lgnuastro -lcfitsio -lcurl. If instead,
you give: -lcfitsio -lgnuastro the linker will complain and abort. To avoid
such linking complexities when using Gnuastro’s library, we recommend using
Section 12.2 [BuildProgram], page 732.

If you have compiled and linked your program with a dynamic library, then the dynamic
linker also needs to know the location of the libraries after building the program: every time
the program is run afterwards. Therefore, it may happen that you do not get any errors
when compiling/linking a program, but are unable to run your program because of a failure
to find a library. This happens because the dynamic linker has not found the dynamic
library at run time.

To find the dynamic libraries at run-time, the linker looks into the paths, or directories,
in the LD_LIBRARY_PATH environment variable. For a discussion on environment variables,
especially search paths like LD_LIBRARY_PATH, and how you can add new directories to
them, see Section 3.3.1.2 [Installation directory], page 233.

12.1.3 Summary and example on libraries

After the mostly abstract discussions of Section 12.1.1 [Headers], page 725, and
Section 12.1.2 [Linking], page 728, we will give a small tutorial here. But before that, let’s
recall the general steps of how your source code is prepared, compiled and linked to the
libraries it depends on so you can run it:

1. The preprocessor includes the header (.h) files into the function definition (.c) files,
expands preprocessor macros. Generally the preprocessor prepares the human-readable
source for compilation (reviewed in Section 12.1.1 [Headers], page 725).

2. The compiler will translate (compile) the human-readable contents of each source
(merged .c and the .h files, or generally the output of the preprocessor) into the
computer-readable code of .o files.

3. The linker will link the called function definitions from various compiled files to create
one unified object. When the unified product has a main function, this function is the
product’s only entry point, enabling the operating system or user to directly interact
with it, so the product is a program. When the product does not have a main function,
the linker’s product is a library and it is exported functions can be linked to other
executables (it has many entry points).

The GNU Compiler Collection (or GCC for short) will do all three steps. So as a first
example, from Gnuastro’s source, go to tests/lib/. This directory contains the library
tests, you can use these as some simple tutorials. For this demonstration, we will compile
and run the arraymanip.c. This small program will call Gnuastro library for some simple
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operations on an array (open it and have a look). To compile this program, run this
command inside the directory containing it.

$ gcc arraymanip.c -lgnuastro -lm -o arraymanip

The two -lgnuastro and -lm options (in this order) tell GCC to first link with the Gnuastro
library and then with C’s math library. The -o option is used to specify the name of the
output executable, without it the output file name will be a.out (on most OSs), independent
of your input file name(s).

If your top Gnuastro installation directory (let’s call it $prefix, see Section 3.3.1.2
[Installation directory], page 233) is not recognized by GCC, you will get preprocessor errors
for unknown header files. Once you fix it, you will get linker errors for undefined functions.
To fix both, you should run GCC as follows: additionally telling it which directories it can
find Gnuastro’s headers and compiled library (see Section 12.1.1 [Headers], page 725, and
Section 12.1.2 [Linking], page 728):

$ gcc -I$prefix/include -L$prefix/lib arraymanip.c -lgnuastro -lm \

-o arraymanip

This single command has done all the preprocessor, compilation and linker operations.
Therefore no intermediate files (object files in particular) were created, only a single output
executable was created. You are now ready to run the program with:

$ ./arraymanip

The Gnuastro functions called by this program only needed to be linked with the C math
library. But if your program needs WCS coordinate transformations, needs to read a FITS
file, needs special math operations (which include its linear algebra operations), or you want
it to run on multiple CPU threads, you also need to add these libraries in the call to GCC:
-lgnuastro -lwcs -lcfitsio -lgsl -lgslcblas -pthread -lm. In Section 12.3 [Gnuas-
tro library], page 736, where each function is documented, it is mentioned which libraries
(if any) must also be linked when you call a function. If you feel all these linkings can be
confusing, please consider Gnuastro’s Section 12.2 [BuildProgram], page 732, program.

12.2 BuildProgram

The number and order of libraries that are necessary for linking a program with Gnuastro
library might be too confusing when you need to compile a small program for one particular
job (with one source file). BuildProgram will use the information gathered during config-
uring Gnuastro and link with all the appropriate libraries on your system. This will allow
you to easily compile, link and run programs that use Gnuastro’s library with one simple
command and not worry about which libraries to link to, or the linking order.

BuildProgram uses GNU Libtool to find the necessary libraries to link against (GNU
Libtool is the same program that builds all of Gnuastro’s libraries and programs when you
run make). So in the future, if Gnuastro’s prerequisite libraries change or other libraries are
added, you do not have to worry, you can just run BuildProgram and internal linking will
be done correctly.
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� �
BuildProgram requires GNU Libtool: BuildProgram depends on GNU Libtool, other im-
plementations do not have some necessary features. If GNU Libtool is not available at
Gnuastro’s configure time, you will get a notice at the end of the configuration step and
BuildProgram will not be built or installed. Please see Section 3.1.2 [Optional dependen-
cies], page 214, for more information.
 	
12.2.1 Invoking BuildProgram

BuildProgram will compile and link a C source program with Gnuastro’s library and all
its dependencies, greatly facilitating the compilation and running of small programs that
use Gnuastro’s library. The executable name is astbuildprog with the following general
template:

$ astbuildprog [OPTION...] C_SOURCE_FILE

One line examples:

## Compile, link and run `myprogram.c':

$ astbuildprog myprogram.c

## Similar to previous, but with optimization and compiler warnings:

$ astbuildprog -Wall -O2 myprogram.c

## Compile and link `myprogram.c', then run it with `image.fits'

## as its argument:

$ astbuildprog myprogram.c image.fits

## Also look in other directories for headers and linking:

$ astbuildprog -Lother -Iother/dir myprogram.c

## Just build (compile and link) `myprogram.c', do not run it:

$ astbuildprog --onlybuild myprogram.c

If BuildProgram is to run, it needs a C programming language source file as input. By
default it will compile and link the given source into a final executable program and run it.
The built executable name can be set with the optional --output option. When no output
name is set, BuildProgram will use Gnuastro’s Section 4.9 [Automatic output], page 290,
system to remove the suffix of the input source file (usually .c) and use the resulting name
as the built program name.

For the full list of options that BuildProgram shares with other Gnuastro programs,
see Section 4.1.2 [Common options], page 251. You may also use Gnuastro’s Section 4.2
[Configuration files], page 268, to specify other libraries/headers to use for special directories
and not have to type them in every time.

The C compiler can be chosen with the --cc option, or environment variables, please see
the description of --cc for more. The two common LDFLAGS and CPPFLAGS environment
variables are also checked and used in the build by default. Note that they are placed
after the values to the corresponding options --includedir and --linkdir. Therefore
BuildProgram’s own options take precedence. Using environment variables can be disabled
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with the --noenv option. Just note that BuildProgram also keeps the important flags in
these environment variables in its configuration file. Therefore, in many cases, even though
you may needed them to build Gnuastro, you will not need them in BuildProgram.

The first argument is considered to be the C source file that must be compiled and
linked. Any other arguments (non-option tokens on the command-line) will be passed onto
the program when BuildProgram wants to run it. Recall that by default BuildProgram will
run the program after building it. This behavior can be disabled with the --onlybuild

option.

When the --quiet option (see Section 4.1.2.3 [Operating mode options], page 257) is
not called, BuildPrograms will print the compilation and running commands. Once your
program grows and you break it up into multiple files (which are much more easily managed
with Make), you can use the linking flags of the non-quiet output in your Makefile.

-c STR

--cc=STR C compiler to use for the compilation, if not given environment variables will
be used as described in the next paragraph. If the compiler is in your sys-
tem’s search path, you can simply give its name, for example, --cc=gcc. If
it is not in your system’s search path, you can give its full path, for example,
--cc=/path/to/your/custom/cc.

If this option has no value after parsing the command-line and all configuration
files (see Section 4.2.2 [Configuration file precedence], page 269), then Build-
Program will look into the following environment variables in the given order
CC and GCC. If they are also not defined, BuildProgram will ultimately default
to the gcc command which is present in many systems (sometimes as a link to
other compilers).

-I STR

--includedir=STR

Directory to search for files that you #include in your C program. Note that
headers relating to Gnuastro and its dependencies do not need this option.
This is only necessary if you want to use other headers. It may be called
multiple times and order matters. This directory will be searched before those
of Gnuastro’s build and also the system search directories. See Section 12.1.1
[Headers], page 725, for a thorough introduction.

From the GNU C preprocessor manual: “Add the directory STR to the list of
directories to be searched for header files. Directories named by -I are searched
before the standard system include directories. If the directory STR is a standard
system include directory, the option is ignored to ensure that the default search
order for system directories and the special treatment of system headers are not
defeated”.

-L STR

--linkdir=STR

Directory to search for compiled libraries to link the program with. Note that
all the directories that Gnuastro was built with will already be used by Build-
Program (GNU Libtool). This option is only necessary if your libraries are in
other directories. Multiple calls to this option are possible and order matters.
This directory will be searched before those of Gnuastro’s build and also the
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system search directories. See Section 12.1.2 [Linking], page 728, for a thorough
introduction.

-l STR

--linklib=STR

Library to link with your program. Note that all the libraries that Gnuastro
was built with will already be linked by BuildProgram (GNU Libtool). This
option is only necessary if you want to link with other directories. Multiple calls
to this option are possible and order matters. This library will be linked before
Gnuastro’s library or its dependencies. See Section 12.1.2 [Linking], page 728,
for a thorough introduction.

-O INT/STR

--optimize=INT/STR

Compiler optimization level: 0 (for no optimization, good debugging), 1, 2, 3
(for the highest level of optimizations). From the GNU Compiler Collection
(GCC) manual: “Without any optimization option, the compiler’s goal is to
reduce the cost of compilation and to make debugging produce the expected
results. Statements are independent: if you stop the program with a break point
between statements, you can then assign a new value to any variable or change
the program counter to any other statement in the function and get exactly
the results you expect from the source code. Turning on optimization flags
makes the compiler attempt to improve the performance and/or code size at
the expense of compilation time and possibly the ability to debug the program.”
Please see your compiler’s manual for the full list of acceptable values to this
option.

-g

--debug Emit extra information in the compiled binary for use by a debugger. When
calling this option, it is best to explicitly disable optimization with -O0. To
combine both options you can run -gO0 (see Section 4.1.1.2 [Options], page 249,
for how short options can be merged into one).

-W STR

--warning=STR

Print compiler warnings on command-line during compilation. “Warnings are
diagnostic messages that report constructions that are not inherently erroneous
but that are risky or suggest there may have been an error.” (from the GCC
manual). It is always recommended to compile your programs with warnings
enabled.

All compiler warning options that start with W are usable by this option in
BuildProgram also, see your compiler’s manual for the full list. Some of the most
common values to this option are: pedantic (Warnings related to standard C)
and all (all issues the compiler confronts).

-t

--tag=STR

The language configuration information. Libtool can build objects and libraries
in many languages. In many cases, it can identify the language automatically,
but when it does not you can use this option to explicitly notify Libtool of the
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language. The acceptable values are: CC for C, CXX for C++, GCJ for Java, F77
for Fortran 77, FC for Fortran, GO for Go and RC for Windows Resource. Note
that the Gnuastro library is not yet fully compatible with all these languages.

-b

--onlybuild

Only build the program, do not run it. By default, the built program is imme-
diately run afterwards.

-d

--deletecompiled

Delete the compiled binary file after running it. This option is only relevant
when the compiled program is run after being built. In other words, it is only
relevant when --onlybuild is not called. It can be useful when you are busy
testing a program or just want a fast result and the actual binary/compiled file
is not of later use.

-a STR

--la=STR Use the given .la file (Libtool control file) instead of the one that was pro-
duced from Gnuastro’s configuration results. The Libtool control file keeps all
the necessary information for building and linking a program with a library
built by Libtool. The default prefix/lib/libgnuastro.la keeps all the in-
formation necessary to build a program using the Gnuastro library gathered
during configure time (see Section 3.3.1.2 [Installation directory], page 233, for
prefix). This option is useful when you prefer to use another Libtool control
file.

-e

--noenv Do not use environment variables in the build, just use the values given to
the options. As described above, environment variables like CC, GCC, LDFLAGS,
CPPFLAGS will be read by default and used in the build if they have been defined.

12.3 Gnuastro library

Gnuastro library’s programming constructs (function declarations, macros, data structures,
or global variables) are classified by context into multiple header files (see Section 12.1.1
[Headers], page 725)11. In this section, the functions in each header will be discussed
under a separate sub-section, which includes the name of the header. Assuming a function
declaration is in headername.h, you can include its declaration in your source code with:

# include <gnuastro/headername.h>

The names of all constructs in headername.h are prefixed with gal_headername_ (or GAL_
HEADERNAME_ for macros). The gal_ prefix stands for GNU Astronomy Library.

Gnuastro library functions are compiled into a single file which can be linked on the
command-line with the -lgnuastro option. See Section 12.1.2 [Linking], page 728, and
Section 12.1.3 [Summary and example on libraries], page 731, for an introduction on linking
and some fully working examples of the libraries.

11 Within Gnuastro’s source, all installed .h files in lib/gnuastro/ are accompanied by a .c file in /lib/.
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Gnuastro’s library is a high-level library which depends on lower level libraries for some
operations (see Section 3.1 [Dependencies], page 211). Therefore if at least one of Gnuastro’s
functions in your program use functions from the dependencies, you will also need to link
those dependencies after linking with Gnuastro. See Section 12.2 [BuildProgram], page 732,
for a convenient way to deal with the dependencies. BuildProgram will take care of the
libraries to link with your program (which uses the Gnuastro library), and can even run the
built program afterwards. Therefore it allows you to conveniently focus on your exciting
science/research when using Gnuastro’s libraries.� �
Libraries are still under heavy development: Gnuastro was initially created to be a
collection of command-line programs. However, as the programs and their the shared
functions grew, internal (not installed) libraries were added. Since the 0.2 release, the
libraries are install-able. Hence the libraries are currently under heavy development and
will significantly evolve between releases and will become more mature and stable in due
time. It will stabilize with the removal of this notice. Check the NEWS file for interface
changes. If you use the Info version of this manual (see Section 4.3.4 [Info], page 273), you
do not have to worry: the documentation will correspond to your installed version.
 	
12.3.1 Configuration information (config.h)

The gnuastro/config.h header contains information about the full Gnuastro installation
on your system. Gnuastro developers should note that this is the only header that is not
available within Gnuastro, it is only available to a Gnuastro library user after installation.
Within Gnuastro, config.h (which is included in every Gnuastro .c file, see Section 13.3
[Coding conventions], page 931) has more than enough information about the overall Gnu-
astro installation.

[Macro]GAL_CONFIG_VERSION
This macro can be used as a string literal12 containing the version of Gnuastro that
is being used. See Section 1.7 [Version numbering], page 11, for the version formats.
For example:

printf("Gnuastro version: %s\n", GAL_CONFIG_VERSION);

or

char *gnuastro_version=GAL_CONFIG_VERSION;

[Macro]GAL_CONFIG_HAVE_GSL_INTERP_STEFFEN
GNU Scientific Library (GSL) is a mandatory dependency of Gnuastro (see Sec-
tion 3.1.1.1 [GNU Scientific Library], page 212). The Steffen interpolation function
that can be used in Gnuastro was introduced in GSL version 2.0 (released in October
2015). This macro will have a value of 1 if the host GSL contains this feature at
configure time, and 0 otherwise.

[Macro]GAL_CONFIG_HAVE_FITS_IS_REENTRANT
This macro will have a value of 1 when the CFITSIO of the host system has the fits_
is_reentrant function (available from CFITSIO version 3.30). This function is used

12 https://en.wikipedia.org/wiki/String_literal

https://en.wikipedia.org/wiki/String_literal
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to see if CFITSIO was configured to read a FITS file simultaneously on different
threads.

[Macro]GAL_CONFIG_HAVE_WCSLIB_VERSION
WCSLIB is the reference library for world coordinate system transformation (see
Section 3.1.1.3 [WCSLIB], page 213, and Section 12.3.13 [World Coordinate System
(wcs.h)], page 817). However, only more recent versions of WCSLIB also provide its
version number. If the WCSLIB that is installed on the system provides its version
(through the possibly existing wcslib_version function), this macro will have a value
of one, otherwise it will have a value of zero.

[Macro]GAL_CONFIG_HAVE_WCSLIB_DIS_H
This macro has a value of 1 if the host’s WCSLIB has the wcslib/dis.h header for
distortion-related operations.

[Macro]GAL_CONFIG_HAVE_WCSLIB_MJDREF
This macro has a value of 1 if the host’s WCSLIB reads and stores the MJDREF FITS
header keyword as part of its core wcsprm structure.

[Macro]GAL_CONFIG_HAVE_WCSLIB_OBSFIX
This macro has a value of 1 if the host’s WCSLIB supports the OBSFIX feature (used
by wcsfix function to parse the input WCS for known errors).

[Macro]GAL_CONFIG_HAVE_PTHREAD_BARRIER
The POSIX threads standard define barriers as an optional requirement. Therefore,
some operating systems choose to not include it. As one of the ./configure step
checks, Gnuastro we check if your system has this POSIX thread barriers. If so, this
macro will have a value of 1, otherwise it will have a value of 0. see Section 12.3.2.1
[Implementation of pthread_barrier], page 740, for more.

[Macro]GAL_CONFIG_SIZEOF_LONG
[Macro]GAL_CONFIG_SIZEOF_SIZE_T

The size of (number of bytes in) the system’s long and size_t types. Their values are
commonly either 4 or 8 for 32-bit and 64-bit systems. You can also get this value with
the expression ‘sizeof size_t’ for example, without having to include this header.

[Macro]GAL_CONFIG_HAVE_LIBGIT2
Libgit2 is an optional dependency of Gnuastro (see Section 3.1.2 [Optional dependen-
cies], page 214). When it is installed and detected at configure time, this macro will
have a value of 1 (one). Otherwise, it will have a value of 0 (zero). Gnuastro also
comes with some wrappers to make it easier to use libgit2 (see Section 12.3.31 [Git
wrappers (git.h)], page 898).

[Macro]GAL_CONFIG_HAVE_PYTHON
Gnuastro can optionally provide a set of basic functions to facilitate wrapper libraries
in Python (see Section 12.3.32 [Python interface (python.h)], page 898). If a version
of Python 3.X was found on the host system that has the necessary Numpy headers,
this macro will be given a value of 1. Otherwise, it will be given a value of 0 and the
the Python interface functions won’t be available in the host’s Gnuastro library.
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[Macro]GAL_CONFIG_HAVE_GNUMAKE_H
Gnuastro provides a set of GNU Make extension functions (see Chapter 11 [Makefile
extensions (for GNU Make)], page 717). In order to use those, the host should have
gnumake.h in its include paths. This check is done at Gnuastro’s configuration time.
If it was found, this macro is given a value of 1, otherwise, it will have a value of 0.

12.3.2 Multithreaded programming (threads.h)

In recent years, newer CPUs do not have significantly higher frequencies any more. However,
CPUs are being manufactured with more cores, enabling more than one operation (thread)
at each instant. This can be very useful to speed up many aspects of processing and in
particular image processing.

Most of the programs in Gnuastro utilize multi-threaded programming for the CPU
intensive processing steps. This can potentially lead to a significant decrease in the running
time of a program, see Section 4.4.1 [A note on threads], page 275. In terms of reading
the code, you do not need to know anything about multi-threaded programming. You can
simply follow the case where only one thread is to be used. In these cases, threads are not
used and can be completely ignored.

When the C language was defined (the K&R’s book was written), using threads was
not common, so C’s threading capabilities are not introduced there. Gnuastro uses POSIX
threads for multi-threaded programming, defined in the pthread.h system wide header.
There are various resources for learning to use POSIX threads. An excellent tutorial
(https://computing.llnl.gov/tutorials/pthreads/) is provided by the Lawrence Liv-
ermore National Laboratory, with abundant figures to better understand the concepts, it
is a very good start. The book ‘Advanced programming in the Unix environment’13, by
Richard Stevens and Stephen Rago, Addison-Wesley, 2013 (Third edition) also has two
chapters explaining the POSIX thread constructs which can be very helpful.

An alternative to POSIX threads was OpenMP, but POSIX threads are low level, al-
lowing much more control, while being easier to understand, see Section 13.1 [Why C
programming language?], page 928. All the situations where threads are used in Gnuastro
currently are completely independent with no need of coordination between the threads.
Such problems are known as “embarrassingly parallel” problems. They are some of the
simplest problems to solve with threads and are also the ones that benefit most from them,
see the LLNL introduction14.

One very useful POSIX thread concept is pthread_barrier. Unfortunately, it is only
an optional feature in the POSIX standard, so some operating systems do not include it.
Therefore in Section 12.3.2.1 [Implementation of pthread_barrier], page 740, we introduce
our own implementation. This is a rather technical section only necessary for more technical
readers and you can safely ignore it. Following that, we describe the helper functions in
this header that can greatly simplify writing a multi-threaded program, see Section 12.3.2.2
[Gnuastro’s thread related functions], page 740, for more.

13 Do not let the title scare you! The two chapters on Multi-threaded programming are very self-sufficient
and do not need any more knowledge than K&R.

14 https://computing.llnl.gov/tutorials/parallel_comp/

https://computing.llnl.gov/tutorials/pthreads/
https://computing.llnl.gov/tutorials/pthreads/
https://computing.llnl.gov/tutorials/parallel_comp/
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12.3.2.1 Implementation of pthread_barrier

One optional feature of the POSIX Threads standard is the pthread_barrier concept. It
is a very useful high-level construct that allows for independent threads to “wait” behind a
“barrier” for the rest after they finish. Barriers can thus greatly simplify the code in a multi-
threaded program, so they are heavily used in Gnuastro. However, since it is an optional
feature in the POSIX standard, some operating systems do not include it. So to make
Gnuastro portable, we have written our own implementation of those pthread_barrier

functions.

At ./configure time, Gnuastro will check if pthread_barrier constructs are available
on your system or not. If pthread_barrier is not available, our internal implementation
will be compiled into the Gnuastro library and the definitions and declarations below will
be usable in your code with #include <gnuastro/threads.h>.

[Type]pthread_barrierattr_t
Type to specify the attributes of a POSIX threads barrier.

[Type]pthread_barrier_t
Structure defining the POSIX threads barrier.

[Function]int
pthread_barrier_init (pthread_barrier_t *b, pthread_barrierattr_t

*attr, unsigned int limit)
Initialize the barrier b, with the attributes attr and total limit (a number of) threads
that must wait behind it. This function must be called before spinning off threads.

[Function]int
pthread_barrier_wait (pthread_barrier_t *b)

This function is called within each thread, just before it is ready to return. Once a
thread’s function hits this, it will “wait” until all the other functions are also finished.

[Function]int
pthread_barrier_destroy (pthread_barrier_t *b)

Destroy all the information in the barrier structure. This should be called by the
function that spun-off the threads after all the threads have finished.� �
Destroy a barrier before re-using it: It is very important to destroy the barrier
before (possibly) reusing it. This destroy function not only destroys the internal
structures, it also waits (in 1 microsecond intervals, so you will not notice!) until all
the threads do not need the barrier structure any more. If you immediately start
spinning off new threads with a not-destroyed barrier, then the internal structure
of the remaining threads will get mixed with the new ones and you will get very
strange and apparently random errors that are extremely hard to debug.
 	

12.3.2.2 Gnuastro’s thread related functions

The POSIX Threads functions offered in the C library are very low-level and offer a great
range of control over the properties of the threads. So if you are interested in customiz-
ing your tools for complicated thread applications, it is strongly encouraged to get a nice
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familiarity with them. Some resources were introduced in Section 12.3.2 [Multithreaded
programming (threads.h)], page 739.

However, in many cases used in astronomical data analysis, you do not need communi-
cation between threads and each target operation can be done independently. Since such
operations are very common, Gnuastro provides the tools below to facilitate the creation
and management of jobs without any particular knowledge of POSIX Threads for such
operations. The most interesting high-level functions of this section are the gal_threads_
number and gal_threads_spin_off that identify the number of threads on the system and
spin-off threads. You can see a demonstration of using these functions in Section 12.4.3
[Library demo - multi-threaded operation], page 914.

[C struct]gal_threads_params
Structure keeping the parameters of each thread. When each thread is created, a
pointer to this structure is passed to it. The params element can be the pointer to a
structure defined by the user which contains all the necessary parameters to pass onto
the worker function. The rest of the elements within this structure are set internally
by gal_threads_spin_off and are relevant to the worker function.

struct gal_threads_params

{

size_t id; /* Id of this thread. */

void *params; /* User-identified pointer. */

size_t *indexs; /* Target indices given to this thread. */

pthread_barrier_t *b; /* Barrier for all threads. */

};

[Function]size_t
gal_threads_number ()

Return the number of threads that the operating system has available for your pro-
gram. This number is usually fixed for a single machine and does not change. So this
function is useful when you want to run your program on different machines (with
different CPUs).

[Function]void
gal_threads_spin_off (void *(*worker)(void *), void *caller_params,

size_t numactions, size_t numthreads, size_t minmapsize, int
quietmmap)

Distribute numactions jobs between numthreads threads and spin-off each thread
by calling the worker function. The caller_params pointer will also be passed to
worker as part of the gal_threads_params structure. For a fully working example
of this function, please see Section 12.4.3 [Library demo - multi-threaded operation],
page 914.

If there are many jobs (millions or billions) to organize, memory issues may become
important. With minmapsize you can specify the minimum byte-size to allocate the
necessary space in a memory-mapped file or alternatively in RAM. If quietmmap is
non-zero, then a warning will be printed upon creating a memory-mapped file. For
more on Gnuastro’s memory management, see Section 4.6 [Memory management],
page 279.
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[Function]void
gal_threads_attr_barrier_init (pthread_attr_t *attr,

pthread_barrier_t *b, size_t limit)
This is a low-level function in case you do not want to use gal_threads_spin_off. It
will initialize the general thread attribute attr and the barrier b with limit threads
to wait behind the barrier. For maximum efficiency, the threads initialized with this
function will be detached. Therefore no communication is possible between these
threads and in particular pthread_join will not work on these threads. You have to
use the barrier constructs to wait for all threads to finish.

[Function]char *
gal_threads_dist_in_threads (size_t numactions, size_t numthreads,

size_t minmapsize, int quietmmap, size_t **indexs, size_t
*icols)

This is a low-level function in case you do not want to use gal_threads_spin_off.
The job of this function is to distribute numactions jobs/actions in numthreads

threads. To do this, it will assign each job an ID, ranging from 0 to numactions-1.
The output is the allocated *indexs array and the *icols number. In memory, it
is just a simple 1D array that has numthreads × *icols elements. But you can
visualize it as a 2D array with numthreads rows and *icols columns. For more on
the logic of the distribution, see below.

When you have millions/billions of jobs to distribute, indexs will become very large.
For memory management (when to use a memory-mapped file, and when to use
RAM), you need to specify the minmapsize and quietmmap arguments. For more on
memory management, see Section 4.6 [Memory management], page 279. In general,
if your distributed jobs will not be on the scale of billions (and you want everything
to always be written in RAM), just set minmapsize=-1 and quietmmap=1.

When indexs is actually in a memory-mapped file, this function will return a string
containing the name of the file (that you can later give to gal_pointer_mmap_free

to free/delete). When indexs is in RAM, this function will return a NULL pointer.
So after you are finished with indexs, you can free it like this:

char *mmapname;

int quietmmap=1;

size_t *indexs, thrdcols;

size_t numactions=5000, minmapsize=-1;

size_t numthreads=gal_threads_number();

/* Distribute the jobs. */

mmapname=gal_threads_dist_in_threads(numactions, numthreads,

minmapsize, quietmmap,

&indexs, &thrdcols);

/* Do any processing you want... */

/* Free the 'indexs' array. */

if(mmapname) gal_pointer_mmap_free(&mmapname, quietmmap);

else free(indexs);
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Here is a brief description of the reasoning behind the indexs array and how the jobs
are distributed. Let’s assume you have A actions (where there is only one function
and the input values differ for each action) and T threads available to the system with
A > T (common values for these two would be A > 1000 and T < 10). Spinning off a
thread is not a cheap job and requires a significant number of CPU cycles. Therefore,
creating A threads is not the best way to address such a problem. The most efficient
way to manage the actions is such that only T threads are created, and each thread
works on a list of actions identified for it in series (one after the other). This way
your CPU will get all the actions done with minimal overhead.

The purpose of this function is to do what we explained above: each row in the
indexs array contains the indices of actions which must be done by one thread (so it
has numthreads rows with *icols columns). However, when using indexs, you do
not have to know the number of columns. It is guaranteed that all the rows finish with
GAL_BLANK_SIZE_T (see Section 12.3.5 [Library blank values (blank.h)], page 751).
The GAL_BLANK_SIZE_T macro plays a role very similar to a string’s \0: every row
finishes with this macro, so can easily stop parsing the indexes in the row as soon
as you confront GAL_BLANK_SIZE_T. For some real examples, please see the example
program in tests/lib/multithread.c for a demonstration.

12.3.3 Library data types (type.h)

Data in astronomy can have many types, numeric (numbers) and strings (names, identifiers).
The former can also be divided into integers and floats, see Section 4.5 [Numeric data types],
page 277, for a thorough discussion of the different numeric data types and which one is
useful for different contexts.

To deal with the very large diversity of types that are available (and used in different
contexts), in Gnuastro each type is identified with global integer variable with a fixed
name, this variable is then passed onto functions that can work on any type or is stored in
Gnuastro’s Section 12.3.6.1 [Generic data container (gal_data_t)], page 755, as one piece
of meta-data.

The actual values within these integer constants is irrelevant and you should never rely
on them. When you need to check, explicitly use the named variable in the table below. If
you want to check with more than one type, you can use C’s switch statement.

Since Gnuastro heavily deals with file input-output, the types it defines are fixed width
types, these types are portable to all systems and are defined in the standard C header
stdint.h. You do not need to include this header, it is included by any Gnuastro header
that deals with the different types. However, the most commonly used types in a C (or
C++) program (for example, int or long) are not defined by their exact width (storage
size), but by their minimum storage. So for example, on some systems, int may be 2 bytes
(16-bits, the minimum required by the standard) and on others it may be 4 bytes (32-bits,
common in modern systems).

With every type, a unique “blank” value (or place-holder showing the absence of data)
can be defined. Please see Section 12.3.5 [Library blank values (blank.h)], page 751, for
constants that Gnuastro recognizes as a blank value for each type. See Section 4.5 [Numeric
data types], page 277, for more explanation on the limits and particular aspects of each type.
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[Global integer]GAL_TYPE_INVALID
This is just a place-holder to specifically mark that no type has been set.

[Global integer]GAL_TYPE_BIT
Identifier for a bit-stream. Currently no program in Gnuastro works directly on bits,
but features will be added in the future.

[Global integer]GAL_TYPE_UINT8
Identifier for an unsigned, 8-bit integer type: uint8_t (from stdint.h), or an
unsigned char in most modern systems.

[Global integer]GAL_TYPE_INT8
Identifier for a signed, 8-bit integer type: int8_t (from stdint.h), or an signed

char in most modern systems.

[Global integer]GAL_TYPE_UINT16
Identifier for an unsigned, 16-bit integer type: uint16_t (from stdint.h), or an
unsigned short in most modern systems.

[Global integer]GAL_TYPE_INT16
Identifier for a signed, 16-bit integer type: int16_t (from stdint.h), or a short in
most modern systems.

[Global integer]GAL_TYPE_UINT32
Identifier for an unsigned, 32-bit integer type: uint32_t (from stdint.h), or an
unsigned int in most modern systems.

[Global integer]GAL_TYPE_INT32
Identifier for a signed, 32-bit integer type: int32_t (from stdint.h), or an int in
most modern systems.

[Global integer]GAL_TYPE_UINT64
Identifier for an unsigned, 64-bit integer type: uint64_t (from stdint.h), or an
unsigned long in most modern 64-bit systems.

[Global integer]GAL_TYPE_INT64
Identifier for a signed, 64-bit integer type: int64_t (from stdint.h), or an long in
most modern 64-bit systems.

[Global integer]GAL_TYPE_INT
Identifier for a int type. This is just an alias to int16, or int32 types, depending
on the system.

[Global integer]GAL_TYPE_UINT
Identifier for a unsigned int type. This is just an alias to uint16, or uint32 types,
depending on the system.

[Global integer]GAL_TYPE_ULONG
Identifier for a unsigned long type. This is just an alias to uint32, or uint64 types
for 32-bit, or 64-bit systems respectively.



Chapter 12: Library 745

[Global integer]GAL_TYPE_LONG
Identifier for a long type. This is just an alias to int32, or int64 types for 32-bit,
or 64-bit systems respectively.

[Global integer]GAL_TYPE_SIZE_T
Identifier for a size_t type. This is just an alias to uint32, or uint64 types for
32-bit, or 64-bit systems respectively.

[Global integer]GAL_TYPE_FLOAT32
Identifier for a 32-bit single precision floating point type or float in C.

[Global integer]GAL_TYPE_FLOAT64
Identifier for a 64-bit double precision floating point type or double in C.

[Global integer]GAL_TYPE_COMPLEX32
Identifier for a complex number composed of two float types. Note that the complex
type is not yet fully implemented in all Gnuastro’s programs.

[Global integer]GAL_TYPE_COMPLEX64
Identifier for a complex number composed of two double types. Note that the complex
type is not yet fully implemented in all Gnuastro’s programs.

[Global integer]GAL_TYPE_STRING
Identifier for a string of characters (char *).

[Global integer]GAL_TYPE_STRLL
Identifier for a linked list of string of characters (gal_list_str_t, see Section 12.3.8.1
[List of strings], page 773).

The functions below are defined to make working with the integer constants above easier.
In the functions below, the constants above can be used for the type input argument.

[Function]size_t
gal_type_sizeof (uint8_t type)

Return the number of bytes occupied by type. Internally, this function uses C’s
sizeof operator to measure the size of each type. For strings, this function will
return the size of char *.

[Function]char *
gal_type_name (uint8_t type, int long_name)

Return a string literal that contains the name of type. It can return both short
and long formats of the type names (for example, f32 and float32). If long_name is
non-zero, the long format will be returned, otherwise the short name will be returned.
The output string is statically allocated, so it should not be freed. This function is
the inverse of the gal_type_from_name function. For the full list of names/strings
that this function will return, see Section 4.5 [Numeric data types], page 277.

[Function]uint8_t
gal_type_from_name (char *str)

Return the Gnuastro integer constant that corresponds to the string str. This func-
tion is the inverse of the gal_type_name function and accepts both the short and
long formats of each type. For the full list of names/strings that this function will
return, see Section 4.5 [Numeric data types], page 277.
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[Function]void
gal_type_min (uint8_t type, void *in)

Put the minimum possible value of type in the space pointed to by in. Since the
value can have any type, this function does not return anything, it assumes the space
for the given type is available to in and writes the value there. Here is one example

int32_t min;

gal_type_min(GAL_TYPE_INT32, &min);

Note: Do not use the minimum value for a blank value of a general (initially unknown)
type, please use the constants/functions provided in Section 12.3.5 [Library blank
values (blank.h)], page 751, for the definition and usage of blank values.

[Function]void
gal_type_max (uint8_t type, void *in)

Put the maximum possible value of type in the space pointed to by in. Since the
value can have any type, this function does not return anything, it assumes the space
for the given type is available to in and writes the value there. Here is one example

uint16_t max;

gal_type_max(GAL_TYPE_INT16, &max);

Note: Do not use the maximum value for a blank value of a general (initially unknown)
type, please use the constants/functions provided in Section 12.3.5 [Library blank
values (blank.h)], page 751, for the definition and usage of blank values.

[Function]int
gal_type_is_int (uint8_t type)

Return 1 if the type is an integer (any width and any sign).

[Function]int
gal_type_is_list (uint8_t type)

Return 1 if the type is a linked list and zero otherwise.

[Function]int
gal_type_out (int first_type, int second_type)

Return the larger of the two given types which can be used for the type of the output
of an operation involving the two input types.

[Function]char *
gal_type_bit_string (void *in, size_t size)

Return the bit-string in the size bytes that in points to. The string is dynamically
allocated and must be freed afterwards. You can use it to inspect the bits within one
region of memory. Here is one short example:

int32_t a=2017;

char *bitstr=gal_type_bit_string(&a, 4);

printf("%d: %s (%X)\n", a, bitstr, a);

free(bitstr);

which will produce:

2017: 11100001000001110000000000000000 (7E1)
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As the example above shows, the bit-string is not the most efficient way to inspect
bits. If you are familiar with hexadecimal notation, it is much more compact, see
https://en.wikipedia.org/wiki/Hexadecimal. You can use printf’s %x or %X to
print integers in hexadecimal format.

[Function]char *
gal_type_to_string (void *ptr, uint8_t type, int

quote_if_str_has_space);
Read the contents of the memory that ptr points to (assuming it has type type and
print it into an allocated string which is returned.

If the memory is a string of characters and quote_if_str_has_space is non-zero,
the output string will have double-quotes around it if it contains space characters.
Also, note that in this case, ptr must be a pointer to an array of characters (or char
**), as in the example below (which will put "sample string" into out):

char *out, *string="sample string"

out = gal_type_to_string(&string, GAL_TYPE_STRING, 1);

[Function]int
gal_type_from_string (void **out, char *string, uint8_t type)

Read a string as a given data type and put a pointer to it in *out. When *out!=NULL,
then it is assumed to be already allocated and the value will be simply put there. If
*out==NULL, then space will be allocated for the given type and the string will be
read into that type.

Note that when we are dealing with a string type, *out should be interpreted as char
** (one element in an array of pointers to different strings). In other words, out
should be char ***.

This function can be used to fill in arrays of numbers from strings (in an already
allocated data structure), or add nodes to a linked list (if the type is a list type). For
an array, you have to pass the pointer to the ith element where you want the value
to be stored, for example, &(array[i]).

If the string was successfully parsed to the requested type, this function will return a
0 (zero), otherwise it will return 1 (one). This output format will help you check the
status of the conversion in a code like the example below where we will try reading a
string as a single precision floating point number.

float out;

void *outptr=&out;

if( gal_type_from_string(&outptr, string, GAL_TYPE_FLOAT32) )

{

fprintf(stderr, "%s could not be read as float32\n", string);

exit(EXIT_FAILURE);

}

When you need to read many numbers into an array, out would be an array, and you
can simply increment outptr=out+i (where you increment i).

https://en.wikipedia.org/wiki/Hexadecimal


Chapter 12: Library 748

[Function]void *
gal_type_string_to_number (char *string, uint8_t *type)

Read string into smallest type that can host the number, the allocated space for the
number will be returned and the type of the number will be put into the memory that
type points to. If string could not be read as a number, this function will return
NULL.

This function first calls the C library’s strtod function to read string as a double-
precision floating point number. When successful, it will check the value to put it in
the smallest numerical data type that can handle it; for example, 120 and 50000 will
be read as a signed 8-bit integer and unsigned 16-bit integer types. When reading as
an integer, the C library’s strtol function is used (in base-10) to parse the string
again. This re-parsing as an integer is necessary because integers with many digits
(for example, the Unix epoch seconds) will not be accurately stored as a floating point
and we cannot use the result of strtod.

When string is successfully parsed as a number and there is . in string, it will
force the number into floating point types. For example, "5" is read as an integer,
while "5." or "5.0", or "5.00" will be read as a floating point (single-precision).

For floating point types, this function will count the number of significant digits and
determine if the given string is single or double precision as described in Section 4.5
[Numeric data types], page 277.

For integers, negative numbers will always be placed in signed types (as expected).
If a positive integer falls below the maximum of a signed type of a certain width,
it will be signed (for example, 10 and 150 will be defined as a signed and unsigned
8-bit integer respectively). In other words, even though 10 can be unsigned, it will be
read as a signed 8-bit integer. This is done to respect the C implicit type conversion
in binary operators, where signed integers will be interpreted as unsigned, when the
other operand is an unsigned integer of the same width.

For example, see the short program below. It will print -50 is larger than 100000

(which is wrong!). This happens because when a negative number is parsed as an
unsigned, the value is effectively subtracted from the maximum and 4294967295− 50
is indeed larger than 100000 (recall that 4294967295 is the largest unsigned 32-bit
integer, see Section 4.5 [Numeric data types], page 277).

#include <stdio.h>

#include <stdlib.h>

#include <stdint.h>

int

main(void)

{

int32_t a=-50;

uint32_t b=100000;

printf("%d is %s than %d\n", a,

a>b ? "larger" : "less or equal", b);

return 0;

}



Chapter 12: Library 749

However, if we read 100000 as a signed 32-bit integer, there will not be any problem
and the printed sentence will be logically correct (for someone who does not know
anything about numeric data types: users of your programs). For the advantages of
integers, see Section 6.2.2 [Integer benefits and pitfalls], page 401.

12.3.4 Pointers (pointer.h)

Pointers play an important role in the C programming language. As the name suggests,
they point to a byte in memory (like an address in a city). The C programming language
gives you complete freedom in how to use the byte (and the bytes that follow it). Pointers
are thus a very powerful feature of C. However, as the saying goes: “With great power
comes great responsibility”, so they must be approached with care. The functions in this
header are not very complex, they are just wrappers over some basic pointer functionality
regarding pointer arithmetic and allocation (in memory or HDD/SSD).

[Function]void *
gal_pointer_increment (void *pointer, size_t increment, uint8_t type)

Return a pointer to an element that is increment elements ahead of pointer, assum-
ing each element has type of type. For the type codes, see Section 12.3.3 [Library
data types (type.h)], page 743.

When working with the array elements of gal_data_t, we are actually dealing with
void * pointers. However, pointer arithmetic does not apply to void *, because the
system does not know how many bytes there are in each element to increment the
pointer respectively. This function will use the given type to calculate where the
incremented element is located in memory.

[Function]size_t
gal_pointer_num_between (void *earlier, void *later, uint8_t type)

Return the number of elements (in the given type) between earlier and later. For
the type codes, see Section 12.3.3 [Library data types (type.h)], page 743).

[Function]void *
gal_pointer_allocate (uint8_t type, size_t size, int clear, const

char *funcname, const char *varname)
Allocate an array of type type with size elements in RAM (for the type codes,
see Section 12.3.3 [Library data types (type.h)], page 743). If clear!=0, then the
allocated space is set to zero (cleared).

This is effectively just a wrapper around C’s malloc or calloc functions but takes
Gnuastro’s integer type codes and will also abort with a clear error if there the
allocation was not successful. The number of allocated bytes is the value given to
size that is multiplied by the returned value of gal_type_sizeof for the given type.
So if you want to allocate space for an array of strings you should pass the type
GAL_TYPE_STRING. Otherwise, if you just want space for one string (for example, 6
bytes for hello, including the string-termination character), you should set the type
GAL_TYPE_UINT8.

When space cannot be allocated, this function will abort the program with a message
containing the reason for the failure. funcname (name of the function calling this
function) and varname (name of variable that needs this space) will be used in this
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error message if they are not NULL. In most modern compilers, you can use the generic
__func__ variable for funcname. In this way, you do not have to manually copy and
paste the function name or worry about it changing later (__func__ was standardized
in C99). To use this function effectively and avoid memory leaks, make sure to free
the allocated array after you are done with it. Also, be mindful of any functions that
make use of this function as they should also free any allocated arrays to maintain
memory management and prevent issues with the system.

[Function]void *
gal_pointer_allocate_ram_or_mmap (uint8_t type, size_t size, int

clear, size_t minmapsize, char **mmapname, int quietmmap,
const char *funcname, const char *varname)

Allocate the given space either in RAM or in a memory-mapped file. This func-
tion is just a high-level wrapper to gal_pointer_allocate (to allocate in RAM) or
gal_pointer_mmap_allocate (to use a memory-mapped file). For more on memory
management in Gnuastro, please see Section 4.6 [Memory management], page 279.
The various arguments are more fully explained in the two functions above.

[Function]void *
gal_pointer_mmap_allocate (size_t size, uint8_t type, int clear, char

**mmapname, int allocfailed)
Allocate the necessary space to keep size elements of type type in HDD/SSD (a file,
not in RAM). For the type codes, see Section 12.3.3 [Library data types (type.h)],
page 743. If clear!=0, then the allocated space will also be cleared. The allocation
is done using C’s mmap function. The name of the file containing the allocated space
is an allocated string that will be put in *mmapname.

Note that the kernel does not allow an infinite number of memory mappings to files.
So it is not recommended to use this function with every allocation. The best-case
scenario to use this function is for arrays that are very large and can fill up the
RAM. Keep the smaller arrays in RAM, which is faster and can have a (theoretically)
unlimited number of allocations.

When you are done with the dataset and do not need it anymore, do not use free

(the dataset is not in RAM). Just delete the file (and the allocated space for the
filename) with the commands below, or simply use gal_pointer_mmap_free.

remove(mmapname);

free(mmapname);

If allocfailed!=0 and the memory mapping attempt fails, the warning message will
say something like this (assuming you have tried something like malloc before calling
this function): even though there was enough space in RAM, the previous attempts
at allocation in RAM failed, so we tried memory mapping, but that also failed.

[Function]void
gal_pointer_mmap_free (char **mmapname, int quietmmap)

“Free” (actually delete) the memory-mapped file that is named *mmapname, then free
the string. If quietmmap is non-zero, then a warning will be printed for the user to
know that the given file has been deleted.
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12.3.5 Library blank values (blank.h)

When the position of an element in a dataset is important (for example, a pixel in an
image), a place-holder is necessary for the element if we do not have a value to fill it with
(for example, the CCD cannot read those pixels). We cannot simply shift all the other
pixels to fill in the one we have no value for. In other cases, it often occurs that the field
of sky that you are studying is not a clean rectangle to nicely fit into the boundaries of an
image. You need a way to separate the pixels outside your scientific field from those inside
it. Blank values act as these place holders in a dataset. They have no usable value but they
have a position.

Every type needs a corresponding blank value (see Section 4.5 [Numeric data types],
page 277, and Section 12.3.3 [Library data types (type.h)], page 743). Floating point types
have a unique value identified by IEEE known as Not-a-Number (or NaN) which is a unique
value that is recognized by the compiler. However, integer and string types do not have any
standard value. For integers, in Gnuastro we take an extremum of the given type: for signed
types (that allow negatives), the minimum possible value is used as blank and for unsigned
types (that only accept positives), the maximum possible value is used. To be generic and
easy to read/write we define a macro for these blank values and strongly encourage you
only use these, and never make any assumption on the value of a type’s blank value.

The IEEE NaN blank value type is defined to fail on any comparison, so if you are
dealing with floating point types, you cannot use equality (a NaN will not be equal to a
NaN). If you know your dataset is floating point, you can use the isnan function in C’s
math.h header. For a description of numeric data types see Section 4.5 [Numeric data
types], page 277. For the constants identifying integers, please see Section 12.3.3 [Library
data types (type.h)], page 743.

[Global integer]GAL_BLANK_UINT8
Blank value for an unsigned, 8-bit integer.

[Global integer]GAL_BLANK_INT8
Blank value for a signed, 8-bit integer.

[Global integer]GAL_BLANK_UINT16
Blank value for an unsigned, 16-bit integer.

[Global integer]GAL_BLANK_INT16
Blank value for a signed, 16-bit integer.

[Global integer]GAL_BLANK_UINT32
Blank value for an unsigned, 32-bit integer.

[Global integer]GAL_BLANK_INT32
Blank value for a signed, 32-bit integer.

[Global integer]GAL_BLANK_UINT64
Blank value for an unsigned, 64-bit integer.

[Global integer]GAL_BLANK_INT64
Blank value for a signed, 64-bit integer.
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[Global integer]GAL_BLANK_INT
Blank value for int type (int16_t or int32_t depending on the system.

[Global integer]GAL_BLANK_UINT
Blank value for int type (int16_t or int32_t depending on the system.

[Global integer]GAL_BLANK_LONG
Blank value for long type (int32_t or int64_t in 32-bit or 64-bit systems).

[Global integer]GAL_BLANK_ULONG
Blank value for unsigned long type (uint32_t or uint64_t in 32-bit or 64-bit sys-
tems).

[Global integer]GAL_BLANK_SIZE_T
Blank value for size_t type (uint32_t or uint64_t in 32-bit or 64-bit systems).

[Global integer]GAL_BLANK_FLOAT32
Blank value for a single precision, 32-bit floating point type (IEEE NaN value).

[Global integer]GAL_BLANK_FLOAT64
Blank value for a double precision, 64-bit floating point type (IEEE NaN value).

[Global integer]GAL_BLANK_STRING
Blank value for string types (this is itself a string, it is not the NULL pointer).

The functions below can be used to work with blank pixels.

[Function]void
gal_blank_write (void *pointer, uint8_t type)

Write the blank value for the given type into the space that pointer points to. This
can be used when the space is already allocated (for example, one element in an array
or a statically allocated variable).

[Function]void *
gal_blank_alloc_write (uint8_t type)

Allocate the space required to keep the blank for the given data type type, write the
blank value into it and return the pointer to it.

[Function]void
gal_blank_initialize (gal_data_t *input)

Initialize all the elements in the input dataset to the blank value that corresponds to
its type. If input is not a string, and is a tile over a larger dataset, only the region
that the tile covers will be set to blank. For strings, the full dataset will be initialized.

[Function]void
gal_blank_initialize_array (void *array, size_t size, uint8_t type)

Initialize all the elements in the array to the blank value that corresponds to its type
(identified with type), assuming the array has size elements.
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[Function]char *
gal_blank_as_string (uint8_t type, int width)

Write the blank value for the given data type type into a string and return it. The
space for the string is dynamically allocated so it must be freed after you are done
with it. If width!=0, then the final string will be padded with white space characters
to have the requested width if it is smaller.

[Function]int
gal_blank_is (void *pointer, uint8_t type)

Return 1 if the contents of pointer (assuming a type of type) is blank. Otherwise,
return 0. Note that this function only works on one element of the given type. So
if pointer is an array, only its first element will be checked. Therefore for strings,
the type of pointer is assumed to be char *. To check if an array/dataset has blank
elements or to find which elements in an array are blank, you can use gal_blank_

present or gal_blank_flag respectively (described below).

[Function]int
gal_blank_present (gal_data_t *input, int updateflag)

Return 1 if the dataset has a blank value and zero if it does not. Before checking
the dataset, this function will look at input’s flags. If the GAL_DATA_FLAG_BLANK_CH
bit of input->flag is on, this function will not do any check and will just use the
information in the flags. This can greatly speed up processing when a dataset needs
to be checked multiple times.

When the dataset’s flags were not used and updateflags is non-zero, this function
will set the flags appropriately to avoid having to re-check the dataset in future calls.
When updateflags==0, this function has no side-effects on the dataset: it will not
toggle the flags.

If you want to re-check a dataset with the blank-value-check flag already set (for
example, if you have made changes to it), then explicitly set the GAL_DATA_FLAG_

BLANK_CH bit to zero before calling this function. When there are no other flags, you
can just set the flags to zero (input->flag=0), otherwise you can use this expression:

input->flag &= ~GAL_DATA_FLAG_BLANK_CH;

[Function]size_t
gal_blank_number (gal_data_t *input, int updateflag)

Return the number of blank elements in input. If updateflag!=0, then the dataset
blank keyword flags will be updated. See the description of gal_blank_present

(above) for more on these flags. If input==NULL, then this function will return GAL_

BLANK_SIZE_T.

[Function]gal_data_t *
gal_blank_flag (gal_data_t *input)

Return a “flag” dataset with the same size as the input, but with an uint8_t type
that has a value of 1 for data elements that are blank and 0 for those that are not.
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[Function]gal_data_t *
gal_blank_flag_not (gal_data_t *input)

Return a “flag” dataset with the same size as the input, but with an uint8_t type
that has a value of 1 for data elements that are not blank and 0 for those that are
blank.

[Function]size_t *
gal_blank_not_minmax_coords (gal_data_t *input)

Find the minimum and maximum coordinates of the non-blank regions within the
input dataset. The coordinates are in C order: starting from 0, and with the slowest
dimension being first. The output is an allocated array (that should be freed later)
with 2 ×N elements; where N is the number of dimensions. The first two elements
contain the minimum and maximum of regions containing non-blank elements along
the 0-th dimension (the slowest), the second two elements contain the next dimension’s
extrema; and so on.

[Function]gal_data_t *
gal_blank_trim (gal_data_t *input, int inplace)

Trim all the outer layers of blank values from the input dataset. For example in
the 2D image, “layers” would correspond to columns or rows that are fully blank and
touching the edge of the image. For a more complete description, see the description of
the trim operator in Section 6.2.4.11 [Dimensionality changing operators], page 430.

[Function]void
gal_blank_flag_apply (gal_data_t *input, gal_data_t *flag)

Set all non-zero and non-blank elements of flag to blank in input. flag has to have
an unsigned 8-bit type and be the same size as input.

[Function]void
gal_blank_flag_remove (gal_data_t *input, gal_data_t *flag)

Remove all elements within input that are flagged, convert it to a 1D dataset and ad-
just the size properly (the number of non-flagged elements). In practice this function
does notrealloc the input array (see gal_blank_remove_realloc for shrinking/re-
allocating also), it just shifts the blank elements to the end and adjusts the size
elements of the gal_data_t, see Section 12.3.6.1 [Generic data container (gal_data_
t)], page 755.

Note that elements that are blank, but not flagged will not be removed. This function
will only remove flagged elements.

If all the elements were flagged, then input->size will be zero. This is thus a good
parameter to check after calling this function to see if there actually were any non-
flagged elements in the input or not and take the appropriate measure. This check is
highly recommended because it will avoid strange bugs in later steps.

[Function]void
gal_blank_remove (gal_data_t *input)

Remove blank elements from a dataset, convert it to a 1D dataset, adjust the size
properly (the number of non-blank elements), and toggle the blank-value-related bit-
flags. In practice this function does notrealloc the input array (see gal_blank_

remove_realloc for shrinking/re-allocating also), it just shifts the blank elements to
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the end and adjusts the size elements of the gal_data_t, see Section 12.3.6.1 [Generic
data container (gal_data_t)], page 755.

If all the elements were blank, then input->size will be zero. This is thus a good
parameter to check after calling this function to see if there actually were any non-
blank elements in the input or not and take the appropriate measure. This check is
highly recommended because it will avoid strange bugs in later steps.

[Function]void
gal_blank_remove_realloc (gal_data_t *input)

Similar to gal_blank_remove, but also shrinks/re-allocates the dataset’s allocated
memory.

[Function]gal_data_t *
gal_blank_remove_rows (gal_data_t *columns, gal_list_sizet_t

*column_indexs, int onlydim0)
Remove (in place) any row that has at least one blank value in any of the input
columns and return a “flag” dataset (that should be freed later). The input columns
is a list of gal_data_ts (see Section 12.3.8.9 [List of gal_data_t], page 784). When
onlydim0!=0 the vector columns (with 2 dimensions) will not be checked for the
presence of blank values.

After this function, all the elements in columns will still have the same size as each
other, but if any of the searched columns has blank elements, all their sizes will
decrease together.

The returned flag dataset has the same size as the original input dataset, with a type
of uint8_t. Every row that has been removed from the original dataset has a value
of 1, and the rest have a value of 0.

When column_indexs!=NULL, only the columns whose index (counting from zero) is
in column_indexs will be used to check for blank values (see Section 12.3.8.3 [List of
size_t], page 776. Therefore, if you want to check all columns, just set this to NULL.
In any case (no matter which columns are checked for blanks), the selected rows from
all columns will be removed.

12.3.6 Data container (data.h)

Astronomical datasets have various dimensions, for example, 1D spectra or table columns,
2D images, or 3D Integral field data cubes. Datasets can also have various numeric data
types, depending on the operation/purpose, for example, processed images are commonly
stored in floating point format, but their mask images are integers (allowing bit-wise flags
to identify certain classes of pixels to keep or mask, see Section 4.5 [Numeric data types],
page 277). Certain other information about a dataset are also commonly necessary, for
example, the units of the dataset, the name of the dataset and some comments. To deal
with any generic dataset, Gnuastro defines the gal_data_t as input or output.

12.3.6.1 Generic data container (gal_data_t)

To be able to deal with any dataset (various dimensions, numeric data types, units
and higher-level structures), Gnuastro defines the gal_data_t type which is the
input/output container of choice for many of Gnuastro library’s functions. It is defined in
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gnuastro/data.h. If you will be using (‘# include’ing) those libraries, you do not need
to include this header explicitly, it is already included by any library header that uses
gal_data_t.

[Type (C struct)]gal_data_t
The main container for datasets in Gnuastro. It can host data of any dimensions,
with any numeric data type. It is actually a structure, but typedef’d as a new type
to avoid having to write the struct before any declaration. The actual structure is
shown below which is followed by a description of each element.

typedef struct gal_data_t

{

void *restrict array; /* Basic array information. */

uint8_t type;

size_t ndim;

size_t *dsize;

size_t size;

int quietmmap;

char *mmapname;

size_t minmapsize;

int nwcs; /* WCS information. */

struct wcsprm *wcs;

uint8_t flag; /* Content description. */

int status;

char *name;

char *unit;

char *comment;

int disp_fmt; /* For text printing. */

int disp_width;

int disp_precision;

struct gal_data_t *next; /* For higher-level datasets. */

struct gal_data_t *block;

} gal_data_t;

The list below contains a description for each gal_data_t element.

void *restrict array

This is the pointer to the main array of the dataset containing the raw data
(values). All the other elements in this data-structure are actually meta-data
enabling us to use/understand the series of values in this array. It must allow
data of any type (see Section 4.5 [Numeric data types], page 277), so it is defined
as a void * pointer. A void * array is not directly usable in C, so you have to
cast it to proper type before using it, please see Section 12.4.1 [Library demo -
reading a FITS image], page 911, for a demonstration.
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The restrict keyword was formally introduced in C99 and is used to tell the
compiler that at any moment only this pointer will modify what it points to (a
pixel in an image for example)15. This extra piece of information can greatly
help in compiler optimizations and thus the running time of the program. But
older compilers might not have this capability, so at ./configure time, Gnu-
astro checks this feature and if the user’s compiler does not support restrict,
it will be removed from this definition.

uint8_t type

A fixed code (integer) used to identify the type of data in array (see Sec-
tion 4.5 [Numeric data types], page 277). For the list of acceptable values to
this variable, please see Section 12.3.3 [Library data types (type.h)], page 743.

size_t ndim

The dataset’s number of dimensions.

size_t *dsize

The size of the dataset along each dimension. This is an array (with ndim

elements), of positive integers in row-major order16 (based on C). When a data
file is read into memory with Gnuastro’s libraries, this array is dynamically
allocated based on the number of dimensions that the dataset has.

It is important to remember that C’s row-major ordering is the opposite of the
FITS standard which is in column-major order: in the FITS standard the fastest
dimension’s size is specified by NAXIS1, and slower dimensions follow. The FITS
standard was defined mainly based on the FORTRAN language which is the
opposite of C’s approach to multi-dimensional arrays (and also starts counting
from 1 not 0). Hence if a FITS image has NAXIS1==20 and NAXIS2==50, the
dsize array must be filled with dsize[0]==50 and dsize[1]==20.

The fastest dimension is the one that is contiguous in memory: to increment
by one along that dimension, just go to the next element in the array. As we
go to slower dimensions, the number of memory cells we have to skip for an
increment along that dimension becomes larger.

size_t size

The total number of elements in the dataset. This is actually a multiplication
of all the values in the dsize array, so it is not an independent parameter.
However, low-level operations with the dataset (irrespective of its dimensions)
commonly need this number, so this element is designed to avoid calculating it
every time.

int quietmmap

When this value is zero, and the dataset must not be allocated in RAM (see
mmapname and minmapsize below), a warning will be printed to inform the
user when the file is created and when it is deleted. The warning includes
the filename, the size in bytes, and the fact that they can toggle this behavior
through --minmapsize option in Gnuastro’s programs.

15 Also see https://en.wikipedia.org/wiki/Restrict.
16 Also see https://en.wikipedia.org/wiki/Row-_and_column-major_order.

https://en.wikipedia.org/wiki/Restrict
https://en.wikipedia.org/wiki/Row-_and_column-major_order
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char *mmapname

Name of file hosting the mmap’d contents of array. If the value of this variable
is NULL, then the contents of array are actually stored in RAM, not in a file on
the HDD/SSD. See the description of minmapsize below for more.

If a file is used, it will be kept in the gnuastro_mmap directory of the running
directory. Its name is randomly selected to allow multiple arrays at the same
time, see description of --minmapsize in Section 4.1.2.2 [Processing options],
page 255. When gal_data_free is called the randomly named file will be
deleted.

size_t minmapsize

The minimum size of an array (in bytes) to store the contents of array as a
file (on the non-volatile HDD/SSD), not in RAM. This can be very useful for
large datasets which can be very memory intensive and the user’s RAM might
not be sufficient to keep/process it. A random filename is assigned to the array
which is available in the mmapname element of gal_data_t (above), see there
for more. minmapsize is stored in each gal_data_t, so it can be passed on to
subsequent/derived datasets.

See the description of the --minmapsize option in Section 4.1.2.2 [Processing
options], page 255, for more on using this value.

nwcs The number of WCS coordinate representations (for WCSLIB).

struct wcsprm *wcs

The main WCSLIB structure keeping all the relevant information necessary
for WCSLIB to do its processing and convert data-set positions into real-
world positions. When it is given a NULL value, all possible WCS calcula-
tions/measurements will be ignored.

uint8_t flag

Bit-wise flags to describe general properties of the dataset. The number of
bytes available in this flag is stored in the GAL_DATA_FLAG_SIZE macro. Note
that you should use bit-wise operators17 to check these flags. The currently
recognized bits are stored in these macros:

GAL_DATA_FLAG_BLANK_CH

Marking that the dataset has been checked for blank values or not.
When a dataset does not have any blank values, the GAL_DATA_

FLAG_HASBLANK bit will be zero. But upon initialization, all bits
also get a value of zero. Therefore, a checker needs this flag to see
if the value in GAL_DATA_FLAG_HASBLANK is reliable (dataset has
actually been parsed for a blank value) or not.

Also, if it is necessary to re-check the presence of flags, you just have
to set this flag to zero and call gal_blank_present for example,
to parse the dataset and check for blank values. Note that for
improved efficiency, when this flag is set, gal_blank_present will
not actually parse the dataset, it will just use GAL_DATA_FLAG_

HASBLANK.

17 See https://en.wikipedia.org/wiki/Bitwise_operations_in_C.

https://en.wikipedia.org/wiki/Bitwise_operations_in_C
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GAL_DATA_FLAG_HASBLANK

This bit has a value of 1 when the given dataset has blank values.
If this bit is 0 and GAL_DATA_FLAG_BLANK_CH is 1, then the dataset
has been checked and it did not have any blank values, so there is
no more need for further checks.

GAL_DATA_FLAG_SORT_CH

Marking that the dataset is already checked for being sorted or not
and thus that the possible 0 values in GAL_DATA_FLAG_SORTED_I

and GAL_DATA_FLAG_SORTED_D are meaningful. The logic behind
this is similar to that in GAL_DATA_FLAG_BLANK_CH.

GAL_DATA_FLAG_SORTED_I

This bit has a value of 1 when the given dataset is sorted in an in-
creasing manner. If this bit is 0 and GAL_DATA_FLAG_SORT_CH is 1,
then the dataset has been checked and was not sorted (increasing),
so there is no more need for further checks.

GAL_DATA_FLAG_SORTED_D

This bit has a value of 1 when the given dataset is sorted in a de-
creasing manner. If this bit is 0 and GAL_DATA_FLAG_SORT_CH is 1,
then the dataset has been checked and was not sorted (decreasing),
so there is no more need for further checks.

The macro GAL_DATA_FLAG_MAXFLAG contains the largest internally used bit-
position. Higher-level flags can be defined with the bit-wise shift operators
using this macro to define internal flags for libraries/programs that depend on
Gnuastro without causing any possible conflict with the internal flags discussed
above or having to check the values manually on every release.

int status

A context-specific status values for this data-structure. This integer will not be
set by Gnuastro’s libraries. You can use it keep some additional information
about the dataset (with integer constants) depending on your applications.

char *name

The name of the dataset. If the dataset is a multi-dimensional array and
read/written as a FITS image, this will be the value in the EXTNAME FITS
keyword. If the dataset is a one-dimensional table column, this will be the
column name. If it is set to NULL (by default), it will be ignored.

char *unit

The units of the dataset (for example, BUNIT in the standard FITS keywords)
that will be read from or written to files/tables along with the dataset. If it is
set to NULL (by default), it will be ignored.

char *comment

Any further explanation about the dataset which will be written to any output
file if present.

disp_fmt Format to use for printing each element of the dataset to a plain text file, the
acceptable values to this element are defined in Section 12.3.10 [Table input
output (table.h)], page 788. Based on C’s printf standards.
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disp_width

Width of printing each element of the dataset to a plain text file, the accept-
able values to this element are defined in Section 12.3.10 [Table input output
(table.h)], page 788. Based on C’s printf standards.

disp_precision

Precision of printing each element of the dataset to a plain text file, the accept-
able values to this element are defined in Section 12.3.10 [Table input output
(table.h)], page 788. Based on C’s printf standards.

gal_data_t *next

Through this pointer, you can link a gal_data_t with other datasets related
datasets, for example, the different columns in a dataset each have one gal_

data_t associate with them and they are linked to each other using this element.
There are several functions described below to facilitate using gal_data_t as
a linked list. See Section 12.3.8 [Linked lists (list.h)], page 771, for more on
these wonderful high-level constructs.

gal_data_t *block

Pointer to the start of the complete allocated block of memory. When this
pointer is not NULL, the dataset is not treated as a contiguous patch of memory.
Rather, it is seen as covering only a portion of the larger patch of memory that
block points to. See Section 12.3.15 [Tessellation library (tile.h)], page 839,
for a more thorough explanation and functions to help work with tiles that are
created from this pointer.

12.3.6.2 Dataset allocation

Gnuastro’s main data container was defined in Section 12.3.6.1 [Generic data container
(gal_data_t)], page 755. The functions listed in this section describe the most basic oper-
ations on gal_data_t: those related to allocation and freeing. These functions are declared
in gnuastro/data.h which is also visible from the function names (see Section 12.3 [Gnu-
astro library], page 736).

[Function]gal_data_t *
gal_data_alloc (void *array, uint8_t type, size_t ndim, size_t

*dsize, struct wcsprm *wcs, int clear, size_t minmapsize,
int quietmmap, char *name, char *unit, char *comment)

Dynamically allocate a gal_data_t and initialize it will all the given values. See the
description of gal_data_initialize and Section 12.3.6.1 [Generic data container
(gal_data_t)], page 755, for more information. This function will often be the most
frequently used because it allocates the gal_data_t hosting all the values and ini-
tializes it. Once you are done with the dataset, be sure to clean up all the allocated
spaces with gal_data_free.
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[Function]void
gal_data_initialize (gal_data_t *data, void *array, uint8_t type,

size_t ndim, size_t *dsize, struct wcsprm *wcs, int clear,
size_t minmapsize, int quietmmap, char *name, char *unit,
char *comment)

Initialize the given data structure (data) with all the given values. Note that the
raw input gal_data_t must already have been allocated before calling this function.
For a description of each variable see Section 12.3.6.1 [Generic data container (gal_
data_t)], page 755. It will set the values and do the necessary allocations. If they
are not NULL, all input arrays (dsize, wcs, name, unit, comment) are separately
copied (allocated) by this function for usage in data, so you can safely use one value
to initialize many datasets or use statically allocated variables in this function call.
Once you are done with the dataset, you can free all the allocated spaces with gal_

data_free_contents.

If array is not NULL, it will be directly copied into data->array (based on the total
number of elements calculated from dsize) and no new space will be allocated for
the array of this dataset, this has many low-level advantages and can be used to work
on regions of a dataset instead of the whole allocated array (see the description under
block in Section 12.3.6.1 [Generic data container (gal_data_t)], page 755, for one
example). If the given pointer is not the start of an allocated block of memory or it is
used in multiple datasets, be sure to set it to NULL (with data->array=NULL) before
cleaning up with gal_data_free_contents.

ndim may be zero. In this case no allocation will occur, data->array and data-

>dsize will be set to NULL and data->size will be zero. However (when necessary)
dsize must not have any zero values (a dimension of length zero is not defined).

[Function]gal_data_t *
gal_data_alloc_empty (size_t ndim, size_t minmapsize, int quietmmap)

Allocate an empty dataset with a certain number of dimensions, but no ’array’ com-
ponent. The size element will be set to zero and the dsize array will be properly
allocated (based on the number of dimensions), but all elements will be zero. This is
useful in scenarios where you just need a gal_data_t for metadata.

[Function]void
gal_data_free_contents (gal_data_t *data)

Free all the non-NULL pointers in gal_data_t except for next and block. All freed ar-
rays are set to NULL. If data is actually a tile (data->block!=NULL, see Section 12.3.15
[Tessellation library (tile.h)], page 839), then data->array is not freed. For a com-
plete description of gal_data_t and its contents, see Section 12.3.6.1 [Generic data
container (gal_data_t)], page 755.

[Function]void
gal_data_free (gal_data_t *data)

Free all the non-NULL pointers in gal_data_t, then free the actual data structure.

12.3.6.3 Arrays of datasets

Gnuastro’s generic data container (gal_data_t) is a very versatile structure that can be
used in many higher-level contexts. One such higher-level construct is an array of gal_



Chapter 12: Library 762

data_t structures to simplify the allocation (and later cleaning) of several gal_data_ts
that are related.

For example, each column in a table is usually represented by one gal_data_t (so it
has its own name, data type, units, etc.). A table (with many columns) can be seen as
an array of gal_data_ts (when the number of columns is known a-priori). The functions
below are defined to create a cleared array of data structures and to free them when none
are necessary any more. These functions are declared in gnuastro/data.h which is also
visible from the function names (see Section 12.3 [Gnuastro library], page 736).

[Function]gal_data_t *
gal_data_array_calloc (size_t size)

Allocate an array of gal_data_t with size elements. This function will also initialize
all the values (NULL for pointers and 0 for other types). You can use gal_data_

initialize to fill each element of the array afterwards. The following code snippet
is one example of doing this.

size_t i;

gal_data_t *dataarr;

dataarr=gal_data_array_calloc(10);

for(i=0;i<10;++i) gal_data_initialize(&dataarr[i], ...);

...

gal_data_array_free(dataarr, 10, 1);

[Function]void
gal_data_array_free (gal_data_t *dataarr, size_t num, int free_array)

Free all the num elements within dataarr and the actual allocated array. If free_
array is not zero, then the array element of all the datasets will also be freed, see
Section 12.3.6.1 [Generic data container (gal_data_t)], page 755.

[Function]gal_data_t **
gal_data_array_ptr_calloc (size_t size)

Allocate an array of pointers to Gnuastro’s generic data structure and initialize all
pointers to NULL. This is useful when you want to allocate individual datasets later
(for example, with gal_data_alloc).

[Function]void
gal_data_array_ptr_free (gal_data_t **dataptr, size_t size, int

free_array);
Free all the individual datasets within the elements of dataptr, then free dataptr

itself (the array of pointers that was probably allocated with gal_data_array_ptr_

calloc.

12.3.6.4 Copying datasets

The functions in this section describes Gnuastro’s facilities to copy a given dataset into
another. The new dataset can have a different type (including a string), it can be already
allocated (in which case only the values will be written into it). In all these cases, if the
input dataset is a tile or a list, only the data within the given tile, or the given node in a
list, are copied. If the input is a list, the next pointer will also be copied to the output, see
Section 12.3.8.9 [List of gal_data_t], page 784.
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In many of the functions here, it is possible to copy the dataset to a new numeric data
type (see Section 4.5 [Numeric data types], page 277. In such cases, Gnuastro’s library is
going to use the native conversion by C. So if you are converting to a smaller type, it is up
to you to make sure that the values fit into the output type.

[Function]gal_data_t *
gal_data_copy (gal_data_t *in)

Return a new dataset that is a copy of in, all of in’s meta-data will also copied into
the output, except for block. If the dataset is a tile/list, only the given tile/node will
be copied, the next pointer will also be copied however.

[Function]gal_data_t *
gal_data_copy_to_new_type (gal_data_t *in, uint8_t newtype)

Return a copy of the dataset in, converted to newtype, see Section 12.3.3 [Library
data types (type.h)], page 743, for Gnuastro library’s type identifiers. The returned
dataset will have all meta-data except their type and block equal to the input’s
metadata. If the dataset is a tile/list, only the given tile/node will be copied, the
next pointer will also be copied however.

[Function]gal_data_t *
gal_data_copy_to_new_type_free (gal_data_t *in, uint8_t newtype)

Return a copy of the dataset in that is converted to newtype and free the input
dataset. See Section 12.3.3 [Library data types (type.h)], page 743, for Gnuastro
library’s type identifiers. The returned dataset will have all meta-data, except their
type, equal to the input’s metadata (including next). Note that if the input is a tile
within a larger block, it will not be freed. This function is similar to gal_data_copy_
to_new_type, except that it will free the input dataset.

[Function]void
gal_data_copy_to_allocated (gal_data_t *in, gal_data_t *out)

Copy the contents of the array in in into the already allocated array in out. The
types of the input and output may be different, type conversion will be done internally.
When in->size != out->size this function will behave as follows:

out->size < in->size

This function will not re-allocate the necessary space, it will abort with
an error, so please check before calling this function.

out->size > in->size

This function will write the values in out->size and out->dsize from
the same values of in. So if you want to use a pre-allocated space/dataset
multiple times with varying input sizes, be sure to reset out->size before
every call to this function.

[Function]gal_data_t *
gal_data_copy_string_to_number (char *string)

Read string into the smallest type that can store the value (see Section 4.5 [Numeric
data types], page 277). This function is just a wrapper for the gal_type_string_

to_number, but will put the value into a single-element dataset.
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12.3.7 Dimensions (dimension.h)

An array is a contiguous region of memory. Hence, at the lowest level, every element of
an array just has one single-valued position: the number of elements that lie between it
and the first element in the array. This is also known as the index of the element within
the array. A dataset’s number of dimensions is high-level abstraction (meta-data) that we
project onto that contiguous patch of memory. When the array is interpreted as a one-
dimensional dataset, this index is also the coordinate of the element. But once we associate
the patch of memory with a higher dimension, there must also be one coordinate for each
dimension.

The functions and macros in this section provide you with the tools to convert an index
into a coordinate and vice-versa along with several other issues for example, issues with the
neighbors of an element in a multi-dimensional context.

[Function]size_t
gal_dimension_total_size (size_t ndim, size_t *dsize)

Return the total number of elements for a dataset with ndim dimensions that has
dsize elements along each dimension.

[Function]int
gal_dimension_is_different (gal_data_t *first, gal_data_t *second)

Return 1 (one) if the two datasets do not have the same size along all dimensions.
This function will also return 1 when the number of dimensions of the two datasets
are different.

[Function]size_t *
gal_dimension_increment (size_t ndim, size_t *dsize)

Return an allocated array that has the number of elements necessary to increment an
index along every dimension. For example, along the fastest dimension (last element
in the dsize and returned arrays), the value is 1 (one).

[Function]size_t
gal_dimension_num_neighbors (size_t ndim)

The maximum number of neighbors (any connectivity) that a data element can have
in ndim dimensions. Effectively, this function just returns 3n − 1 (where n is the
number of dimensions).

[Function-like macro]GAL_DIMENSION_FLT_TO_INT (FLT)
Calculate the integer pixel position that the floating point FLT number belongs to. In
the FITS format (and thus in Gnuastro), the center of each pixel is allocated on an
integer (not it edge), so the pixel which hosts a floating point number cannot simply
be found with internal type conversion.

[Function]void
gal_dimension_add_coords (size_t *c1, size_t *c2, size_t *out, size_t

ndim)
For every dimension, add the coordinates in c1 with c2 and put the result into out.
In other words, for dimension i run out[i]=c1[i]+c2[i];. Hence out may be equal
to any one of c1 or c2.
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[Function]size_t
gal_dimension_coord_to_index (size_t ndim, size_t *dsize, size_t

*coord)
Return the index (counting from zero) from the coordinates in coord (counting from
zero) assuming the dataset has ndim elements and the size of the dataset along each
dimension is in the dsize array.

[Function]void
gal_dimension_index_to_coord (size_t index, size_t ndim, size_t

*dsize, size_t *coord)
Fill in the coord array with the coordinates that correspond to index assuming the
dataset has ndim elements and the size of the dataset along each dimension is in the
dsize array. Note that both index and each value in coord are assumed to start
from 0 (zero). Also that the space which coord points to must already be allocated
before calling this function.

[Function]size_t
gal_dimension_dist_manhattan (size_t *a, size_t *b, size_t ndim)

Return the manhattan distance (see Wikipedia (https://en.wikipedia.org/wiki/
Taxicab_geometry)) between the two coordinates a and b (each an array of ndim
elements).

[Function]float
gal_dimension_dist_radial (size_t *a, size_t *b, size_t ndim)

Return the radial distance between the two coordinates a and b (each an array of
ndim elements).

[Function]float
gal_dimension_dist_elliptical (double *center, double *pa_deg, double

*q, size_t ndim, double *point)
Return the elliptical/ellipsoidal distance of the single point point (containing ndim

values: coordinates of the point in each dimension) from an ellipse that is defined by
center, pa_deg and q. center is the coordinates of the ellipse center (also with ndim

elements). pa is the position-angle in degrees (the angle of the semi-major axis from
the first dimension in a 2D ellipse) and q is the axis ratio.

In a 2D ellipse, pa and q are a single-element array. However, in a 3D ellipsoid, pa
must have three elements, and q must have 2 elements. For more see Section 8.1.1.1
[Defining an ellipse and ellipsoid], page 629.

[Function]gal_data_t *
gal_dimension_collapse_sum (gal_data_t *in, size_t c_dim, gal_data_t

*weight)
Collapse the input dataset (in) along the given dimension (c_dim, in C definition:
starting from zero, from the slowest dimension), by summing all elements in that
direction. If weight!=NULL, it must be a single-dimensional array, with the same size
as the dimension to be collapsed. The respective weight will be multiplied to each
element during the collapse.

For generality, the returned dataset will have a GAL_TYPE_FLOAT64 type. See Sec-
tion 12.3.6.4 [Copying datasets], page 762, for converting the returned dataset to a

https://en.wikipedia.org/wiki/Taxicab_geometry
https://en.wikipedia.org/wiki/Taxicab_geometry
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desired type. Also, for more on the application of this function, see the Arithmetic
program’s collapse-sum operator (which uses this function) in Section 6.2.4 [Arith-
metic operators], page 408.

[Function]gal_data_t *
gal_dimension_collapse_mean (gal_data_t *in, size_t c_dim, gal_data_t

*weight)
Similar to gal_dimension_collapse_sum (above), but the collapse will be done by
calculating the mean along the requested dimension, not summing over it.

[Function]gal_data_t *
gal_dimension_collapse_number (gal_data_t *in, size_t c_dim)

Collapse the input dataset (in) along the given dimension (c_dim, in C definition:
starting from zero, from the slowest dimension), by counting how many non-blank
elements there are along that dimension.

For generality, the returned dataset will have a GAL_TYPE_INT32 type. See Sec-
tion 12.3.6.4 [Copying datasets], page 762, for converting the returned dataset to
a desired type. Also, for more on the application of this function, see the Arith-
metic program’s collapse-number operator (which uses this function) in Section 6.2.4
[Arithmetic operators], page 408.

[Function]gal_data_t *
gal_dimension_collapse_minmax (gal_data_t *in, size_t c_dim, int

max1_min0)
Collapse the input dataset (in) along the given dimension (c_dim, in C definition:
starting from zero, from the slowest dimension), by using the largest/smallest non-
blank value along that dimension. If max1_min0 is non-zero, then the collapsed dataset
will have the maximum value along the given dimension and if it is zero, the minimum.

[Function]gal_data_t *
gal_dimension_collapse_median (gal_data_t *in, size_t c_dim, size_t

numthreads, size_t minmapsize, int quietmmap)
Collapse the input dataset (in) along the given dimension (c_dim, in C definition:
starting from zero, from the slowest dimension), by finding the median non-blank
value along that dimension. Since the median involves sorting, this operator ben-
efits from many threads (which needs to be set with numthreads). For more on
minmapsize and quietmmap see Section 4.6 [Memory management], page 279.

[Function]gal_data_t *
gal_dimension_collapse_sclip_std (gal_data_t *in, size_t c_dim, float

multip, float param, size_t numthreads, size_t minmapsize,
int quietmmap)

Collapse the input dataset (in) along the given dimension (c_dim, in C definition:
starting from zero, from the slowest dimension), by finding the standard devia-
tion of pixels along that dimension after sigma-clipping. Since sigma-clipping in-
volves sorting, this operator benefits from many threads (which needs to be set with
numthreads). For more on minmapsize and quietmmap see Section 4.6 [Memory man-
agement], page 279. For more on sigma clipping, see Section 2.10.2 [Sigma clipping],
page 200.
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[Function]gal_data_t *
gal_dimension_collapse_sclip_fill_std (gal_data_t *in, size_t c_dim,

float multip, float param, size_t numthreads, size_t
minmapsize, int quietmmap)

Similar to gal_dimension_collapse_sclip_std, but with filled re-clipping (see Sec-
tion 2.10.4 [Contiguous outliers], page 209).

[Function]gal_data_t *
gal_dimension_collapse_sclip_mad (gal_data_t *in, size_t c_dim, float

multip, float param, size_t numthreads, size_t minmapsize,
int quietmmap)

Collapse the input dataset (in) along the given dimension (c_dim, in C definition:
starting from zero, from the slowest dimension), by finding the median absolute devia-
tion (MAD) of pixels along that dimension after sigma-clipping. Since sigma-clipping
involves sorting, this operator benefits from many threads (which needs to be set
with numthreads). For more on minmapsize and quietmmap see Section 4.6 [Mem-
ory management], page 279. For more on sigma clipping, see Section 2.10.2 [Sigma
clipping], page 200.

[Function]gal_data_t *
gal_dimension_collapse_sclip_fill_mad (gal_data_t *in, size_t c_dim,

float multip, float param, size_t numthreads, size_t
minmapsize, int quietmmap)

Similar to gal_dimension_collapse_sclip_mad, but with filled re-clipping (see Sec-
tion 2.10.4 [Contiguous outliers], page 209).

[Function]gal_data_t *
gal_dimension_collapse_sclip_mean (gal_data_t *in, size_t c_dim,

float multip, float param, size_t numthreads, size_t
minmapsize, int quietmmap)

Collapse the input dataset (in) along the given dimension (c_dim, in C definition:
starting from zero, from the slowest dimension), by finding the mean of pixels along
that dimension after sigma-clipping. Since sigma-clipping involves sorting, this oper-
ator benefits from many threads (which needs to be set with numthreads). For more
on minmapsize and quietmmap see Section 4.6 [Memory management], page 279. For
more on sigma clipping, see Section 2.10.2 [Sigma clipping], page 200.

[Function]gal_data_t *
gal_dimension_collapse_sclip_fill_mean (gal_data_t *in, size_t c_dim,

float multip, float param, size_t numthreads, size_t
minmapsize, int quietmmap)

Similar to gal_dimension_collapse_sclip_mean, but with filled re-clipping (see
Section 2.10.4 [Contiguous outliers], page 209).
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[Function]gal_data_t *
gal_dimension_collapse_sclip_median (gal_data_t *in, size_t c_dim,

float multip, float param, size_t numthreads, size_t
minmapsize, int quietmmap)

Collapse the input dataset (in) along the given dimension (c_dim, in C definition:
starting from zero, from the slowest dimension), by finding the median of pixels
along that dimension after sigma-clipping. Since sigma-clipping involves sorting, this
operator benefits from many threads (which needs to be set with numthreads). For
more on minmapsize and quietmmap see Section 4.6 [Memory management], page 279.
For more on sigma clipping, see Section 2.10.2 [Sigma clipping], page 200.

[Function]gal_data_t *
gal_dimension_collapse_sclip_fill_median (gal_data_t *in, size_t

c_dim, float multip, float param, size_t numthreads, size_t
minmapsize, int quietmmap)

Similar to gal_dimension_collapse_sclip_median, but with filled re-clipping (see
Section 2.10.4 [Contiguous outliers], page 209).

[Function]gal_data_t *
gal_dimension_collapse_sclip_number (gal_data_t *in, size_t c_dim,

float multip, float param, size_t numthreads, size_t
minmapsize, int quietmmap)

Collapse the input dataset (in) along the given dimension (c_dim, in C definition:
starting from zero, from the slowest dimension), by finding the number of pixels
along that dimension after sigma-clipping. Since sigma-clipping involves sorting, this
operator benefits from many threads (which needs to be set with numthreads). For
more on minmapsize and quietmmap see Section 4.6 [Memory management], page 279.
For more on sigma clipping, see Section 2.10.2 [Sigma clipping], page 200.

[Function]gal_data_t *
gal_dimension_collapse_sclip_fill_number (gal_data_t *in, size_t

c_dim, float multip, float param, size_t numthreads, size_t
minmapsize, int quietmmap)

Similar to gal_dimension_collapse_sclip_number, but with filled re-clipping (see
Section 2.10.4 [Contiguous outliers], page 209).

[Function]gal_data_t *
gal_dimension_collapse_mclip_std (gal_data_t *in, size_t c_dim, float

multip, float param, size_t numthreads, size_t minmapsize,
int quietmmap)

Collapse the input dataset (in) along the given dimension (c_dim, in C definition:
starting from zero, from the slowest dimension), by finding the standard deviation of
pixels along that dimension after median absolute deviation (MAD) clipping. Since
MAD-clipping involves sorting, this operator benefits from many threads (which needs
to be set with numthreads). For more on minmapsize and quietmmap see Section 4.6
[Memory management], page 279. For more on MAD-clipping, see Section 2.10.3
[MAD clipping], page 206.
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[Function]gal_data_t *
gal_dimension_collapse_mclip_fill_std (gal_data_t *in, size_t c_dim,

float multip, float param, size_t numthreads, size_t
minmapsize, int quietmmap)

Similar to gal_dimension_collapse_mclip_std, but with filled re-clipping (see Sec-
tion 2.10.4 [Contiguous outliers], page 209).

[Function]gal_data_t *
gal_dimension_collapse_mclip_mad (gal_data_t *in, size_t c_dim, float

multip, float param, size_t numthreads, size_t minmapsize,
int quietmmap)

Collapse the input dataset (in) along the given dimension (c_dim, in C definition:
starting from zero, from the slowest dimension), by finding the median absolute devi-
ation (MAD) of pixels along that dimension after median absolute deviation (MAD)
clipping. Since MAD-clipping involves sorting, this operator benefits from many
threads (which needs to be set with numthreads). For more on minmapsize and
quietmmap see Section 4.6 [Memory management], page 279. For more on MAD-
clipping, see Section 2.10.3 [MAD clipping], page 206.

[Function]gal_data_t *
gal_dimension_collapse_mclip_fill_mad (gal_data_t *in, size_t c_dim,

float multip, float param, size_t numthreads, size_t
minmapsize, int quietmmap)

Similar to gal_dimension_collapse_mclip_mad, but with filled re-clipping (see Sec-
tion 2.10.4 [Contiguous outliers], page 209).

[Function]gal_data_t *
gal_dimension_collapse_mclip_mean (gal_data_t *in, size_t c_dim,

float multip, float param, size_t numthreads, size_t
minmapsize, int quietmmap)

Collapse the input dataset (in) along the given dimension (c_dim, in C definition:
starting from zero, from the slowest dimension), by finding the mean of pixels along
that dimension after median absolute deviation (MAD) clipping. Since MAD-clipping
involves sorting, this operator benefits from many threads (which needs to be set with
numthreads). For more on minmapsize and quietmmap see Section 4.6 [Memory man-
agement], page 279. For more on MAD-clipping, see Section 2.10.3 [MAD clipping],
page 206.

[Function]gal_data_t *
gal_dimension_collapse_mclip_fill_mean (gal_data_t *in, size_t c_dim,

float multip, float param, size_t numthreads, size_t
minmapsize, int quietmmap)

Similar to gal_dimension_collapse_mclip_mean, but with filled re-clipping (see
Section 2.10.4 [Contiguous outliers], page 209).
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[Function]gal_data_t *
gal_dimension_collapse_mclip_median (gal_data_t *in, size_t c_dim,

float multip, float param, size_t numthreads, size_t
minmapsize, int quietmmap)

Collapse the input dataset (in) along the given dimension (c_dim, in C definition:
starting from zero, from the slowest dimension), by finding the median of pixels
along that dimension after median absolute deviation (MAD) clipping. Since MAD-
clipping involves sorting, this operator benefits from many threads (which needs to
be set with numthreads). For more on minmapsize and quietmmap see Section 4.6
[Memory management], page 279. For more on MAD-clipping, see Section 2.10.3
[MAD clipping], page 206.

[Function]gal_data_t *
gal_dimension_collapse_mclip_fill_median (gal_data_t *in, size_t

c_dim, float multip, float param, size_t numthreads, size_t
minmapsize, int quietmmap)

Similar to gal_dimension_collapse_mclip_median, but with filled re-clipping (see
Section 2.10.4 [Contiguous outliers], page 209).

[Function]gal_data_t *
gal_dimension_collapse_mclip_number (gal_data_t *in, size_t c_dim,

float multip, float param, size_t numthreads, size_t
minmapsize, int quietmmap)

Collapse the input dataset (in) along the given dimension (c_dim, in C definition:
starting from zero, from the slowest dimension), by finding the number of pixels
along that dimension after median absolute deviation (MAD) clipping. Since MAD-
clipping involves sorting, this operator benefits from many threads (which needs to
be set with numthreads). For more on minmapsize and quietmmap see Section 4.6
[Memory management], page 279. For more on MAD-clipping, see Section 2.10.3
[MAD clipping], page 206.

[Function]gal_data_t *
gal_dimension_collapse_mclip_fill_number (gal_data_t *in, size_t

c_dim, float multip, float param, size_t numthreads, size_t
minmapsize, int quietmmap)

Similar to gal_dimension_collapse_mclip_number, but with filled re-clipping (see
Section 2.10.4 [Contiguous outliers], page 209).

[Function]size_t
gal_dimension_remove_extra (size_t ndim, size_t *dsize, struct wcsprm

*wcs)
Remove extra dimensions (those that only have a length of 1) from the basic size
information of a dataset. ndim is the number of dimensions and dsize is an array
with ndim elements containing the size along each dimension in the C dimension order.
When wcs!=NULL, the respective dimension will also be removed from the WCS.

This function will return the new number of dimensions and the dsize elements will
contain the length along each new dimension.
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[Function-like macro]GAL_DIMENSION_NEIGHBOR_OP (index, ndim, dsize,
connectivity, dinc, operation)

Parse the neighbors of the element located at index and do the requested operation
on them. This is defined as a macro to allow easy definition of any operation on the
neighbors of a given element without having to use loops within your source code
(the loops are implemented by this macro). For an example of using this function,
please see Section 12.4.2 [Library demo - inspecting neighbors], page 912. The input
arguments to this function-like macro are described below:

index Distance of this element from the first element in the array on a contiguous
patch of memory (starting from 0), see the discussion above.

ndim The number of dimensions associated with the contiguous patch of mem-
ory.

dsize The full array size along each dimension. This must be an array and is
assumed to have the same number elements as ndim. See the discussion
under the same element in Section 12.3.6.1 [Generic data container (gal_
data_t)], page 755.

connectivity

Most distant neighbors to consider. Depending on the number of dimen-
sions, different neighbors may be defined for each element. This function-
like macro distinguish between these different neighbors with this argu-
ment. It has a value between 1 (one) and ndim. For example, in a 2D
dataset, 4-connected neighbors have a connectivity of 1 and 8-connected
neighbors have a connectivity of 2. Note that this is inclusive, so in this
example, a connectivity of 2 will also include connectivity 1 neighbors.

dinc An array keeping the length necessary to increment along each dimension.
You can make this array with the following function. Just do not forget
to free the array after you are done with it:

size_t *dinc=gal_dimension_increment(ndim, dsize);

free(dinc);

dinc depends on ndim and dsize, but it must be defined outside this
function-like macro since it involves allocation to help in performance.

operation

Any C operation that you would like to do on the neighbor. This macro
will provide you a nind variable that can be used as the index of the
neighbor that is currently being studied. It is defined as ‘size_t ndim;’.
Note that operation will be repeated the number of times there is a
neighbor for this element.

This macro works fully within its own {} block and except for the nind variable that
shows the neighbor’s index, all the variables within this macro’s block start with gdn_.

12.3.8 Linked lists (list.h)

An array is a contiguous region of memory that is very efficient and easy to use for recording
and later accessing any random element as fast as any other. This makes array the primary
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data container when you have many elements (for example, an image which has millions of
pixels). One major problem with an array is that the number of elements that go into it
must be known in advance and adding or removing an element will require a re-set of all
the other elements. For example, if you want to remove the 3rd element in a 1000 element
array, all 997 subsequent elements have to pulled back by one position, the reverse will
happen if you need to add an element.

In many contexts such situations never come up, for example, you do not want to shift
all the pixels in an image by one or two pixels from some random position in the image:
their positions have scientific value. But in other contexts you will find yourself frequently
adding/removing an a-priori unknown number of elements. Linked lists (or lists for short)
are the data-container of choice in such situations. As in a chain, each node in a list is
an independent C structure, keeping its own data along with pointer(s) to its immediate
neighbor(s). Below, you can see one simple linked list node structure along with an ASCII
art schematic of how we can use the next pointer to add any number of elements to the list
that we want. By convention, a list is terminated when next is the NULL pointer.

struct list_float /* --------- --------- */

{ /* | Value | | Value | */

float value; /* | --- | | --- | */

struct list_float *next; /* | next-|--> | next-|--> NULL */

} /* --------- --------- */

The schematic shows another great advantage of linked lists: it is very easy to add or
remove/pop a node anywhere in the list. If you want to modify the first node, you just have
to change one pointer. If it is in the middle, you just have to change two. You initially
define a variable of this type with a NULL pointer as shown below:

struct list_float *list=NULL;

To add or remove/pop a node from the list you can use functions provided for the respective
type in the sections below.

When you add an element to the list, it is conventionally added to the “top” of the list: the
general list pointer will point to the newly created node, which will point to the previously
created node and so on. So when you “pop” from the top of the list, you are actually
retrieving the last value you put in and changing the list pointer to the next youngest node.
This is thus known as a “last-in-first-out” list. This is the most efficient type of linked list
(easier to implement and faster to process). Alternatively, you can add each newly created
node at the end of the list. If you do that, you will get a “first-in-first-out” list. But that
will force you to go through the whole list for each new element that is created (this will
slow down the processing)18.

The node example above creates the simplest kind of a list. We can define each node
with two pointers to both the next and previous neighbors, this is called a “Doubly linked
list”. In general, lists are very powerful and simple constructs that can be very useful.
But going into more detail would be out of the scope of this short introduction in this
book. Wikipedia (https://en.wikipedia.org/wiki/Linked_list) has a nice and more

18 A better way to get a first-in-first-out is to first keep the data as last-in-first-out until they are all read.
Afterwards, reverse the list by popping each node and immediately add it to the new list. This practically
reverses the last-in-first-out list to a first-in-first-out one. All the list types discussed in this chapter have
a function with a _reverse suffix for this job.

https://en.wikipedia.org/wiki/Linked_list
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thorough discussion of the various types of lists. To appreciate/use the beauty and elegance
of these powerful constructs even further, see Chapter 2 (Information Structures, in volume
1) of Donald Knuth’s “The art of computer programming”.

In this section we will review the functions and structures that are available in Gnuastro
for working on lists. They differ by the type of data that each node can keep. For each linked-
list node structure, we will first introduce the structure, then the functions for working on the
structure. All these structures and functions are defined and declared in gnuastro/list.h.

12.3.8.1 List of strings

Probably one of the most common lists you will be using are lists of strings. They are the
best tools when you are reading the user’s inputs, or when adding comments to the output
files. Below you can see Gnuastro’s string list type and several functions to help in adding,
removing/popping, reversing and freeing the list.

[Type (C struct)]gal_list_str_t
A single node in a list containing a string of characters.

typedef struct gal_list_str_t

{

char *v;

struct gal_list_str_t *next;

} gal_list_str_t;

[Function]void
gal_list_str_add (gal_list_str_t **list, char *value, int allocate)

Add a new node to the list of strings (list) and update it. The new node will contain
the string value. If allocate is not zero, space will be allocated specifically for the
string of the new node and the contents of value will be copied into it. This can be
useful when your string may be changed later in the program, but you want your list
to remain. Here is one short/simple example of initializing and adding elements to a
string list:

gal_list_str_t *list=NULL;

gal_list_str_add(&list, "bottom of list.", 1);

gal_list_str_add(&list, "second last element of list.", 1);

[Function]char *
gal_list_str_pop (gal_list_str_t **list)

Pop the top element of list, change list to point to the next node in the list, and
return the string that was in the popped node. If *list==NULL, then this function
will also return a NULL pointer.

[Function]size_t
gal_list_str_number (gal_list_str_t *list)

Return the number of nodes in list.

[Function]gal_list_str_t *
gal_list_str_last (gal_list_str_t *list)

Return a pointer to the last node in list.
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[Function]void
gal_list_str_print (gal_list_str_t *list)

Print the strings within each node of *list on the standard output in the same order
that they are stored. Each string is printed on one line. This function is mainly
good for checking/debugging your program. For program outputs, it is best to make
your own implementation with a better, more user-friendly, format. For example, the
following code snippet.

size_t i=0;

gal_list_str_t *tmp;

for(tmp=list; tmp!=NULL; tmp=tmp->next)

printf("String %zu: %s\n", ++i, tmp->v);

[Function]void
gal_list_str_reverse (gal_list_str_t **list)

Reverse the order of the list such that the top node in the list before calling this
function becomes the bottom node after it.

[Function]void
gal_list_str_free (gal_list_str_t *list, int freevalue)

Free every node in list. If freevalue is not zero, also free the string within the
nodes.

[Function]gal_list_str_t *
gal_list_str_extract (char *string)

Extract space-separated components of the input string. If any space element should
be kept (and not considered as a delimiter between two tokens), precede it with a
backslash (\). Be aware that in C programming, when including a backslash character
within a string literal, the correct format is indeed to use two backslashes ("\\") to
represent a single backslash:

gal_list_str_extract("bottom of\\ list");

[Function]char *
gal_list_str_cat (gal_list_str_t *list, char delimiter)

Concatenate (append) the input list of strings into a single string where each node is
separated from the next with the given delimiter. The space for the output string
is allocated by this function and should be freed when you have finished with it.

If there is any delimiter characters are present in any of the elements, a backslash (\)
will be printed before the SPACE character. This is necessary, otherwise, a function
like gal_list_str_extract will not be able to extract the elements back into separate
elements in a list.

12.3.8.2 List of int32_t

Signed integers are the best types when you are dealing with a positive or negative integers.
The are generally useful in many contexts, for example when you want to keep the order of
a series of states (each state stored as a given number in an enum for example). On many
modern systems, int32_t is just an alias for int, so you can use them interchangeably. To
make sure, check the size of int on your system:
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[Type (C struct)]gal_list_i32_t
A single node in a list containing a 32-bit signed integer (see Section 4.5 [Numeric
data types], page 277).

typedef struct gal_list_i32_t

{

int32_t v;

struct gal_list_i32_t *next;

} gal_list_i32_t;

[Function]void
gal_list_i32_add (gal_list_i32_t **list, int32_t value)

Add a new node (containing value) to the top of the list of int32_ts (uint32_t is
equal to int on many modern systems), and update list. Here is one short example
of initializing and adding elements to a string list:

gal_list_i32_t *list=NULL;

gal_list_i32_add(&list, 52);

gal_list_i32_add(&list, -4);

[Function]int32_t
gal_list_i32_pop (gal_list_i32_t **list)

Pop the top element of list and return the value. This function will also change
list to point to the next node in the list. If *list==NULL, then this function will
also return GAL_BLANK_INT32 (see Section 12.3.5 [Library blank values (blank.h)],
page 751).

[Function]size_t
gal_list_i32_number (gal_list_i32_t *list)

Return the number of nodes in list.

[Function]size_t
gal_list_i32_last (gal_list_i32_t *list)

Return a pointer to the last node in list.

[Function]void
gal_list_i32_print (gal_list_i32_t *list)

Print the integers within each node of *list on the standard output in the same
order that they are stored. Each integer is printed on one line. This function is
mainly good for checking/debugging your program. For program outputs, it is best
to make your own implementation with a better, more user-friendly format. For
example, the following code snippet. You can also modify it to print all values in one
line, etc., depending on the context of your program.

size_t i=0;

gal_list_i32_t *tmp;

for(tmp=list; tmp!=NULL; tmp=tmp->next)

printf("Number %zu: %s\n", ++i, tmp->v);
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[Function]void
gal_list_i32_reverse (gal_list_i32_t **list)

Reverse the order of the list such that the top node in the list before calling this
function becomes the bottom node after it.

[Function]int32_t *
gal_list_i32_to_array (gal_list_i32_t *list, int reverse, size_t

*num)
Dynamically allocate an array and fill it with the values in list. The function will
return a pointer to the allocated array and put the number of elements in the array
into the num pointer. If reverse has a non-zero value, the array will be filled in the
opposite order of elements in list. This function can be useful after you have finished
reading an initially unknown number of values and want to put them in an array for
easy random access.

[Function]void
gal_list_i32_free (gal_list_i32_t *list)

Free every node in list.

12.3.8.3 List of size_t

The size_t type is a unique type in C: as the name suggests it is defined to store sizes,
or more accurately, the distances between memory locations. Hence it is always positive
(an unsigned type) and it is directly related to the address-able spaces on the host system:
on 32-bit and 64-bit systems it is an alias for uint32_t and uint64_t, respectively (see
Section 4.5 [Numeric data types], page 277).

size_t is the default compiler type to index an array (recall that an array index in
C is just a pointer increment of a given size). Since it is unsigned, it is a great type
for counting (where negative is not defined), you are always sure it will never exceed the
system’s (virtual) memory and since its name has the word “size” inside it, it provides a
good level of documentation19. In Gnuastro, we do all counting and array indexing with
this type, so this list is very handy. As discussed above, size_t maps to different types on
different machines, so a portable way to print them with printf is to use C99’s %zu format.

[Type (C struct)]gal_list_sizet_t
A single node in a list containing a size_t value (which maps to uint32_t or uint64_
t on 32-bit and 64-bit systems), see Section 4.5 [Numeric data types], page 277.

typedef struct gal_list_sizet_t

{

size_t v;

struct gal_list_sizet_t *next;

} gal_list_sizet_t;

[Function]void
gal_list_sizet_add (gal_list_sizet_t **list, size_t value)

Add a new node (containing value) to the top of the list of size_ts and update
list. Here is one short example of initializing and adding elements to a string list:

gal_list_sizet_t *list=NULL;

19 So you know that a variable of this type is not used to store some generic state for example.



Chapter 12: Library 777

gal_list_sizet_add(&list, 45493);

gal_list_sizet_add(&list, 930484);

[Function]sizet_t
gal_list_sizet_pop (gal_list_sizet_t **list)

Pop the top element of list and return the value. This function will also change
list to point to the next node in the list. If *list==NULL, then this function will
also return GAL_BLANK_SIZE_T (see Section 12.3.5 [Library blank values (blank.h)],
page 751).

[Function]size_t
gal_list_sizet_number (gal_list_sizet_t *list)

Return the number of nodes in list.

[Function]size_t
gal_list_sizet_last (gal_list_sizet_t *list)

Return a pointer to the last node in list.

[Function]void
gal_list_sizet_print (gal_list_sizet_t *list)

Print the values within each node of *list on the standard output in the same order
that they are stored. Each integer is printed on one line. This function is mainly
good for checking/debugging your program. For program outputs, it is best to make
your own implementation with a better, more user-friendly format. For example, the
following code snippet. You can also modify it to print all values in one line, etc.,
depending on the context of your program.

size_t i=0;

gal_list_sizet_t *tmp;

for(tmp=list; tmp!=NULL; tmp=tmp->next)

printf("Number %zu: %zu\n", ++i, tmp->v);

[Function]void
gal_list_sizet_reverse (gal_list_sizet_t **list)

Reverse the order of the list such that the top node in the list before calling this
function becomes the bottom node after it.

[Function]size_t *
gal_list_sizet_to_array (gal_list_sizet_t *list, int reverse, size_t

*num)
Dynamically allocate an array and fill it with the values in list. The function will
return a pointer to the allocated array and put the number of elements in the array
into the num pointer. If reverse has a non-zero value, the array will be filled in the
inverse of the order of elements in list. This function can be useful after you have
finished reading an initially unknown number of values and want to put them in an
array for easy random access.

[Function]void
gal_list_sizet_free (gal_list_sizet_t *list)

Free every node in list.
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12.3.8.4 List of float

Single precision floating point numbers can accurately store real number until 7.2 deci-
mals and only consume 4 bytes (32-bits) of memory, see Section 4.5 [Numeric data types],
page 277. Since astronomical data rarely reach that level of precision, single precision float-
ing points are the type of choice to keep and read data. However, when processing the data,
it is best to use double precision floating points (since errors propagate).

[Type (C struct)]gal_list_f32_t
A single node in a list containing a 32-bit single precision float value: see Section 4.5
[Numeric data types], page 277.

typedef struct gal_list_f32_t

{

float v;

struct gal_list_f32_t *next;

} gal_list_f32_t;

[Function]void
gal_list_f32_add (gal_list_f32_t **list, float value)

Add a new node (containing value) to the top of the list of floats and update
list. Here is one short example of initializing and adding elements to a string list:

gal_list_f32_t *list=NULL;

gal_list_f32_add(&list, 3.89);

gal_list_f32_add(&list, 1.23e-20);

[Function]float
gal_list_f32_pop (gal_list_f32_t **list)

Pop the top element of list and return the value. This function will also change
list to point to the next node in the list. If *list==NULL, then this function will
return GAL_BLANK_FLOAT32 (NaN, see Section 12.3.5 [Library blank values (blank.h)],
page 751).

[Function]size_t
gal_list_f32_number (gal_list_f32_t *list)

Return the number of nodes in list.

[Function]size_t
gal_list_f32_last (gal_list_f32_t *list)

Return a pointer to the last node in list.

[Function]void
gal_list_f32_print (gal_list_f32_t *list)

Print the values within each node of *list on the standard output in the same order
that they are stored. Each floating point number is printed on one line. This function
is mainly good for checking/debugging your program. For program outputs, it is best
to make your own implementation with a better, more user-friendly format. For
example, in the following code snippet. You can also modify it to print all values in
one line, etc., depending on the context of your program.

size_t i=0;
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gal_list_f32_t *tmp;

for(tmp=list; tmp!=NULL; tmp=tmp->next)

printf("Number %zu: %f\n", ++i, tmp->v);

[Function]void
gal_list_f32_reverse (gal_list_f32_t **list)

Reverse the order of the list such that the top node in the list before calling this
function becomes the bottom node after it.

[Function]float *
gal_list_f32_to_array (gal_list_f32_t *list, int reverse, size_t

*num)
Dynamically allocate an array and fill it with the values in list. The function will
return a pointer to the allocated array and put the number of elements in the array
into the num pointer. If reverse has a non-zero value, the array will be filled in the
inverse of the order of elements in list. This function can be useful after you have
finished reading an initially unknown number of values and want to put them in an
array for easy random access.

[Function]void
gal_list_f32_free (gal_list_f32_t *list)

Free every node in list.

12.3.8.5 List of double

Double precision floating point numbers can accurately store real number until 15.9 decimals
and consume 8 bytes (64-bits) of memory, see Section 4.5 [Numeric data types], page 277.
This level of precision makes them very good for serious processing in the middle of a
program’s execution: in many cases, the propagation of errors will still be insignificant
compared to actual observational errors in a data set. But since they consume 8 bytes and
more CPU processing power, they are often not the best choice for storing and transferring
of data.

[Type (C struct)]gal_list_f64_t
A single node in a list containing a 64-bit double precision double value: see Sec-
tion 4.5 [Numeric data types], page 277.

typedef struct gal_list_f64_t

{

double v;

struct gal_list_f64_t *next;

} gal_list_f64_t;

[Function]void
gal_list_f64_add (gal_list_f64_t **list, double value)

Add a new node (containing value) to the top of the list of doubles and update
list. Here is one short example of initializing and adding elements to a string list:

gal_list_f64_t *list=NULL;

gal_list_f64_add(&list, 3.8129395763193);

gal_list_f64_add(&list, 1.239378923931e-20);
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[Function]double
gal_list_f64_pop (gal_list_f64_t **list)

Pop the top element of list and return the value. This function will also change
list to point to the next node in the list. If *list==NULL, then this function will
return GAL_BLANK_FLOAT64 (NaN, see Section 12.3.5 [Library blank values (blank.h)],
page 751).

[Function]size_t
gal_list_f64_number (gal_list_f64_t *list)

Return the number of nodes in list.

[Function]size_t
gal_list_f64_last (gal_list_f64_t *list)

Return a pointer to the last node in list.

[Function]void
gal_list_f64_print (gal_list_f64_t *list)

Print the values within each node of *list on the standard output in the same order
that they are stored. Each floating point number is printed on one line. This function
is mainly good for checking/debugging your program. For program outputs, it is best
to make your own implementation with a better, more user-friendly format. For
example, in the following code snippet. You can also modify it to print all values in
one line, etc., depending on the context of your program.

size_t i=0;

gal_list_f64_t *tmp;

for(tmp=list; tmp!=NULL; tmp=tmp->next)

printf("Number %zu: %f\n", ++i, tmp->v);

[Function]void
gal_list_f64_reverse (gal_list_f64_t **list)

Reverse the order of the list such that the top node in the list before calling this
function becomes the bottom node after it.

[Function]double *
gal_list_f64_to_array (gal_list_f64_t *list, int reverse, size_t

*num)
Dynamically allocate an array and fill it with the values in list. The function will
return a pointer to the allocated array and put the number of elements in the array
into the num pointer. If reverse has a non-zero value, the array will be filled in the
inverse of the order of elements in list. This function can be useful after you have
finished reading an initially unknown number of values and want to put them in an
array for easy random access.

[Function]gal_data_t *
gal_list_f64_to_data (gal_list_f64_t *list, uint8_t type, size_t

minmapsize, int quietmmap)
Write the values in the given list into a gal_data_t dataset of the requested type.
The order of the values in the dataset will be the same as the order from the top of
the list.
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[Function]void
gal_list_f64_free (gal_list_f64_t *list)

Free every node in list.

12.3.8.6 List of void *

In C, void * is the most generic pointer. Usually pointers are associated with the type of
content they point to. For example, int * means a pointer to an integer. This ancillary
information about the contents of the memory location is very useful for the compiler,
catching bad errors and also documentation (it helps the reader see what the address in
memory actually contains). However, void * is just a raw address (pointer), it contains no
information on the contents it points to.

These properties make the void * very useful when you want to treat the contents of
an address in different ways. You can use the void * list defined in this section and its
function on any kind of data: for example, you can use it to keep a list of custom data
structures that you have built for your own separate program. Each node in the list can
keep anything and this gives you great versatility. But in using void *, please beware that
“with great power comes great responsibility”.

[Type (C struct)]gal_list_void_t
A single node in a list containing a void * pointer.

typedef struct gal_list_void_t

{

void *v;

struct gal_list_void_t *next;

} gal_list_void_t;

[Function]void
gal_list_void_add (gal_list_void_t **list, void *value)

Add a new node (containing value) to the top of the list of void *s and update
list. Here is one short example of initializing and adding elements to a string list:

gal_list_void_t *list=NULL;

gal_list_f64_add(&list, some_pointer);

gal_list_f64_add(&list, another_pointer);

[Function]void *
gal_list_void_pop (gal_list_void_t **list)

Pop the top element of list and return the value. This function will also change
list to point to the next node in the list. If *list==NULL, then this function will
return NULL.

[Function]size_t
gal_list_void_number (gal_list_void_t *list)

Return the number of nodes in list.

[Function]size_t
gal_list_void_last (gal_list_void_t *list)

Return a pointer to the last node in list.
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[Function]void
gal_list_void_reverse (gal_list_void_t **list)

Reverse the order of the list such that the top node in the list before calling this
function becomes the bottom node after it.

[Function]void
gal_list_void_free (gal_list_void_t *list)

Free every node in list.

12.3.8.7 Ordered list of size_t

Positions/sizes in a dataset are conventionally in the size_t type (see Section 12.3.8.3 [List
of size_t], page 776) and it sometimes occurs that you want to parse and read the values
in a specific order. For example, you want to start from one pixel and add pixels to the list
based on their distance to that pixel. So that ever time you pop an element from the list,
you know it is the nearest that has not yet been studied. The gal_list_osizet_t type
and its functions in this section are designed to facilitate such operations.

[Type (C struct)]gal_list_osizet_t
Each node in this singly-linked list contains a size_t value and a floating point value.
The floating point value is used as a reference to add new nodes in a sorted manner.
At any moment, the first popped node in this list will have the smallest tosort value,
and subsequent nodes will have larger to values.

typedef struct gal_list_osizet_t

{

size_t v; /* The actual value. */

float s; /* The parameter to sort by. */

struct gal_list_osizet_t *next;

} gal_list_osizet_t;

[Function]void
gal_list_osizet_add (gal_list_osizet_t **list, size_t value, float

tosort)
Allocate space for a new node in list, and store value and tosort into it. The new
node will not necessarily be at the “top” of the list. If *list!=NULL, then the tosort
values of existing nodes is inspected and the given node is placed in the list such
that the top element (which is popped with gal_list_osizet_pop) has the smallest
tosort value.

[Function]size_t
gal_list_osizet_pop (gal_list_osizet_t **list, float *sortvalue)

Pop a node from the top of list, return the node’s value and put its sort value in
the space that sortvalue points to. This function will also free the allocated space
for the popped node and after this function, list will point to the next node (which
has a larger tosort element).
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[Function]void
gal_list_osizet_to_sizet_free (gal_list_osizet_t *in,

gal_list_sizet_t **out)
Convert the ordered list of size_ts into an ordinary size_t linked list. This can be
useful when all the elements have been added and you just need to pop-out elements
and do not care about the sorting values any more. After the conversion is done, this
function will free the input list. Note that the out list does not have to be empty. If
it already contains some nodes, the new nodes will be added on top of them.

12.3.8.8 Doubly linked ordered list of size_t

An ordered list of indices is required in many contexts, one example was discussed at the
beginning of Section 12.3.8.7 [Ordered list of size_t], page 782. But the list that was
introduced there only has one point of entry: you can always only parse the list from
smallest to largest. In this section, the doubly-linked gal_list_dosizet_t node is defined
which will allow us to parse the values in ascending or descending order.

[Type (C struct)]gal_list_dosizet_t
Doubly-linked, ordered size_t list node structure. Each node in this Doubly-linked
list contains a size_t value and a floating point value. The floating point value is
used as a reference to add new nodes in a sorted manner. In the functions here, this
linked list can be pointed to by two pointers (largest and smallest) with the following
format:

largest pointer

|

NULL <-- (v0,s0) <--> (v1,s1) <--> ... (vn,sn) --> NULL

|

smallest pointer

At any moment, the two pointers will point to the nodes containing the “largest” and
“smallest” values and the rest of the nodes will be sorted. This is useful when an
unknown number of nodes are being added continuously and during the operations it
is important to have the nodes in a sorted format.

typedef struct gal_list_dosizet_t

{

size_t v; /* The actual value. */

float s; /* The parameter to sort by. */

struct gal_list_dosizet_t *prev;

struct gal_list_dosizet_t *next;

} gal_list_dosizet_t;

[Function]void
gal_list_dosizet_add (gal_list_dosizet_t **largest,

gal_list_dosizet_t **smallest, size_t value, float tosort)
Allocate space for a new node in list, and store value and tosort into it. If the list
is empty, both largest and smallest must be NULL.
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[Function]size_t
gal_list_dosizet_pop_smallest (gal_list_dosizet_t **largest,

gal_list_dosizet_t **smallest, float tosort)
Pop the value with the smallest reference from the doubly linked list and store the
reference into the space pointed to by tosort. Note that even though only the smallest
pointer will be popped, when there was only one node in the list, the largest pointer
also has to change, so we need both.

[Function]void
gal_list_dosizet_print (gal_list_dosizet_t *largest,

gal_list_dosizet_t *smallest)
Print the largest and smallest values sequentially until the list is parsed.

[Function]void
gal_list_dosizet_to_sizet (gal_list_dosizet_t *in, gal_list_sizet_t

**out)
Convert the doubly linked, ordered size_t list into a singly-linked list of size_t.

[Function]void
gal_list_dosizet_free (gal_list_dosizet_t *largest)

Free the doubly linked, ordered sizet_t list.

12.3.8.9 List of gal_data_t

Gnuastro’s generic data container has a next element which enables it to be used as a
singly-linked list (see Section 12.3.6.1 [Generic data container (gal_data_t)], page 755).
The ability to connect the different data containers offers great advantages. For example,
each column in a table in an independent dataset: with its own name, units, numeric data
type (see Section 4.5 [Numeric data types], page 277). Another application is in Tessellating
an input dataset into separate tiles or only studying particular regions, or tiles, of a larger
dataset (see Section 4.8 [Tessellation], page 289, and Section 12.3.15 [Tessellation library
(tile.h)], page 839). Each independent tile over the dataset can be connected to the others
as a linked list and thus any number of tiles can be represented with one variable.

[Function]void
gal_list_data_add (gal_data_t **list, gal_data_t *newnode)

Add an already allocated dataset (newnode) to top of list. Note that if newnode-
>next!=NULL (newnode is itself a list), then list will be added to its end.

In this example multiple images are linked together as a list:

int quietmmap=1;

size_t minmapsize=-1;

gal_data_t *tmp, *list=NULL;

tmp = gal_fits_img_read("file1.fits", "1", minmapsize, quietmmap,

NULL);

gal_list_data_add( &list, tmp );

tmp = gal_fits_img_read("file2.fits", "1", minmapsize, quietmmap,

NULL);

gal_list_data_add( &list, tmp );
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[Function]void
gal_list_data_add_alloc (gal_data_t **list, void *array, uint8_t

type, size_t ndim, size_t *dsize, struct wcsprm *wcs, int
clear, size_t minmapsize, int quietmmap, char *name, char
*unit, char *comment)

Allocate a new dataset (with gal_data_alloc in Section 12.3.6.2 [Dataset allocation],
page 760) and put it as the first element of list. Note that if this is the first node
to be added to the list, list must be NULL.

[Function]gal_data_t *
gal_list_data_pop (gal_data_t **list)

Pop the top node from list and return it.

[Function]void
gal_list_data_remove (gal_data_t **list, gal_data_t *node)

Remove node from the given list. After finding the given node, this function will
just set node->next=NULL and correct the next node of its previous element to its
next element (thus “removing” it from the list). If node doesn’t exist in the list, this
function won’t make any change to list.

[Function]gal_data_t *
gal_list_data_select_by_name (gal_data_t *list, char *name)

Select the dataset within the list, that has a name element that is identical (case-
sensitive) to the given name. If not found, a NULL pointer will be returned.

Note that this dataset will not be popped from the list, only a pointer to it will be
returned and if you free it or change its next element, it may harm your original list.

[Function]gal_data_t *
gal_list_data_select_by_id (gal_data_t *table, char *idstr, size_t

*index)
Select the dataset within the list that can be identified with the string given to idstr

(which can be a counter, starting from 1, or a name). If not found, a NULL pointer
will be returned.

Note that this dataset will not be popped from the list, only a pointer to it will be
returned and if you free it or change its next element, it may harm your original list.

[Function]void
gal_list_data_reverse (gal_data_t **list)

Reverse the order of the list such that the top node in the list before calling this
function becomes the bottom node after it.

[Function]gal_data_t **
gal_list_data_to_array_ptr (gal_data_t *list, size_t *num)

Allocate and return an array of gal_data_t * pointers with the same number of
elements as the nodes in list. The pointers will be put in the same order that the
list is parsed. Hence the N-th element in the array will point to the same dataset
that the N-th node in the list points to.
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[Function]size_t
gal_list_data_number (gal_data_t *list)

Return the number of nodes in list.

[Function]gal_data_t *
gal_list_data_last (gal_data_t *list)

Return a pointer to the last node in list.

[Function]void
gal_list_data_free (gal_data_t *list)

Free all the datasets in list along with all the allocated spaces in each.

12.3.9 Array input output

Getting arrays (commonly images or cubes) from a file into your program or writing them
after the processing into an output file are some of the most common operations. The
functions in this section are designed for such operations with the known file types. The
functions here are thus just wrappers around functions of lower-level file type functions of
this library, for example, Section 12.3.11 [FITS files (fits.h)], page 793, or Section 12.3.12.2
[TIFF files (tiff.h)], page 812. If the file type of the input/output file is already known,
you can use the functions in those sections respectively.

[Function]int
gal_array_name_recognized (char *filename)

Return 1 if the given file name corresponds to one of the recognized file types for
reading arrays.

[Function]int
gal_array_name_recognized_multiext (char *filename)

Return 1 if the given file name corresponds to one of the recognized file types for
reading arrays which may contain multiple extensions (for example FITS or TIFF)
formats.

[Function]int
gal_array_file_recognized (char *filename)

Similar to gal_array_name_recognized, but for FITS files, it will also check the
contents of the file if the recognized file name suffix is not found. See the description
of gal_fits_file_recognized for more (Section 12.3.11.1 [FITS Macros, errors and
filenames], page 793).

[Function]gal_data_t
gal_array_read (char *filename, char *extension, gal_list_str_t

*lines, size_t minmapsize, int quietmmap, char
*hdu_option_name)

Read the array within the given extension (extension) of filename, or the lines

list (see below). If the array is larger than minmapsize bytes, then it will not be read
into RAM, but a file on the HDD/SSD (no difference for the programmer). Messages
about the memory-mapped file can be disabled with quietmmap.
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extension will be ignored for files that do not support them (for example JPEG or
text). For FITS files, extension can be a number or a string (name of the extension),
but for TIFF files, it has to be number. In both cases, counting starts from zero.

For multi-channel formats (like RGB images in JPEG or TIFF), this function will
return a Section 12.3.8.9 [List of gal_data_t], page 784: one data structure per
channel. Thus if you just want a single array (and want to check if the user has
not given a multi-channel input), you can check the next pointer of the returned
gal_data_t.

lines is a list of strings with each node representing one line (including the new-line
character), see Section 12.3.8.1 [List of strings], page 773. It will mostly be the output
of gal_txt_stdin_read, which is used to read the program’s input as separate lines
from the standard input (see Section 12.3.12.1 [Text files (txt.h)], page 809). Note
that filename and lines are mutually exclusive and one of them must be NULL.

hdu_option_name is used in error messages related to extensions (e.g., HDUs in FITS)
and is expected to be the command-line option name that users of your program
can specify to select an input HDU for this particular input; for example, if the
kernel is used as the input, users should determine --khdu for this option. If the
given extension doesn’t exist in filename, a descriptive error message is printed
instructing the users how to find and fix the problem. This error message also suggests
the option to use in order to help users of your program to inform them what option
they should give a HDU to. If you don’t have an option that is configured by the
users of your program, you can set this to NONE or NULL.

[Function]void
gal_array_read_to_type (char *filename, char *extension,

gal_list_str_t *lines, uint8_t type, size_t minmapsize, int
quietmmap, char *hdu_option_name)

Similar to gal_array_read, but the output data structure(s) will have a numeric
data type of type, see Section 4.5 [Numeric data types], page 277.

[Function]void
gal_array_read_one_ch (char *filename, char *extension,

gal_list_str_t *lines, size_t minmapsize, int quietmmap,
char *hdu_option_name)

Read the dataset within filename (extension/hdu/dir extension) and make sure it
is only a single channel. This is just a simple wrapper around gal_array_read that
checks if there was more than one dataset and aborts with an informative error if
there is more than one channel in the dataset.

Formats like JPEG or TIFF support multiple channels per input, but it may happen
that your program only works on a single dataset. This function can be a convenient
way to make sure that the data that comes into your program is only one channel.

Regarding *hdu_option_name, see the description for the same argument in the de-
scription of gal_array_read.
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[Function]void
gal_array_read_one_ch_to_type (char *filename, char *extension,

gal_list_str_t *lines, uint8_t type, size_t minmapsize, int
quietmmap, char *hdu_option_name)

Similar to gal_array_read_one_ch, but the output data structure will has a numeric
data type of type, see Section 4.5 [Numeric data types], page 277.

12.3.10 Table input output (table.h)

Tables are a collection of one dimensional datasets that are packed together into one file.
They are the single most common format to store high-level (processed) information, hence
they play a very important role in Gnuastro. For a more thorough introduction, please see
Section 5.3 [Table], page 340. Gnuastro’s Table program, and all the other programs that
can read from and write into tables, use the functions of this section for reading and writing
their input/output tables. For a simple demonstration of using the constructs introduced
here, see Section 12.4.4 [Library demo - reading and writing table columns], page 918.

Currently only plain text (see Section 4.7.2 [Gnuastro text table format], page 285) and
FITS (ASCII and binary) tables are supported by Gnuastro. However, the low-level table
infra-structure is written such that accommodating other formats is also possible and in
future releases more formats will hopefully be supported. Please do not hesitate to suggest
your favorite format so it can be implemented when possible.

[Macro]GAL_TABLE_DEF_WIDTH_STR
[Macro]GAL_TABLE_DEF_WIDTH_INT
[Macro]GAL_TABLE_DEF_WIDTH_LINT
[Macro]GAL_TABLE_DEF_WIDTH_FLT
[Macro]GAL_TABLE_DEF_WIDTH_DBL
[Macro]GAL_TABLE_DEF_PRECISION_INT
[Macro]GAL_TABLE_DEF_PRECISION_FLT
[Macro]GAL_TABLE_DEF_PRECISION_DBL

The default width and precision for generic types to use in writing numeric types into
a text file (plain text and FITS ASCII tables). When the dataset does not have any
pre-set width and precision (see disp_width and disp_precision in Section 12.3.6.1
[Generic data container (gal_data_t)], page 755) these will be directly used in C’s
printf command to write the number as a string.

[Macro]GAL_TABLE_DISPLAY_FMT_STRING
[Macro]GAL_TABLE_DISPLAY_FMT_DECIMAL
[Macro]GAL_TABLE_DISPLAY_FMT_UDECIMAL
[Macro]GAL_TABLE_DISPLAY_FMT_OCTAL
[Macro]GAL_TABLE_DISPLAY_FMT_HEX
[Macro]GAL_TABLE_DISPLAY_FMT_FIXED
[Macro]GAL_TABLE_DISPLAY_FMT_EXP
[Macro]GAL_TABLE_DISPLAY_FMT_GENERAL

The display format used in C’s printf to display data of different types. The _

STRING and _DECIMAL are unique for printing strings and signed integers, they are
mainly here for completeness. However, unsigned integers and floating points can be
displayed in multiple formats:
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Unsigned integer
For unsigned integers, it is possible to choose from _UDECIMAL (unsigned
decimal), _OCTAL (octal notation, for example, 125 in decimal will be
displayed as 175), and _HEX (hexadecimal notation, for example, 125 in
decimal will be displayed as 7D).

Floating point
For floating point, it is possible to display the number in _FLOAT

(floating point, for example, 1500.345), _EXP (exponential, for example,
1.500345e+03), or _GENERAL which is the best of the two for the given
number.

[Macro]GAL_TABLE_FORMAT_INVALID
[Macro]GAL_TABLE_FORMAT_TXT
[Macro]GAL_TABLE_FORMAT_AFITS
[Macro]GAL_TABLE_FORMAT_BFITS

All the current acceptable table formats to Gnuastro. The AFITS and BFITS represent
FITS ASCII tables and FITS Binary tables. You can use these anywhere you see the
tableformat variable.

[Macro]GAL_TABLE_SEARCH_INVALID
[Macro]GAL_TABLE_SEARCH_NAME
[Macro]GAL_TABLE_SEARCH_UNIT
[Macro]GAL_TABLE_SEARCH_COMMENT

When the desired column is not a number, these values determine if the string to
match, or regular expression to search, be in the name, units or comments of the
column metadata. These values should be used for the searchin variables of the
functions.

[Function]uint8_t
gal_table_displayflt_from_str (char *string)

Convert the input string into one of the GAL_TABLE_DISPLAY_FMT_FIXED (for fixed-
point notation) or GAL_TABLE_DISPLAY_FMT_EXP (for exponential notation).

[Function]char *
gal_table_displayflt_to_str (uint8_t id)

Convert the input identifier (one of the GAL_TABLE_DISPLAY_FMT_FIXED; for fixed-
point notation, or GAL_TABLE_DISPLAY_FMT_EXP; for exponential notation) into a
standard string that is used to identify them.

[Function]gal_data_t *
gal_table_info (char *filename, char *hdu, gal_list_str_t *lines,

size_t *numcols, size_t *numrows, int *tableformat)
Store the information of each column of a table into an array of meta-data gal_

data_ts. In a metadata gal_data_t, the size elements are zero (ndim=size=0 and
dsize=NULL) but other relevant elements are filled). See the end of this description
for the exact components of each gal_data_t that are filled.

The returned array of gal_data_ts has numcols datasets (one data structure for each
column). The number of rows in each dataset is stored in numrows (in a table, all
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the columns have the same number of rows). The format of the table (e.g., ASCII
text file, or FITS binary or ASCII table) will be put in tableformat (macros defined
above). If the filename is not a FITS file, then hdu will not be used (can be NULL).

The input must be either a file (specified by filename) or a list of strings (lines).
lines is a list of strings with each node representing one line (including the new-line
character), see Section 12.3.8.1 [List of strings], page 773. It will mostly be the output
of gal_txt_stdin_read, which is used to read the program’s input as separate lines
from the standard input (see Section 12.3.12.1 [Text files (txt.h)], page 809). Note
that filename and lines are mutually exclusive and one of them must be NULL.

In the output datasets, only the meta-data strings (column name, units and com-
ments), will be allocated and set as shown below. This function is just for column
information (meta-data), not column contents.

*restrict array -> Blank value (if present, in col's own type).

type -> Type of column data.

ndim -> 0

*dsize -> NULL

size -> 0

quietmmap -> ------------

*mmapname -> ------------

minmapsize -> Repeat (length of vector; 1 if not vector).

nwcs -> ------------

*wcs -> ------------

flag -> 'GAL_TABLEINTERN_FLAG_*' macros.

status -> ------------

*name -> Column name.

*unit -> Column unit.

*comment -> Column comments.

disp_fmt -> 'GAL_TABLE_DISPLAY_FMT' macros.

disp_width -> Width of string columns.

disp_precision -> ------------

*next -> Pointer to next column's metadata

*block -> ------------

[Function]void
gal_table_print_info (gal_data_t *allcols, size_t numcols, size_t

numrows, char *hdu_option_name)
Print the column information for all the columns (output of gal_table_info) to
standard output. The output is in the same format as this command with Gnuastro
Table program (see Section 5.3.5 [Invoking Table], page 359):

$ asttable --info table.fits
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[Function]gal_data_t *
gal_table_read (char *filename, char *hdu, gal_list_str_t *lines,

gal_list_str_t *cols, int searchin, int ignorecase, size_t
numthreads, size_t minmapsize, int quietmmap, size_t
*colmatch, char *hdu_option_name)

Read the specified columns in a file (named filename), or list of strings (lines) into a
linked list of data structures. If the file is FITS, then hdu will also be used, otherwise,
hdu is ignored. For more on hdu_option_name see the description of gal_array_read
in Section 12.3.9 [Array input output], page 786.

lines is a list of strings with each node representing one line (including the new-line
character), see Section 12.3.8.1 [List of strings], page 773. It will mostly be the output
of gal_txt_stdin_read, which is used to read the program’s input as separate lines
from the standard input (see Section 12.3.12.1 [Text files (txt.h)], page 809). Note
that filename and lines are mutually exclusive and one of them must be NULL.

The information to search for columns should be specified by the cols list of strings
(see Section 12.3.8.1 [List of strings], page 773). The string in each node of the list
may be a number, an exact match to a column name, or a regular expression (in
GNU AWK format) enclosed in / /. The searchin value must be one of the macros
defined above. If cols is NULL, then this function will read the full table. Also, the
ignorecase value should be 1 if you want to ignore the case of alphabetic charac-
ters while matching/searching column meta-data (see Section 4.1.2.1 [Input/Output
options], page 252).

For FITS tables, each column will be read independently. Therefore they will be
read in numthreads CPU threads to greatly speed up the reading when there are
many columns and rows. However, this only happens if CFITSIO was configured
with --enable-reentrant. This test has been done at Gnuastro’s configuration
time; if so, GAL_CONFIG_HAVE_FITS_IS_REENTRANT will have a value of 1, otherwise,
it will have a value of 0. For more on this macro, see Section 12.3.1 [Configuration
information (config.h)], page 737). Multi-threaded table reading is not currently
applicable to other table formats (only for FITS tables).

The output is an individually allocated list of datasets (see Section 12.3.8.9 [List
of gal_data_t], page 784) with the same order of the cols list. Note that one
column node in the cols list might give multiple columns (for example, from regular
expressions), in this case, the order of output columns that correspond to that one
input, are in order of the table (which column was read first). So the first requested
column is the first popped data structure and so on.

if colmatch!=NULL, it is assumed to be an array that has at least the same number of
elements as nodes in the cols list. The number of columns that matched each input
column will be stored in each element.

[Function]gal_list_sizet_t *
gal_table_list_of_indexs (gal_list_str_t *cols, gal_data_t *allcols,

size_t numcols, int searchin, int ignorecase, char
*filename, char *hdu, size_t *colmatch)

Returns a list of indices (starting from 0) of the input columns that match the
names/numbers given to cols. This is a low-level operation which is called by gal_
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table_read (described above), see there for more on each argument’s description.
allcols is the returned array of gal_table_info.

[Function]void
gal_table_comments_add_intro (gal_list_str_t **comments, char

*program_string, time_t *rawtime)
Add some basic information to the list of comments. This basic information includes
the following information

• If the program is run in a Git version controlled directory, Git’s description
is printed (see description under COMMIT in Section 4.10 [Output FITS files],
page 291).

• The calendar time that is stored in rawtime (time_t is C’s calendar time format
defined in time.h). You can calculate the time in this format with the following
expressions:

time_t rawtime;

time(&rawtime);

• The name of your program in program_string. If it is NULL, this line is ignored.

[Function]void
gal_table_write (gal_data_t *cols, struct gal_fits_list_key_t

**keylist, gal_list_str_t *comments, int tableformat, char
*filename, char *extname, uint8_t colinfoinstdout, int
freekeys)

Write cols (a list of datasets, see Section 12.3.8.9 [List of gal_data_t], page 784)
into a table stored in filename. The format of the table can be determined with
tableformat that accepts the macros defined above. When filename==NULL, the
column information will be printed on the standard output (command-line).

If comments!=NULL, the list of comments (see Section 12.3.8.1 [List of strings],
page 773) will also be printed into the output table. When the output table is
a plain text file, every node of comments will be printed after a # (so it can be
considered as a comment) and in FITS table they will follow a COMMENT keyword.

If a file named filename already exists, the operation depends on the type of output.
When filename is a FITS file, the table will be added as a new extension after all
existing extensions. If filename is a plain text file, this function will abort with an
error.

If filename is a FITS file, the table extension will have the name extname.

When colinfoinstdout!=0 and filename==NULL (columns are printed in the stan-
dard output), the dataset metadata will also printed in the standard output. When
printing to the standard output, the column information can be piped into another
program for further processing and thus the meta-data (lines starting with a #)
must be ignored. In such cases, you only print the column values by passing 0 to
colinfoinstdout.
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[Function]void
gal_table_write_log (gal_data_t *logll, char *program_string, time_t

*rawtime, gal_list_str_t *comments, char *filename, int
quiet)

Write the logll list of datasets into a table in filename (see Section 12.3.8.9 [List
of gal_data_t], page 784). This function is just a wrapper around gal_table_

comments_add_intro and gal_table_write (see above). If quiet is non-zero, this
function will print a message saying that the filename has been created.

[Function]gal_data_t *
gal_table_col_vector_extract (gal_data_t *vector, gal_list_sizet_t

*indexs)
Given the “vector” column vector (which is assumed to be a 2D dataset), extract the
tokens that are identified in the indexs list into a list of one dimensional datasets.
For more on vector columns in tables, see Section 5.3.2 [Vector columns], page 343.

[Function]gal_data_t *
gal_table_cols_to_vector (gal_data_t *list)

Merge the one-dimensional datasets in the given list into one 2-dimensional dataset
that can be treated as a vector column. All the input datasets have to have the
same size and type. For more on vector columns in tables, see Section 5.3.2 [Vector
columns], page 343.

12.3.11 FITS files (fits.h)

The FITS format is the most common format to store data (images and tables) in astronomy.
The CFITSIO library already provides a very good low-level collection of functions for
manipulating FITS data. The low-level nature of CFITSIO is defined for versatility and
portability. As a result, even a simple and basic operation, like reading an image or table
column into memory, will require a special sequence of CFITSIO function calls which can be
inconvenient and buggy to manage in separate locations. To ease this process, Gnuastro’s
library provides wrappers for CFITSIO functions. With these, it much easier to read, write,
or modify FITS file data, header keywords and extensions. Hence, if you feel these functions
do not exactly do what you want, we strongly recommend reading the CFITSIO manual to
use its great features directly (afterwards, send us your wrappers so we can include it here
for others to benefit also).

All the functions and macros introduced in this section are declared in gnuastro/fits.h.
When you include this header, you are also including CFITSIO’s fitsio.h header. So you
do not need to explicitly include fitsio.h anymore and can freely use any of its macros or
functions in your code along with those discussed here.

12.3.11.1 FITS Macros, errors and filenames

Some general constructs provided by Gnuastro’s FITS handling functions are discussed
here. In particular there are several useful functions about FITS file names.

[Macro]GAL_FITS_MAX_NDIM
The maximum number of dimensions a dataset can have in FITS format, according
to the FITS standard this is 999.
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[Function]void
gal_fits_io_error (int status, char *message)

If status is non-zero, this function will print the CFITSIO error message correspond-
ing to status, print message (optional) in the next line and abort the program. If
message==NULL, it will print a default string after the CFITSIO error.

[Function]int
gal_fits_name_is_fits (char *name)

If the name is an acceptable CFITSIO FITS filename return 1 (one), otherwise return
0 (zero). The currently acceptable FITS suffixes are .fits, .fit, .fits.gz, .fits.Z,
.imh, .fits.fz. IMH is the IRAF format which is acceptable to CFITSIO.

[Function]int
gal_fits_suffix_is_fits (char *suffix)

Similar to gal_fits_name_is_fits, but only for the suffix. The suffix does not have
to start with ‘.’: this function will return 1 (one) for both fits and .fits.

[Function]int
gal_fits_file_recognized (char *name)

Return 1 if the given file name (possibly including its contents) is a FITS file. This
is necessary in when the contents of a FITS file do follow the FITS standard, but it
the file does not have a Gnuastro-recognized FITS suffix. Therefore, it will first call
gal_fits_name_is_fits, if the result is negative, then this function will attempt to
open the file with CFITSIO and if it works, it will close it again and return 1. In the
process of opening the file, CFITSIO will just to open the file, no reading will take
place, so it should have minimal CPU footprint.

[Function]char *
gal_fits_name_save_as_string (char *filename, char *hdu)

If the name is a FITS name, then put a (hdu: ...) after it and return the string. If
it is not a FITS file, just print the name, if filename==NULL, then return the string
stdin. Note that the output string’s space is allocated.

This function is useful when you want to report a random file to the user which may
be FITS or not (for a FITS file, simply the filename is not enough, the HDU is also
necessary).

12.3.11.2 CFITSIO and Gnuastro types

Both Gnuastro and CFITSIO have special and different identifiers for each type that they
accept. Gnuastro’s type identifiers are fully described in Section 12.3.3 [Library data types
(type.h)], page 743, and are usable for all kinds of datasets (images, table columns, etc) as
part of Gnuastro’s Section 12.3.6.1 [Generic data container (gal_data_t)], page 755. How-
ever, following the FITS standard, CFITSIO has different identifiers for images and tables.
Following CFITSIO’s own convention, we will use bitpix for image type identifiers and
datatype for its internal identifiers (and mainly used in tables). The functions introduced
in this section can be used to convert between CFITSIO and Gnuastro’s type identifiers.

One important issue to consider is that CFITSIO’s types are not fixed width (for exam-
ple, long may be 32-bits or 64-bits on different systems). However, Gnuastro’s types are
defined by their width. These functions will use information on the host system to do the
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proper conversion. To have a portable (usable on different systems) code, is thus recom-
mended to use these functions and not to assume a fixed correspondence between CFITSIO
and Gnuastro’s types.

[Function]uint8_t
gal_fits_bitpix_to_type (int bitpix)

Return the Gnuastro type identifier that corresponds to CFITSIO’s bitpix on this
system.

[Function]int
gal_fits_type_to_bitpix (uint8_t type)

Return the CFITSIO bitpix value that corresponds to Gnuastro’s type.

[Function]char
gal_fits_type_to_bin_tform (uint8_t type)

Return the FITS standard binary table TFORM character that corresponds to Gnuas-
tro’s type.

[Function]int
gal_fits_type_to_datatype (uint8_t type)

Return the CFITSIO datatype that corresponds to Gnuastro’s type on this machine.

[Function]uint8_t
gal_fits_datatype_to_type (int datatype, int is_table_column)

Return Gnuastro’s type identifier that corresponds to the CFITSIO datatype. Note
that when dealing with CFITSIO’s TLONG, the fixed width type differs between tables
and images. So if the corresponding dataset is a table column, put a non-zero value
into is_table_column.

12.3.11.3 FITS HDUs

A FITS file can contain multiple HDUs/extensions. The functions in this section can be used
to get basic information about the extensions or open them. Note that fitsfile is defined
in CFITSIO’s fitsio.h which is automatically included by Gnuastro’s gnuastro/fits.h.

[Function]fitsfile *
gal_fits_open_to_write (char *filename)

If filename exists, open it and return the fitsfile pointer that corresponds to it. If
filename does not exist, the file will be created which contains a blank first extension
and the pointer to its next extension will be returned.

[Function]size_t
gal_fits_hdu_num (char *filename)

Return the number of HDUs/extensions in filename.

[Function]unsigned long
gal_fits_hdu_datasum (char *filename, char *hdu, char

*hdu_option_name)
Return the DATASUM of the given HDU in the given FITS file. For more on DATASUM

in the FITS standard, see Section 5.1.1.2 [Keyword inspection and manipulation],
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page 302, (under the checksum component of --write). For more on hdu_option_

name see the description of gal_array_read in Section 12.3.9 [Array input output],
page 786.

[Function]unsigned long
gal_fits_hdu_datasum_encoded (char *filename, char *hdu, char

*hdu_option_name)
Similar to gal_fits_hdu_datasum, but the returned value is always a 16-character
string following the encoding that is described in the FITS standard (primarily for
the CHECKSUM keyword, but can also be used for DATASUM.

[Function]unsigned long
gal_fits_hdu_datasum_ptr (fitsfile *fptr)

Return the DATASUM of the already opened HDU in fptr. For more on DATASUM in the
FITS standard, see Section 5.1.1.2 [Keyword inspection and manipulation], page 302,
(under the checksum component of --write).

[Function]int
gal_fits_hdu_format (char *filename, char *hdu, char

*hdu_option_name)
Return the format of the HDU as one of CFITSIO’s recognized macros: IMAGE_HDU,
ASCII_TBL, or BINARY_TBL. For more on hdu_option_name see the description of
gal_array_read in Section 12.3.9 [Array input output], page 786.

[Function]int
gal_fits_hdu_is_healpix (fitsfile *fptr)

Return 1 if the dataset may be a HEALpix grid and 0 otherwise. Technically, it is
considered to be a HEALPix if the HDU is not an ASCII table, and has the NSIDE,
FIRSTPIX and LASTPIX.

[Function]fitsfile *
gal_fits_hdu_open (char *filename, char *hdu, int iomode, int

exitonerror, char *hdu_option_name)
Open the HDU/extension hdu from filename and return a pointer to CFITSIO’s
fitsfile. iomode determines how the FITS file will be opened using CFITSIO’s
macros: READONLY or READWRITE.

The string in hdu will be appended to filename in square brackets so CFITSIO only
opens this extension. You can use any formatting for the hdu that is acceptable to
CFITSIO. See the description under --hdu in Section 4.1.2.1 [Input/Output options],
page 252, for more.

If exitonerror!=0 and the given HDU cannot be opened for any reason, the function
will exit the program, and print an informative message. Otherwise, when the HDU
cannot be opened, it will just return a NULL pointer. For more on hdu_option_

name see the description of gal_array_read in Section 12.3.9 [Array input output],
page 786.
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[Function]fitsfile *
gal_fits_hdu_open_format (char *filename, char *hdu, int img0_tab1,

char *hdu_option_name)
Open (in read-only format) the hdu HDU/extension of filename as an image or table.
When img0_tab1 is 0(zero) but the HDU is a table, this function will abort with an
error. It will also abort with an error when img0_tab1 is 1 (one), but the HDU is
an image. For more on hdu_option_name see the description of gal_array_read in
Section 12.3.9 [Array input output], page 786.

A FITS HDU may contain both tables or images. When your program needs one of
these formats, you can call this function so if the user provided the wrong HDU/file,
it will abort and inform the user that the file/HDU is has the wrong format.

12.3.11.4 FITS header keywords

Each FITS extension/HDU contains a raw dataset which can either be a table or an image
along with some header keywords. The keywords can be used to store meta-data about
the actual dataset. The functions in this section describe Gnuastro’s high-level functions
for reading and writing FITS keywords. Similar to all Gnuastro’s FITS-related functions,
these functions are all wrappers for CFITSIO’s low-level functions.

The necessary meta-data (header keywords) for a particular dataset are commonly nu-
merous, it is much more efficient to list them in one variable and call the reading/writing
functions once. Hence the functions in this section use linked lists, a thorough introduc-
tion to them is given in Section 12.3.8 [Linked lists (list.h)], page 771. To reading FITS
keywords, these functions use a list of Gnuastro’s generic dataset format that is discussed
in Section 12.3.8.9 [List of gal_data_t], page 784. To write FITS keywords we define the
gal_fits_list_key_t node that is defined below.

[Type (C struct)]gal_fits_list_key_t
Structure for writing FITS keywords. This structure is used for one keyword and you
do not need to set all elements. With the next element, you can link it to another
keyword thus creating a linked list to add any number of keywords easily and at any
step during your program (see Section 12.3.8 [Linked lists (list.h)], page 771, for an
introduction on lists). See the functions below for adding elements to the list.

typedef struct gal_fits_list_key_t

{

int tfree; /* ==1, free title string. */

int kfree; /* ==1, free keyword name. */

int vfree; /* ==1, free keyword value. */

int cfree; /* ==1, free comment. */

int ufree; /* ==1, free unit. */

uint8_t type; /* Keyword value type. */

char *title; /* !=NULL, only print title.*/

char *keyname; /* Keyword Name. */

void *value; /* Keyword value. */

char *comment; /* Keyword comment. */

char *unit; /* Keyword unit. */

struct gal_fits_list_key_t *next; /* Pointer next keyword. */

} gal_fits_list_key_t;
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[Function]int
gal_fits_key_exists_fptr (fitsfile *fptr, char *keyname)

Return 1 (true) if the opened FITS file pointer contains the requested keyword and
0 (false) otherwise.

[Function]void *
gal_fits_key_img_blank (uint8_t type)

Returns a pointer to an allocated space containing the value to the FITS BLANK header
keyword, when the input array has a type of type. This is useful when you want to
write the BLANK keyword using CFITSIO’s fits_write_key function.

According to the FITS standard: “If the BSCALE and BZERO keywords do not have the
default values of 1.0 and 0.0, respectively, then the value of the BLANK keyword must
equal the actual value in the FITS data array that is used to represent an undefined
pixel and not the corresponding physical value”. Therefore a special BLANK value
is needed for datasets containing signed 8-bit, unsigned 16-bit, unsigned 32-bit, and
unsigned 64-bit integers (types that are defined with BSCALE and BZERO in the FITS
standard).� �
Not usable when reading a dataset: As quoted from the FITS standard above, the
value returned by this function can only be generically used for the writing of the
BLANK keyword header. It must not be used as the blank pointer when when reading
a FITS array using CFITSIO. When reading an array with CFITSIO, you can use
gal_blank_alloc_write to generate the necessary pointer.
 	

[Function]void
gal_fits_key_clean_str_value (char *string)

Remove the single quotes and possible extra spaces around the keyword values that
CFITSIO returns when reading a string keyword. CFITSIO does not remove the two
single quotes around the string value of a keyword. Hence the strings it reads are like:
'value ', or 'some_very_long_value'. To use the value during your processing, it
is commonly necessary to remove the single quotes (and possible extra spaces). This
function will do this within the allocated space of the string.

[Function]char *
gal_fits_key_date_to_struct_tm (char *fitsdate, struct tm *tp)

Parse fitsdate as a FITS date format string (most generally: YYYY-MM-

DDThh:mm:ss.ddd...) into the C library’s broken-down time structure, or struct

tm (declared in time.h) and return a pointer to a newly allocated array for the
sub-second part of the format (.ddd...). Therefore it needs to be freed afterwards
(if it is not NULL) When there is no sub-second portion, this pointer will be NULL.

This is a relatively low-level function, an easier function to use is gal_fits_key_date_
to_seconds which will return the sub-seconds as double precision floating point.

Note that the FITS date format mentioned above is the most complete represen-
tation. The following two formats are also acceptable: YYYY-MM-DDThh:mm:ss

and YYYY-MM-DD. This option can also interpret the older FITS date format
where only two characters are given to the year and the date format is reversed
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(DD/MM/YYThh:mm:ss.ddd...). In this case (following the GNU C Library), this
option will make the following assumption: values 68 to 99 correspond to the years
1969 to 1999, and values 0 to 68 as the years 2000 to 2068.

[Function]size_t
gal_fits_key_date_to_seconds (char *fitsdate, char **subsecstr,

double *subsec)
Return the Unix epoch time (number of seconds that have passed since 00:00:00
Thursday, January 1st, 1970) corresponding to the FITS date format string fitsdate
(see description of gal_fits_key_date_to_struct_tm above). This function will
return GAL_BLANK_SIZE_T if the broken-down time could not be converted to seconds.

The Unix epoch time is in units of seconds, but the FITS date format allows sub-
second accuracy. The last two arguments are for the optional sub-second portion. If
you do not want sub-second information, just set the second argument to NULL.

If fitsdate contains sub-second accuracy and subsecstr!=NULL, then the starting
of the sub-second part’s string is stored in subsecstr (malloc’ed), and subsec will
be the corresponding numerical value (between 0 and 1, in double precision floating
point). So to avoid leaking memory, if a sub-second string is requested, it must be
freed after calling this function. When a sub-second string does not exist (and it is
requested), then a value of NULL and NaN will be written in *subsecstr and *subsec

respectively.

This is a very useful function for operations on the FITS date values, for example,
sorting FITS files by their dates, or finding the time difference between two FITS
files. The advantage of working with the Unix epoch time is that you do not have to
worry about calendar details (such as the number of days in different months or leap
years).

[Function]void
gal_fits_key_read_from_ptr (fitsfile *fptr, gal_data_t *keysll, int

readcomment, int readunit)
Read the list of keyword values from a FITS pointer. The input should be a linked
list of Gnuastro’s generic data container (gal_data_t). Before calling this function,
you just have to set the name, and optionally, the desired type of the value of each
keyword. The given name value will be directly passed to CFITSIO to read the desired
keyword name. This function will allocate space to keep the value. If no pre-defined
type is requested for a certain keyword’s value, the smallest possible type to host
the value will be found and used. If readcomment and readunit are non-zero, this
function will also try to read the possible comments and units of the keyword.

Here is one example of using this function:

/* Allocate an array of datasets. */

gal_data_t *keysll=gal_data_array_calloc(N);

/* Make the array usable as a list too (by setting `next'). */

for(i=0;i<N-1;++i) keysll[i].next=&keysll[i+1];

/* Fill the datasets with a `name' and a `type'. */
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keysll[0].name="NAME1"; keysll[0].type=GAL_TYPE_INT32;

keysll[1].name="NAME2"; keysll[1].type=GAL_TYPE_STRING;

...

...

/* Call this function. */

gal_fits_key_read_from_ptr(fptr, keysll, 0, 0);

/* Use the values as you like... */

/* Free all the allocated spaces. Note that `name' was not

allocated in this example, so we should explicitly set

it to NULL before calling `gal_data_array_free'. */

for(i=0;i<N;++i) keysll[i].name=NULL;

gal_data_array_free(keysll, N, 1);

If the array pointer of each keyword’s dataset is not NULL, then it is assumed that
the space to keep the value has already been allocated. If it is NULL, space will be
allocated for the value by this function.

Strings need special consideration: the reason is that generally, gal_data_t needs to
also allow for array of strings (as it supports arrays of integers for example). Hence
when reading a string value, two allocations may be done by this function (one if
array!=NULL).

Therefore, when using the values of strings after this function, keysll[i].array

must be interpreted as char **: one allocation for the pointer, one for the actual
characters. If you use something like the example, above you do not have to worry
about the freeing, gal_data_array_free will free both allocations. So to read a
string, one easy way would be the following:

char *str, **strarray;

strarr = keysll[i].array;

str = strarray[0];

If CFITSIO is unable to read a keyword for any reason the status element of the
respective gal_data_t will be non-zero. If it is zero, then the keyword was found and
successfully read. Otherwise, it is a CFITSIO status value. You can use CFITSIO’s
error reporting tools or gal_fits_io_error (see Section 12.3.11.1 [FITS Macros,
errors and filenames], page 793) for reporting the reason of the failure. A tip: when
the keyword does not exist, CFITSIO’s status value will be KEY_NO_EXIST.

CFITSIO will start searching for the keywords from the last place in the header that
it searched for a keyword. So it is much more efficient if the order that you ask for
keywords is based on the order they are stored in the header.

[Function]void
gal_fits_key_read (char *filename, char *hdu, gal_data_t *keysll, int

readcomment, int readunit, char *hdu_option_name)
Same as gal_fits_read_keywords_fptr (see above), but accepts the filename and
HDU as input instead of an already opened CFITSIO fitsfile pointer.
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[Function]void
gal_fits_key_list_add (gal_fits_list_key_t **list, uint8_t type, char

*keyname, int kfree, void *value, int vfree, char *comment,
int cfree, char *unit, int ufree)

Add a keyword to the top of list of header keywords that need to be written into a
FITS file. In the end, the keywords will have to be freed, so it is important to know
before hand if they were allocated or not (hence the presence of the arguments ending
in free). If the space for the respective element is not allocated, set these arguments
to 0 (zero).

You can call this function multiple times on a single list add several keys that will be
written in one call to gal_fits_key_write or gal_fits_key_write_in_ptr. How-
ever, the resulting list will be a last-in-first-out list (for more on lists, see Section 12.3.8
[Linked lists (list.h)], page 771). Hence, the written keys will have the inverse order
of your calls to this function. To avoid this problem, you can either use gal_fits_

key_list_add_end instead (which will add each key to the end of the list, not to the
top like this function). Alternatively, you can use gal_fits_key_list_reverse after
adding all the keys with this function.

Important note for strings: the value should be the pointer to the string its-self (char
*), not a pointer to a pointer (char **).

[Function]void
gal_fits_key_list_add_end (gal_fits_list_key_t **list, uint8_t type,

char *keyname, int kfree, void *value, int vfree, char
*comment, int cfree, char *unit, int ufree)

Similar to gal_fits_key_list_add, but add the given keyword to the end of the
list, see the description of gal_fits_key_list_add for more. Use this function if
you want the keywords to be written in the same order that you add nodes to the list
of keywords.

[Function]void
gal_fits_key_list_title_add (gal_fits_list_key_t **list, char *title,

int tfree)
Add a special “title” keyword (with the title string) to the top of the keywords list.
If cfree is non-zero, the space allocated for comment will be freed immediately after
writing the keyword (in another function).

[Function]void
gal_fits_key_list_title_add_end (gal_fits_list_key_t **list, char

*title, int tfree)
Similar to gal_fits_key_list_title_add, but put the comments at the end of the
list.

[Function]void
gal_fits_key_list_fullcomment_add (gal_fits_list_key_t **list, char

*comment, int fcfree)
Add a COMMENT keyword to the top of the keywords list. If the comment is longer than
70 characters, CFITSIO will automatically break it into multiple COMMENT keywords.
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If fcfree is non-zero, the space allocated for comment will be freed immediately after
writing the keyword (in another function).

[Function]void
gal_fits_key_list_fullcomment_add_end (gal_fits_list_key_t **list,

char *comment, int fcfree)
Similar to gal_fits_key_list_comment_add, but put the comments at the end of
the list.

[Function]void
gal_fits_key_list_add_date (gal_fits_list_key_t **keylist, char

*comment)
Add a DATE keyword to the input list of keywords containing the date this function
was activated in the format of YYYY-MM-DDThh:mm:ss. This function will also add a
DATEUTC keyword that specifies if the date is in UTC or local time (this depends on
CFITSIO being able to detect UTC in the running operating system or not).

The comment of the keyword should also be specified as the second argument. The
comment is useful to inform users what this date refers to; for example the program
starting time, its ending time, or etc. For more, see the description under DATE in
Section 4.10 [Output FITS files], page 291.

[Function]void
gal_fits_key_list_add_software_versions (gal_fits_list_key_t

**keylist)
Add the version of Gnuastro Section 3.1.1 [Mandatory dependencies], page 212, to the
list of keywords. Each software’s keyword has the same name as the software itself
(for example GNUASTRO or GSL. For the full list of software, see Section 4.10 [Output
FITS files], page 291.

[Function]void
gal_fits_key_list_add_git_commit (gal_fits_list_key_t **keylist)

If the optional libgit2 dependency is installed and your program is being run in a
directory that is under version control, a COMMIT keyword will be added on the top of
the list of keywords. For more, see the description of COMMIT in Section 4.10 [Output
FITS files], page 291.

[Function]void
gal_fits_key_list_reverse (gal_fits_list_key_t **list)

Reverse the input list of keywords.

[Function]void
gal_fits_key_write_title_in_ptr (char *title, fitsfile *fptr)

Add two lines of “title” keywords to the given CFITSIO fptr pointer. The first line
will be blank and the second will have the string in title roughly in the middle of
the line (a fixed distance from the start of the keyword line). A title in the list of
keywords helps in classifying the keywords into groups and inspecting them by eye.
If title==NULL, this function will not do anything.



Chapter 12: Library 803

[Function]void
gal_fits_key_write_filename (char *keynamebase, char *filename,

gal_fits_list_key_t **list, int top1end0, int quiet)
Put filename into the gal_fits_list_key_t list (possibly broken up into multiple
keywords) to later write into a HDU header. The keynamebase string will be ap-
pended with a _N (N>0) and used as the keyword name. If top1end0!=0, then the
keywords containing the filename will be added to the top of the list.

The FITS standard sets a maximum length of 69 characters for the string values of a
keyword20. This creates problems with file names (which include directories) because
file names/addresses can become longer than the maximum number of characters in
a FITS keyword (around 70 characters). Therefore, when filename is longer than
the maximum length of a FITS keyword value, this function will break it into several
keywords (breaking up the string on directory separators). So the full file/directory
address (including directories) can be longer than 69 characters. However, if a single
file or directory name (within a larger address) is longer than 69 characters, this
function will truncate the name and print a warning. If quiet!=0, then the warning
will not be printed.

[Function]void
gal_fits_key_write_wcsstr (fitsfile *fptr, struct wcsprm wcs, char

*wcsstr, int nkeyrec)
Write the WCS header string (produced with WCSLIB’s wcshdo function) into the
CFITSIO fitsfile pointer. nkeyrec is the number of FITS header keywords in
wcsstr. This function will put a few blank keyword lines along with a comment WCS
information before writing each keyword record.

[Function]void
gal_fits_key_write (gal_fits_list_key_t **keylist, char *filename,

char *hdu, char *hdu_option_name, int freekeys, int
create_fits_not_exists)

Write the list of keywords in keylist into the hdu extension of the file called
filename. If the file may not exist before this function is activated, set
create_fits_not_exists to non-zero and set the HDU to "0". If the keywords
should be freed after they are written, set the freekeys value to non-zero. For more
on hdu_option_name see the description of gal_array_read in Section 12.3.9 [Array
input output], page 786.

The list nodes are meant to be dynamically allocated (because they will be freed
after being written). We thus recommend using the gal_fits_key_list_add or
gal_fits_key_list_add_end to create and fill the list. Below is one fully working
example of using this function to write a keyword into an existing FITS file.

#include <stdio.h>

#include <stdlib.h>

#include <gnuastro/fits.h>

20 The limit is actually 71 characters (which is the full 80 character length, subtracted by 8 for the keyword
name and one character for the =). However, for strings, FITS also requires two single quotes.
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int main()

{

char *filename="test.fits";

gal_fits_list_key_t *keylist=NULL;

char *unit="unit";

float value=123.456;

char *keyname="MYKEY";

char *comment="A good description of the key";

gal_fits_key_list_add_end(&keylist, GAL_TYPE_FLOAT32, keyname, 0,

&value, 0, comment, 0, unit, 0);

gal_fits_key_list_title_add(&keylist, "Matching metadata", 0);

gal_fits_key_write(&keylist, filename, "1", "NONE", 1, 0);

return EXIT_SUCCESS;

}

[Function]void
gal_fits_key_write_in_ptr (gal_fits_list_key_t **keylist, fitsfile

*fptr, int freekeys)
Write the list of keywords in keylist into the given CFITSIO fitsfile pointer and
free keylist. For more on the input keylist, see the description and example for
gal_fits_key_write, above.

[Function]gal_list_str_t *
gal_fits_with_keyvalue (gal_list_str_t *files, char *hdu, char *name,

gal_list_str_t *values, char *hdu_option_name)
Given a list of FITS file names (files), a certain HDU (hdu), a certain keyword
name (name), and a list of acceptable values (values), return the subset of file names
where the requested keyword name has one of the acceptable values. For more on
hdu_option_name see the description of gal_array_read in Section 12.3.9 [Array
input output], page 786.

[Function]gal_list_str_t *
gal_fits_unique_keyvalues (gal_list_str_t *files, char *hdu, char

*name, char *hdu_option_name)
Given a list of FITS file names (files), a certain HDU (hdu), a certain keyword name
(name), return the list of unique values to that keyword name in all the files. For more
on hdu_option_name see the description of gal_array_read in Section 12.3.9 [Array
input output], page 786.

12.3.11.5 FITS arrays (images)

Images (or multi-dimensional arrays in general) are one of the common data formats that
is stored in FITS files. Only one image may be stored in each FITS HDU/extension. The
functions described here can be used to get the information of, read, or write images in
FITS files.
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[Function]void
gal_fits_img_info (fitsfile *fptr, int *type, size_t *ndim, size_t

**dsize, char **name, char **unit)
Read the type (see Section 12.3.3 [Library data types (type.h)], page 743), number of
dimensions, and size along each dimension of the CFITSIO fitsfile into the type,
ndim, and dsize pointers respectively. If name and unit are not NULL (point to a
char *), then if the image has a name and units, the respective string will be put in
these pointers.

[Function]size_t *
gal_fits_img_info_dim (char *filename, char *hdu, size_t *ndim, char

*hdu_option_name)
Put the number of dimensions in the hdu extension of filename in the space that
ndim points to and return the size of the dataset along each dimension as an allocated
array with *ndim elements. For more on hdu_option_name see the description of gal_
array_read in Section 12.3.9 [Array input output], page 786.

[Function]gal_data_t *
gal_fits_img_read (char *filename, char *hdu, size_t minmapsize, int

quietmmap, char *hdu_option_name)
Read the contents of the hdu extension/HDU of filename into a Gnuastro generic
data container (see Section 12.3.6.1 [Generic data container (gal_data_t)], page 755)
and return it. If the necessary space is larger than minmapsize, then do not keep the
data in RAM, but in a file on the HDD/SSD. For more on minmapsize and quietmmap

see the description under the same name in Section 12.3.6.1 [Generic data container
(gal_data_t)], page 755. For more on hdu_option_name see the description of gal_
array_read in Section 12.3.9 [Array input output], page 786.

Note that this function only reads the main data within the requested FITS extension,
the WCS will not be read into the returned dataset. To read the WCS, you can use
gal_wcs_read function as shown below. Afterwards, the gal_data_free function
will free both the dataset and any WCS structure (if there are any).

data=gal_fits_img_read(filename, hdu, -1, 1, NULL);

data->wcs=gal_wcs_read(filename, hdu, 0, 0, 0, &data->wcs->nwcs,

NULL);

[Function]gal_data_t *
gal_fits_img_read_to_type (char *inputname, char *inhdu, uint8_t

type, size_t minmapsize, int quietmmap, char
*hdu_option_name)

Read the contents of the hdu extension/HDU of filename into a Gnuastro generic
data container (see Section 12.3.6.1 [Generic data container (gal_data_t)], page 755)
of type type and return it.

This is just a wrapper around gal_fits_img_read (to read the image/array of any
type) and gal_data_copy_to_new_type_free (to convert it to type and free the
initially read dataset). See the description there for more.
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[Function]gal_data_t *
gal_fits_img_read_kernel (char *filename, char *hdu, size_t

minmapsize, int quietmmap, char *hdu_option_name)
Read the hdu of filename as a convolution kernel. A convolution kernel must have
an odd size along all dimensions, it must not have blank (NaN in floating point
types) values and must be flipped around the center to make the proper convolution
(see Section 6.3.1.1 [Convolution process], page 470). If there are blank values, this
function will change the blank values to 0.0. If the input image does not have the
other two requirements, this function will abort with an error describing the condition
to the user. The finally returned dataset will have a float32 type.

For more on hdu_option_name see the description of gal_array_read in
Section 12.3.9 [Array input output], page 786.

[Function]fitsfile *
gal_fits_img_write_to_ptr (gal_data_t *input, char *filename,

gal_fits_list_key_t *keylist, int freekeys)
Write the input dataset into a FITS file named filename and return the correspond-
ing CFITSIO fitsfile pointer. This function will not close fitsfile, so you can
still add other extensions to it after this function or make other modifications.

In case you want to add keywords into the HDU that contain the data, you can
use the second two arguments (see the description of gal_fits_key_write). These
keywords will be written into the HDU before writing the data: when there are
more than roughly 5 keywords (assuming your dataset has WCS) and your dataset is
large, this can result in significant optimization of the running time (because adding
a keyword beyond the 36 key slots will cause the whole data to shift for another block
of 36 keywords).

[Function]void
gal_fits_img_write (gal_data_t *data, char *filename,

gal_fits_list_key_t *keylist, int freekeys)
Write the input dataset into the FITS file named filename. Also add the list of
header keywords (keylist) to the newly created HDU/extension The list of keywords
will be freed after writing into the HDU, if you need them later, keep a separate copy
of the list before calling this function.

For the importance of why it is better to add your keywords in this function (before
writing the data) or after it, see the description of gal_fits_img_write_to_ptr.

[Function]void
gal_fits_img_write_to_type (gal_data_t *data, char *filename,

gal_fits_list_key_t *keylist, int type, int freekeys)
Convert the input dataset into type, then write it into the FITS file named filename.
Also add the keylist keywords to the newly created HDU/extension along with your
program’s name (program_string). After the FITS file is written, this function will
free the copied dataset (with type type) from memory.

For the importance of why it is better to add your keywords in this function (before
writing the data) or after it, see the description of gal_fits_img_write_to_ptr.
This is just a wrapper for the gal_data_copy_to_new_type and gal_fits_img_

write functions.
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[Function]void
gal_fits_img_write_corr_wcs_str (gal_data_t *data, char *filename,

char *wcsstr, int nkeyrec, double *crpix,
gal_fits_list_key_t *keylist, int freekeys)

Write the input dataset into filename using the wcsstr while correcting the CRPIX
values. For the importance of why it is better to add your keywords in this function
(before writing the data) or after it, see the description of gal_fits_img_write_to_
ptr.

This function is mainly useful when you want to make FITS files in parallel (from
one main WCS structure, with just a differing CRPIX), for more on the arguments,
see the description of gal_fits_img_write. This can happen in the following cases
for example:

• When a large number of FITS images (with WCS) need to be created in parallel,
it can be much more efficient to write the header’s WCS keywords once at first,
write them in the FITS file, then just correct the CRPIX values.

• WCSLIB’s header writing function is not thread safe. So when writing FITS
images in parallel, we cannot write the header keywords in each thread.

12.3.11.6 FITS tables

Tables are one of the common formats of data that is stored in FITS files. Only one table
may be stored in each FITS HDU/extension, but each table column must be viewed as a
different dataset (with its own name, units and numeric data type for example). The only
constraint of the column datasets in a table is that they must be one-dimensional and have
the same number of elements as the other columns. The functions described here can be
used to get the information of, read, or write columns into FITS tables.

[Function]void
gal_fits_tab_size (fitsfile *fitsptr, size_t *nrows, size_t *ncols)

Read the number of rows and columns in the table within CFITSIO’s fitsptr.

[Function]int
gal_fits_tab_format (fitsfile *fitsptr)

Return the format of the FITS table contained in CFITSIO’s fitsptr. Recall that
FITS tables can be in binary or ASCII formats. This function will return GAL_TABLE_

FORMAT_AFITS or GAL_TABLE_FORMAT_BFITS (defined in Section 12.3.10 [Table input
output (table.h)], page 788). If the fitsptr is not a table, this function will abort
the program with an error message informing the user of the problem.

[Function]gal_data_t *
gal_fits_tab_info (char *filename, char *hdu, size_t *numcols, size_t

*numrows, int *tableformat, char *hdu_option_name)
Store the information of each column in hdu of filename into an array of data struc-
tures with numcols elements (one data structure for each column) see Section 12.3.6.3
[Arrays of datasets], page 761. The total number of rows in the table is also put into
the memory that numrows points to. The format of the table (e.g., FITS binary or
ASCII table) will be put in tableformat (macros defined in Section 12.3.10 [Table in-
put output (table.h)], page 788). For more on hdu_option_name see the description
of gal_array_read in Section 12.3.9 [Array input output], page 786.
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This function is just for column information. Therefore it only stores meta-data like
column name, units and comments. No actual data (contents of the columns for
example, the array or dsize elements) will be allocated by this function. This is
a low-level function particular to reading tables in FITS format. To be generic, it
is recommended to use gal_table_info which will allow getting information from a
variety of table formats based on the filename (see Section 12.3.10 [Table input output
(table.h)], page 788).

[Function]gal_data_t *
gal_fits_tab_read (char *filename, char *hdu, size_t numrows,

gal_data_t *colinfo, gal_list_sizet_t *indexll, size_t
numthreads, size_t minmapsize, int quietmmap, char
*hdu_option_name)

Read the columns given in the list indexll from a FITS table (in filename

and HDU/extension hdu) into the returned linked list of data structures, see
Section 12.3.8.3 [List of size_t], page 776, and Section 12.3.8.9 [List of gal_data_t],
page 784. For more on hdu_option_name see the description of gal_array_read in
Section 12.3.9 [Array input output], page 786.

Each column will be read independently, therefore they will be read in numthreads

CPU threads to greatly speed up the reading when there are many columns and rows.
However, this only happens if CFITSIO was configured with --enable-reentrant.
This test has been done at Gnuastro’s configuration time; if so, GAL_CONFIG_HAVE_
FITS_IS_REENTRANT will have a value of 1, otherwise, it will have a value of 0.
For more on this macro, see Section 12.3.1 [Configuration information (config.h)],
page 737).

If the necessary space for each column is larger than minmapsize, do not keep it in
the RAM, but in a file in the HDD/SSD. For more on minmapsize and quietmmap,
see the description under the same name in Section 12.3.6.1 [Generic data container
(gal_data_t)], page 755.

Each column will have numrows rows and colinfo contains any further information
about the columns (returned by gal_fits_tab_info, described above). Note that
this is a low-level function, so the output data linked list is the inverse of the input
indexes linked list. It is recommended to use gal_table_read for generic reading of
tables, see Section 12.3.10 [Table input output (table.h)], page 788.

[Function]void
gal_fits_tab_write (gal_data_t *cols, gal_list_str_t *comments, int

tableformat, char *filename, char *extname,
gal_fits_list_key_t *keywords, int freekeys)

Write the list of datasets in cols (see Section 12.3.8.9 [List of gal_data_t], page 784)
as separate columns in a FITS table in filename. If filename already exists then this
function will write the table as a new extension called extname, after all existing ones.
The format of the table (ASCII or binary) may be specified with the tableformat

(see Section 12.3.10 [Table input output (table.h)], page 788). If comments!=NULL,
each node of the list of strings will be written as a COMMENT keywords in the output
FITS file (see Section 12.3.8.1 [List of strings], page 773.
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In case your table needs metadata keywords, you can use the listkeys and freekeys.
For more on these, see the description of gal_fits_key_write_in_ptr.

This is a low-level function for tables. It is recommended to use gal_table_write

for generic writing of tables in a variety of formats, see Section 12.3.10 [Table input
output (table.h)], page 788.

12.3.12 File input output

The most commonly used file format in astronomical data analysis is the FITS format
(see Section 5.1 [Fits], page 295, for an introduction), therefore Gnuastro’s library provides
a large and separate collection of functions to read/write data from/to them (see Sec-
tion 12.3.11 [FITS files (fits.h)], page 793). However, FITS is not well recognized outside
the astronomical community and cannot be imported into documents or slides. Therefore,
in this section, we discuss the other different file formats that Gnuastro’s library recognizes.

12.3.12.1 Text files (txt.h)

The most universal and portable format for data storage are plain text files. They can
be viewed and edited on any text editor or even on the command-line. This section are
describes some functions that help in reading from and writing to plain text files.

Lines are one of the most basic building blocks (delimiters) of a text file. Some operating
systems like Microsoft Windows, terminate their ASCII text lines with a carriage return
character and a new-line character (two characters, also known as CRLF line terminators).
While Unix-like operating systems just use a single new-line character. The functions below
that read an ASCII text file are able to identify lines with both kinds of line terminators.

Gnuastro defines a simple format for metadata of table columns in a plain text file that
is discussed in Section 4.7.2 [Gnuastro text table format], page 285. The functions to get
information from, read from and write to plain text files also follow those conventions.

[Macro]GAL_TXT_LINESTAT_INVALID
[Macro]GAL_TXT_LINESTAT_BLANK
[Macro]GAL_TXT_LINESTAT_COMMENT
[Macro]GAL_TXT_LINESTAT_DATAROW

Status codes for lines in a plain text file that are returned by gal_txt_line_stat.
Lines which have a # character as their first non-white character are considered to be
comments. Lines with nothing but white space characters are considered blank. The
remaining lines are considered as containing data.

[Function]int
gal_txt_line_stat (char *line)

Check the contents of line and see if it is a blank, comment, or data line. The
returned values are the macros that start with GAL_TXT_LINESTAT.

[Function]char *
gal_txt_trim_space (char *str)

Trim the white space characters before and after the given string. The operation is
done within the allocated space of the string, so if you need the string untouched,
please pass an allocated copy of the string to this function. The returned pointer is
within the input string. If the input pointer is NULL, or the string only has white-space
characters, the returned pointer will be NULL.
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[Function]int
gal_txt_contains_string (char *full, char *match)

Return 1 if the string that match points to, can be exactly found within the string
that full points to (character by character). The to-match string can be in any part
of the full string. If any of the two strings have zero length or are a NULL pointer, this
function will return 0.

[Function]gal_data_t *
gal_txt_table_info (char *filename, gal_list_str_t *lines, size_t

*numcols, size_t *numrows)
Store the information of each column in a text file filename, or list of strings (lines)
into an array of data structures with numcols elements (one data structure for each
column) see Section 12.3.6.3 [Arrays of datasets], page 761. The total number of rows
in the table is also put into the memory that numrows points to.

lines is a list of strings with each node representing one line (including the new-line
character), see Section 12.3.8.1 [List of strings], page 773. It will mostly be the output
of gal_txt_stdin_read, which is used to read the program’s input as separate lines
from the standard input (see below). Note that filename and lines are mutually
exclusive and one of them must be NULL.

This function is just for column information. Therefore it only stores meta-data like
column name, units and comments. No actual data (contents of the columns for
example, the array or dsize elements) will be allocated by this function. This is a
low-level function particular to reading tables in plain text format. To be generic,
it is recommended to use gal_table_info which will allow getting information from
a variety of table formats based on the filename (see Section 12.3.10 [Table input
output (table.h)], page 788).

[Function]gal_data_t *
gal_txt_table_read (char *filename, gal_list_str_t *lines, size_t

numrows, gal_data_t *colinfo, gal_list_sizet_t *indexll,
size_t minmapsize, int quietmmap)

Read the columns given in the list indexll from a plain text file (filename) or list
of strings (lines), into a linked list of data structures (see Section 12.3.8.3 [List
of size_t], page 776, and Section 12.3.8.9 [List of gal_data_t], page 784). If the
necessary space for each column is larger than minmapsize, do not keep it in the
RAM, but in a file on the HDD/SSD. For more one minmapsize and quietmmap,
see the description under the same name in Section 12.3.6.1 [Generic data container
(gal_data_t)], page 755.

lines is a list of strings with each node representing one line (including the new-line
character), see Section 12.3.8.1 [List of strings], page 773. It will mostly be the output
of gal_txt_stdin_read, which is used to read the program’s input as separate lines
from the standard input (see below). Note that filename and lines are mutually
exclusive and one of them must be NULL.

Note that this is a low-level function, so the output data list is the inverse of the input
indices linked list. It is recommended to use gal_table_read for generic reading of
tables in any format, see Section 12.3.10 [Table input output (table.h)], page 788.
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[Function]gal_data_t *
gal_txt_image_read (char *filename, gal_list_str_t *lines, size_t

minmapsize, int quietmmap)
Read the 2D plain text dataset in file (filename) or list of strings (lines) into
a dataset and return the dataset. If the necessary space for the image is larger
than minmapsize, do not keep it in the RAM, but in a file on the HDD/SSD. For
more on minmapsize and quietmmap, see the description under the same name in
Section 12.3.6.1 [Generic data container (gal_data_t)], page 755.

lines is a list of strings with each node representing one line (including the new-line
character), see Section 12.3.8.1 [List of strings], page 773. It will mostly be the output
of gal_txt_stdin_read, which is used to read the program’s input as separate lines
from the standard input (see below). Note that filename and lines are mutually
exclusive and one of them must be NULL.

[Function]gal_list_str_t *
gal_txt_stdin_read (long timeout_microsec)

Read the complete standard input and return a list of strings with each line (including
the new-line character) as one node of that list. If the standard input is already filled
(for example, connected to another program’s output with a pipe), then this function
will parse the whole stream.

If Standard input is not pre-configured and the first line is typed/written in the ter-
minal before timeout_microsec micro-seconds, it will continue parsing until reaches
an end-of-file character (CTRL-D after a new-line on the keyboard) with no time limit.
If nothing is entered before timeout_microsec micro-seconds, it will return NULL.

All the functions that can read plain text tables will accept a filename as well as a
list of strings (intended to be the output of this function for using Standard input).
The reason for keeping the standard input is that once something is read from the
standard input, it is hard to put it back. We often need to read a text file several
times: once to count how many columns it has and which ones are requested, and
another time to read the desired columns. So it easier to keep it all in allocated
memory and pass it on from the start for each round.

[Function]gal_list_str_t *
gal_txt_read_to_list (char *filename)

Read the contents of the given plain-text file and put each word (separated by a
SPACE character, into a new node of the output list. The order of nodes in the
output is the same as the input. Any new-line character at the end of a word is
removed in the output list.

[Function]void
gal_txt_write (gal_data_t *cols, struct gal_fits_list_key_t

**keylist, gal_list_str_t *comment, char *filename, uint8_t
colinfoinstdout, int tab0_img1, int freekeys)

Write cols in a plain text file filename (table when tab0_img1==0 and image when
tab0_img1==1). cols may have one or two dimensions which determines the output:
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1D cols is treated as a column and a list of datasets (see Section 12.3.8.9
[List of gal_data_t], page 784): every node in the list is written as one
column in a table.

2D cols is a two dimensional array, it cannot be treated as a list (only one
2D array can currently be written to a text file). So if cols->next!=NULL
the next nodes in the list are ignored and will not be written.

This is a low-level function for tables. It is recommended to use gal_table_write

for generic writing of tables in a variety of formats, see Section 12.3.10 [Table input
output (table.h)], page 788.

It is possible to add two types of metadata to the printed table: comments and
keywords. Each string in the list given to comments will be printed into the file as a
separate line, starting with #. Keywords have a more specific and computer-parsable
format and are passed through keylist. Each keyword is also printed in one line,
but with the format below. Because of the various components in a keyword, it
is thus necessary to use the gal_fits_list_key_t data structure. For more, see
Section 12.3.11.4 [FITS header keywords], page 797.

# [key] NAME: VALUE / [UNIT] KEYWORD COMMENT.

If filename already exists this function will abort with an error and will not write
over the existing file. Before calling this function make sure if the file exists or not. If
comments!=NULL, a # will be put at the start of each node of the list of strings and will
be written in the file before the column meta-data in filename (see Section 12.3.8.1
[List of strings], page 773).

When filename==NULL, the column information will be printed on the standard out-
put (command-line). When colinfoinstdout!=0 and filename==NULL (columns are
printed in the standard output), the dataset metadata will also printed in the stan-
dard output. When printing to the standard output, the column information can
be piped into another program for further processing and thus the meta-data (lines
starting with a #) must be ignored. In such cases, you only print the column values
by passing 0 to colinfoinstdout.

12.3.12.2 TIFF files (tiff.h)

Outside of astronomy, the TIFF standard is arguably the most commonly used format to
store high-precision data/images. Unlike FITS however, the TIFF standard only supports
images (not tables), but like FITS, it has support for all standard data types (see Section 4.5
[Numeric data types], page 277) which is the primary reason other fields use it.

Another similarity of the TIFF and FITS standards is that TIFF supports multiple im-
ages in one file. The TIFF standard calls each one of these images (and their accompanying
meta-data) a ‘directory’ (roughly equivalent to the FITS extensions). Unlike FITS however,
the directories can only be identified by their number (counting from zero), recall that in
FITS you can also use the extension name to identify it.

The functions described here allow easy reading (and later writing) of TIFF files within
Gnuastro or for users of Gnuastro’s libraries. Currently only reading is supported, but if
you are interested, please get in touch with us.
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[Function]int
gal_tiff_name_is_tiff (char *name)

Return 1 if name has a TIFF suffix. This can be used to make sure that a given input
file is TIFF. See gal_tiff_suffix_is_tiff for a list of recognized suffixes.

[Function]int
gal_tiff_suffix_is_tiff (char *name)

Return 1 if suffix is a recognized TIFF suffix. The recognized suffixes are tif, tiff,
TIFF and TIFF.

[Function]size_t
gal_tiff_dir_string_read (char *string)

Return the number within string as a size_t number to identify a TIFF directory.
Note that the directories start counting from zero.

[Function]gal_data_t *
gal_tiff_read (char *filename, size_t dir, size_t minmapsize, int

quietmmap)
Read the dir directory within the TIFF file filename and return the contents of that
TIFF directory as gal_data_t. If the directory’s image contains multiple channels,
the output will be a list (see Section 12.3.8.9 [List of gal_data_t], page 784).

[Function]void
gal_tiff_write (gal_data_t *in, char *filename, int widthinpx, int

heightinpix, int bitspersample, int numimg)
Write the given dataset (in) into filename (a TIFF file) with the specified im-
age width in pixels (widthinpix),height in pixels (heightinpix), bits per sample
(bitspersample), and number of images (numimg).

12.3.12.3 JPEG files (jpeg.h)

The JPEG file format is one of the most common formats for storing and transferring
images, recognized by almost all image rendering and processing programs. In particular,
because of its lossy compression algorithm, JPEG files can have low volumes, making it
used heavily on the internet. For more on this file format, and a comparison with others,
please see Section 5.2.2 [Recognized file formats], page 315.

For scientific purposes, the lossy compression and very limited dynamic range (8-bit
integers) make JPEG very unattractive for storing of valuable data. However, because of
its commonality, it will inevitably be needed in some situations. The functions here can
be used to read and write JPEG images into Gnuastro’s Section 12.3.6.1 [Generic data
container (gal_data_t)], page 755. If the JPEG file has more than one color channel,
each channel is treated as a separate node in a list of datasets (see Section 12.3.8.9 [List of
gal_data_t], page 784).

[Function]int
gal_jpeg_name_is_jpeg (char *name)

Return 1 if name has a JPEG suffix. This can be used to make sure that a given input
file is JPEG. See gal_jpeg_suffix_is_jpeg for a list of recognized suffixes.
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[Function]int
gal_jpeg_suffix_is_jpeg (char *name)

Return 1 if suffix is a recognized JPEG suffix. The recognized suffixes are .jpg,
.JPG, .jpeg, .JPEG, .jpe, .jif, .jfif and .jfi.

[Function]gal_data_t *
gal_jpeg_read (char *filename, size_t minmapsize, int quietmmap)

Read the JPEG file filename and return the contents as gal_data_t. If the direc-
tory’s image contains multiple colors/channels, the output will be a list with one node
per color/channel (see Section 12.3.8.9 [List of gal_data_t], page 784).

[Function]void
gal_jpeg_write (gal_data_t *in, char *filename, uint8_t quality,

float widthincm)
Write the given dataset (in) into filename (a JPEG file). If in is a list, then each
node in the list will be a color channel, therefore there can only be 1, 3 or 4 nodes in
the list. If the number of nodes is different, then this function will abort the program
with a message describing the cause. The lossy JPEG compression level can be set
through quality which is a value between 0 and 100 (inclusive, 100 being the best
quality). The display width of the JPEG file in units of centimeters (to suggest to
viewers/users, only a meta-data) can be set through widthincm.

12.3.12.4 EPS files (eps.h)

The Encapsulated PostScript (EPS) format is commonly used to store images (or
individual/single-page parts of a document) in the PostScript documents. For a more
complete introduction, please see Section 5.2.2 [Recognized file formats], page 315. To
provide high quality graphics, the Postscript language is a vectorized format, therefore
pixels (elements of a “rasterized” format) are not defined in their context.

To display rasterized images, PostScript does allow arrays of pixels. However, since the
over-all EPS file may contain many vectorized elements (for example, borders, text, or other
lines over the text) and interpreting them is not trivial or necessary within Gnuastro’s scope,
Gnuastro only provides some functions to write a dataset (in the gal_data_t format, see
Section 12.3.6.1 [Generic data container (gal_data_t)], page 755) into EPS.

[Macro]GAL_EPS_MARK_COLNAME_TEXT
[Macro]GAL_EPS_MARK_COLNAME_FONT
[Macro]GAL_EPS_MARK_COLNAME_XPIX
[Macro]GAL_EPS_MARK_COLNAME_YPIX
[Macro]GAL_EPS_MARK_COLNAME_SHAPE
[Macro]GAL_EPS_MARK_COLNAME_COLOR
[Macro]GAL_EPS_MARK_COLNAME_SIZE1
[Macro]GAL_EPS_MARK_COLNAME_SIZE2
[Macro]GAL_EPS_MARK_COLNAME_ROTATE
[Macro]GAL_EPS_MARK_COLNAME_FONTSIZE
[Macro]GAL_EPS_MARK_COLNAME_LINEWIDTH

Name of column that the required property will be read from.
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[Macro]GAL_EPS_MARK_DEFAULT_SHAPE
[Macro]GAL_EPS_MARK_DEFAULT_COLOR
[Macro]GAL_EPS_MARK_DEFAULT_SIZE1
[Macro]GAL_EPS_MARK_DEFAULT_SIZE2
[Macro]GAL_EPS_MARK_DEFAULT_SIZE2_ELLIPSE
[Macro]GAL_EPS_MARK_DEFAULT_ROTATE
[Macro]GAL_EPS_MARK_DEFAULT_LINEWIDTH
[Macro]GAL_EPS_MARK_DEFAULT_FONT
[Macro]GAL_EPS_MARK_DEFAULT_FONTSIZE

Default values for the various mark properties. These constants will be used if the
caller has not provided any of the given property.

[Function]int
gal_eps_name_is_eps (char *name)

Return 1 if name has an EPS suffix. This can be used to make sure that a given input
file is EPS. See gal_eps_suffix_is_eps for a list of recognized suffixes.

[Function]int
gal_eps_suffix_is_eps (char *name)

Return 1 if suffix is a recognized EPS suffix. The recognized suffixes are .eps, .EPS,
.epsf, .epsi.

[Function]void
gal_eps_to_pt (float widthincm, size_t *dsize, size_t *w_h_in_pt)

Given a specific width in centimeters (widthincm and the number of he dataset’s
pixels in each dimension (dsize) calculate the size of he output in PostScript points.
The output values are written in the w_h_in_pt array (which has to be allocated
before calling this unction). The first element in w_h_in_pt is the width and the
second is the height of the image.

[Function]uint8_t
gal_eps_shape_name_to_id (char *name)

Return the shape ID of a mark from its name (which is not case-sensitive).

[Function]uint8_t
gal_eps_shape_id_to_name (uint8_t id)

Return the shape name from its ID.

[Function]void
gal_eps_write (gal_data_t *in, char *filename, float widthincm,

uint32_t borderwidth, uint8_t bordercolor, int hex, int
dontoptimize, int forps, gal_data_t *marks)

Write the in dataset into an EPS file called filename. in has to be an unsigned 8-bit
character type GAL_TYPE_UINT8, see Section 4.5 [Numeric data types], page 277). The
desired width of the image in human/non-pixel units can be set with he widthincm

argument. If borderwidth is non-zero, it is interpreted as the width (in points) of a
solid black border around the mage. A border can helpful when importing the EPS
file into a document. The color of the border can be set with bordercolor, use the
macros in Section 12.3.30 [Color functions (color.h)], page 897. If forpdf is not zero,
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the output can be imported into a Postscript file directly (not as an “encapsulated”
postscript, which is the default).

EPS files are plain-text (can be opened/edited in a text editor), therefore there are
different encodings to store the data (pixel values) within them. Gnuastro supports
the Hexadecimal and ASCII85 encoding. ASCII85 is more efficient (producing small
file sizes), so it is the default encoding. To use Hexadecimal encoding, set hex to a
non-zero value.

By default, when the dataset only has two values, this function will use the PostScript
optimization that allows setting the pixel values per bit, not byte (Section 5.2.2 [Rec-
ognized file formats], page 315). This can greatly help reduce the file size. However,
when dontoptimize!=0, this optimization is disabled: even though there are only
two values (is binary), the difference between them does not correspond to the full
contrast of black and white.

If marks!=NULL, it is assumed to contain multiple columns of information to draw
marks over the background image. The multiple columns are a linked list of 1D gal_

data_t of the same size (number of rows) that are connected to each other through
the next element (this is the same format that Gnuastro’s library uses for tables, see
Section 12.3.10 [Table input output (table.h)], page 788, or Section 12.4.4 [Library
demo - reading and writing table columns], page 918).

The macros defined above that have the format of GAL_EPS_MARK_COLNAME_* show all
the possible columns that you can provide in this linked list. Only the two coordinate
columns are mandatory (GAL_EPS_MARK_COLNAME_XPIX and GAL_EPS_MARK_COLNAME_

YPIX. If any of the other properties is not in the linked list, then the default properties
of the GAL_EPS_MARK_DEFAULT_* macros will be used (also defined above.

The columns are identified based on the name element of Gnuastro’s generic data
structure (see Section 12.3.6.1 [Generic data container (gal_data_t)], page 755).
The names must have the pre-defined names of the GAL_EPS_MARK_COLNAME_* macros
(case sensitive). Therefore, the order of columns in the list is irrelevant!

12.3.12.5 PDF files (pdf.h)

The portable document format (PDF) has arguably become the most common format used
for distribution of documents. In practice, a PDF file is just a compiled PostScript file. For a
more complete introduction, please see Section 5.2.2 [Recognized file formats], page 315. To
provide high quality graphics, the PDF is a vectorized format, therefore pixels (elements of a
“rasterized” format) are not defined in their context. As a result, similar to Section 12.3.12.4
[EPS files (eps.h)], page 814, Gnuastro only writes datasets to a PDF file, not vice-versa.

[Function]int
gal_pdf_name_is_pdf (char *name)

Return 1 if name has an PDF suffix. This can be used to make sure that a given input
file is PDF. See gal_pdf_suffix_is_pdf for a list of recognized suffixes.

[Function]int
gal_pdf_suffix_is_pdf (char *name)

Return 1 if suffix is a recognized PDF suffix. The recognized suffixes are .pdf and
.PDF.
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[Function]void
gal_pdf_write (gal_data_t *in, char *filename, float widthincm,

uint32_t borderwidth, uint8_t bordercolor, int dontoptimize,
gal_data_t *marks)

Write the in dataset into an EPS file called filename. in has to be an unsigned
8-bit character type (GAL_TYPE_UINT8, see Section 4.5 [Numeric data types],
page 277). The desired width of the image in human/non-pixel units can be set
with the widthincm argument. If borderwidth is non-zero, it is interpreted as the
width (in points) of a solid black border around the image. A border can helpful
when importing the PDF file into a document. The color of the border can be set
with bordercolor, use the macros in Section 12.3.30 [Color functions (color.h)],
page 897.

This function is just a wrapper for the gal_eps_write function in Section 12.3.12.4
[EPS files (eps.h)], page 814. After making the EPS file, Ghostscript (with a version
of 9.10 or above, see Section 3.1.2 [Optional dependencies], page 214) will be used to
compile the EPS file to a PDF file. Therefore if Ghostscript does not exist, does not
have the proper version, or fails for any other reason, the EPS file will remain. It can
be used to find the cause, or use another converter or PostScript compiler.

By default, when the dataset only has two values, this function will use the PostScript
optimization that allows setting the pixel values per bit,not byte (Section 5.2.2 [Rec-
ognized file formats], page 315). This can greatly help reduce the file size. However,
when dontoptimize!=0, this optimization is disabled: even though there are only
two values (is binary), the difference between them does not correspond to the full
contrast of black and white.

If marks!=NULL, it is assumed to contain information on how to draw marks over the
image. This is directly fed to the gal_eps_write function, so for more on how to pro-
vide the mark information, see the description of gal_eps_write in Section 12.3.12.4
[EPS files (eps.h)], page 814.

12.3.13 World Coordinate System (wcs.h)

The FITS standard defines the world coordinate system (WCS) as a mechanism to associate
physical values to positions within a dataset. For example, it can be used to convert pixel
coordinates in an image to celestial coordinates like the right ascension and declination.
The functions in this section are mainly just wrappers over CFITSIO, WCSLIB and GSL
library functions to help in common applications.

[Tread safety] Since WCSLIB version 5.18 (released in January 2018), most WCSLIB
functions are thread safe21. Gnuastro has high-level functions to easily spin-off threads and
speed up your programs. For a fully working example see Section 12.4.3 [Library demo -
multi-threaded operation], page 914. However you still need to be cautious in the following
scenarios below.

• Many users or operating systems may still use an older version.

• The wcsprm structure of WCSLIB is not thread-safe: you can’t use the same pointer on
multiple threads. For example, if you use gal_wcs_img_to_world simultaneously on
multiple threads, you shouldn’t pass the same wcsprm structure pointer. You can use

21 https://www.atnf.csiro.au/people/mcalabre/WCS/wcslib/threads.html

https://www.atnf.csiro.au/people/mcalabre/WCS/wcslib/threads.html
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gal_wcs_copy to keep and use separate copies the main structure within each thread,
and later free the copies with gal_wcs_free.

The full set of functions and global constants that are defined by Gnuastro’s
gnuastro/wcs.h are described below.

[Global integer]GAL_WCS_DISTORTION_TPD
[Global integer]GAL_WCS_DISTORTION_SIP
[Global integer]GAL_WCS_DISTORTION_TPV
[Global integer]GAL_WCS_DISTORTION_DSS
[Global integer]GAL_WCS_DISTORTION_WAT
[Global integer]GAL_WCS_DISTORTION_INVALID

Gnuastro identifiers of the various WCS distortion conventions, for more, see Cal-
abretta et al. (2004, preprint)22. Among these, SIP is a prior distortion, the rest
other are sequent distortions. TPD is a superset of all these, hence it has both prior
and sequeal distortion coefficients. More information is given in the documentation
of dis.h, from the WCSLIB manual23.

[Global integer]GAL_WCS_COORDSYS_EQB1950
[Global integer]GAL_WCS_COORDSYS_EQJ2000
[Global integer]GAL_WCS_COORDSYS_ECB1950
[Global integer]GAL_WCS_COORDSYS_ECJ2000
[Global integer]GAL_WCS_COORDSYS_GALACTIC
[Global integer]GAL_WCS_COORDSYS_SUPERGALACTIC
[Global integer]GAL_WCS_COORDSYS_INVALID

Recognized WCS coordinate systems in Gnuastro. EQ and EC stand for the EQuatorial
and ECliptic coordinate systems. In the equatorial and ecliptic coordinates, B1950
stands for the Besselian 1950 epoch and J2000 stands for the Julian 2000 epoch.

[Global integer]GAL_WCS_LINEAR_MATRIX_PC
[Global integer]GAL_WCS_LINEAR_MATRIX_CD
[Global integer]GAL_WCS_LINEAR_MATRIX_INVALID

Identifiers of the linear transformation matrix: either in the PCi_j or the CDi_j

formalism. For more, see the description of --wcslinearmatrix in Section 4.1.2.1
[Input/Output options], page 252.

[Global integer]GAL_WCS_PROJECTION_AZP
[Global integer]GAL_WCS_PROJECTION_SZP
[Global integer]GAL_WCS_PROJECTION_TAN
[Global integer]GAL_WCS_PROJECTION_STG
[Global integer]GAL_WCS_PROJECTION_SIN
[Global integer]GAL_WCS_PROJECTION_ARC
[Global integer]GAL_WCS_PROJECTION_ZPN
[Global integer]GAL_WCS_PROJECTION_ZEA
[Global integer]GAL_WCS_PROJECTION_AIR
[Global integer]GAL_WCS_PROJECTION_CYP

22 https://www.atnf.csiro.au/people/mcalabre/WCS/dcs_20040422.pdf
23 https://www.atnf.csiro.au/people/mcalabre/WCS/wcslib/dis_8h.html

https://www.atnf.csiro.au/people/mcalabre/WCS/dcs_20040422.pdf
https://www.atnf.csiro.au/people/mcalabre/WCS/wcslib/dis_8h.html
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[Global integer]GAL_WCS_PROJECTION_CEA
[Global integer]GAL_WCS_PROJECTION_CAR
[Global integer]GAL_WCS_PROJECTION_MER
[Global integer]GAL_WCS_PROJECTION_SFL
[Global integer]GAL_WCS_PROJECTION_PAR
[Global integer]GAL_WCS_PROJECTION_MOL
[Global integer]GAL_WCS_PROJECTION_AIT
[Global integer]GAL_WCS_PROJECTION_COP
[Global integer]GAL_WCS_PROJECTION_COE
[Global integer]GAL_WCS_PROJECTION_COD
[Global integer]GAL_WCS_PROJECTION_COO
[Global integer]GAL_WCS_PROJECTION_BON
[Global integer]GAL_WCS_PROJECTION_PCO
[Global integer]GAL_WCS_PROJECTION_TSC
[Global integer]GAL_WCS_PROJECTION_CSC
[Global integer]GAL_WCS_PROJECTION_QSC
[Global integer]GAL_WCS_PROJECTION_HPX
[Global integer]GAL_WCS_PROJECTION_XPH

The various types of recognized FITS WCS projections; for more details see Sec-
tion 6.4.4.1 [Align pixels with WCS considering distortions], page 499.

[Macro]GAL_WCS_FLTERROR
Limit of rounding for floating point errors.

[Function]int
gal_wcs_distortion_name_to_id (char *name)

Convert the given string (assumed to be a FITS-standard, string-based distortion
identifier) to a Gnuastro’s integer-based distortion identifier (one of the GAL_WCS_

DISTORTION_* macros defined above). The sting-based distortion identifiers have
three characters and are all in capital letters.

[Function]int
gal_wcs_distortion_name_from_id (int id)

Convert the given Gnuastro integer-based distortion identifier (one of the GAL_WCS_

DISTORTION_* macros defined above) to the string-based distortion identifier) of the
FITS standard. The sting-based distortion identifiers have three characters and are
all in capital letters.

[Function]int
gal_wcs_coordsys_name_to_id (char *name)

Convert the given string to Gnuastro’s integer-basedWCS coordinate system identifier
(one of the GAL_WCS_COORDSYS_*, listed above). The expected strings can be seen in
the description of the --wcscoordsys option of the Fits program, see Section 5.1.1.2
[Keyword inspection and manipulation], page 302.

[Function]int
gal_wcs_distortion_name_to_id (char *name)

Convert the given string (assumed to be a FITS-standard, string-based distortion
identifier) to a Gnuastro’s integer-based distortion identifier (one of the GAL_WCS_
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DISTORTION_* macros defined above). The sting-based distortion identifiers have
three characters and are all in capital letters.

[Function]int
gal_wcs_projection_name_from_id (int id)

Convert the given Gnuastro integer-based projection identifier (one of the GAL_WCS_

PROJECTION_* macros defined above) to the string-based distortion identifier) of the
FITS standard. The string-based projection identifiers have three characters and are
all in capital letters. For a description of the various projections, see Section 6.4.4.1
[Align pixels with WCS considering distortions], page 499.

[Function]int
gal_wcs_projection_name_to_id (char *name)

Convert the given string (assumed to be a FITS-standard, string-based projection
identifier) to a Gnuastro’s integer-based projection identifier (one of the GAL_WCS_

PROJECTION_* macros defined above). The string-based projection identifiers have
three characters and are all in capital letters. For a description of the various projec-
tions, see Section 6.4.4.1 [Align pixels with WCS considering distortions], page 499.

[Function]struct wcsprm *
gal_wcs_create (double *crpix, double *crval, double *cdelt, double

*pc, char **cunit, char **ctype, size_t ndim, int
linearmatrix)

Given all the most common standard components of the WCS standard, construct
a struct wcsprm, initialize and set it for future processing. See the FITS WCS
standard for more on these keywords. All the arrays must have ndim elements with
them except for pc which should have ndim*ndim elements (a square matrix). Also,
cunit and ctype are arrays of strings. If GAL_WCS_LINEAR_MATRIX_CD is passed to
linearmatrix then the output WCS structure will have a CD matrix (even though
you have given a PC and CDELT matrix as input to this function). Otherwise, the
output will have a PC and CDELT matrix (which is the recommended format by
WCSLIB).

#include <stdio.h>

#include <stdlib.h>

#include <gnuastro/wcs.h>

int

main(void)

{

int status;

size_t ndim=2;

struct wcsprm *wcs;

double crpix[]={50, 50};

double pc[]={-1, 0, 0, 1};

double cdelt[]={0.4, 0.4};

double crval[]={178.23, 36.98};

char *cunit[]={"deg", "deg"};

char *ctype[]={"RA---TAN", "DEC--TAN"};
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int linearmatrix = GAL_WCS_LINEAR_MATRIX_PC;

/* Allocate and fill the 'wcsprm' structure. */

wcs=gal_wcs_create(crpix, crval, cdelt, pc, cunit,

ctype, ndim, linearmatrix);

printf("WCS structure created.\n");

/*... Add any operation with the WCS structure here ...*/

/* Free the WCS structure. */

gal_wcs_free(wcs);

printf("WCS structure freed.\n");

/* Return successfully. */

return EXIT_SUCCESS;

}

[Function]struct wcsprm *
gal_wcs_read_fitsptr (fitsfile *fptr, int linearmatrix, size_t

hstartwcs, size_t hendwcs, int *nwcs)
Return the WCSLIB wcsprm structure that is read from the CFITSIO fptr pointer
to an opened FITS file. With older WCSLIB versions (in particular below version
5.18) this function may not be thread-safe.

Also put the number of coordinate representations found into the space that nwcs

points to. To read the WCS structure directly from a filename, see gal_wcs_read

below. After processing has finished, you should free the WCS structure that this
function returns with gal_wcs_free.

The linearmatrix argument takes one of three values: 0, GAL_WCS_LINEAR_MATRIX_
PC and GAL_WCS_LINEAR_MATRIX_CD. It will determine the format of the WCS when
it is later written to file with gal_wcs_write or gal_wcs_write_in_fitsptr (which
is called by gal_fits_img_write) So if you do not want to write the WCS into a
file later, just give it a value of 0. For more on the difference between these modes,
see the description of --wcslinearmatrix in Section 4.1.2.1 [Input/Output options],
page 252.

If you do not want to search the full FITS header for WCS-related FITS keywords
(for example, due to conflicting keywords), but only a specific range of the header
keywords you can use the hstartwcs and hendwcs arguments to specify the keyword
number range (counting from zero). If hendwcs is larger than hstartwcs, then only
keywords in the given range will be checked. Hence, to ignore this feature (and search
the full FITS header), give both these arguments the same value.

If the WCS information could not be read from the FITS file, this function will return
a NULL pointer and put a zero in nwcs. A WCSLIB error message will also be printed
in stderr if there was an error.

This function is just a wrapper over WCSLIB’s wcspih function which is not thread-
safe. Therefore, be sure to not call this function simultaneously (over multiple
threads).
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[Function]struct wcsprm *
gal_wcs_read (char *filename, char *hdu, int linearmatrix, size_t

hstartwcs, size_t hendwcs, int *nwcs, char *hdu_option_name)
[Not thread-safe] Return the WCSLIB structure that is read from the HDU/extension
hdu of the file filename. Also put the number of coordinate representations found
into the space that nwcs points to. Please see gal_wcs_read_fitsptr for more. For
more on hdu_option_name see the description of gal_array_read in Section 12.3.9
[Array input output], page 786.

After processing has finished, you should free the WCS structure that this function
returns with gal_wcs_free.

[Function]void
gal_wcs_free (struct wcsprm *wcs)

Free the contents and the space that wcs points to. WCSLIB’s wcsfree function
only frees the contents of the wcsprm structure, not the actual pointer. However,
Gnuastro’s wcsprm creation and reading functions allocate the structure also. This
higher-level function therefore simplifies the processing. A complete working example
is given in the description of gal_wcs_create.

[Function]char *
gal_wcs_dimension_name (struct wcsprm *wcs, size_t dimension)

Return an allocated string array (that should be freed later) containing the first
part of the CTYPEi FITS keyword (which contains the dimension name in the FITS
standard). For example, if CTYPE1 is RA---TAN, the string that function returns will
be RA. Recall that the second component of CTYPEi contains the type of projection.

[Function]char *
gal_wcs_write_wcsstr (struct wcsprm *wcs, int *nkeyrec)

Return an allocated string which contains the respective FITS keywords for the given
WCS structure into it. The number of keywords is written in the space pointed by
nkeyrec. Each FITS keyword is 80 characters wide (according to the FITS standard),
and the next one is placed immediately after it, so the full string has 80*nkeyrec

bytes. The output of this function can later be written into an opened FITS file
using gal_fits_key_write_wcsstr (see Section 12.3.11.4 [FITS header keywords],
page 797).

[Function]void
gal_wcs_write (struct wcsprm *wcs, char *filename, char *extname,

gal_fits_list_key_t *keylist, int freekeys)
Write the given WCS structure into the second extension of an empty FITS header.
The first/primary extension will be empty like the default format of all Gnuastro
outputs. When extname!=NULL it will be used as the FITS extension name. Any set
of extra headers can also be written through the keylist list. If freekeys!=0 then
the list of keywords will be freed after they are written.

[Function]void
gal_wcs_write_in_fitsptr (fitsfile *fptr, struct wcsprm *wcs)

Convert the input wcs structure (keeping the WCS programmatically) into FITS
keywords and write them into the given FITS file pointer. This is a relatively low-
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level function which assumes the FITS file has already been opened with CFITSIO.
If you just want to write the WCS into an empty file, you can use gal_wcs_write

(which internally calls this function after creating the FITS file and later closes it
safely).

[Function]struct wcsprm *
gal_wcs_copy (struct wcsprm *wcs)

Return a fully allocated (independent) copy of wcs.

[Function]struct wcsprm *
gal_wcs_copy_new_crval (struct wcsprm *wcs, double *crval)

Return a fully allocated (independent) copy of wcs with a new set of CRVAL values.
WCSLIB keeps a lot of extra information within wcsprm and for optimizations, those
extra information are used in its calculations. Therefore, if you want to change pa-
rameters like the reference point’s sky coordinate values (CRVAL), simply changing the
values in wcs->crval[0] or wcs->crval[1] will not affect WCSLIB’s calculations;
you need to call this function.

[Function]void
gal_wcs_remove_dimension (struct wcsprm *wcs, size_t fitsdim)

Remove the given FITS dimension from the given wcs structure.

[Function]void
gal_wcs_on_tile (gal_data_t *tile)

Create a WCSLIB wcsprm structure for tile using WCS parameters of the tile’s
allocated block dataset, see Section 12.3.15 [Tessellation library (tile.h)], page 839,
for the definition of tiles. If tile already has a WCS structure, this function will not
do anything.

In many cases, tiles are created for internal/low-level processing. Hence for perfor-
mance reasons, when creating the tiles they do not have any WCS structure. When
needed, this function can be used to add a WCS structure to each tile tile by copying
the WCS structure of its block and correcting the reference point’s coordinates within
the tile.

[Function]double *
gal_wcs_warp_matrix (struct wcsprm *wcs)

Return the Warping matrix of the given WCS structure as an array of double precision
floating points. This will be the final matrix, irrespective of the type of storage in
the WCS structure. Recall that the FITS standard has several methods to store the
matrix. The output is an allocated square matrix with each side equal to the number
of dimensions.

[Function]void
gal_wcs_clean_small_errors (struct wcsprm *wcs)

Errors can make small differences between the pixel-scale elements (CDELT) and can
also lead to extremely small values in the PC matrix. With this function, such errors
will be “cleaned” as follows: 1) if the maximum difference between the CDELT elements
is smaller than the reference error, it will be set to the mean value. When the FITS
keyword CRDER (optional) is defined it will be used as a reference, if not the default
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value is GAL_WCS_FLTERROR. 2) If any of the PC elements differ from 0, 1 or -1 by
less than GAL_WCS_FLTERROR, they will be rounded to the respective value.

[Function]void
gal_wcs_decompose_pc_cdelt (struct wcsprm *wcs)

Decompose the PCi_j and CDELTi elements of wcs. According to the FITS standard,
in the PCi_j WCS formalism, the rotation matrix elements mij are encoded in the
PCi_j keywords and the scale factors are encoded in the CDELTi keywords. There is
also another formalism (the CDi_j formalism) which merges the two into one matrix.

However, WCSLIB’s internal operations are apparently done in the PCi_j formalism.
So its outputs are also all in that format by default. When the input is a CDi_j,
WCSLIB will still read the matrix directly into the PCi_j matrix and the CDELTi

values are set to 1 (one). This function is designed to correct such issues: after it is
finished, the CDELTi values in wcs will correspond to the pixel scale, and the PCi_j

will correction show the rotation.

[Function]void
gal_wcs_to_cd (struct wcsprm *wcs)

Make sure that the WCS structure’s PCi_j and CDi_j keywords have the same value
and that the CDELTi keywords have a value of 1.0. Also, set the wcs->altlin=2 (for
the CDi_j formalism). With these changes gal_wcs_write_in_fitsptr (and thus
gal_wcs_write and gal_fits_img_write and its derivatives) will have an output
file in the format of CDi_j.

[Function]int
gal_wcs_coordsys_identify (struct wcsprm *wcs)

Read the given WCS structure and return its coordinate system as one of Gnuastro’s
WCS coordinate system identifiers (the macros GAL_WCS_COORDSYS_*, listed above).

[Function]struct wcsprm *
gal_wcs_coordsys_convert (struct wcsprm *inwcs, int coordsysid)

Return a newly allocated WCS structure with the coordsysid coordinate system
identifier. The Gnuastro WCS distortion identifiers are defined in the GAL_WCS_

COORDSYS_* macros mentioned above. Since the returned dataset is newly allocated,
if you do not need the original dataset after this, use the WCSLIB library function
wcsfree to free the input, for example, wcsfree(inwcs).

[Function]void
gal_wcs_coordsys_convert_points (int sys1, double *lng1_d, double

*lat1_d, int sys2, double *lng2_d, double *lat2_d, size_t
number)

Convert the input set of longitudes (lng1_d, in degrees) and latitudes (lat1_d, in
degrees) within a recognized coordinate system (sys1; one of the GAL_WCS_COORDSYS_
* macros above) into an output coordinate system (sys2). The output values are
written in lng2_d and lng2_d. The total number of points should be given in number.
If you want the operation to be done in place (without allocating a new dataset), give
the same pointers to the coordinate arguments.
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[Function]void
gal_wcs_coordsys_sys1_ref_in_sys2 (int sys1, int sys2, double *lng2,

double *lat2)
Return the longitude and latitude of the reference point (on the equator) of the first
coordinate system (sys1) within the second system (sys2). Coordinate systems are
identified by the GAL_WCS_COORDSYS_* macros above.

[Function]int
gal_wcs_distortion_identify (struct wcsprm *wcs)

Returns the Gnuastro identifier for the distortion of the input WCS structure. The
returned value is one of the GAL_WCS_DISTORTION_* macros defined above. When the
input pointer to a structure is NULL, or it does not contain a distortion, the returned
value will be GAL_WCS_DISTORTION_INVALID.

[Function]struct wcsprm *
gal_wcs_distortion_convert(struct wcsprm *inwcs, int outdisptype,

size_t *fitsize)
Return a newly allocated WCS structure, where the distortion is implemented in
a different standard, identified by the identifier outdisptype. The Gnuastro WCS
distortion identifiers are defined in the GAL_WCS_DISTORTION_* macros mentioned
above.

The available conversions in this function will grow. Currently it only supports con-
verting TPV to SIP and vice versa, following the recipe of Shupe et al. (2012)24.
Please get in touch with us if you need other types of conversions.

For some conversions, direct analytical conversions do not exist. It is thus necessary
to model and fit the two types. In such cases, it is also necessary to specify the
fitsize array that is the size of the array along each C-ordered dimension, so you
can simply pass the dsize element of your gal_data_t dataset, see Section 12.3.6.1
[Generic data container (gal_data_t)], page 755. Currently this is only necessary
when converting TPV to SIP. For other conversions you may simply pass a NULL

pointer.

For example, if you want to convert the TPV coefficients of your input image.fits
to SIP coefficients, you can use the following functions (which are also available as a
command-line operation in Section 5.1 [Fits], page 295).

int nwcs;

gal_data_t *data=gal_fits_img_read("image.fits", "1", -1, 1, NULL);

inwcs=gal_wcs_read("image.fits", "1", 0, 0, 0, &nwcs, NULL);

data->wcs=gal_wcs_distortion_convert(inwcs, GAL_WCS_DISTORTION_TPV,

NULL);

wcsfree(inwcs);

gal_fits_img_write(data, "tpv.fits", NULL, 0);

24 Proc. of SPIE Vol. 8451 84511M-1. https://doi.org/10.1117/12.925460, also available at http://

web.ipac.caltech.edu/staff/shupe/reprints/SIP_to_PV_SPIE2012.pdf.

https://doi.org/10.1117/12.925460
http://web.ipac.caltech.edu/staff/shupe/reprints/SIP_to_PV_SPIE2012.pdf
http://web.ipac.caltech.edu/staff/shupe/reprints/SIP_to_PV_SPIE2012.pdf
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[Function]double
gal_wcs_angular_distance_deg (double r1, double d1, double r2, double

d2)
Return the angular distance (in degrees) between a point located at (r1, d1) to (r2,
d2). All input coordinates are in degrees. The distance (along a great circle) on a
sphere between two points is calculated with the equation below.

cos(d) = sin(d1) sin(d2) + cos(d1) cos(d2) cos(r1 − r2)

However, since the pixel scales are usually very small numbers, this function will
not use that direct formula. It will be use the Haversine formula (https://en.
wikipedia.org/wiki/Haversine_formula) which is better considering floating point
errors:

sin2(d)

2
= sin2

(
d1 − d2

2

)
+ cos(d1) cos(d2) sin

2

(
r1 − r2

2

)

[Function]void
gal_wcs_box_vertices_from_center (double ra_center, double

dec_center, double ra_delta, double dec_delta, double *out)
Calculate the vertices of a rectangular box given the central RA and Dec and delta of
each. The vertice coordinates are written in the space that out points to (assuming
it has space for eight doubles).

Given the spherical nature of the coordinate system, the vertice lengths can’t be
calculated with a simple addition/subtraction. For the declination, a simple addi-
tion/subtraction is enough. Also, on the equator (where the RA is defined), a simple
addition/subtraction along the RA is fine. However, at other declinations, the new
RA after a shift needs special treatment, such that close to the poles, a shift of 1
degree can correspond to a new RA that is much more distant than the original RA.
Assuming a point at Right Ascension (RA) and Declination of α and δ, a shift of R
degrees along the positive RA direction corresponds to a right ascension of α+ R

cos(δ)
.

For more, see the description of box-vertices-on-sphere in Section 6.2.4.17 [Coor-
dinate and border operators], page 453.

The 8 coordinates of the 4 vertices of the box are written in the order below. Where
“bottom” corresponds to a lower declination and “top” to higher declination, “left”
corresponds to a larger RA and “right” corresponds to lower RA.

out[0]: bottom-left RA

out[1]: bottom-left Dec

out[2]: bottom-right RA

out[3]: bottom-right Dec

out[4]: top-right RA

out[5]: top-right Dec

out[6]: top-left RA

out[7]: top-left Dec

https://en.wikipedia.org/wiki/Haversine_formula
https://en.wikipedia.org/wiki/Haversine_formula
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[Function]double *
gal_wcs_pixel_scale (struct wcsprm *wcs)

Return the pixel scale for each dimension of wcs in degrees. The output is an allocated
array of double precision floating point type with one element for each dimension. If
it is not successful, this function will return NULL.

[Function]double
gal_wcs_pixel_area_arcsec2 (struct wcsprm *wcs)

Return the pixel area of wcs in arc-second squared. This only works when the input
dataset has at least two dimensions and the units of the first two dimensions (CUNIT
keywords) are deg (for degrees). In other cases, this function will return a NaN.

[Function]int
gal_wcs_coverage (char *filename, char *hdu, size_t *ondim, double

**ocenter, double **owidth, double **omin, double **omax,
char *hdu_option_name)

Find the sky coverage of the image HDU (hdu) within filename. The number of
dimensions is written into ndim, and space for the various output arrays is internally
allocated and filled with the respective values. Therefore you need to free them
afterwards. For more on hdu_option_name see the description of gal_array_read in
Section 12.3.9 [Array input output], page 786.

Currently this function only supports images that are less than 180 degrees in width
(which is usually the case!). This requirement has been necessary to account for
images that cross the RA=0 hour circle on the sky. Please get in touch with us at
mailto:bug-gnuastro@gnu.org if you have an image that is larger than 180 degrees
so we try to find a solution based on need.

[Function]gal_data_t *
gal_wcs_world_to_img (gal_data_t *coords, struct wcsprm *wcs, int

inplace)
Convert the linked list of world coordinates in coords to a linked list of image coordi-
nates given the input WCS structure. coords must be a linked list of data structures
of float64 (‘double’) type, seeSection 12.3.8 [Linked lists (list.h)], page 771, and
Section 12.3.8.9 [List of gal_data_t], page 784. The top (first popped/read) node
of the linked list must be the first WCS coordinate (RA in an image usually) etc.
Similarly, the top node of the output will be the first image coordinate (in the FITS
standard). In case WCSLIB fails to convert any of the coordinates (for example, the
RA of one coordinate is given as 400!), the respective element in the output will be
written as NaN.

If inplace is zero, then the output will be a newly allocated list and the input list
will be untouched. However, if inplace is non-zero, the output values will be written
into the input’s already allocated array and the returned pointer will be the same
pointer to coords (in other words, you can ignore the returned value). Note that in
the latter case, only the values will be changed, things like units or name (if present)
will be untouched.

mailto:bug-gnuastro@gnu.org
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[Function]gal_data_t *
gal_wcs_img_to_world (gal_data_t *coords, struct wcsprm *wcs, int

inplace)
Convert the linked list of image coordinates in coords to a linked list of world coordi-
nates given the input WCS structure. See the description of gal_wcs_world_to_img
for more details.

12.3.14 Arithmetic on datasets (arithmetic.h)

When the dataset’s type and other information are already known, any programming lan-
guage (including C) provides some very good tools for various operations (including arith-
metic operations like addition) on the dataset with a simple loop. However, as an author
of a program, making assumptions about the type of data, its dimensions and other basic
characteristics will come with a large processing burden.

For example, if you always read your data as double precision floating points for a
simple operation like addition with an integer constant, you will be wasting a lot of CPU
and memory when the input dataset is int32 type for example, (see Section 4.5 [Numeric
data types], page 277). This overhead may be small for small images, but as you scale
your process up and work with hundred/thousands of files that can be very large, this
overhead will take a significant portion of the processing power. The functions and macros
in this section are designed precisely for this purpose: to allow you to do any of the defined
operations on any dataset with no overhead (in the native type of the dataset).

Gnuastro’s Arithmetic program uses the functions and macros of this section, so please
also have a look at the Section 6.2 [Arithmetic], page 399, program and in particular Sec-
tion 6.2.4 [Arithmetic operators], page 408, for a better description of the operators dis-
cussed here.

The main function of this library is gal_arithmetic that is described below. It can
take an arbitrary number of arguments as operands (depending on the operator, similar
to printf). Its first two arguments are integers specifying the flags and operator. So first
we will review the constants for the recognized flags and operators and discuss them, then
introduce the actual function.

[Macro]GAL_ARITHMETIC_FLAG_INPLACE
[Macro]GAL_ARITHMETIC_FLAG_FREE
[Macro]GAL_ARITHMETIC_FLAG_NUMOK
[Macro]GAL_ARITHMETIC_FLAG_ENVSEED
[Macro]GAL_ARITHMETIC_FLAG_QUIET
[Macro]GAL_ARITHMETIC_FLAGS_BASIC

Bit-wise flags to pass onto gal_arithmetic (see below). To pass multiple flags, use
the bitwise-or operator. For example, if you pass GAL_ARITHMETIC_FLAG_INPLACE

| GAL_ARITHMETIC_FLAG_NUMOK, then the operation will be done in-place (without
allocating a new array), and a single number will also be acceptable (that will be
applied to all the pixels). Each flag is described below:

GAL_ARITHMETIC_FLAG_INPLACE

Do the operation in-place (in the input dataset, thus modifying it) to im-
prove CPU and memory usage. If this flag is used, after gal_arithmetic
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finishes, the input dataset will be modified. It is thus useful if you have
no more need for the input after the operation.

GAL_ARITHMETIC_FLAG_FREE

Free (all the) input dataset(s) after the operation is done. Hence the
inputs are no longer usable after gal_arithmetic.

GAL_ARITHMETIC_FLAG_NUMOK

It is acceptable to use a number and an array together. For example, if
you want to add all the pixels in an image with a single number you can
pass this flag to avoid having to allocate a constant array the size of the
image (with all the pixels having the same number).

GAL_ARITHMETIC_FLAG_ENVSEED

Use the pre-defined environment variable for setting the random number
generator seed when an operator needs it (for example, mknoise-sigma).
For more on random number generation in Gnuastro see Section 6.2.3.4
[Generating random numbers], page 406.

GAL_ARITHMETIC_FLAG_QUIET

Do not print any warnings or messages for operators that may benefit
from it. For example, by default the mknoise-sigma operator prints the
random number generator function and seed that it used (in case the user
wants to reproduce this result later). By activating this bit flag to the
call, that extra information is not printed on the command-line.

GAL_ARITHMETIC_FLAGS_BASIC

A wrapper for activating the three “basic” operations that are commonly
necessary together: GAL_ARITHMETIC_FLAG_INPLACE, GAL_ARITHMETIC_
FLAG_FREE and GAL_ARITHMETIC_FLAG_NUMOK.

[Macro]GAL_ARITHMETIC_OP_PLUS
[Macro]GAL_ARITHMETIC_OP_MINUS
[Macro]GAL_ARITHMETIC_OP_MULTIPLY
[Macro]GAL_ARITHMETIC_OP_DIVIDE
[Macro]GAL_ARITHMETIC_OP_LT
[Macro]GAL_ARITHMETIC_OP_LE
[Macro]GAL_ARITHMETIC_OP_GT
[Macro]GAL_ARITHMETIC_OP_GE
[Macro]GAL_ARITHMETIC_OP_EQ
[Macro]GAL_ARITHMETIC_OP_NE
[Macro]GAL_ARITHMETIC_OP_AND
[Macro]GAL_ARITHMETIC_OP_OR

Binary operators (requiring two operands) that accept datasets of any recognized
type (see Section 4.5 [Numeric data types], page 277). When gal_arithmetic is
called with any of these operators, it expects two datasets as arguments. For a
full description of these operators with the same name, see Section 6.2.4 [Arithmetic
operators], page 408. The first dataset/operand will be put on the left of the operator
and the second will be put on the right. The output type of the first four is determined
from the input types (largest type of the inputs). The rest (which are all conditional
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operators) will output a binary uint8_t (or unsigned char) dataset with values of
either 0 (zero) or 1 (one).

[Macro]GAL_ARITHMETIC_OP_NOT
The logical NOT operator. When gal_arithmetic is called with this operator, it
only expects one operand (dataset), since this is a unary operator. The output is
uint8_t (or unsigned char) dataset of the same size as the input. Any non-zero
element in the input will be 0 (zero) in the output and any 0 (zero) will have a value
of 1 (one).

[Macro]GAL_ARITHMETIC_OP_ISBLANK
A unary operator with output that is 1 for any element in the input that is blank, and 0
for any non-blank element. When gal_arithmetic is called with this operator, it will
only expect one input dataset. The output dataset will have uint8_t (or unsigned
char) type.

gal_arithmetic with this operator is just a wrapper for the gal_blank_flag func-
tion of Section 12.3.5 [Library blank values (blank.h)], page 751, and this operator is
just included for completeness in arithmetic operations. So in your program, it might
be easier to just call gal_blank_flag.

[Macro]GAL_ARITHMETIC_OP_WHERE
The three-operand where operator thoroughly discussed in Section 6.2.4 [Arithmetic
operators], page 408. When gal_arithmetic is called with this operator, it will only
expect three input datasets: the first (which is the same as the returned dataset) is
the array that will be modified. The second is the condition dataset (that must have
a uint8_t or unsigned char type), and the third is the value to be used if condition
is non-zero.

As a result, note that the order of operands when calling gal_arithmetic with GAL_

ARITHMETIC_OP_WHERE is the opposite of running Gnuastro’s Arithmetic program
with the where operator (see Section 6.2 [Arithmetic], page 399). This is because the
latter uses the reverse-Polish notation which is not necessary when calling a function
(see Section 6.2.1 [Reverse polish notation], page 399).

[Macro]GAL_ARITHMETIC_OP_SQRT
[Macro]GAL_ARITHMETIC_OP_LOG
[Macro]GAL_ARITHMETIC_OP_LOG10

Unary operator functions for calculating the square root (
√
i), ln(i) and log(i) math-

ematical operators on each element of the input dataset. The returned dataset will
have a floating point type, but its precision is determined from the input: if the input
is a 64-bit floating point, the output will also be 64-bit. Otherwise, the returned
dataset will be 32-bit floating point: you do not gain precision by using these opera-
tors, but you gain in operating speed if you use the sufficient precision. See Section 4.5
[Numeric data types], page 277, for more on the precision of floating point numbers
to help in selecting your required floating point precision.

If you want your output to be 64-bit floating point but your input is a different
type, you can convert the input to a 64-bit floating point type with gal_data_copy_

to_new_type or gal_data_copy_to_new_type_free(see Section 12.3.6.4 [Copying
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datasets], page 762). Alternatively, you can use the GAL_ARITHMETIC_OP_TO_FLOAT64
operators in the arithmetic library.

[Macro]GAL_ARITHMETIC_OP_SIN
[Macro]GAL_ARITHMETIC_OP_COS
[Macro]GAL_ARITHMETIC_OP_TAN
[Macro]GAL_ARITHMETIC_OP_ASIN
[Macro]GAL_ARITHMETIC_OP_ACOS
[Macro]GAL_ARITHMETIC_OP_ATAN
[Macro]GAL_ARITHMETIC_OP_ATAN2

Trigonometric functions (and their inverse). All the angles, either inputs or outputs,
are in units of degrees.

[Macro]GAL_ARITHMETIC_OP_SINH
[Macro]GAL_ARITHMETIC_OP_COSH
[Macro]GAL_ARITHMETIC_OP_TANH
[Macro]GAL_ARITHMETIC_OP_ASINH
[Macro]GAL_ARITHMETIC_OP_ACOSH
[Macro]GAL_ARITHMETIC_OP_ATANH

Hyperbolic functions (and their inverse).

[Macro]GAL_ARITHMETIC_OP_RA_TO_DEGREE
[Macro]GAL_ARITHMETIC_OP_DEC_TO_DEGREE
[Macro]GAL_ARITHMETIC_OP_DEGREE_TO_RA
[Macro]GAL_ARITHMETIC_OP_DEGREE_TO_DEC

Unary operators to convert between degrees (as a single floating point number) to
the sexagesimal Right Ascension and Declination format (as strings, respectively in
the format of _h_m_s and _d_m_s). The first two operators expect a string operand
(in the sexagesimal formats mentioned above, but also in the _:_:_) and will return
a double-precision floating point operand. The latter two are the opposite.

[Macro]GAL_ARITHMETIC_OP_COUNTS_TO_MAG
[Macro]GAL_ARITHMETIC_OP_MAG_TO_COUNTS
[Macro]GAL_ARITHMETIC_OP_MAG_TO_SB
[Macro]GAL_ARITHMETIC_OP_SB_TO_MAG
[Macro]GAL_ARITHMETIC_OP_COUNTS_TO_JY
[Macro]GAL_ARITHMETIC_OP_JY_TO_COUNTS
[Macro]GAL_ARITHMETIC_OP_MAG_TO_JY
[Macro]GAL_ARITHMETIC_OP_JY_TO_MAG
[Macro]GAL_ARITHMETIC_OP_MAG_TO_NANOMAGGY
[Macro]GAL_ARITHMETIC_OP_NANOMAGGY_TO_MAG

Binary operators for converting brightness and surface brightness units to and from
each other. The first operand to all of them are the values in the input unit (left
of the -TO-, for example counts in COUNTS_TO_MAG). The second popped operand is
the zero point (right of the -TO-, for example magnitudes in COUNTS_TO_MAG). The
exceptions are the operators that involve surface brightness (those with SB). For the
surface brightness related operators, the second popped operand is the area in units
of arcsec2 and the third popped operand is the final unit.
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[Macro]GAL_ARITHMETIC_OP_COUNTS_TO_SB
[Macro]GAL_ARITHMETIC_OP_SB_TO_COUNTS

Operators for converting counts to surface brightness and vice-versa. These operators
take three operands: 1) the input dataset in units of counts or surface brightness
(depending on the operator), 2) the zero point, 3) the area in units of arcsec2.

[Macro]GAL_ARITHMETIC_OP_AU_TO_PC
[Macro]GAL_ARITHMETIC_OP_PC_TO_AU
[Macro]GAL_ARITHMETIC_OP_LY_TO_PC
[Macro]GAL_ARITHMETIC_OP_PC_TO_LY
[Macro]GAL_ARITHMETIC_OP_LY_TO_AU
[Macro]GAL_ARITHMETIC_OP_AU_TO_LY

Unary operators to convert various distance units to and from each other: Astronom-
ical Units (AU), Parsecs (PC) and Light years (LY).

[Macro]GAL_ARITHMETIC_OP_MINVAL
[Macro]GAL_ARITHMETIC_OP_MAXVAL
[Macro]GAL_ARITHMETIC_OP_NUMBERVAL
[Macro]GAL_ARITHMETIC_OP_SUMVAL
[Macro]GAL_ARITHMETIC_OP_MEANVAL
[Macro]GAL_ARITHMETIC_OP_STDVAL
[Macro]GAL_ARITHMETIC_OP_MEDIANVAL

Unary operand statistical operators that will return a single value for datasets of any
size. These are just wrappers around similar functions in Section 12.3.22 [Statistical
operations (statistics.h)], page 865, and are included in gal_arithmetic only for
completeness (to use easily in Section 6.2 [Arithmetic], page 399). In your programs,
it will probably be easier if you use those gal_statistics_ functions directly.

[Macro]GAL_ARITHMETIC_OP_UNIQUE
[Macro]GAL_ARITHMETIC_OP_NOBLANK

Unary operands that will remove some elements from the input dataset. The first
will return the unique elements, and the second will return the non-blank elements.
Due to the removal of elements, the dimensionality of the output will be lost.

These are just wrappers over the gal_statistics_unique and gal_blank_remove.
These are just wrappers around similar functions in Section 12.3.22 [Statistical op-
erations (statistics.h)], page 865, and are included in gal_arithmetic only for
completeness (to use easily in Section 6.2 [Arithmetic], page 399). In your programs,
it will probably be easier if you use those gal_statistics_ functions directly.

[Macro]GAL_ARITHMETIC_OP_ABS
Unary operand absolute-value operator.

[Macro]GAL_ARITHMETIC_OP_MIN
[Macro]GAL_ARITHMETIC_OP_MAX
[Macro]GAL_ARITHMETIC_OP_NUMBER
[Macro]GAL_ARITHMETIC_OP_SUM
[Macro]GAL_ARITHMETIC_OP_MEAN
[Macro]GAL_ARITHMETIC_OP_STD
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[Macro]GAL_ARITHMETIC_OP_MEDIAN
Multi-operand statistical operations. When gal_arithmetic is called with any of
these operators, it will expect only a single operand that will be interpreted as a list
of datasets (see Section 12.3.8.9 [List of gal_data_t], page 784). These operators can
work on multiple threads using the numthreads argument. See the discussion under
the min operator in Section 6.2.4 [Arithmetic operators], page 408.

The output will be a single dataset with each of its elements replaced by the respective
statistical operation on the whole list. The type of the output is determined from
the operator (irrespective of the input type): for GAL_ARITHMETIC_OP_MIN and GAL_

ARITHMETIC_OP_MAX, it will be the same type as the input, for GAL_ARITHMETIC_OP_
NUMBER, the output will be GAL_TYPE_UINT32 and for the rest, it will be GAL_TYPE_

FLOAT32.

[Macro]GAL_ARITHMETIC_OP_QUANTILE
Similar to the operands above (including GAL_ARITHMETIC_MIN), except that when
gal_arithmetic is called with these operators, it requires two arguments. The first
is the list of datasets like before, and the second is the 1-element dataset with the
quantile value. The output type is the same as the inputs.

[Macro]GAL_ARITHMETIC_OP_SIGCLIP_STD
[Macro]GAL_ARITHMETIC_OP_SIGCLIP_MEAN
[Macro]GAL_ARITHMETIC_OP_SIGCLIP_MEDIAN
[Macro]GAL_ARITHMETIC_OP_SIGCLIP_NUMBER

Similar to the operands above (including GAL_ARITHMETIC_MIN), except that when
gal_arithmetic is called with these operators, it requires two arguments. The first
is the list of datasets like before, and the second is the 2-element list of σ-clipping
parameters. The first element in the parameters list is the multiple of sigma and the
second is the termination criteria (see Section 2.10.2 [Sigma clipping], page 200). The
output type of GAL_ARITHMETIC_OP_SIGCLIP_NUMBER will be GAL_TYPE_UINT32 and
for the rest it will be GAL_TYPE_FLOAT32.

[Macro]GAL_ARITHMETIC_OP_MKNOISE_SIGMA
[Macro]GAL_ARITHMETIC_OP_MKNOISE_POISSON
[Macro]GAL_ARITHMETIC_OP_MKNOISE_UNIFORM

Add noise to the input dataset. These operators take two arguments: the first is
the input data set (can have any dimensionality or number of elements. The second
argument is the noise specifier (a single element, of any type): for a fixed-sigma noise,
it is the Gaussian standard deviation, for the Poisson noise, it is the background (see
Section 6.2.3.1 [Photon counting noise], page 403) and for the uniform distribution it
is the width of the interval around each element of the input dataset.

By default, a separate random number generator seed will be used on each separate
run of these operators. Therefore two identical runs on the same input will produce
different results. You can get reproducible results by setting the GAL_RNG_SEED envi-
ronment variable and activating the GAL_ARITHMETIC_FLAG_ENVSEED flag. For more
on random number generation in Gnuastro, see Section 6.2.3.4 [Generating random
numbers], page 406.
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By default these operators will print the random number generator function and seed
(in case the user wants to reproduce the result later), but this can be disabled by
activating the bit-flag GAL_ARITHMETIC_FLAG_QUIET described above.

[Macro]GAL_ARITHMETIC_OP_RANDOM_FROM_HIST
[Macro]GAL_ARITHMETIC_OP_RANDOM_FROM_HIST_RAW

Select random values from a custom distribution (defined by a histogram). For more,
see the description of the respective operators in Section 6.2.3.4 [Generating random
numbers], page 406.

[Macro]GAL_ARITHMETIC_OP_STITCH
Stitch a list of input datasets along the requested dimension. See the description of the
stitch operator in Arithmetic (Section 6.2.4.11 [Dimensionality changing operators],
page 430).

[Macro]GAL_ARITHMETIC_OP_POW
Binary operator to-power operator. When gal_arithmetic is called with any of these
operators, it will expect two operands: raising the first by the second (returning a
floating point, inputs can be integers).

[Macro]GAL_ARITHMETIC_OP_BITAND
[Macro]GAL_ARITHMETIC_OP_BITOR
[Macro]GAL_ARITHMETIC_OP_BITXOR
[Macro]GAL_ARITHMETIC_OP_BITLSH
[Macro]GAL_ARITHMETIC_OP_BITRSH
[Macro]GAL_ARITHMETIC_OP_MODULO

Binary integer-only operand operators. These operators are only defined on integer
data types. When gal_arithmetic is called with any of these operators, it will expect
two operands: the first is put on the left of the operator and the second on the right.
The ones starting with BIT are the respective bit-wise operators in C and MODULO

is the modulo/remainder operator. For a discussion on these operators, please see
Section 6.2.4 [Arithmetic operators], page 408.

The output type is determined from the input types and C’s internal conversions:
it is strongly recommended that both inputs have the same type (any integer type),
otherwise the bit-wise behavior will be determined by your compiler.

[Macro]GAL_ARITHMETIC_OP_BITNOT
The unary bit-wise NOT operator. When gal_arithmetic is called with any of these
operators, it will expect one operand of an integer type and preform the bitwise-NOT
operation on it. The output will have the same type as the input.

[Macro]GAL_ARITHMETIC_OP_TO_UINT8
[Macro]GAL_ARITHMETIC_OP_TO_INT8
[Macro]GAL_ARITHMETIC_OP_TO_UINT16
[Macro]GAL_ARITHMETIC_OP_TO_INT16
[Macro]GAL_ARITHMETIC_OP_TO_UINT32
[Macro]GAL_ARITHMETIC_OP_TO_INT32
[Macro]GAL_ARITHMETIC_OP_TO_UINT64
[Macro]GAL_ARITHMETIC_OP_TO_INT64
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[Macro]GAL_ARITHMETIC_OP_TO_FLOAT32
[Macro]GAL_ARITHMETIC_OP_TO_FLOAT64

Unary type-conversion operators. When gal_arithmetic is called with any of these
operators, it will expect one operand and convert it to the requested type. Note that
with these operators, gal_arithmetic is just a wrapper over the gal_data_copy_

to_new_type or gal_data_copy_to_new_type_free that are discussed in Copying

datasets. It accepts these operators only for completeness and easy usage in Sec-
tion 6.2 [Arithmetic], page 399. So in your programs, it might be preferable to directly
use those functions.

[Macro]GAL_ARITHMETIC_OP_E
[Macro]GAL_ARITHMETIC_OP_C
[Macro]GAL_ARITHMETIC_OP_G
[Macro]GAL_ARITHMETIC_OP_H
[Macro]GAL_ARITHMETIC_OP_AU
[Macro]GAL_ARITHMETIC_OP_LY
[Macro]GAL_ARITHMETIC_OP_PI
[Macro]GAL_ARITHMETIC_OP_AVOGADRO
[Macro]GAL_ARITHMETIC_OP_FINESTRUCTURE

Return the respective mathematical constant. For their description please see Sec-
tion 6.2.4.3 [Constants], page 412. The constant values are taken from the GNU
Scientific Library’s headers (defined in gsl/gsl_math.h).

[Macro]GAL_ARITHMETIC_OP_BOX_AROUND_ELLIPSE
Return the width (along horizontal) and height (along vertical) of a box that encom-
passes an ellipse with the same center point. For more on the three input operands
to this operator see the description of box-around-ellipse. This function returns
two datasets as a gal_data_t linked list. The top element of the list is the height
and its next element is the width.

[Macro]GAL_ARITHMETIC_OP_BOX_VERTICES_ON_SPHERE
Return the vertices of a (possibly rectangular) box on a sphere, given its center RA,
Dec and the width of the box along the two dimensions. It will take the spheri-
cal nature of the coordinate system into account (for more, see the description of
gal_wcs_box_vertices_from_center in Section 12.3.13 [World Coordinate System
(wcs.h)], page 817). This function returns 8 datasets as a gal_data_t linked list in
the following order: bottom-left RA, bottom-left Dec, bottom-right RA, bottom-right
Dec, top-right RA, top-right Dec, top-left RA, top-left Dec.

[Macro]GAL_ARITHMETIC_OP_MAKENEW
Create a new, zero-valued dataset with an unsigned 8-bit data type. The length along
each dimension of the dataset should be given as a single list of gal_data_ts. The
number of dimensions is derived from the number of nodes in the list and the length
along each dimension is the single-valued element within that list. Just note that the
list should be in the reverse of the desired dimensions.

[Macro]GAL_ARITHMETIC_OP_MAKENEW
Given a dataset and a constant,
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[Macro]GAL_ARITHMETIC_OPSTR_LOADCOL_HDU
[Macro]GAL_ARITHMETIC_OPSTR_LOADCOL_FILE
[Macro]GAL_ARITHMETIC_OPSTR_LOADCOL_PREFIX
[Macro]GAL_ARITHMETIC_OPSTR_LOADCOL_HDU_LEN
[Macro]GAL_ARITHMETIC_OPSTR_LOADCOL_FILE_LEN
[Macro]GAL_ARITHMETIC_OPSTR_LOADCOL_PREFIX_LEN

Constant components of the load-col- operator (see Section 6.2.4.18 [Loading ex-
ternal columns], page 456). These are just fixed strings (and their lengths) that are
placed in between the various components of that operator to allow choosing a certain
column of a certain HDU of a certain file.

[Macro]GAL_ARITHMETIC_OP_INDEX
[Macro]GAL_ARITHMETIC_OP_COUNTER
[Macro]GAL_ARITHMETIC_OP_INDEXONLY
[Macro]GAL_ARITHMETIC_OP_COUNTERONLY

Return a dataset with the same number of elements and dimensionality as the first
(and only!) input dataset. But each output pixel’s value will be replaced by its index
(counting from 0) or counter (counting from 1). Note that the GAL_ARITHMETIC_OP_
INDEX and GAL_ARITHMETIC_OP_INDEXONLY operators are identical within the library
(same for the counter operators). They are given separate macros here to help the
higher-level callers to manage their inputs separately (see Section 6.2.4.19 [Size and
position operators], page 456).

[Macro]GAL_ARITHMETIC_OP_SIZE
Size operator that will return a single value for datasets of any kind. When gal_

arithmetic is called with this operator, it requires two arguments. The first is the
dataset, and the second is a single integer value. The output type is a single integer.

[Macro]GAL_ARITHMETIC_OP_SWAP
Return the first dataset, but with the second dataset being placed in the next element
of the first. This is useful to swap the operators on the stacks of the higher-level
programs that call the arithmetic library.

[Macro]GAL_ARITHMETIC_OP_EQB1950_TO_EQJ2000
[Macro]GAL_ARITHMETIC_OP_EQB1950_TO_ECB1950
[Macro]GAL_ARITHMETIC_OP_EQB1950_TO_ECJ2000
[Macro]GAL_ARITHMETIC_OP_EQB1950_TO_GALACTIC
[Macro]GAL_ARITHMETIC_OP_EQB1950_TO_SUPERGALACTIC
[Macro]GAL_ARITHMETIC_OP_EQJ2000_TO_EQB1950
[Macro]GAL_ARITHMETIC_OP_EQJ2000_TO_ECB1950
[Macro]GAL_ARITHMETIC_OP_EQJ2000_TO_ECJ2000
[Macro]GAL_ARITHMETIC_OP_EQJ2000_TO_GALACTIC
[Macro]GAL_ARITHMETIC_OP_EQJ2000_TO_SUPERGALACTIC
[Macro]GAL_ARITHMETIC_OP_ECB1950_TO_EQB1950
[Macro]GAL_ARITHMETIC_OP_ECB1950_TO_EQJ2000
[Macro]GAL_ARITHMETIC_OP_ECB1950_TO_ECJ2000
[Macro]GAL_ARITHMETIC_OP_ECB1950_TO_GALACTIC
[Macro]GAL_ARITHMETIC_OP_ECB1950_TO_SUPERGALACTIC
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[Macro]GAL_ARITHMETIC_OP_ECJ2000_TO_EQB1950
[Macro]GAL_ARITHMETIC_OP_ECJ2000_TO_EQJ2000
[Macro]GAL_ARITHMETIC_OP_ECJ2000_TO_ECB1950
[Macro]GAL_ARITHMETIC_OP_ECJ2000_TO_GALACTIC
[Macro]GAL_ARITHMETIC_OP_ECJ2000_TO_SUPERGALACTIC
[Macro]GAL_ARITHMETIC_OP_GALACTIC_TO_EQB1950
[Macro]GAL_ARITHMETIC_OP_GALACTIC_TO_EQJ2000
[Macro]GAL_ARITHMETIC_OP_GALACTIC_TO_ECB1950
[Macro]GAL_ARITHMETIC_OP_GALACTIC_TO_ECJ2000
[Macro]GAL_ARITHMETIC_OP_GALACTIC_TO_SUPERGALACTIC
[Macro]GAL_ARITHMETIC_OP_SUPERGALACTIC_TO_EQB1950
[Macro]GAL_ARITHMETIC_OP_SUPERGALACTIC_TO_EQJ2000
[Macro]GAL_ARITHMETIC_OP_SUPERGALACTIC_TO_ECB1950
[Macro]GAL_ARITHMETIC_OP_SUPERGALACTIC_TO_ECJ2000
[Macro]GAL_ARITHMETIC_OP_SUPERGALACTIC_TO_GALACTIC

Operators that convert recognized celestial coordinates to and from each other. They
all take two operands and return two gal_data_ts (as a list). For more on celestial
coordinate conversion, see Section 6.2.4.4 [Coordinate conversion operators], page 413.

[Function]gal_data_t *
gal_arithmetic (int operator, size_t numthreads, int flags, ...)

Apply the requested arithmetic operator on the operand(s). The operator is identified
through the macros above (that start with GAL_ARITHMETIC_OP_). The number of
necessary operands (number of arguments to replace ‘...’ in the declaration of this
function, above) depends on the operator and is described under each operator, above.
Each operand has a type of ‘gal_data_t *’ (see last paragraph with example).

If the operator can work on multiple threads, the number of threads can be specified
with numthreads. When the operator is single-threaded, numthreads will be ignored.
Special conditions can also be specified with the flag operator (a bit-flag with bits
described above, for example, GAL_ARITHMETIC_FLAG_INPLACE or GAL_ARITHMETIC_
FLAG_FREE).

gal_arithmetic is a multi-argument function (like C’s printf). In other words, the
number of necessary arguments is not fixed and depends on the value to operator.
Below, you can see a minimal, fully working example, showing how different operators
need different numbers of arguments.

#include <stdio.h>

#include <stdlib.h>

#include <gnuastro/fits.h>

#include <gnuastro/arithmetic.h>

int

main(void)

{

/* Define the datasets and flag. */

gal_data_t *in1, *in2, *out1, *out2;

int flag=GAL_ARITHMETIC_FLAGS_BASIC;
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/* Read the input images. */

in1=gal_fits_img_read("image1.fits", "1", -1, 1, NULL);

in2=gal_fits_img_read("image2.fits", "1", -1, 1, NULL);

/* Take the logarithm (base-e) of the first input. */

out1=gal_arithmetic(GAL_ARITHMETIC_OP_LOG, 1, flag, in1);

/* Add the second input with the logarithm of the first. */

out2=gal_arithmetic(GAL_ARITHMETIC_OP_PLUS, 1, flag, in2, out1);

/* Write the output into a file. */

gal_fits_img_write(out2, "out.fits", NULL, 0);

/* Clean up. Due to the in-place flag (in

* 'GAL_ARITHMETIC_FLAGS_BASIC'), 'out1' and 'out2' point to the

* same array in memory and due to the freeing flag, any input

* dataset(s) that were not returned have been freed internally

* by 'gal_arithmetic'. Therefore it is only necessary to free

* 'out2': all other allocated spaces have been freed internally.

* before reaching this point. */

gal_data_free(out2);

/* Return control back to the OS (saying that we succeeded). */

return EXIT_SUCCESS;

}

As you see above, you can feed the returned dataset from one call of gal_arithmetic
to another call. The advantage of using gal_arithmetic (as opposed to manually
writing a for or while loop and doing the operation with the + operator and log()

function yourself), is that you do not have to worry about the type of the input
data (for a list of acceptable data types in Gnuastro, see Section 12.3.3 [Library data
types (type.h)], page 743). Arithmetic will automatically deal with the data types
internally and choose the best output type depending on the operator.

[Function]int
gal_arithmetic_set_operator (char *string, size_t *num_operands)

Return the operator macro/code that corresponds to string. The number of
operands that it needs are written into the space that *num_operands points to.
If the string could not be interpreted as an operator, this function will return
GAL_ARITHMETIC_OP_INVALID.

This function will check string with the fixed human-readable names (using strcmp)
for the operators and return the two numbers. Note that string must only contain
the single operator name and nothing else (not even any extra white space).
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[Function]char *
gal_arithmetic_operator_string (int operator)

Return the human-readable standard string that corresponds to the given operator.
For example, when the input is GAL_ARITHMETIC_OP_PLUS or GAL_ARITHMETIC_OP_
MEAN, the strings + or mean will be returned.

[Function]gal_data_t *
gal_arithmetic_load_col (char *str, int searchin, int ignorecase,

size_t minmapsize, int quietmmap)
Return the column that corresponds to the identifier in the input string (str). str is
expected to be in the format of the load-col- operator (see Section 6.2.4.18 [Loading
external columns], page 456). This function will extract the column identifier, the
file name and the HDU (if necessary) from the string, read the requested column in
memory and return it.

See Section 12.3.10 [Table input output (table.h)], page 788, for the macros that can
be given to searchin and ignorecase and Section 12.3.6.1 [Generic data container
(gal_data_t)], page 755, for the definitions of minmapsize and quietmmap.

12.3.15 Tessellation library (tile.h)

In many contexts, it is desirable to slice the dataset into subsets or tiles (overlapping or
not). In such a way that you can work on each tile independently. One method would
be to copy that region to a separate allocated space, but in many contexts this is not
necessary and in fact can be a big burden on CPU/Memory usage. The block pointer in
Gnuastro’s Section 12.3.6.1 [Generic data container (gal_data_t)], page 755, is defined for
such situations: where allocation is not necessary. You just want to read the data or write
to it independently (or in coordination with) other regions of the dataset. Added with
parallel processing, this can greatly improve the time/memory consumption.

See the figure below for example: assume the larger dataset is a contiguous block of
memory that you are interpreting as a 2D array. But you only want to work on the smaller
tile region.

larger

---------------------------------

| |

| tile |

| ---------- |

| | | |

| |_ | |

| |*| | |

| ---------- |

| tile->block = larger |

|_ |

|*| |

---------------------------------

To use gal_data_t’s block concept, you allocate a gal_data_t *tile which is initial-
ized with the pointer to the first element in the sub-array (as its array argument). Note
that this is not necessarily the first element in the larger array. You can set the size of the
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tile along with the initialization as you please. Recall that, when given a non-NULL pointer
as array, gal_data_initialize (and thus gal_data_alloc) do not allocate any space
and just uses the given pointer for the new array element of the gal_data_t. So your tile
data structure will not be pointing to a separately allocated space.

After the allocation is done, you just point tile->block to the larger dataset which
hosts the full block of memory. Where relevant, Gnuastro’s library functions will check the
block pointer of their input dataset to see how to deal with dimensions and increments so
they can always remain within the tile. The tools introduced in this section are designed
to help in defining and working with tiles that are created in this manner.

Since the block structure is defined as a pointer, arbitrary levels of tessellation/grid-ing
are possible (tile->block may itself be a tile in an even larger allocated space). Therefore,
just like a linked-list (see Section 12.3.8 [Linked lists (list.h)], page 771), it is important
to have the block pointer of the largest (allocated) dataset set to NULL. Normally, you will
not have to worry about this, because gal_data_initialize (and thus gal_data_alloc)
will set the block element to NULL by default, just remember not to change it. You can
then only change the block element for the tiles you define over the allocated space.

Below, we will first review constructs for Section 12.3.15.1 [Independent tiles], page 840,
and then define the current approach to fully tessellating a dataset (or covering every
pixel/data-element with a non-overlapping tile grid in Section 12.3.15.2 [Tile grid], page 845.
This approach to dealing with parts of a larger block was inspired from a similarly named
concept in the GNU Scientific Library (GSL), see its “Vectors and Matrices” chapter for
their implementation.

12.3.15.1 Independent tiles

The most general application of tiles is to treat each independently, for example they may
overlap, or they may not cover the full image. This section provides functions to help in
checking/inspecting such tiles. In Section 12.3.15.2 [Tile grid], page 845, we will discuss
functions that define/work-with a tile grid (where the tiles do not overlap and fully cover
the input dataset). Therefore, the functions in this section are general and can be used for
the tiles produced by that section also.

[Function]void
gal_tile_start_coord (gal_data_t *tile, size_t *start_coord)

Calculate the starting coordinates of a tile in its allocated block of memory and
write them in the memory that start_coord points to (which must have tile->ndim
elements).

[Function]void
gal_tile_start_end_coord (gal_data_t *tile, size_t *start_end, int

rel_block)
Put the starting and ending (end point is not inclusive) coordinates of tile into
the start_end array. It is assumed that a space of 2*tile->ndim has been already
allocated (static or dynamic) for start_end before this function is called.

rel_block (or relative-to-block) is only relevant when tile has an intermediate tile
between it and the allocated space (like a channel, see gal_tile_full_two_layers).
If it does not (tile->block points the allocated dataset), then the value to rel_block
is irrelevant.
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When tile->block is itself a larger block and rel_block is set to 0, then the starting
and ending positions will be based on the position within tile->block, not the
allocated space.

[Function]void *
gal_tile_start_end_ind_inclusive (gal_data_t *tile, gal_data_t *work,

size_t *start_end_inc)
Put the indices of the first/start and last/end pixels (inclusive) in a tile into the
start_end array (that must have two elements). NOTE: this function stores the
index of each point, not its coordinates. It will then return the pointer to the start of
the tile in the work data structure (which does not have to be equal to tile->block.

The outputs of this function are defined to make it easy to parse over an n-dimensional
tile. For example, this function is one of the most important parts of the internal pro-
cessing of in GAL_TILE_PARSE_OPERATE function-like macro that is described below.

[Function]gal_data_t *
gal_tile_series_from_minmax (gal_data_t *block, size_t *minmax,

size_t number)
Construct a list of tile(s) given coordinates of the minimum and maximum of each tile.
The minimum and maximums are assumed to be inclusive and in C order (slowest
dimension first). The returned pointer is an allocated gal_data_t array that can
later be freed with gal_data_array_free (see Section 12.3.6.3 [Arrays of datasets],
page 761). Internally, each element of the output array points to the next element,
so the output may also be treated as a list of datasets (see Section 12.3.8.9 [List of
gal_data_t], page 784) and passed onto the other functions described in this section.

The array keeping the minimum and maximum coordinates for each tile must have
the following format. So in total minmax must have 2*ndim*number elements.

| min0_d0 | min0_d1 | max0_d0 | max0_d1 | ...

... | minN_d0 | minN_d1 | maxN_d0 | maxN_d1 |

[Function]gal_data_t *
gal_tile_block (gal_data_t *tile)

Return the dataset that contains tile’s allocated block of memory. If tile is immedi-
ately defined as part of the allocated block, then this is equivalent to tile->block.
However, it is possible to have multiple layers of tiles (where tile->block is itself a
tile). So this function is the most generic way to get to the actual allocated dataset.

[Function]size_t
gal_tile_block_increment (gal_data_t *block, size_t *tsize, size_t

num_increment, size_t *coord)
Return the increment necessary to start at the next contiguous patch memory associ-
ated with a tile. block is the allocated block of memory and tsize is the size of the
tile along every dimension. If coord is NULL, it is ignored. Otherwise, it will contain
the coordinate of the start of the next contiguous patch of memory.

This function is intended to be used in a loop and num_increment is the main variable
to this function. For the first time you call this function, it should be 1. In subsequent
calls (while you are parsing a tile), it should be increased by one.
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[Function]gal_data_t *
gal_tile_block_write_const_value (gal_data_t *tilevalues, gal_data_t

*tilesll, int withblank, int initialize)
Write a constant value for each tile over the area it covers in an allocated dataset
that is the size of tile’s allocated block of memory (found through gal_tile_block

described above). The arguments to this function are:

tilevalues

This must be an array that has the same number of elements as the nodes
in in tilesll and in the same order that ‘tilesll’ elements are parsed (from
top to bottom, see Section 12.3.8 [Linked lists (list.h)], page 771). As
a result the array’s number of dimensions is irrelevant, it will be parsed
contiguously.

tilesll The list of input tiles (see Section 12.3.8.9 [List of gal_data_t], page 784).
Internally, it might be stored as an array (for example, the output of gal_
tile_series_from_minmax described above), but this function does not
care, it will parse the next elements to go to the next tile. This function
will not pop-from or free the tilesll, it will only parse it from start to
end.

withblank

If the block containing the tiles has blank elements, those blank elements
will be blank in the output of this function also, hence the array will be
initialized with blank values when this option is called (see below).

initialize

Initialize the allocated space with blank values before writing in the con-
stant values. This can be useful when the tiles do not cover the full
allocated block.

[Function]gal_data_t *
gal_tile_block_check_tiles (gal_data_t *tilesll)

Make a copy of the memory block and fill it with the index of each tile in tilesll

(counting from 0). The non-filled areas will have blank values. The output dataset
will have a type of GAL_TYPE_INT32 (see Section 12.3.3 [Library data types (type.h)],
page 743).

This function can be used when you want to check the coverage of each tile over the
allocated block of memory. It is just a wrapper over the gal_tile_block_write_

const_value (with withblank set to zero).

[Function]void *
gal_tile_block_relative_to_other (gal_data_t *tile, gal_data_t

*other)
Return the pointer corresponding to the start of the region covered by tile over
the other dataset. See the examples in GAL_TILE_PARSE_OPERATE for some example
applications of this function.
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[Function]void
gal_tile_block_blank_flag (gal_data_t *tilell, size_t numthreads)

Check if each tile in the list has blank values and update its flag to mark this check
and its result (see Section 12.3.6.1 [Generic data container (gal_data_t)], page 755).
The operation will be done on numthreads threads.

[Function-like macro]GAL_TILE_PARSE_OPERATE (IN, OTHER, PARSE_OTHER,
CHECK_BLANK, OP)

Parse IN (which can be a tile or a fully allocated block of memory) and do the OP

operation on it. OP can be any combination of C expressions. If OTHER!=NULL, OTHER
will be interpreted as a dataset and this macro will allow access to its element(s) and
it can optionally be parsed while parsing over IN.

If OTHER is a fully allocated block of memory (not a tile), then the same region that
is covered by IN within its own block will be parsed (the same starting pixel with the
same number of pixels in each dimension). Hence, in this case, the blocks of OTHER
and IN must have the same size. When OTHER is a tile it must have the same size as IN
and parsing will start from its starting element/pixel. Also, the respective allocated
blocks of OTHER and IN (if different) may have different sizes. Using OTHER (along
with PARSE_OTHER), this function-like macro will thus enable you to parse and define
your own operation on two fixed size regions in one or two blocks of memory. In the
latter case, they may have different numeric data types, see Section 4.5 [Numeric data
types], page 277).

The input arguments to this macro are explained below, the expected type of each
argument are also written following the argument name:

IN (gal_data_t)

Input dataset, this can be a tile or an allocated block of memory.

OTHER (gal_data_t)

Dataset (gal_data_t) to parse along with IN. It can be NULL. In that
case, o (see description of OP below) will be NULL and should not be used.
If PARSE_OTHER is zero, only its first element will be used and the size of
this dataset is irrelevant.

When OTHER is a block of memory, it has to have the same size as the
allocated block of IN. When it s a tile, it has to have the same size as IN.

PARSE_OTHER (int)

Parse the other dataset along with the input. When this is non-zero and
OTHER!=NULL, then the o pointer will be incremented to cover the OTHER
tile at the same rate as i, see description of OP for i and o.

CHECK_BLANK (int)

If it is non-zero, then the input will be checked for blank values and OP

will only be called when we are not on a blank element.

OP Operator: this can be any number of C expressions. This macro is going
to define a itype *i variable which will increment over each element
of the input array/tile. itype will be replaced with the C type that
corresponds to the type of INPUT. As an example, if INPUT’s type is
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GAL_DATA_UINT16 or GAL_DATA_FLOAT32, i will be defined as uint16 or
float respectively.

This function-like macro will also define an otype *o which you can use
to access an element of the OTHER dataset (if OTHER!=NULL). o will corre-
spond to the type of OTHER (similar to itype and INPUT discussed above).
If PARSE_OTHER is non-zero, then o will also be incremented to the same
index element but in the other array. You can use these along with any
other variable you define before this macro to process the input and/or
the other.

All variables within this function-like macro begin with tpo_ except for
the three variables listed below. Therefore, as long as you do not start
the names of your variables with this prefix everything will be fine. Note
that i (and possibly o) will be incremented once by this function-like
macro, so do not increment them within OP.

i Pointer to the element of INPUT that is being parsed with the
proper type.

o Pointer to the element of OTHER that is being parsed with the
proper type. o can only be used if OTHER!=NULL and it will
be parsed/incremented if PARSE_OTHER is non-zero.

b Blank value in the type of INPUT.

You can use a given tile (tile on a dataset that it was not initialized with but has
the same size, let’s call it new) with the following steps:

void *tarray;

gal_data_t *tblock;

/* `tile->block' must be corrected AFTER `tile->array'. */

tarray = tile->array;

tblock = tile->block;

tile->array = gal_tile_block_relative_to_other(tile, new);

tile->block = new;

/* Parse and operate over this region of the `new' dataset. */

GAL_TILE_PARSE_OPERATE(tile, NULL, 0, 0, {

YOUR_PROCESSING;

});

/* Reset `tile->block' and `tile->array'. */

tile->array=tarray;

tile->block=tblock;

You can work on the same region of another block in one run of this function-like
macro. To do that, you can make a fake tile and pass that as the OTHER argument.
Below is a demonstration, tile is the actual tile that you start with and new is the
other block of allocated memory.

size_t zero=0;
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gal_data_t *faketile;

/* Allocate the fake tile, these can be done outside a loop

* (over many tiles). */

faketile=gal_data_alloc(NULL, new->type, 1, &zero,

NULL, 0, -1, 1, NULL, NULL, NULL);

free(faketile->array); /* To keep things clean. */

free(faketile->dsize); /* To keep things clean. */

faketile->block = new;

faketile->ndim = new->ndim;

/* These can be done in a loop (over many tiles). */

faketile->size = tile->size;

faketile->dsize = tile->dsize;

faketile->array = gal_tile_block_relative_to_other(tile, new);

/* Do your processing.... in a loop (over many tiles). */

GAL_TILE_PARSE_OPERATE(tile, faketile, 1, 1, {

YOUR_PROCESSING_EXPRESSIONS;

});

/* Clean up (outside the loop). */

faketile->array=NULL;

faketile->dsize=NULL;

gal_data_free(faketile);

12.3.15.2 Tile grid

One very useful application of tiles is to completely cover an input dataset with tiles. Such
that you know every pixel/data-element of the input image is covered by only one tile. The
constructs in this section allow easy definition of such a tile structure. They will create lists
of tiles that are also usable by the general tools discussed in Section 12.3.15.1 [Independent
tiles], page 840.

As discussed in Section 4.8 [Tessellation], page 289, (mainly raw) astronomical images
will mostly require two layers of tessellation, one for amplifier channels which all have the
same size and another (smaller tile-size) tessellation over each channel. Hence, in this section
we define a general structure to keep the main parameters of this two-layer tessellation and
help in benefiting from it.

[Type (C struct)]gal_tile_two_layer_params
The general structure to keep all the necessary parameters for a two-layer tessellation.

struct gal_tile_two_layer_params

{

/* Inputs */

size_t *tilesize; /*******************************/

size_t *numchannels; /* These parameters have to be */

float remainderfrac; /* filled manually before */

uint8_t workoverch; /* calling the functions in */
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uint8_t checktiles; /* this section. */

uint8_t oneelempertile; /*******************************/

/* Internal parameters. */

size_t ndim;

size_t tottiles;

size_t tottilesinch;

size_t totchannels;

size_t *channelsize;

size_t *numtiles;

size_t *numtilesinch;

char *tilecheckname;

size_t *permutation;

size_t *firsttsize;

/* Tile and channel arrays (which are also lists). */

gal_data_t *tiles;

gal_data_t *channels;

};

[Function]size_t *
gal_tile_full (gal_data_t *input, size_t *regular, float

remainderfrac, gal_data_t **out, size_t multiple, size_t
**firsttsize)

Cover the full dataset with (mostly) identical tiles and return the number of tiles cre-
ated along each dimension. The regular tile size (along each dimension) is determined
from the regular array. If input’s size is not an exact multiple of regular for each
dimension, then the tiles touching the edges in that dimension will have a different
size to fully cover every element of the input (depending on remainderfrac).

The output is an array with the same dimensions as input which contains the number
of tiles along each dimension. See Section 4.8 [Tessellation], page 289, for a description
of its application in Gnuastro’s programs and remainderfrac, just note that this
function defines only one layer of tiles.

This is a low-level function (independent of the gal_tile_two_layer_params struc-
ture defined above). If you want a two-layer tessellation, directly call gal_tile_
full_two_layers that is described below. The input arguments to this function
are:

input The main dataset (allocated block) which you want to create a tessellation
over (only used for its sizes). So input may be a tile also.

regular The size of the regular tiles along each of the input’s dimensions. So it
must have the same number of elements as the dimensions of input (or
input->ndim).

remainderfrac

The significant fraction of the remainder space to see if it should be split
into two and put on both sides of a dimension or not. This is thus
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only relevant input length along a dimension is not an exact multiple of
the regular tile size along that dimension. See Section 4.8 [Tessellation],
page 289, for a more thorough discussion.

out Pointer to the array of data structures that will keep all the tiles (see
Section 12.3.6.3 [Arrays of datasets], page 761). If *out==NULL, then the
necessary space to keep all the tiles will be allocated. If not, then all the
tile information will be filled from the dataset that *out points to, see
multiple for more.

multiple When *out==NULL (and thus will be allocated by this function), allocate
space for multiple times the number of tiles needed. This can be very
useful when you have several more identically sized inputs, and you want
all their tiles to be allocated (and thus indexed) together, even though
they have different block datasets (that then link to one allocated space).
See the definition of channels in Section 4.8 [Tessellation], page 289, and
gal_tile_full_two_layers below.

firsttsize

The size of the first tile along every dimension. This is only different from
the regular tile size when regular is not an exact multiple of input’s
length along every dimension. This array is allocated internally by this
function.

[Function]void
gal_tile_full_sanity_check (char *filename, char *hdu, gal_data_t

*input, struct gal_tile_two_layer_params *tl)
Make sure that the input parameters (in tl, short for two-layer) correspond to the
input dataset. filename and hdu are only required for error messages. Also, allocate
and fill the tl->channelsize array.

[Function]void
gal_tile_full_two_layers (gal_data_t *input, struct

gal_tile_two_layer_params *tl)
Create the two layered tessellation in tl. The general set of steps you need to take
to define the two-layered tessellation over an image can be seen in the example code
below.

gal_data_t *input;

struct gal_tile_two_layer_params tl;

char *filename="input.fits", *hdu="1";

/* Set all the inputs shown in the structure definition. */

...

/* Read the input dataset. */

input=gal_fits_img_read(filename, hdu, -1, 1, NULL);

/* Do a sanity check and preparations. */

gal_tile_full_sanity_check(filename, hdu, input, &tl);
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/* Build the two-layer tessellation*/

gal_tile_full_two_layers(input, &tl);

/* `tl.tiles' and `tl.channels' are now a lists of tiles.*/

[Function]void
gal_tile_full_permutation (struct gal_tile_two_layer_params *tl)

Make a permutation to allow the conversion of tile location in memory to its location
in the full input dataset and put it in tl->permutation. If a permutation has already
been defined for the tessellation, this function will not do anything. If permutation
will not be necessary (there is only one channel or one dimension), then this function
will not do anything (tl->permutation must have been initialized to NULL).

When there is only one channel OR one dimension, the tiles are allocated in memory
in the same order that they represent the input data. However, to make channel-
independent processing possible in a generic way, the tiles of each channel are allocated
contiguously. So, when there is more than one channel AND more than one dimension,
the index of the tile does not correspond to its position in the grid covering the input
dataset.

The example below may help clarify: assume you have a 6x6 tessellation with two
channels in the horizontal and one in the vertical. On the left you can see how the
tile IDs correspond to the input dataset. NOTE how ‘03’ is on the second row, not
on the first after ‘02’. On the right, you can see how the tiles are stored in memory
(and shown if you simply write the array into a FITS file for example).

Corresponding to input In memory

---------------------- --------------

15 16 17 33 34 35 30 31 32 33 34 35

12 13 14 30 31 32 24 25 26 27 28 29

09 10 11 27 28 29 18 19 20 21 22 23

06 07 08 24 25 26 <-- 12 13 14 15 16 17

03 04 05 21 22 23 06 07 08 09 10 11

00 01 02 18 19 20 00 01 02 03 04 05

As a result, if your values are stored in same order as the tiles, and you want them
in over-all memory (for example, to save as a FITS file), you need to permute the
values:

gal_permutation_apply(values, tl->permutation);

If you have values over-all and you want them in tile-order, you can apply the inverse
permutation:

gal_permutation_apply_inverse(values, tl->permutation);

Recall that this is the definition of permutation in this context:

permute: IN_ALL[ i ] = IN_MEMORY[ perm[i] ]

inverse: IN_ALL[ perm[i] ] = IN_MEMORY[ i ]
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[Function]void
gal_permutation_apply_onlydim0 (gal_data_t *input, size_t

*permutation)
Similar to gal_permutation_apply, but when the dataset is 2-dimensional, permute
each row (dimension 1 in C) as one element. In other words, only permute along
dimension 0. The permutation array should therefore only have input->dsize[0]

elements.

[Function]void
gal_tile_full_values_write (gal_data_t *tilevalues, struct

gal_tile_two_layer_params *tl, int withblank, char
*filename, gal_fits_list_key_t *keys, int freekeys)

Write one value for each tile into a file. It is important to note that the values
in tilevalues must be ordered in the same manner as the tiles, so tilevalues-

>array[i] is the value that should be given to tl->tiles[i]. The tl->permutation
array must have been initialized before calling this function with gal_tile_full_

permutation.

If withblank is non-zero, then block structure of the tiles will be checked and all
blank pixels in the block will be blank in the final output file also.

[Function]gal_data_t *
gal_tile_full_values_smooth (gal_data_t *tilevalues, struct

gal_tile_two_layer_params *tl, size_t width, size_t
numthreads)

Smooth the given values with a flat kernel of the given width. This cannot be
done manually because if tl->workoverch==0, tiles in different channels must not
be mixed/smoothed. Also the tiles are contiguous within the channel, not within the
image, see the description under gal_tile_full_permutation.

[Function]size_t
gal_tile_full_id_from_coord (struct gal_tile_two_layer_params *tl,

size_t *coord)
Return the ID of the tile that corresponds to the coordinates coord. Having this ID,
you can use the tl->tiles array to get to the proper tile or read/write a value into
an array that has one value per tile.

[Function]void
gal_tile_full_free_contents (struct gal_tile_two_layer_params *tl)

Free all the allocated arrays within tl.

12.3.16 Bounding box (box.h)

Functions related to reporting the bounding box of certain inputs are declared in
gnuastro/box.h. All coordinates in this header are in the FITS format (first axis is the
horizontal and the second axis is vertical).
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[Function]void
gal_box_bound_ellipse_extent (double a, double b, double theta_deg,

double *extent)
Return the maximum extent along each dimension of the given ellipse from the center
of the ellipse. Therefore this is half the extent of the box in each dimension. a is
the ellipse semi-major axis, b is the semi-minor axis, theta_deg is the position angle
in degrees. The extent in each dimension is in floating point format and stored in
extent which must already be allocated before this function.

[Function]void
gal_box_bound_ellipse (double a, double b, double theta_deg, long

*width)
Any ellipse can be enclosed into a rectangular box. This function will write the height
and width of that box where width points to. It assumes the center of the ellipse is
located within the central pixel of the box. a is the ellipse semi-major axis length, b
is the semi-minor axis, theta_deg is the position angle in degrees. The width array
will contain the output size in long integer type. width[0], and width[1] are the
number of pixels along the first and second FITS axis. Since the ellipse center is
assumed to be in the center of the box, all the values in width will be an odd integer.

[Function]void
gal_box_bound_ellipsoid_extent (double *semiaxes, double *euler_deg,

double *extent)
Return the maximum extent along each dimension of the given ellipsoid from its
center. Therefore this is half the extent of the box in each dimension. The semi-axis
lengths of the ellipsoid must be present in the 3 element semiaxis array. The euler_
deg array contains the three ellipsoid Euler angles in degrees. For a description of
the Euler angles, see description of gal_box_bound_ellipsoid below. The extent in
each dimension is in floating point format and stored in extent which must already
be allocated before this function.

[Function]void
gal_box_bound_ellipsoid (double *semiaxes, double *euler_deg, long

*width)
Any ellipsoid can be enclosed into a rectangular volume/box. The purpose of this
function is to give the integer size/width of that box. The semi-axes lengths of the
ellipse must be in the semiaxes array (with three elements). The major axis length
must be the first element of semiaxes. The only other condition is that the next two
semi-axes must both be smaller than the first. The orientation of the major axis is
defined through three proper Euler angles (ZXZ order in degrees) that are given in
the euler_deg array. The width array will contain the output size in long integer
type (in FITS axis order). Since the ellipsoid center is assumed to be in the center of
the box, all the values in width will be an odd integer.

The proper Euler angles can be defined in many ways (which axes to rotate about).
For a full description of the Euler angles, please see Wikipedia (https://en.
wikipedia.org/wiki/Euler_angles). Here we adopt the ZXZ (or Z1X2Z3) proper
Euler angles were the first rotation is done around the Z axis, the second one about
the (rotated) X axis and the third about the (rotated) Z axis.

https://en.wikipedia.org/wiki/Euler_angles
https://en.wikipedia.org/wiki/Euler_angles
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[Function]void
gal_box_border_from_center (double center, size_t ndim, long *width,

long *fpixel, long *lpixel)
Given the center coordinates in center and the width (along each dimension) of a
box, return the coordinates of the first (fpixel) and last (lpixel) pixels. All arrays
must have ndim elements (one for each dimension).

[Function]void
gal_box_border_rotate_around_center (long *fpixel, long *lpixel,

size_t ndim, float rotate_deg)
Modify the input first and last pixels (fpixel and lpixel, that you can estimate
with gal_box_border_from_center) to account for the given rotation (in units of
degrees) in 2D (currently ndim can only have a value of 2).

[Function]int
gal_box_overlap (long *naxes, long *fpixel_i, long *lpixel_i, long

*fpixel_o, long *lpixel_o, size_t ndim)
An ndim-dimensional dataset of size naxes (along each dimension, in FITS order)
and a box with first and last (inclusive) coordinate of fpixel_i and lpixel_i is
given. This box does not necessarily have to lie within the dataset, it can be outside
of it, or only partially overlap. This function will change the values of fpixel_i and
lpixel_i to exactly cover the overlap in the input dataset’s coordinates.

This function will return 1 if there is an overlap and 0 if there is not. When there is
an overlap, the coordinates of the first and last pixels of the overlap will be put in
fpixel_o and lpixel_o.

12.3.17 Polygons (polygon.h)

Polygons are commonly necessary in image processing. For example, in Crop they are used
for cutting out non-rectangular regions of a image (see Section 6.1 [Crop], page 385), and in
Warp, for mapping different pixel grids over each other (see Section 6.4 [Warp], page 492).

Polygons come in two classes: convex and concave (or generally, non-convex!), see below
for a demonstration. Convex polygons are those where all inner angles are less than 180
degrees. By contrast, a convex polygon is one where an inner angle may be more than 180
degress.

Concave Polygon Convex Polygon

D --------C D------------- C

\ | E / |

\E | \ |

/ | \ |

A--------B A ----------B

In all the functions here the vertices (and points) are defined as an array. So a polygon
with 4 vertices will be identified with an array of 8 elements with the first two elements
keeping the 2D coordinates of the first vertice and so on.

[Macro]GAL_POLYGON_MAX_CORNERS
The largest number of vertices a polygon can have in this library.
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[Macro]GAL_POLYGON_ROUND_ERR
We have to consider floating point round-off errors when dealing with polygons. For
example, we will take A as the maximum of A and B when A>B-GAL_POLYGON_ROUND_

ERR.

[Function]void
gal_polygon_vertices_sort_convex (double *in, size_t n, size_t

*ordinds)
We have a simple polygon (that can result from projection, so its edges do not collide
or it does not have holes) and we want to order its corners in an anticlockwise fashion.
This is necessary for clipping it and finding its area later. The input vertices can have
practically any order.

The input (in) is an array containing the coordinates (two values) of each vertice. n
is the number of corners. So in should have 2*n elements. The output (ordinds)
is an array with n elements specifying the indices in order. This array must have
been allocated before calling this function. The indexes are output for more generic
usage, for example, in a homographic transform (necessary in warping an image, see
Section 6.4.1 [Linear warping basics], page 493), the necessary order of vertices is the
same for all the pixels. In other words, only the positions of the vertices change, not
the way they need to be ordered. Therefore, this function would only be necessary
once.

As a summary, the input is unchanged, only n values will be put in the ordinds

array. Such that calling the input coordinates in the following fashion will give an
anti-clockwise order when there are 4 vertices:

1st vertice: in[ordinds[0]*2], in[ordinds[0]*2+1]

2nd vertice: in[ordinds[1]*2], in[ordinds[1]*2+1]

3rd vertice: in[ordinds[2]*2], in[ordinds[2]*2+1]

4th vertice: in[ordinds[3]*2], in[ordinds[3]*2+1]

The implementation of this is very similar to the Graham scan in finding the Convex
Hull. However, in projection we will never have a concave polygon (the left condition
below, where this algorithm will get to E before D), we will always have a convex
polygon (right case) or E will not exist! This is because we are always going to be
calculating the area of the overlap between a quadrilateral and the pixel grid or the
quadrilateral itself.

The GAL_POLYGON_MAX_CORNERS macro is defined so there will be no need to allocate
these temporary arrays separately. Since we are dealing with pixels, the polygon
cannot really have too many vertices.

[Function]int
gal_polygon_is_convex (double *v, size_t n)

Returns 1 if the polygon is convex with vertices defined by v and 0 if it is a concave
polygon. Note that the vertices of the polygon should be sorted in an anti-clockwise
manner.
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[Function]double
gal_polygon_area_flat (double *v, size_t n)

Find the area of a polygon with vertices defined in v on a euclidian (flat) coordinate
system. v points to an array of doubles which keep the positions of the vertices such
that v[0] and v[1] are the positions of the first vertice to be considered.

[Function]double
gal_polygon_area_sky (double *v, size_t n)

Find the area of a polygon with vertices defined in v on a celestial coordinate system.
This is a coordinate system where the first coordinate goes from 0 to 360 (increasing
to the right), while the second coordinate ranges from -90 to +90 (on the poles). v

points to an array of doubles which keep the positions of the vertices such that v[0]
and v[1] are the positions of the first vertice to be considered.

This function uses an approximation to account for the curvature of the sky and the
different nature of spherical coordinates with respect to the flat coordinate system.
Bug 64617 (https://savannah.gnu.org/bugs/index.php?64617) has been defined
in Gnuastro to address this problem. Please check that bug in case it has been fixed.
Until this bug is fixed, here are some tips:

• Subtract the RA and Dec of all the vertice coordinates from a constant so the
center of the polygon falls on (RA, Dec) of (180,0). The sphere has a similar
nature everywhere on it, so shifting the polygon vertices will not change its area;
this also removes issues with the RA=0 or RA=360 coordinate and decrease
issues caused by RA depending on declination.

• These approximations should not cause any statistically significant error on nor-
mal (less than a few degrees) scales. But it won’t hurt to do a small sanity check
for your particular usage scenario.

• Any help (even in the mathematics of the problem; not necessary programming)
would be appreciated (we didn’t have time to derive the necessary equations), so
if you have some background in this and can prepare the mathematical descrip-
tion of the problem, please get in touch.

[Function]int
gal_polygon_is_inside (double *v, double *p, size_t n)

Returns 0 if point p in inside a polygon, either convex or concave. The vertices
of the polygon are defined by v and 0 otherwise, they have to be ordered in an
anti-clockwise manner. This function uses the winding number algorithm (https://
en.wikipedia.org/wiki/Point_in_polygon#Winding_number_algorithm), to
check the points. Note that this is a generic function (working on both concave and
convex polygons, so if you know before-hand that your polygon is convex, it is much
more efficient to use gal_polygon_is_inside_convex.

[Function]int
gal_polygon_is_inside_convex (double *v, double *p, size_t n)

Return 1 if the point p is within the polygon whose vertices are defined by v. The
polygon is assumed to be convex, for a more generic function that deals with concave
and convex polygons, see gal_polygon_is_inside. Note that the vertices of the
polygon have to be sorted in an anti-clock-wise manner.

https://savannah.gnu.org/bugs/index.php?64617
https://en.wikipedia.org/wiki/Point_in_polygon#Winding_number_algorithm
https://en.wikipedia.org/wiki/Point_in_polygon#Winding_number_algorithm
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[Function]int
gal_polygon_ppropin (double *v, double *p, size_t n)

Similar to gal_polygon_is_inside_convex, except that if the point p is on one of
the edges of a polygon, this will return 0.

[Function]int
gal_polygon_is_counterclockwise (double *v, size_t n)

Returns 1 if the sorted polygon has a counter-clockwise orientation and 0 otherwise.
This function uses the concept of “winding”, which defines the relative order in which
the vertices of a polygon are listed to determine the orientation of vertices. For
complex polygons (where edges, or sides, intersect), the most significant orientation
is returned. In a complex polygon, when the alternative windings are equal (for
example, an 8-shape) it will return 1 (as if it was counter-clockwise). Note that the
polygon vertices have to be sorted before calling this function.

[Function]int
gal_polygon_to_counterclockwise (double *v, size_t n)

Arrange the vertices of the sorted polygon in place, to be in a counter-clockwise
direction. If the input polygon already has a counter-clockwise direction it will not
touch the input. The return value is 1 on successful execution. This function is just a
wrapper over gal_polygon_is_counterclockwise, and will reverse the order of the
vertices when necessary.

[Function]void
gal_polygon_clip (double *s, size_t n, double *c, size_t m, double

*o, size_t *numcrn)
Clip (find the overlap of) two polygons. This function uses the Sutherland-Hodgman
(https://en.wikipedia.org/wiki/Sutherland%E2%80%93Hodgman_algorithm)
polygon clipping algorithm. Note that the vertices of both polygons have to be
sorted in an anti-clock-wise manner.

The Pseudocode from Wikipedia:

List outputList = subjectPolygon;

for (Edge clipEdge in clipPolygon) do

List inputList = outputList;

outputList.clear();

Point S = inputList.last;

for (Point E in inputList) do

if (E inside clipEdge) then

if (S not inside clipEdge) then

outputList.add(ComputeIntersection(S,E,clipEdge));

end if

outputList.add(E);

else if (S inside clipEdge) then

outputList.add(ComputeIntersection(S,E,clipEdge));

end if

S = E;

done

https://en.wikipedia.org/wiki/Sutherland%E2%80%93Hodgman_algorithm
https://en.wikipedia.org/wiki/Sutherland%E2%80%93Hodgman_algorithm
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done

The difference is that we are not using lists, but arrays to keep polygon vertices. The
two polygons are called Subject s and Clip c with n and m vertices respectively. The
output is stored in o and the number of elements in the output are stored in what
*numcrn (for number of corners) points to.

[Function]void
gal_polygon_vertices_sort (double *vertices, size_t n, size_t

*ordinds)
Sort the indices of the un-ordered vertices array to a counter-clockwise polygon
in the already allocated space of ordinds. It is assumed that there are n vertices,
and thus that vertices contains 2*n elements where the two coordinates of the first
vertice occupy the first two elements of the array and so on.

The polygon can be both concave and convex (see the start of this section). However,
note that for concave polygons there is no unique sort from an un-ordered set of
vertices. So after this function you may want to use gal_polygon_is_convex and
print a warning to check the output if the polygon was concave.

Note that the contents of the vertices array are left untouched by this function. If
you want to write the ordered vertice coordinates in another array with the same size,
you can use a loop like this:

for(i=0;i<n;++i)

{

ordered[i*2 ] = vertices[ ordinds[i]*2 ];

ordered[i*2+1] = vertices[ ordinds[i]*2 + 1];

}

In this algorithm, we find the rightmost and leftmost points (based on their x-
coordinate) and use the diagonal vector between those points to group the points
in arrays based on their position with respect to this vector. For anticlockwise sort-
ing, all the points below the vector are sorted by their ascending x-coordinates and
points above the vector are sorted in decreasing order using qsort. Finally, both
these arrays are merged together to get the final sorted array of points, from which
the points are indexed into the ordinds using linear search.

12.3.18 Qsort functions (qsort.h)

When sorting a dataset is necessary, the C programming language provides the qsort

(Quick sort) function. qsort is a generic function which allows you to sort any kind of
data structure (not just a single array of numbers). To define “greater” and “smaller” (for
sorting), qsort needs another function, even for simple numerical types. The functions
introduced in this section are to passed onto qsort.

Note that larger and smaller operators are not defined on NaN elements. Therefore, if
the input array is a floating point type, and contains NaN values, the relevant functions
of this section are going to put the NaN elements at the end of the list (after the sorted
non-NaN elements), irrespective of the requested sorting order (increasing or decreasing).

The first class of functions below (with TYPE in their names) can be used for sorting a
simple numeric array. Just replace TYPE with the dataset’s numeric datatype. The second
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set of functions can be used to sort indices (leave the actual numbers untouched). To use
the second set of functions, a global variable or structure are also necessary as described
below.

[Global variable]gal_qsort_index_single
Pointer to an array (for example, float * or int *) to use as a reference in gal_

qsort_index_single_TYPE_d or gal_qsort_index_single_TYPE_i, see the expla-
nation of these functions for more. Note that if more than one array is to be sorted
in a multi-threaded operation, these functions will not work as expected. However,
when all the threads just sort the indices based on a single array, this global variable
can safely be used in a multi-threaded scenario.

[Type (C struct)]gal_qsort_index_multi
Structure to get the sorted indices of multiple datasets on multiple threads with gal_

qsort_index_multi_d or gal_qsort_index_multi_i. Note that the values array
will not be changed by these functions, it is only read. Therefore all the values

elements in the (to be sorted) array of gal_qsort_index_multi must point to the
same place.

struct gal_qsort_index_multi

{

float *values; /* Array of values (same in all). */

size_t index; /* Index of each element to be sorted. */

};

[Function]int
gal_qsort_TYPE_d (const void *a, const void *b)

When passed to qsort, this function will sort a TYPE array in decreasing order (first
element will be the largest). Please replace TYPE (in the function name) with one of
the Section 4.5 [Numeric data types], page 277, for example, gal_qsort_int32_d, or
gal_qsort_float64_d.

[Function]int
gal_qsort_TYPE_i (const void *a, const void *b)

When passed to qsort, this function will sort a TYPE array in increasing order (first
element will be the smallest). Please replace TYPE (in the function name) with one of
the Section 4.5 [Numeric data types], page 277, for example, gal_qsort_int32_i, or
gal_qsort_float64_i.

[Function]int
gal_qsort_index_single_TYPE_d (const void *a, const void *b)

When passed to qsort, this function will sort a size_t array based on decreasing val-
ues in the gal_qsort_index_single. The global gal_qsort_index_single pointer
has a void * pointer which will be cast to the proper type based on this function:
for example gal_qsort_index_single_uint16_d will cast the array to an unsigned
16-bit integer type. The array that gal_qsort_index_single points to will not be
changed, it is only read. For example, see this demo program:

#include <stdio.h>

#include <stdlib.h> /* qsort is defined in stdlib.h. */
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#include <gnuastro/qsort.h>

int

main (void)

{

size_t s[4]={0, 1, 2, 3};

float f[4]={1.3,0.2,1.8,0.1};

gal_qsort_index_single=f;

qsort(s, 4, sizeof(size_t), gal_qsort_index_single_float_d);

printf("%zu, %zu, %zu, %zu\n", s[0], s[1], s[2], s[3]);

return EXIT_SUCCESS;

}

The output will be: 2, 0, 1, 3.

[Function]int
gal_qsort_index_single_TYPE_i (const void *a, const void *b)

Similar to gal_qsort_index_single_TYPE_d, but will sort the indexes such that the
values of gal_qsort_index_single can be parsed in increasing order.

[Function]int
gal_qsort_index_multi_d (const void *a, const void *b)

When passed to qsort with an array of gal_qsort_index_multi, this function will
sort the array based on the values of the given indices. The sorting will be ordered
according to the values pointer of gal_qsort_index_multi. Note that values must
point to the same place in all the structures of the gal_qsort_index_multi array.

This function is only useful when the indices of multiple arrays on multiple threads
are to be sorted. If your program is single threaded, or all the indices belong to a
single array (sorting different sub-sets of indices in a single array on multiple threads),
it is recommended to use gal_qsort_index_single_d.

[Function]int
gal_qsort_index_multi_i (const void *a, const void *b)

Similar to gal_qsort_index_multi_d, but the result will be sorted in increasing
order (first element will have the smallest value).

12.3.19 K-d tree (kdtree.h)

K-d tree is a space-partitioning binary search tree for organizing points in a k-dimensional
space. They are a very useful data structure for multidimensional searches like range
searches and nearest neighbor searches. For a more formal and complete introduction see
the Wikipedia page (https://en.wikipedia.org/wiki/K-d_tree).

Each non-leaf node in a k-d tree divides the space into two parts, known as half-spaces.
To select the top/root node for partitioning, we find the median of the points and make a
hyperplane normal to the first dimension. The points to the left of this space are represented
by the left subtree of that node and points to the right of the space are represented by the
right subtree. This is then repeated for all the points in the input, thus associating a “left”
and “right” branch for each input point.

https://en.wikipedia.org/wiki/K-d_tree
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Gnuastro uses the standard algorithms of the k-d tree with one small difference that
makes it much more memory and CPU optimized. The set of input points that define the
tree nodes are given as a list of Gnuastro’s data container type, see Section 12.3.8.9 [List
of gal_data_t], page 784. Each gal_data_t in the list represents the point’s coordinate in
one dimension, and the first element in the list is the first dimension. Hence the number
of data values in each gal_data_t (which must be equal in all of them) represents the
number of points. This is the same format that Gnuastro’s Table reading/writing functions
read/write columns in tables, see Section 12.3.10 [Table input output (table.h)], page 788.

The output k-d tree is a list of two gal_data_ts, representing the input’s row-number
(or index, counting from 0) of the left and right subtrees of each row. Each gal_data_t

thus has the same number of rows (or points) as the input, but only containing integers
with a type of uint32_t (unsigned 32-bit integer). If a node has no left, or right subtree,
then GAL_BLANK_UINT32 will be used. Below you can see the simple tree for 2D points from
Wikipedia. The input point coordinates are represented as two input gal_data_ts (X and
Y, where X->next=Y and Y->next=NULL). If you had three dimensional points, you could
define an extra gal_data_t such that Y->next=Z and Z->next=NULL. The output is always
a list of two gal_data_ts, where the first one contains the index of the left sub-tree in the
input, and the second one, the index of the right subtree. The index of the root node (0 in
the case below25) is also returned as a single number.

INDEX INPUT OUTPUT K-D Tree

(as guide) X --> Y LEFT --> RIGHT (visualized)

---------- ------- -------------- ------------------

0 5 4 1 2 (5,4)

1 2 3 BLANK 4 / \

2 7 2 5 3 (2,3) \

3 9 6 BLANK BLANK \ (7,2)

4 4 7 BLANK BLANK (4,7) / \

5 8 1 BLANK BLANK (8,1) (9,6)

This format is therefore scalable to any number of dimensions: the number of dimensions
are determined from the number of nodes in the input list of gal_data_ts (for example,
using gal_list_data_number). In Gnuastro’s k-d tree implementation, there are thus no
special structures to keep every tree node (which would take extra memory and would need
to be moved around as the tree is being created). Everything is done internally on the index
of each point in the input dataset: the only thing that is flipped/sorted during tree creation
is the index to the input row for any number of dimensions. As a result, Gnuastro’s k-d tree
implementation is very memory and CPU efficient and its two output columns can directly
be written into a standard table (without having to define any special binary format).

[Function]gal_data_t *
gal_kdtree_create (gal_data_t *coords_raw, size_t *root)

Create a k-d tree in a bottom-up manner (from leaves to the root). This function
returns two gal_data_ts connected as a list, see description above. The first dataset

25 This example input table is the same as the example in Wikipedia (as of December 2020). However, on
the Wikipedia output, the root node is (7,2), not (5,4). The difference is primarily because there are 6
rows and the median element of an even number of elements can vary by integer calculation strategies.
Here we use 0-based indexes for finding median and round to the smaller integer.
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contains the indexes of left and right nodes of the subtrees for each input node. The
index of the root node is written into the memory that root points to. coords_raw
is the list of the input points (one gal_data_t per dimension, see above). If the
input dataset has no data (coords_raw->size==0), this function will return a NULL

pointer.

For example, assume you have the simple set of points below (from the visualized
example at the start of this section) in a plain-text file called coordinates.txt:

$ cat coordinates.txt

5 4

2 3

7 2

9 6

4 7

8 1

With the program below, you can calculate the kd-tree, and write it in a FITS file
(while keeping the root index as a FITS keyword inside of it).

#include <stdio.h>

#include <gnuastro/table.h>

#include <gnuastro/kdtree.h>

int

main (void)

{

gal_data_t *input, *kdtree;

char kdtreefile[]="kd-tree.fits";

char inputfile[]="coordinates.txt";

/* To write the root within the saved file. */

size_t root;

char *unit="index";

char *keyname="KDTROOT";

gal_fits_list_key_t *keylist=NULL;

char *comment="k-d tree root index (counting from 0).";

/* Read the input table. Note: this assumes the table only

* contains your input point coordinates (one column for each

* dimension). If it contains more columns with other properties

* for each point, you can specify which columns to read by

* name or number, see the documentation of 'gal_table_read'. */

input=gal_table_read(inputfile, "1", NULL, NULL,

GAL_TABLE_SEARCH_NAME, 0, -1, 0, NULL);

/* Construct a k-d tree. The index of root is stored in `root` */

kdtree=gal_kdtree_create(input, &root);

/* Write the k-d tree to a file and write root index and input
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* name as FITS keywords ('gal_table_write' frees 'keylist').*/

gal_fits_key_list_title_add(&keylist, "k-d tree parameters", 0);

gal_fits_key_write_filename("KDTIN", inputfile, &keylist, 0, 1);

gal_fits_key_list_add_end(&keylist, GAL_TYPE_SIZE_T, keyname, 0,

&root, 0, comment, 0, unit, 0);

gal_table_write(kdtree, &keylist, NULL, GAL_TABLE_FORMAT_BFITS,

kdtreefile, "kdtree", 0, 1);

/* Clean up and return. */

gal_list_data_free(input);

gal_list_data_free(kdtree);

return EXIT_SUCCESS;

}

You can inspect the saved k-d tree FITS table with Gnuastro’s Section 5.3 [Table],
page 340, (first command below), and you can see the keywords containing the root
index with Section 5.1 [Fits], page 295, (second command below):

asttable kd-tree.fits

astfits kd-tree.fits -h1

[Function]size_t
gal_kdtree_nearest_neighbour (gal_data_t *coords_raw, gal_data_t

*kdtree, size_t root, double *point, double *least_dist)
Returns the index of the nearest input point to the query point (point, assumed to
be an array with same number of elements as gal_data_ts in coords_raw). The
distance between the query point and its nearest neighbor is stored in the space that
least_dist points to. This search is efficient due to the constant checking for the
presence of possible best points in other branches. If it is not possible for the other
branch to have a better nearest neighbor, that branch is not searched.

As an example, let’s use the k-d tree that was created in the example of gal_kdtree_
create (above) and find the nearest row to a given coordinate (point). This will
be a very common scenario, especially in large and multi-dimensional datasets where
the k-d tree creation can take long and you do not want to re-create the k-d tree
every time. In the gal_kdtree_create example output, we also wrote the k-d tree
root index as a FITS keyword (KDTROOT), so after loading the two table data (input
coordinates and k-d tree), we will read the root from the FITS keyword. This is a
very simple example, but the scalability is clear: for example, it is trivial to parallelize
(see Section 12.4.3 [Library demo - multi-threaded operation], page 914).

#include <stdio.h>

#include <gnuastro/table.h>

#include <gnuastro/kdtree.h>

int

main (void)

{

/* INPUT: desired point. */

double point[2]={8.9,5.9};
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/* Same as example in description of 'gal_kdtree_create'. */

gal_data_t *input, *kdtree;

char kdtreefile[]="kd-tree.fits";

char inputfile[]="coordinates.txt";

/* Processing variables of this function. */

char kdtreehdu[]="1";

double *in_x, *in_y, least_dist;

size_t root, nkeys=1, nearest_index;

gal_data_t *rkey, *keysll=gal_data_array_calloc(nkeys);

/* Read the input coordinates, see comments in example of

* 'gal_kdtree_create' for more. */

input=gal_table_read(inputfile, "1", NULL, NULL,

GAL_TABLE_SEARCH_NAME, 0, -1, 0, NULL);

/* Read the k-d tree contents (created before). */

kdtree=gal_table_read(kdtreefile, "1", NULL, NULL,

GAL_TABLE_SEARCH_NAME, 0, -1, 0, NULL);

/* Read the k-d tree root index from the header keyword.

* See example in description of 'gal_fits_key_read_from_ptr'.*/

keysll[0].name="KDTROOT";

keysll[0].type=GAL_TYPE_SIZE_T;

gal_fits_key_read(kdtreefile, kdtreehdu, keysll, 0, 0, NULL);

keysll[0].name=NULL; /* Since we did not allocate it. */

rkey=gal_data_copy_to_new_type(&keysll[0], GAL_TYPE_SIZE_T);

root=((size_t *)(rkey->array))[0];

/* Find the nearest neighbour of the point. */

nearest_index=gal_kdtree_nearest_neighbour(input, kdtree, root,

point, &least_dist);

/* Print the results. */

in_x=input->array;

in_y=input->next->array;

printf("(%g, %g): nearest is (%g, %g), with a distance of %g\n",

point[0], point[1], in_x[nearest_index],

in_y[nearest_index], least_dist);

/* Clean up and return. */

gal_data_free(rkey);

gal_list_data_free(input);

gal_list_data_free(kdtree);

gal_data_array_free(keysll, nkeys, 1);

return EXIT_SUCCESS;
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}

12.3.20 Permutations (permutation.h)

Permutation is the technical name for re-ordering of values. The need for permutations
occurs a lot during (mainly low-level) processing. To do permutation, you must provide
two inputs: an array of values (that you want to re-order in place) and a permutation array
which contains the new index of each element (let’s call it perm). The diagram below shows
the input array before and after the re-ordering.

permute: AFTER[ i ] = BEFORE[ perm[i] ] i = 0 .. N-1

inverse: AFTER[ perm[i] ] = BEFORE[ i ] i = 0 .. N-1

The functions here are a re-implementation of the GNU Scientific Library’s gsl_permute
function. The reason we did not use that function was that it uses system-specific types
(like long and int) which can have different widths on different systems, hence are not
easily convertible to Gnuastro’s fixed width types (see Section 4.5 [Numeric data types],
page 277). There is also a separate function for each type, heavily using macros to allow
a base function to work on all the types. Thus it is hard to read/understand. Hence,
Gnuastro contains a re-write of their steps in a new type-agnostic method which is a single
function that can work on any type.

As described in GSL’s source code and manual, this implementation comes from Donald
Knuth’s Art of computer programming book, in the "Sorting and Searching" chapter of
Volume 3 (3rd ed). Exercise 10 of Section 5.2 defines the problem and in the answers,
Knuth describes the solution. So if you are interested, please have a look there for more.

We are in contact with the GSL developers and in the future26 we will submit these
implementations to GSL. If they are finally incorporated there, we will delete this section
in future versions.

[Function]void
gal_permutation_check (size_t *permutation, size_t size)

Print how permutation will re-order an array that has size elements for each element
in one one line.

[Function]void
gal_permutation_apply (gal_data_t *input, size_t *permutation)

Apply permutation on the input dataset (can have any type), see above for the
definition of permutation.

[Function]void
gal_permutation_apply_inverse (gal_data_t *input, size_t

*permutation)
Apply the inverse of permutation on the input dataset (can have any type), see
above for the definition of permutation.

26 Gnuastro’s Task 14497 (http://savannah.gnu.org/task/?14497). If this task is still “postponed” when
you are reading this and you are interested to help, your contributions would be very welcome. Both
Gnuastro and GSL developers are very busy, hence both would appreciate your help.

http://savannah.gnu.org/task/?14497
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[Function]void
gal_permutation_transpose_2d (gal_data_t *input)

Transpose an input 2D matrix into a new dataset. If the input is not a square, this
function will change the input->array element to a newly allocated array (the old
one will be freed internally). Therefore, in case you have already stored input->array

for other usage before this function, and the input is not a square, be sure to update
the previously stored pointer if the input is not a square.

12.3.21 Matching (match.h)

Matching is often necessary when two measurements of the same points have been done
using different instruments (or hardware), different software or different configurations of
the same software. In other words, you have two catalogs or tables, and each has N columns
containing the N-dimensional “coordinate” values of each point. Each table can have other
columns too, for example, one can have magnitudes in one filter, and another can have
morphology measurements.

The matching functions here will use the coordinate columns of the two tables to find
a permutation for each, and the total number of matched rows (Nmatch). This will enable
you to match by the positions if you like. At a higher level, you can apply the permutation
to the magnitude or morphology columns to merge the catalogs over the Nmatch rows. The
input and output data formats of the functions are the some and described below before the
actual functions. Each function also has extra arguments due to the particular algorithm
it uses for the matching.

The two inputs of the functions (coord1 and coord2) must be Section 12.3.8.9 [List of
gal_data_t], page 784. Each gal_data_t node in coord1 or coord2 should be a single
dimensional dataset (column in a table) and all the nodes (in each) must have the same
number of elements (rows). In other words, each column can be visualized as having the
coordinates of each point in its respective dimension. The dimensions of the coordinates
is determined by the number of gal_data_t nodes in the two input lists (which must be
equal). The number of rows (or the number of elements in each gal_data_t) in the columns
of coord1 and coord2 can (and, usually will!) be different. In summary, these functions
will be happy if you use gal_table_read to read the two coordinate columns from a file,
see Section 12.3.10 [Table input output (table.h)], page 788.

The functions below return a simply-linked list of three 1D datasets (see Section 12.3.8.9
[List of gal_data_t], page 784), let’s call the returned dataset ret. The first two (ret
and ret->next) are permutations. In other words, the array elements of both have a
type of size_t, see Section 12.3.20 [Permutations (permutation.h)], page 862. The third
node (ret->next->next) is the calculated distance for that match and its array has a type
of double. The number of matches will be put in the space pointed by the nummatched

argument. If there was not any match, this function will return NULL.

The two permutations can be applied to the rows of the two inputs: the first one (ret)
should be applied to the rows of the table containing coord1 and the second one (ret-
>next) to the table containing coord2. After applying the returned permutations to the
inputs, the top nummatched elements of both will match with each other. The ordering of
the rest of the elements is undefined (depends on the matching function used). The third
node is the distances between the respective match (which may be elliptical distance, see
discussion of “aperture” below).
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The functions will not simply return the nearest neighbor as a match. This is because the
nearest neighbor may be too far to be a meaningful! They will check the distance between
the nearest neighbor of each point and only return a match if it is within an acceptable
N-dimensional distance (or “aperture”). The matching aperture is defined by the aperture
array that is an input argument to the functions.

If several points of one catalog lie within this aperture of a point in the other catalog, the
nearest is defined as the match. In a 2D situation (where the input lists have two nodes),
for the most generic case, aperture must have three elements: the major axis length, axis
ratio and position angle (see Section 8.1.1.1 [Defining an ellipse and ellipsoid], page 629).
If aperture[1]==1, the aperture will be a circle of radius aperture[0] and the third value
will not be used. When the aperture is an ellipse, distances between the points are also
calculated in the respective elliptical distances (rel in Section 8.1.1.1 [Defining an ellipse
and ellipsoid], page 629).

Output permutations ignore internal sorting: the output permutations will correspond
to the initial inputs. Therefore, even when inplace!=0 (and this function re-arranges
the inputs in place), the output permutation will correspond to original (possibly non-
sorted) inputs. The reason for this is that you rarely want to permute the actual positional
columns after the match. Usually, you also have other columns (such as the magnitude and
morphology) and you want to find how they differ between the objects that match. Once
you have the permutations, they can be applied to those other columns (see Section 12.3.20
[Permutations (permutation.h)], page 862) and the higher-level processing can continue.
So if you do not need the coordinate columns for the rest of your analysis, it is better to
set inplace=1.

[Function]gal_data_t *
gal_match_sort_based (gal_data_t *coord1, gal_data_t *coord2, double

*aperture, int sorted_by_first, int inplace, size_t
minmapsize, int quietmmap, size_t *nummatched)

Use a basic sort-based match to find the matching points of two input coordinates.
See the descriptions above on the format of the inputs and outputs. To speed up the
search, this function will sort the input coordinates by their first column (first axis).
If both are already sorted by their first column, you can avoid the sorting step by
giving a non-zero value to sorted_by_first.

When sorting is necessary and inplace is non-zero, the actual input columns will be
sorted. Otherwise, an internal copy of the inputs will be made, used (sorted) and later
freed before returning. Therefore, when inplace==0, inputs will remain untouched,
but this function will take more time and memory. If internal allocation is necessary
and the space is larger than minmapsize, the space will be not allocated in the RAM,
but in a file, see description of --minmapsize and --quietmmap in Section 4.1.2.2
[Processing options], page 255.
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[Function]gal_data_t *
gal_match_kdtree (gal_data_t *coord1, gal_data_t *coord2, gal_data_t

*coord1_kdtree, size_t kdtree_root, double *aperture, size_t
numthreads, size_t minmapsize, int quietmmap, size_t
*nummatched)

Use the k-d tree concept for finding matches between two catalogs, optionally in
parallel (on numthreads threads). The k-d tree of the first input (coord1_kdtree),
and its root index (kdtree_root), should be constructed and found before calling this
function, to do this, you can use the gal_kdtree_create of Section 12.3.19 [K-d tree
(kdtree.h)], page 857. The desired aperture array is the same as gal_match_sort_
based and described at the top of this section. If coord1_kdtree==NULL, this function
will return a NULL pointer and write a value of 0 in the space that nummatched points
to.

The final number of matches is returned in nummatched and the format of the returned
dataset (three columns) is described above. If internal allocation is necessary and the
space is larger than minmapsize, the space will be not allocated in the RAM, but in a
file, see description of --minmapsize and --quietmmap in Section 4.1.2.2 [Processing
options], page 255.

12.3.22 Statistical operations (statistics.h)

After reading a dataset into memory from a file or fully simulating it with another process,
the most common processes that will be done on it are statistical operations to let you
quantify different aspects of the data. the functions in this section describe Gnuastro’s
current set of tools for this job. All these functions can work on any numeric data type
natively (see Section 4.5 [Numeric data types], page 277) and can also work on tiles over
a dataset. Hence the inputs and outputs are in Gnuastro’s Section 12.3.6.1 [Generic data
container (gal_data_t)], page 755.

[Macro]GAL_STATISTICS_SIG_CLIP_MAX_CONVERGE
The maximum number of clips, when σ-clipping should be done by convergence. If
the clipping does not converge before making this many clips, all σ-clipping outputs
will be NaN.

[Macro]GAL_STATISTICS_MODE_GOOD_SYM
The minimum acceptable symmetricity of the mode calculation. If the symmetricity of
the derived mode is less than this value, all the returned values by gal_statistics_

mode will have a value of NaN.

[Macro]GAL_STATISTICS_BINS_INVALID
[Macro]GAL_STATISTICS_BINS_REGULAR
[Macro]GAL_STATISTICS_BINS_IRREGULAR

Macros used to identify if the regularity of the bins when defining bins.

[Macro]GAL_STATISTICS_CLIP_OUTCOL_STD
[Macro]GAL_STATISTICS_CLIP_OUTCOL_MAD
[Macro]GAL_STATISTICS_CLIP_OUTCOL_MEAN
[Macro]GAL_STATISTICS_CLIP_OUTCOL_MEDIAN
[Macro]GAL_STATISTICS_CLIP_OUTCOL_NUMBER_USED
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[Macro]GAL_STATISTICS_CLIP_OUTCOL_NUMBER_CLIPS
Macros containing the index of the clipping outputs, see the descriptions of gal_
statistics_clip_sigma below.

[Macro]GAL_STATISTICS_CLIP_OUTCOL_OPTIONAL_STD
[Macro]GAL_STATISTICS_CLIP_OUTCOL_OPTIONAL_MAD
[Macro]GAL_STATISTICS_CLIP_OUTCOL_OPTIONAL_MEAN

Macros containing bit flags for optional clipping outputs, see the descriptions of gal_
statistics_clip_sigma below.

[Function]gal_data_t *
gal_statistics_number (gal_data_t *input)

Return a single-element dataset with type size_t which contains the number of non-
blank elements in input.

[Function]gal_data_t *
gal_statistics_minimum (gal_data_t *input)

Return a single-element dataset containing the minimum non-blank value in input.
The numerical datatype of the output is the same as input.

[Function]gal_data_t *
gal_statistics_maximum (gal_data_t *input)

Return a single-element dataset containing the maximum non-blank value in input.
The numerical datatype of the output is the same as input.

[Function]gal_data_t *
gal_statistics_sum (gal_data_t *input)

Return a single-element (double or float64) dataset containing the sum of the non-
blank values in input.

[Function]gal_data_t *
gal_statistics_mean (gal_data_t *input)

Return a single-element (double or float64) dataset containing the mean of the
non-blank values in input.

[Function]gal_data_t *
gal_statistics_std (gal_data_t *input)

Return a single-element (double or float64) dataset containing the standard devia-
tion of the non-blank values in input.

[Function]gal_data_t *
gal_statistics_mean_std (gal_data_t *input)

Return a two-element (double or float64) dataset containing the mean and standard
deviation of the non-blank values in input. The first element of the returned dataset
is the mean and the second is the standard deviation.

This function will calculate both values in one pass over the dataset. Hence when
both the mean and standard deviation of a dataset are necessary, this function is
much more efficient than calling gal_statistics_mean and gal_statistics_std

separately.
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[Function]double
gal_statistics_std_from_sums (double sum, double sump2, size_t num)

Return the standard deviation from the values that can be obtained in a single pass
through the distribution: sum: the sum of the elements, sump2: the sum of the power-
of-2 of each element, and num: the number of elements.

This is a low-level function that is only useful after the distribution of values has been
parsed (and the three input arguments are calculated). It is the lower-level function
that is used in functions like gal_statistics_std, or other components of Gnuastro
that measure the standard deviation (for example, MakeCatalog’s --std column).

[Function]gal_data_t *
gal_statistics_median (gal_data_t *input, int inplace)

Return a single-element dataset containing the median of the non-blank values in
input. The numerical datatype of the output is the same as input.

Calculating the median involves sorting the dataset and removing blank values, for
better performance (and less memory usage), you can give a non-zero value to the
inplace argument. In this case, the sorting and removal of blank elements will be
done directly on the input dataset. However, after this function the original dataset
may have changed (if it was not sorted or had blank values).

[Function]gal_data_t *
gal_statistics_mad (gal_data_t *input, int inplace)

Return a single-element dataset with same type as input, containing the median
absolute deviation (MAD) of the non-blank values in input.

If inplace==0, the input dataset will remain untouched. Otherwise, the MAD calcu-
lation will be done on the input dataset without allocating a new one (its values will
be changed after this function). This is good when you do not need the input after
this function and avoid taking extra RAM and CPU.

[Function]gal_data_t *
gal_statistics_median_mad (gal_data_t *input, int inplace)

Return a two-element dataset with same type as input, containing the median and
median absolute deviation (MAD) of the non-blank values in input.

If inplace==0, the input dataset will remain untouched. Otherwise, the MAD calcu-
lation will be done on the input dataset without allocating a new one (its values will
be changed after this function). This is good when you do not need the input after
this function and avoid taking extra RAM and CPU.

[Function]size_t
gal_statistics_quantile_index (size_t size, double quantile)

Return the index of the element that has a quantile of quantile assuming the dataset
has size elements.

[Function]gal_data_t *
gal_statistics_quantile (gal_data_t *input, double quantile, int

inplace)
Return a single-element dataset containing the value with in a quantile quantile of
the non-blank values in input. The numerical datatype of the output is the same as
input. See gal_statistics_median for a description of inplace.
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[Function]size_t
gal_statistics_quantile_function_index (gal_data_t *input, gal_data_t

*value, int inplace)
Return the index of the quantile function (inverse quantile) of input at value. In
other words, this function will return the index of the nearest element (of a sorted
and non-blank) input to value. If the value is outside the range of the input, then
this function will return GAL_BLANK_SIZE_T.

[Function]gal_data_t *
gal_statistics_quantile_function (gal_data_t *input, gal_data_t

*value, int inplace)
Return a single-element dataset containing the quantile function of the non-blank
values in input at value (a single-element dataset). The numerical data type is
of the returned dataset is float64 (or double). In other words, this function will
return the quantile of value in input. value has to have the same type as input.
See gal_statistics_median for a description of inplace.

When all elements are blank, the returned value will be NaN. If the value is smaller
than the input’s smallest element, the returned value will be negative infinity. If
the value is larger than the input’s largest element, then the returned value will be
positive infinity

[Function]gal_data_t *
gal_statistics_unique (gal_data_t *input, int inplace)

Return a 1D dataset with the same numeric data type as the input, but only con-
taining its unique elements and without any (possible) blank/NaN elements. Note
that the input’s number of dimensions is irrelevant for this function. If inplace is not
zero, then the unique values will over-write the allocated space of the input, otherwise
a new space will be allocated and the input will not be touched.

[Function]int
gal_statistics_has_negative (gal_data_t *input)

Return 1 if the input dataset contains a negative number and 0 otherwise. If the
dataset doesn’t have a numeric type (as in a string), this function will abort with,
saying that it does not recognize the file type.

[Function]gal_data_t *
gal_statistics_mode (gal_data_t *input, float mirrordist, int

inplace)
Return a four-element (double or float64) dataset that contains the mode of the
input distribution. This function implements the non-parametric algorithm to find
the mode that is described in Appendix C of Akhlaghi and Ichikawa 2015 (https://
arxiv.org/abs/1505.01664).

In short it compares the actual distribution and its “mirror distribution” to find
the mode. In order to be efficient, you can determine how far the comparison goes
away from the mirror through the mirrordist parameter (think of it as a multiple
of sigma/error). See gal_statistics_median for a description of inplace.

The output array has the following elements (in the given order, note that counting
in C starts from 0).

https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1505.01664
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array[0]: mode

array[1]: mode quantile.

array[2]: symmetricity.

array[3]: value at the end of symmetricity.

[Function]gal_data_t *
gal_statistics_mode_mirror_plots (gal_data_t *input, gal_data_t

*value, size_t numbins, int inplace, double *mirror_val)
Make a mirrored histogram and cumulative frequency plot (with numbins) with the
mirror distribution of the input having a value in value. If all the input elements are
blank, or the mirror value is outside the range of the input, this function will return
a NULL pointer.

The output is a list of data structures (see Section 12.3.8.9 [List of gal_data_t],
page 784): the first is the bins with one bin at the mirror point, the second is the
histogram with a maximum of one and the third is the cumulative frequency plot
(with a maximum of one).

[Function]int
gal_statistics_is_sorted (gal_data_t *input, int updateflags)

Return 0 if the input is not sorted, if it is sorted, this function will return 1 and 2 if
it is increasing or decreasing, respectively. This function will abort with an error if
input has zero elements and will return 1 (sorted, increasing) when there is only one
element. This function will only look into the dataset if the GAL_DATA_FLAG_SORT_CH
bit of input->flag is 0, see Section 12.3.6.1 [Generic data container (gal_data_t)],
page 755.

When the flags do not indicate a previous check and updateflags is non-zero, this
function will set the flags appropriately to avoid having to re-check the dataset in
future calls (this can be very useful when repeated checks are necessary). When
updateflags==0, this function has no side-effects on the dataset: it will not toggle
the flags.

If you want to re-check a dataset with the blank-value-check flag already set (for
example, if you have made changes to it), then explicitly set the GAL_DATA_FLAG_

SORT_CH bit to zero before calling this function. When there are no other flags, you
can simply set the flags to zero (with input->flag=0), otherwise you can use this
expression:

input->flag &= ~GAL_DATA_FLAG_SORT_CH;

[Function]void
gal_statistics_sort_increasing (gal_data_t *input)

Sort the input dataset (in place) in an increasing order and toggle the sort-related bit
flags accordingly.

[Function]void
gal_statistics_sort_decreasing (gal_data_t *input)

Sort the input dataset (in place) in a decreasing order and toggle the sort-related bit
flags accordingly.
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[Function]gal_data_t *
gal_statistics_no_blank_sorted (gal_data_t *input, int inplace)

Remove all the blanks and sort the input dataset. If inplace is non-zero this will
happen on the input dataset (in the allocated space of the input dataset). However,
if inplace is zero, this function will allocate a new copy of the dataset and work on
that. Therefore if inplace==0, the input dataset will be modified.

This function uses the bit flags of the input, so if you have modified the dataset, set
input->flag=0 before calling this function. Also note that inplace is only for the
dataset elements. Therefore even when inplace==0, if the input is already sorted
and has no blank values, then the flags will be updated to show this.

If all the elements were blank, then the returned dataset’s size will be zero. This is
thus a good parameter to check after calling this function to see if there actually were
any non-blank elements in the input or not and take the appropriate measure. This
can help avoid strange bugs in later steps. The flags of a zero-sized returned dataset
will indicate that it has no blanks and is sorted in an increasing order. Even if having
blank values or being sorted is not defined on a zero-element dataset, it is up to the
caller to choose what they will do with a zero-element dataset. The flags have to be
set after this function any way.

[Function]gal_data_t *
gal_statistics_regular_bins (gal_data_t *input, gal_data_t *inrange,

size_t numbins, double onebinstart)
Generate an array of regularly spaced elements as a 1D array (column) of type double
(i.e., float64, it has to be double to account for small differences on the bin edges).
The input arguments are described below

input The dataset you want to apply the bins to. This is only necessary if
the range argument is not complete, see below. If inrange has all the
necessary information, you can pass a NULL pointer for this.

inrange This dataset keeps the desired range along each dimension of the input
data structure, it has to be in float (i.e., float32) type.

• If you want the full range of the dataset (in any dimensions, then
just set inrange to NULL and the range will be specified from the
minimum and maximum value of the dataset (input cannot be NULL
in this case).

• If there is one element for each dimension in range, then it is viewed
as a quantile (Q), and the range will be: ‘Q to 1-Q’.

• If there are two elements for each dimension in range, then they are
assumed to be your desired minimum and maximum values. When
either of the two are NaN, the minimum and maximum will be cal-
culated for it.

numbins The number of bins: must be larger than 0.

onebinstart

A desired value to start one bin. Note that with this option, the bins will
not start and end exactly on the given range values, it will be slightly
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shifted to accommodate this request (enough for the bin containing the
value to start at it). If you do not have any preference on where to start
a bin, set this to NAN.

[Function]gal_data_t *
gal_statistics_histogram (gal_data_t *input, gal_data_t *bins, int

normalize, int maxone)
Make a histogram of all the elements in the given dataset with bin values that are
defined in the bins structure (see gal_statistics_regular_bins, they currently
have to be equally spaced). The returned histogram is a 1-D gal_data_t of type
GAL_TYPE_FLOAT32, with the same number of elements as bins. For each bin, it will
contain the number of input elements that fell inside of that bin.

Let’s write the center of the ith element of the bin array as bi, and the fixed half-
bin width as h. Then element j of the input array (inj) will be counted in bi if
(bi − h) ≤ inj < (bi + h). However, if inj is somewhere in the last bin, the condition
changes to (bi − h) ≤ inj ≤ (bi + h).

If normalize!=0, the histogram will be “normalized” such that the sum of the counts
column will be one. In other words, all the counts in every bin will be divided by the
total number of counts. If maxone!=0, the histogram’s maximum count will be 1. In
other words, the counts in every bin will be divided by the value of the maximum. In
both of these cases, the output dataset will have a GAL_DATA_FLOAT32 datatype.

[Function]gal_data_t *
gal_statistics_histogram2d (gal_data_t *input, gal_data_t *bins)

This function is very similar to gal_statistics_histogram, but will build a 2D
histogram (count how many of the elements of input are a within a 2D box. The
bins comprising the first dimension of the 2D box are defined by bins. The bins
of the second dimension are defined by bins->next (bins is a Section 12.3.8.9 [List
of gal_data_t], page 784). Both the bin and bin->next can be created with gal_

statistics_regular_bins.

This function returns a list of gal_data_t with three nodes/columns, so you can
directly write them into a table (see Section 12.3.10 [Table input output (table.h)],
page 788). Assuming bins has N1 bins and bins->next has N2 bins, each
node/column of the returned output is a 1D array with N1 × N2 elements. The
first and second columns are the center of the 2D bin along the first and second
dimensions and have a double data type. The third column is the 2D histogram
(the number of input elements that have a value within that 2D bin) and has a
uint32 data type (see Section 4.5 [Numeric data types], page 277).

[Function]gal_data_t *
gal_statistics_cfp (gal_data_t *input, gal_data_t *bins, int

normalize)
Make a cumulative frequency plot (CFP) of all the elements in input with bin values
that are defined in the bins structure (see gal_statistics_regular_bins).

The CFP is built from the histogram: in each bin, the value is the sum of all previous
bins in the histogram. Thus, if you have already calculated the histogram before
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calling this function, you can pass it onto this function as the data structure in bins-

>next (see List of gal_data_t). If bin->next!=NULL, then it is assumed to be the
histogram. If it is NULL, then the histogram will be calculated internally and freed
after the job is finished.

When a histogram is given and it is normalized, the CFP will also be normalized
(even if the normalized flag is not set here): note that a normalized CFP’s maximum
value is 1.

[Function]gal_data_t *
gal_statistics_clip_sigma (gal_data_t *input, float multip, float

param, float extrastats, int inplace, int quiet)
Apply σ-clipping on a given dataset and return a dataset that contains the results.
For a description of σ-clipping see Section 2.10.2 [Sigma clipping], page 200. multip
is the multiple of the standard deviation (or σ, that is used to define outliers in each
round of clipping).

The role of param is determined based on its value. If param is larger than 1 (one),
it must be an integer and will be interpreted as the number clips to do. If it is less
than 1 (one), it is interpreted as the tolerance level to stop the iteration.

The returned dataset (let’s call it out) contains a 6-element array with type GAL_

TYPE_FLOAT32. Through the GAL_STATISTICS_CLIP_OUTCOL_* macros below, you
can access any particular measurement.

out=gal_statistics_clip_sigma(input, ....);

float *array=out->array;

array[ GAL_STATISTICS_CLIP_OUTCOL_NUMBER_USED ]

array[ GAL_STATISTICS_CLIP_OUTCOL_MEAN ]

array[ GAL_STATISTICS_CLIP_OUTCOL_STD ]

array[ GAL_STATISTICS_CLIP_OUTCOL_MEDIAN ]

array[ GAL_STATISTICS_CLIP_OUTCOL_MAD ]

array[ GAL_STATISTICS_CLIP_OUTCOL_NUMBER_CLIPS ]

However, note that all are not measured by default! Since the mean and MAD are
not necessary during sigma-clipping, if you want them, you have to set the following
two bit flags in the extrastats argument as below.

int extrastats=0; /* To initialize all bits */

/* If you want the sigma-clipped MAD. */

extrastats |= GAL_STATISTICS_CLIP_OUTCOL_OPTIONAL_MAD;

/* If you want the sigma-clipped mean. */

extrastats |= GAL_STATISTICS_CLIP_OUTCOL_OPTIONAL_MEAN;

If the σ-clipping does not converge or all input elements are blank, then this function
will return NaN values for all the elements above.
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[Function]gal_data_t *
gal_statistics_clip_mad (gal_data_t *input, float multip, float

param, uint8_t extrastats, int inplace, int quiet)
Similar to gal_statistics_clip_sigma, but will do median absolute deviation
(MAD) based clipping, see Section 2.10.3 [MAD clipping], page 206.

The only difference is that for this function the MAD is automatically calculated
during clipping. It is the mean and standard deviation that will not be calculated
unless requested with the GAL_STATISTICS_CLIP_OUTCOL_OPTIONAL_MEAN and GAL_

STATISTICS_CLIP_OUTCOL_OPTIONAL_STD bit flats respectively.

[Function]gal_data_t *
gal_statistics_outlier_bydistance (int pos1_neg0, gal_data_t *input,

size_t window_size, float sigma, float sigclip_multip, float
sigclip_param, int inplace, int quiet)

Find the first positive outlier (if pos1_neg0!=0) in the input distribution. When
pos1_neg0==0, the same algorithm goes to the start of the dataset. The returned
dataset contains a single element: the first positive outlier. It is one of the dataset’s
elements, in the same type as the input. If the process fails for any reason (for
example, no outlier was found), a NULL pointer will be returned.

All (possibly existing) blank elements are first removed from the input dataset, then
it is sorted. A sliding window of window_size elements is parsed over the dataset.
Starting from the window_size-th element of the dataset, in the direction of increasing
values. This window is used as a reference. The first element where the distance to
the previous (sorted) element is sigma units away from the distribution of distances
in its window is considered an outlier and returned by this function.

Formally, if we assume there are N non-blank elements. They are first sorted. Search-
ing for the outlier starts on element W . Let’s take vi to be the i-th element of the
sorted input (with no blank values) and m and σ as the σ-clipped median and stan-
dard deviation from the distances of the previous W elements (not including vi). If
the value given to sigma is displayed with s, the i-th element is considered as an
outlier when the condition below is true.

(vi − vi−1)−m
σ

> s

The sigclip_multip and sigclip_param arguments specify the properties of the
σ-clipping (see Section 2.10.2 [Sigma clipping], page 200, for more). You see that by
this definition, the outlier cannot be any of the lower half elements. The advantage of
this algorithm compared to σ-clippign is that it only looks backwards (in the sorted
array) and parses it in one direction.

If inplace!=0, the removing of blank elements and sorting will be done within the
input dataset’s allocated space. Otherwise, this function will internally allocate (and
later free) the necessary space to keep the intermediate space that this process re-
quires.

If quiet!=0, this function will report the parameters every time it moves the window
as a separate line with several columns. The first column is the value, the second (in
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square brackets) is the sorted index, the third is the distance of this element from
the previous one. The Fourth and fifth (in parenthesis) are the median and standard
deviation of the σ-clipped distribution within the window and the last column is the
difference between the third and fourth, divided by the fifth.

[Function]gal_data_t *
gal_statistics_outlier_flat_cfp (gal_data_t *input, size_t numprev,

float sigclip_multip, float sigclip_param, float thresh,
size_t numcontig, int inplace, int quiet, size_t *index)

Return the first element in the given dataset where the cumulative frequency plot first
becomes significantly flat for a sufficient number of elements. The returned dataset
only has one element (with the same type as the input). If index!=NULL, the index
(counting from zero, after sorting the dataset and removing any blanks) is written in
the space that index points to. If no sufficiently flat portion is found, the returned
pointer will be NULL.

The flatness on the cumulative frequency plot is defined like this (see Section 7.1.1
[Histogram and Cumulative Frequency Plot], page 508): on the sorted dataset, for
every point (ai), we calculate di = ai+2 − ai−2. This done on the first N elements
(value of numprev). After element aN+2, we start estimating the flatness as follows:
for every element we use the N , di measurements before it as the reference. Let’s call
this set Di for element i. The σ-clipped median (m) and standard deviation (s) of Di

are then calculated. The σ-clipping can be configured with the two sigclip_param

and sigclip_multip arguments.

Taking t as the significance threshold (value to thresh), a point is considered flat
when ai > m+ tσ. But a single point satisfying this condition will probably just be
due to noise. To make a more robust estimate, this significance/condition has to hold
for numcontig contiguous elements after ai. When this is satisfied, ai is returned as
the point where the distribution’s cumulative frequency plot becomes flat.

To get a good estimate of m and s, it is thus recommended to set numprev as large
as possible. However, be careful not to set it too high: the checks in the paragraph
above are not done on the first numprev elements and this function assumes the
flatness occurs after them. Also, be sure that the value to numcontig is much less
than numprev, otherwise σ-clipping may not be able to remove the immediate outliers
in Di near the boundary of the flat region.

When quiet==0, the basic measurements done on each element are printed on the
command-line (good for finding the best parameters). When inplace!=0, the sorting
and removal of blank elements is done on the input dataset, so the input may be
altered after this function.

12.3.23 Fitting functions (fit.h)

After doing a measurement, it is usually necessary to parameterize the relation that has
been found. The functions in this section are wrappers over the GNU Scientific Library
(GSL) Linear Least-Squares Fitting (https://www.gnu.org/software/gsl/doc/html/
lls.html), to make them easily accessible using Gnuastro’s Section 12.3.6.1 [Generic data
container (gal_data_t)], page 755. The respective GSL function is mentioned under each
function.

https://www.gnu.org/software/gsl/doc/html/lls.html
https://www.gnu.org/software/gsl/doc/html/lls.html
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[Global integer]GAL_FIT_INVALID
[Global integer]GAL_FIT_LINEAR
[Global integer]GAL_FIT_LINEAR_WEIGHTED
[Global integer]GAL_FIT_LINEAR_NO_CONSTANT
[Global integer]GAL_FIT_LINEAR_NO_CONSTANT_WEIGHTED
[Global integer]GAL_FIT_POLYNOMIAL
[Global integer]GAL_FIT_POLYNOMIAL_WEIGHTED
[Global integer]GAL_FIT_POLYNOMIAL_NUMBER

Identifiers for the various types of fitting functions. These can be used by the callers
of these functions to select between various fitting types. They can easily be converted
to, and from, fixed human-readable strings using the gal_fit_name_* functions be-
low. The last one GAL_FIT_ROBUST_NUMBER is the total number of available fitting
methods (can be used to add more macros in the calling program and to avoid overlaps
with existing codes).

[Global integer]GAL_FIT_ROBUST_INVALID
[Global integer]GAL_FIT_ROBUST_DEFAULT
[Global integer]GAL_FIT_ROBUST_BISQUARE
[Global integer]GAL_FIT_ROBUST_CAUCHY
[Global integer]GAL_FIT_ROBUST_FAIR
[Global integer]GAL_FIT_ROBUST_HUBER
[Global integer]GAL_FIT_ROBUST_OLS
[Global integer]GAL_FIT_ROBUST_WELSCH
[Global integer]GAL_FIT_ROBUST_NUMBER

Identifiers for the various types of robust polynomial fitting functions. For a de-
scription of each, see https://www.gnu.org/s/gsl/doc/html/lls.html#c.

gsl_multifit_robust_alloc. The last one GAL_FIT_ROBUST_NUMBER is the total
number of available functions (can be used to add more macros in the calling pro-
gram and to avoid overlaps with existing codes).

[Function]uint8_t
gal_fit_name_to_id (char *name)

Return the internal code of a standard human-readable name for the various fitting
functions. If the name is not recognized, the returned value will be GAL_FIT_INVALID.

[Function]char *
gal_fit_name_from_id (uint8_t fitid)

Return a standard human-readable name for the fitting function identified with the
fitid (read as “fitting ID”). If the fitting ID couldn’t be recognized, a NULL pointer
is returned.

[Function]uint8_t
gal_fit_name_robust_to_id (char *name)

Return the internal code of a standard human-readable name for the various robust
fitting types. If the name is not recognized, the returned value will be GAL_FIT_

INVALID.

https://www.gnu.org/s/gsl/doc/html/lls.html#c.gsl_multifit_robust_alloc
https://www.gnu.org/s/gsl/doc/html/lls.html#c.gsl_multifit_robust_alloc
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[Function]char *
gal_fit_name_robust_from_id (uint8_t robustid)

Return a standard human-readable name for the input robust fitting type. If the
fitting ID couldn’t be recognized, a NULL pointer is returned.

[Function]gal_data_t *
gal_fit_1d_linear (gal_data_t *xin, gal_data_t *yin, gal_data_t

*ywht)
Preform a 1D linear regression fit with a constant term27 in the form of Y = c0+c1X.
The input xin contains the independent variable values and yin contains the measured
variable values for each independent variable. When ywht!=NULL, it is assumed to
contain the “weight” of each Y measurement (if you don’t have weights on your
measured values, simply set this to NULL). The weight of each measurement is the
inverse of its variance. For a Gaussian error distribution with standard deviation σ,
the weight is therefore 1/σ2.

If any of the values in any of the inputs is blank (NaN in floating point), the final
fitted parameters will all be NaN. To remove rows with a NaN/blank, you can use
gal_blank_remove_rows (which will remove all rows with a blank values in any of
the columns with a single call).

The output is a single dataset with a GAL_TYPE_FLOAT64 type with 6 elements:

1. c0: the constant in Y = c0 + c1X.

2. c1: the multiple in Y = c0 + c1X.

3. First element of variance-covariance matrix.

4. Second and third (which are equal) elements of the variance-covariance matrix.

5. Fourth element of the variance-covariance matrix.

6. The reduced χ2 of the fit.

[Function]gal_data_t *
gal_fit_1d_linear_no_constant (gal_data_t *xin, gal_data_t *yin,

gal_data_t *ywht)
Preform a 1D linear regression fit without a constant term28, formally: Y = c1X. The
input xin contains the independent variable values and yin contains the measured
variable values for each independent variable. When ywht!=NULL, it is assumed to
contain the “weight” of each Y measurement (if you don’t have weights on your
measured values, simply set this to NULL). The weight of each measurement is the
inverse of its variance. For a Gaussian error distribution with standard deviation σ,
the weight is therefore 1/σ2.

If any of the values in any of the inputs is blank (NaN in floating point), the final
fitted parameters will all be NaN. To remove rows with a NaN/blank, you can use
gal_blank_remove_rows (which will remove all rows with a blank values in any of
the columns with a single call).

The output is a single dataset with a GAL_TYPE_FLOAT64 type with 3 elements:

1. c1: the multiple in Y = c0 + c1X.

27 https://www.gnu.org/s/gsl/doc/html/lls.html#linear-regression-with-a-constant-term
28 https://www.gnu.org/s/gsl/doc/html/lls.html#linear-regression-without-a-constant-term

https://www.gnu.org/s/gsl/doc/html/lls.html#linear-regression-with-a-constant-term
https://www.gnu.org/s/gsl/doc/html/lls.html#linear-regression-without-a-constant-term
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2. Variance of c1.

3. The reduced χ2 of the fit.

[Function]gal_data_t *
gal_fit_1d_linear_estimate (gal_data_t *fit, gal_data_t *xin)

Given a linear least squares fit output (fit), estimate the fit on an arbitrary number
of independent variable (horizontal axis, or X, in an X-Y plot) within xin. fit is
assumed to be the output of either gal_fit_1d_linear or gal_fit_1d_linear_no_
constant. In case you haven’t used those functions to obtain the constants and
covariance matrix elements, see the description of those functions for the expected
format of fit.

This function returns two columns (as a Section 12.3.8.9 [List of gal_data_t],
page 784): The top node of the list is the estimated values at the input X-axis
positions, and the next node is the errors in the estimation. Naturally, both have
the same number of elements as xin. Being a list, helps in easily printing the output
columns to a table (see Section 12.3.10 [Table input output (table.h)], page 788).

[Function]gal_data_t *
gal_fit_1d_polynomial (gal_data_t *xin, gal_data_t *yin, gal_data_t

*ywht, size_t maxpower, double *redchisq)
Preform a 1D polynomial fit, formally: Y = c+ 0 + c1X + c2X

2 + · · ·+ cnX
n (using

GSL’s multi-parameter regression29). The largest power of X is determined with the
maxpower argument (which is n in the equation above). The reduced χ2 of the fit is
written in the space that *redchisq points to.

The input xin contains the independent variable values and the input yin contains
the measured variable values for each independent variable. When ywht!=NULL, it is
assumed to contain the “weight” of each Y measurement (if you don’t have weights on
your measured values, simply set this to NULL). The weight of each measurement is
the inverse of its variance. For a Gaussian error distribution with standard deviation
σ, the weight is therefore 1/σ2.

If any of the values in any of the inputs is blank (NaN in floating point), the final
fitted parameters will all be NaN. To remove rows with a NaN/blank, you can use
gal_blank_remove_rows (which will remove all rows with a blank values in any of
the columns with a single call).

The output of this function is a list of two datasets, linked as a list (as a Sec-
tion 12.3.8.9 [List of gal_data_t], page 784). Both have a GAL_TYPE_FLOAT64 type,
and are described below (in order).

1. A one dimensional and contains n+1 elements (for the n+1 constants that have
been found (c0, c1, c2, · · · , cn).

2. A two dimensional variance-covariance matrix with (n+ 1)× (n+ 1) elements.

29 https://www.gnu.org/s/gsl/doc/html/lls.html#multi-parameter-regression

https://www.gnu.org/s/gsl/doc/html/lls.html#multi-parameter-regression
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[Function]gal_data_t *
gal_fit_1d_polynomial_robust (gal_data_t *xin, gal_data_t *yin,

size_t maxpower, uint8_t robustid, double *redchisq)
Preform a 1D robust polynomial fit, formally: Y = c+ 0 + c1X + c2X

2 + · · ·+ cnX
n

(using GSL’s robust linear regression30). See the description there for the details.

The inputs and outputs of this function are almost identical to gal_fit_

1d_polynomial, with the difference that you need to specify the function to
reject outliers through the robustid input argument. You can pass any of the
GAL_FIT_ROBUST_* codes defined at the top of this section to this (the names are
identical to the names in GSL).

[Function]gal_data_t *
gal_fit_1d_polynomial_estimate (gal_data_t *fit, gal_data_t *xin)

Given a 1D polynomial fit output (fit), estimate the fit on an arbitrary number
of independent variable (horizontal axis, or X, in an X-Y plot) within xin. fit is
assumed to be the output of gal_fit_1d_polynomial. In case you haven’t used this
function to obtain the constants and covariance matrix, see the description of that
function for the expected format of fit.

This function returns two columns (as a Section 12.3.8.9 [List of gal_data_t],
page 784): The top node of the list is the estimated values at the input X-axis
positions, and the next node is the errors in the estimation. Naturally, both have
the same number of elements as xin. Being a list, helps in easily printing the output
columns to a table (see Section 12.3.10 [Table input output (table.h)], page 788).

12.3.24 Binary datasets (binary.h)

Binary datasets only have two (usable) values: 0 (also known as background) or 1 (also
known as foreground). They are created after some binary classification is applied to the
dataset. The most common is thresholding: for example, in an image, pixels with a value
above the threshold are given a value of 1 and those with a value less than the threshold
are assigned a value of 0.

Since there is only two values, in the processing of binary images, you are usually con-
cerned with the positioning of an element and its vicinity (neighbors). When a dataset
has more than one dimension, multiple classes of immediate neighbors (that are touching
the element) can be defined for each data-element. To separate these different classes of
immediate neighbors, we define connectivity.

The classification is done by the distance from element center to the neighbor’s center.
The nearest immediate neighbors have a connectivity of 1, the second nearest class of
neighbors have a connectivity of 2 and so on. In total, the largest possible connectivity for
data with ndim dimensions is ndim. For example, in a 2D dataset, 4-connected neighbors
(that share an edge and have a distance of 1 pixel) have a connectivity of 1. The other
4 neighbors that only share a vertice (with a distance of

√
2 pixels) have a connectivity

of 2. Conventionally, the class of connectivity-2 neighbors also includes the connectivity 1
neighbors, so for example, we call them 8-connected neighbors in 2D datasets.

Ideally, one bit is sufficient for each element of a binary dataset. However, CPUs are
not designed to work on individual bits, the smallest unit of memory addresses is a byte

30 https://www.gnu.org/software/gsl/doc/html/lls.html#robust-linear-regression

https://www.gnu.org/software/gsl/doc/html/lls.html#robust-linear-regression
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(containing 8 bits on modern CPUs). Therefore, in Gnuastro, the type used for binary
dataset is uint8_t (see Section 4.5 [Numeric data types], page 277). Although it does
take 8-times more memory, this choice offers much better performance and the some extra
(useful) features.

The advantage of using a full byte for each element of a binary dataset is that you can
also have other values (that will be ignored in the processing). One such common “other”
value in real datasets is a blank value (to mark regions that should not be processed because
there is no data). The constant GAL_BLANK_UINT8 value must be used in these cases (see
Section 12.3.5 [Library blank values (blank.h)], page 751). Another is some temporary
value(s) that can be given to a processed pixel to avoid having another copy of the dataset
as in GAL_BINARY_TMP_VALUE that is described below.

[Macro]GAL_BINARY_TMP_VALUE
The functions described below work on a uint8_t type dataset with values of 1
or 0 (no other pixel will be touched). However, in some cases, it is necessary to
put temporary values in each element during the processing of the functions. This
temporary value has a special meaning for the operation and will be operated on. So
if your input datasets have values other than 0 and 1 that you do not want these
functions to work on, be sure they are not equal to this macro’s value. Note that
this value is also different from GAL_BLANK_UINT8, so your input datasets may also
contain blank elements.

[Function]gal_data_t *
gal_binary_erode (gal_data_t *input, size_t num, int connectivity,

int inplace)
Do num erosions on the connectivity-connected neighbors of input (see above for
the definition of connectivity).

If inplace is non-zero and the input’s type is GAL_TYPE_UINT8, then the erosion will
be done within the input dataset and the returned pointer will be input. Otherwise,
input is copied (and converted if necessary) to GAL_TYPE_UINT8 and erosion will be
done on this new dataset which will also be returned. This function will only work
on the elements with a value of 1 or 0. It will leave all the rest unchanged.

Erosion (inverse of dilation) is an operation in mathematical morphology where each
foreground pixel that is touching a background pixel is flipped (changed to back-
ground). The connectivity value determines the definition of “touching”. Erosion
will thus decrease the area of the foreground regions by one layer of pixels.

[Function]gal_data_t *
gal_binary_dilate (gal_data_t *input, size_t num, int connectivity,

int inplace)
Do num dilations on the connectivity-connected neighbors of input (see above for
the definition of connectivity). For more on inplace and the output, see gal_binary_
erode.

Dilation (inverse of erosion) is an operation in mathematical morphology where each
background pixel that is touching a foreground pixel is flipped (changed to fore-
ground). The connectivity value determines the definition of “touching”. Dilation
will thus increase the area of the foreground regions by one layer of pixels.
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[Function]gal_data_t *
gal_binary_open (gal_data_t *input, size_t num, int connectivity, int

inplace)
Do num openings on the connectivity-connected neighbors of input (see above for
the definition of connectivity). For more on inplace and the output, see gal_binary_
erode.

Opening is an operation in mathematical morphology which is defined as erosion
followed by dilation (see above for the definitions of erosion and dilation). Opening
will thus remove the outer structure of the foreground. In this implementation, num
erosions are going to be applied on the dataset, then num dilations.

[Function]gal_data_t *
gal_binary_number_neighbors (gal_data_t *input, int connectivity, int

inplace)
Return an image of the same size as the input, but where each non-zero and non-blank
input pixel is replaced with the number of its non-zero and non-blank neighbors. The
input dataset is assumed to be binary (having an unsigned, 8-bit dataset). The neigh-
bors are defined through the connectivity argument (see above) and if inplace!=0,
then the output will be written into the input.

[Function]size_t
gal_binary_connected_components (gal_data_t *binary, gal_data_t

**out, int connectivity)
Return the number of connected components in binary through the breadth first
search algorithm (finding all pixels belonging to one component before going on to the
next). Connection between two pixels is defined based on the value to connectivity.
out is a dataset with the same size as binary with GAL_TYPE_INT32 type. Every pixel
in out will have the label of the connected component it belongs to. The labeling
of connected components starts from 1, so a label of zero is given to the input’s
background pixels.

When *out!=NULL (its space is already allocated), it will be cleared (to zero) at the
start of this function. Otherwise, when *out==NULL, the necessary dataset to keep
the output will be allocated by this function.

binary must have a type of GAL_TYPE_UINT8, otherwise this function will abort with
an error. Other than blank pixels (with a value of GAL_BLANK_UINT8 defined in
Section 12.3.5 [Library blank values (blank.h)], page 751), all other non-zero pixels
in binary will be considered as foreground (and will be labeled). Blank pixels in the
input will also be blank in the output.

[Function]gal_data_t *
gal_binary_connected_indexs(gal_data_t *binary, int connectivity)

Build a gal_data_t linked list, where each node of the list contains an array with
indices of the connected regions. Therefore the arrays of each node can have a different
size. Note that the indices will only be calculated on the pixels with a value of 1 and
internally, it will temporarily change the values to 2 (and return them back to 1 in
the end).
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[Function]gal_data_t *
gal_binary_connected_adjacency_matrix (gal_data_t *adjacency, size_t

*numconnected)
Find the number of connected labels and new labels based on an adjacency matrix,
which must be a square binary array (type GAL_TYPE_UINT8). The returned dataset
is a list of new labels for each old label. In other words, this function will find the
objects that are connected (possibly through a third object) and in the output array,
the respective elements for all input labels is going to have the same value. The total
number of connected labels is put into the space that numconnected points to.

An adjacency matrix defines connection between two labels. For example, let’s assume
we have 5 labels and we know that labels 1 and 5 are connected to label 3, but are
not connected with each other. Also, labels 2 and 4 are not touching any other label.
So in total we have 3 final labels: one combined object (merged from labels 1, 3, and
5) and the initial labels 2 and 4. The input adjacency matrix would look like this
(note the extra row and column for a label 0 which is ignored):

INPUT OUTPUT

===== ======

in_lab 1 2 3 4 5 |

| numconnected = 3

0 0 0 0 0 0 |

in_lab 1 --> 0 0 0 1 0 0 |

in_lab 2 --> 0 0 0 0 0 0 | Returned: new labels for the

in_lab 3 --> 0 1 0 0 0 1 | 5 initial objects

in_lab 4 --> 0 0 0 0 0 0 | | 0 | 1 | 2 | 1 | 3 | 1 |

in_lab 5 --> 0 0 0 1 0 0 |

Although the adjacency matrix as used here is symmetric, currently this function
assumes that it is filled on both sides of the diagonal.

[Function]gal_data_t *
gal_binary_connected_adjacency_list (gal_list_sizet_t **listarr,

size_t number, size_t minmapsize, int quietmmap, size_t
*numconnected)

Find the number of connected labels and new labels based on an adjacency list. The
output of this function is identical to that of gal_binary_connected_adjacency_
matrix. But the major difference is that it uses a list of connected labels to each
label instead of a square adjacency matrix. This is done because when the number of
labels becomes very large (for example, on the scale of 100,000), the adjacency matrix
can consume more than 10GB of RAM!

The input list has the following format: it is an array of pointers to gal_list_sizet_
t * (or gal_list_sizet_t **). The array has number elements and each listarr[i]

is a linked list of gal_list_sizet_t *. As a demonstration, the input of the same
example in gal_binary_connected_adjacency_matrix would look like below and
the output of this function will be identical to there.

listarr[0] = NULL

listarr[1] = 3

listarr[2] = NULL
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listarr[3] = 1 -> 5

listarr[4] = NULL

listarr[5] = 3

From this example, it is already clear that this method will consume far less memory.
But because it needs to parse lists (and not easily jump between array elements), it
can be slower. But in scenarios where there are too many objects (that may exceed
the whole system’s RAM+SWAP), this option is a good alternative and the drop in
processing speed is worth getting the job done.

Similar to gal_binary_connected_adjacency_matrix, this function will write the
final number of connected labels in numconnected. But since it takes no gal_data_

t * argument (where it can inherit the minmapsize and quietmmap parameters), it
also needs these as input. For more on minmapsize and quietmmap, see Section 4.6
[Memory management], page 279.

[Function]gal_data_t *
gal_binary_holes_label (gal_data_t *input, int connectivity, size_t

*numholes)
Label all the holes in the foreground (non-zero elements in input) as independent
regions. Holes are background regions (zero-valued in input) that are fully surrounded
by the foreground, as defined by connectivity. The returned dataset has a 32-
bit signed integer type with the size of the input. All holes in the input will have
labels/counters greater or equal to 1. The rest of the background regions will still
have a value of 0 and the initial foreground pixels will have a value of -1. The total
number of holes will be written where numholes points to.

[Function]void
gal_binary_holes_fill (gal_data_t *input, int connectivity, size_t

maxsize)
Fill all the holes (0 valued pixels surrounded by 1 valued pixels) of the binary input

dataset. The connectivity of the holes can be set with connectivity. Holes larger
than maxsize are not filled. This function currently only works on a 2D dataset.

12.3.25 Labeled datasets (label.h)

A labeled dataset is one where each element/pixel has an integer label (or counter). The
label identifies the group/class that the element belongs to. This form of labeling allows
the higher-level study of all pixels within a certain class.

For example, to detect objects/targets in an image/dataset, you can apply a threshold to
separate the noise from the signal (to detect diffuse signal, a threshold is useless and more
advanced methods are necessary, for example Section 7.2 [NoiseChisel], page 541). But the
output of detection is a binary dataset (which is just a very low-level labeling of 0 for noise
and 1 for signal).

The raw detection map is therefore hardly useful for any kind of analysis on
objects/targets in the image. One solution is to use a connected-components algorithm
(see gal_binary_connected_components in Section 12.3.24 [Binary datasets (binary.h)],
page 878). It is a simple and useful way to separate/label connected patches in the
foreground. This higher-level (but still elementary) labeling therefore allows you to count
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how many connected patches of signal there are in the dataset and is a major improvement
compared to the raw detection.

However, when your objects/targets are touching, the simple connected components
algorithm is not enough and a still higher-level labeling mechanism is necessary. This
brings us to the necessity of the functions in this part of Gnuastro’s library. The main
inputs to the functions in this section are already labeled datasets (for example, with the
connected components algorithm above).

Each of the labeled regions are independent of each other (the labels specify different
classes of targets). Therefore, especially in large datasets, it is often useful to process each
label on independent CPU threads in parallel rather than in series. Therefore the functions
of this section actually use an array of pixel/element indices (belonging to each label/class)
as the main identifier of a region. Using indices will also allow processing of overlapping
labels (for example, in deblending problems). Just note that overlapping labels are not
yet implemented, but planned. You can use gal_label_indexs to generate lists of indices
belonging to separate classes from the labeled input.

[Macro]GAL_LABEL_INIT
[Macro]GAL_LABEL_RIVER
[Macro]GAL_LABEL_TMPCHECK

Special negative integer values used internally by some of the functions in this section.
Recall that meaningful labels are considered to be positive integers (≥ 1). Zero is
conventionally kept for regions with no labels, therefore negative integers can be used
for any extra classification in the labeled datasets.

[Function]gal_data_t *
gal_label_indexs (gal_data_t *labels, size_t numlabs, size_t

minmapsize, int quietmmap)
Return an array of gal_data_t containers, each containing the pixel indices of the re-
spective label (see Section 12.3.6.1 [Generic data container (gal_data_t)], page 755).
labels contains the label of each element and has to have an GAL_TYPE_INT32 type
(see Section 12.3.3 [Library data types (type.h)], page 743). Only positive (greater
than zero) values in labels will be used/indexed, other elements will be ignored.

Meaningful labels start from 1 and not 0, therefore the output array of gal_data_t
will contain numlabs+1 elements. The first (zero-th) element of the output
(indexs[0] in the example below) will be initialized to a dataset with zero elements.
This will allow easy (non-confusing) access to the indices of each (meaningful) label.

numlabs is the number of labels in the dataset. If it is given a value of zero, then
the maximum value in the input (largest label) will be found and used. Therefore
if it is given, but smaller than the actual number of labels, this function may/will
crash (it will write in un-allocated space). numlabs is therefore useful in a highly
optimized/checked environment.

For example, if the returned array is called indexs, then indexs[10].size contains
the number of elements that have a label of 10 in labels and indexs[10].array

is an array (after casting to size_t *) containing the indices of each one of those
elements/pixels.

By index we mean the 1D position: the input number of dimensions is irrelevant (any
dimensionality is supported). In other words, each element’s index is the number
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of elements/pixels between it and the dataset’s first element/pixel. Therefore it is
always greater or equal to zero and stored in size_t type.

[Function]size_t
gal_label_watershed (gal_data_t *values, gal_data_t *indexs,

gal_data_t *label, size_t *topinds, int min0_max1)
Use the watershed algorithm31 to “over-segment” the pixels in the indexs dataset
based on values in the values dataset. Internally, each local extrema (maximum or
minimum, based on min0_max1) and its surrounding pixels will be given a unique la-
bel. For demonstration, see Figures 8 and 9 of Akhlaghi and Ichikawa 2015 (http://
arxiv.org/abs/1505.01664). If topinds!=NULL, it is assumed to point to an al-
ready allocated space to write the index of each clump’s local extrema, otherwise, it
is ignored.

The values dataset must have a 32-bit floating point type (GAL_TYPE_FLOAT32, see
Section 12.3.3 [Library data types (type.h)], page 743) and will only be read by this
function. indexs must contain the indices of the elements/pixels that will be over-
segmented by this function and have a GAL_TYPE_SIZE_T type, see the description of
gal_label_indexs, above. The final labels will be written in the respective positions
of labels, which must have a GAL_TYPE_INT32 type and be the same size as values.

When indexs is already sorted, this function will ignore min0_max1. To judge if
the dataset is sorted or not (by the values the indices correspond to in values,
not the actual indices), this function will look into the bits of indexs->flag, for
the respective bit flags, see Section 12.3.6.1 [Generic data container (gal_data_t)],
page 755. If indexs is not already sorted, this function will sort it according to
the values of the respective pixel in values. The increasing/decreasing order will be
determined by min0_max1. Note that if this function is called on multiple threads
and values points to a different array on each thread, this function will not return a
reasonable result. In this case, please sort indexs prior to calling this function (see
gal_qsort_index_multi_d in Section 12.3.18 [Qsort functions (qsort.h)], page 855).

When indexs is decreasing (increasing), or min0_max1 is 1 (0), local minima (max-
ima), are considered rivers (watersheds) and given a label of GAL_LABEL_RIVER (see
above).

Note that rivers/watersheds will also be formed on the edges of the labeled regions
or when the labeled pixels touch a blank pixel. Therefore this function will need to
check for the presence of blank values. To be most efficient, it is thus recommended
to use gal_blank_present (with updateflag=1) prior to calling this function (see
Section 12.3.5 [Library blank values (blank.h)], page 751. Once the flag has been
set, no other function (including this one) that needs special behavior for blank pixels
will have to parse the dataset to see if it has blank values any more.

If you are sure your dataset does not have blank values (by the design of your soft-
ware), to avoid an extra parsing of the dataset and improve performance, you can set

31 The watershed algorithm was initially introduced by Vincent and Soille (https://doi.org/10.1109/
34.87344). It starts from the minima and puts the pixels in, one by one, to grow them until the touch
(create a watershed). For more, also see the Wikipedia article: https://en.wikipedia.org/wiki/

Watershed_%28image_processing%29.

http://arxiv.org/abs/1505.01664
http://arxiv.org/abs/1505.01664
https://doi.org/10.1109/34.87344
https://doi.org/10.1109/34.87344
https://en.wikipedia.org/wiki/Watershed_%28image_processing%29
https://en.wikipedia.org/wiki/Watershed_%28image_processing%29
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the two bits manually (see the description of flags in Section 12.3.6.1 [Generic data
container (gal_data_t)], page 755):

input->flag |= GAL_DATA_FLAG_BLANK_CH; /* Set bit to 1. */

input->flag &= ~GAL_DATA_FLAG_HASBLANK; /* Set bit to 0. */

[Function]void
gal_label_clump_significance (gal_data_t *values, gal_data_t *std,

gal_data_t *label, gal_data_t *indexs, struct
gal_tile_two_layer_params *tl, size_t numclumps, size_t
minarea, int variance, int keepsmall, gal_data_t *sig,
gal_data_t *sigind)

This function is usually called after gal_label_watershed, and is used as a measure
to identify which over-segmented “clumps” are real and which are noise.

A measurement is done on each clump (using the values and std datasets, see below).
To help in multi-threaded environments, the operation is only done on pixels which
are indexed in indexs. It is expected for indexs to be sorted by their values in
values. If not sorted, the measurement may not be reliable. If sorted in a decreasing
order, then clump building will start from their highest value and vice-versa. See the
description of gal_label_watershed for more on indexs.

Each “clump” (identified by a positive integer) is assumed to be surrounded by at
least one river/watershed pixel (with a non-positive label). This function will parse
the pixels identified in indexs and make a measurement on each clump and over all
the river/watershed pixels. The number of clumps (numclumps) must be given as an
input argument and any clump that is smaller than minarea is ignored (because of
scatter). If variance is non-zero, then the std dataset is interpreted as variance, not
standard deviation.

The values and std datasets must have a float (32-bit floating point) type. Also,
label and indexs must respectively have int32 and size_t types. values and
label must have the same size, but std can have three possible sizes: 1) a single
element (which will be used for the whole dataset, 2) the same size as values (so a
different error can be assigned to every pixel), 3) a single value for each tile, based
on the tl tessellation (see Section 12.3.15.2 [Tile grid], page 845). In the last case, a
tile/value will be associated to each clump based on its flux-weighted (only positive
values) center.

The main output is an internally allocated, 1-dimensional array with one value per
label. The array information (length, type, etc.) will be written into the sig generic
data container. Therefore sig->array must be NULL when this function is called.
After this function, the details of the array (number of elements, type and size, etc)
will be written in to the various components of sig, see the definition of gal_data_t
in Section 12.3.6.1 [Generic data container (gal_data_t)], page 755. Therefore sig

must already be allocated before calling this function.

Optionally (when sigind!=NULL, similar to sig) the clump labels of each measure-
ment in sig will be written in sigind->array. If keepsmall zero, small clumps
(where no measurement is made) will not be included in the output table.

This function is initially intended for a multi-threaded environment. In such cases,
you will be writing arrays of clump measures from different regions in parallel into an
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array of gal_data_ts. You can simply allocate (and initialize), such an array with the
gal_data_array_calloc function in Section 12.3.6.3 [Arrays of datasets], page 761.
For example, if the gal_data_t array is called array, you can pass &array[i] as
sig.

Along with some other functions in label.h, this function was initially written for
Section 7.3 [Segment], page 561. The description of the parameter used to measure a
clump’s significance is fully given in Akhlaghi 2019 (https://arxiv.org/abs/1909.
11230).

[Function]void
gal_label_grow_indexs (gal_data_t *labels, gal_data_t *indexs, int

withrivers, int connectivity)
Grow the (positive) labels of labels over the pixels in indexs (see description of
gal_label_indexs). The pixels (position in indexs, values in labels) that must be
“grown” must have a value of GAL_LABEL_INIT in labels before calling this function.
For a demonstration see Columns 2 and 3 of Figure 10 in Akhlaghi and Ichikawa 2015
(http://arxiv.org/abs/1505.01664).

In many aspects, this function is very similar to over-segmentation (watershed algo-
rithm, gal_label_watershed). The big difference is that in over-segmentation local
maximums (that are not touching any already labeled pixel) get a separate label.
However, here the final number of labels will not change. All pixels that are not
directly touching a labeled pixel just get pushed back to the start of the loop, and
the loop iterates until its size does not change any more. This is because in a generic
scenario some of the indexed pixels might not be reachable through other indexed
pixels.

The next major difference with over-segmentation is that when there is only one label
in growth region(s), it is not mandatory for indexs to be sorted by values. If there
are multiple labeled regions in growth region(s), then values are important and you
can use qsort with gal_qsort_index_single_d to sort the indices by values in a
separate array (see Section 12.3.18 [Qsort functions (qsort.h)], page 855).

This function looks for positive-valued neighbors of each pixel in indexs and will label
a pixel if it touches one. Therefore, it is very important that only pixels/labels that
are intended for growth have positive values in labels before calling this function.
Any non-positive (zero or negative) value will be ignored as a label by this function.
Thus, it is recommended that while filling in the indexs array values, you initialize
all the pixels that are in indexs with GAL_LABEL_INIT, and set non-labeled pixels
that you do not want to grow to 0.

This function will write into both the input datasets. After this function, some of
the non-positive labels pixels will have a new positivelabel and the number of useful
elements in indexs will have decreased. The index of those pixels that could not be
labeled will remain inside indexs. If withrivers is non-zero, then pixels that are
immediately touching more than one positive value will be given a GAL_LABEL_RIVER

label.

https://arxiv.org/abs/1909.11230
https://arxiv.org/abs/1909.11230
http://arxiv.org/abs/1505.01664
http://arxiv.org/abs/1505.01664
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Note that the indexs->array is not re-allocated to its new size at the end32. But
since indexs->dsize[0] and indexs->size have new values after this function is
returned, the extra elements just will not be used until they are ultimately freed by
gal_data_free.

Connectivity is a value between 1 (fewest number of neighbors) and the number of
dimensions in the input (most number of neighbors). For example, in a 2D dataset,
a connectivity of 1 and 2 corresponds to 4-connected and 8-connected neighbors.

12.3.26 Convolution functions (convolve.h)

Convolution is a very common operation during data analysis and is thoroughly described
as part of Gnuastro’s Section 6.3 [Convolve], page 469, program which is fully devoted to
this job. Because of the complete introduction that was presented there, we will directly
skip onto the currently available convolution functions in Gnuastro’s library.

As of this version, only spatial domain convolution is available in Gnuastro’s libraries.
We have not had the time to liberate the frequency domain function convolution and de-
convolution functions that are available in the Convolve program33.

[Function]gal_data_t *
gal_convolve_spatial (gal_data_t *tiles, gal_data_t *kernel, size_t

numthreads, int edgecorrection, int convoverch, int
conv_on_blank)

Convolve the given tiles dataset (possibly a list of tiles, see Section 12.3.8.9 [List of
gal_data_t], page 784, and Section 12.3.15 [Tessellation library (tile.h)], page 839)
with kernel on numthreads threads. When edgecorrection is non-zero, it will
correct for the edge dimming effects as discussed in Section 6.3.1.2 [Edges in the
spatial domain], page 471. When conv_on_blank is non-zero, this function will also
attempt convolution over the blank pixels (and therefore give values to the blank
pixels that are near non-blank pixels).

tiles can be a single/complete dataset, but in that case the speed will be very
slow. Therefore, for larger images, it is recommended to give a list of tiles covering a
dataset. To create a tessellation that fully covers an input image, you may use gal_

tile_full, or gal_tile_full_two_layers to also define channels over your input
dataset. These functions are discussed in Section 12.3.15.2 [Tile grid], page 845. You
may then pass the list of tiles to this function. This is the recommended way to call
this function because spatial domain convolution is slow and breaking the job into
many small tiles and working on simultaneously on several threads can greatly speed
up the processing.

If the tiles are defined within a channel (a larger tile), by default convolution will be
done within the channel, so pixels on the edge of a channel will not be affected by
their neighbors that are in another channel. See Section 4.8 [Tessellation], page 289,
for the necessity of channels in astronomical data analysis. This behavior may be
disabled when convoverch is non-zero. In this case, it will ignore channel borders (if
they exist) and mix all pixels that cover the kernel within the dataset.

32 Note that according to the GNU C Library, even a realloc to a smaller size can also cause a re-write of
the whole array, which is not a cheap operation.

33 Hence any help would be greatly appreciated.
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[Function]void
gal_convolve_spatial_correct_ch_edge (gal_data_t *tiles, gal_data_t

*kernel, size_t numthreads, int edgecorrection, int
conv_on_blank, gal_data_t *tocorrect)

Correct the edges of channels in an already convolved image when it was initially
convolved with gal_convolve_spatial and convoverch==0. In that case, strong
boundaries might exist on the channel edges. So if you later need to remove those
boundaries at later steps of your processing, you can call this function. It will only
do convolution on the tiles that are near the edge and were effected by the channel
borders. Other pixels in the image will not be touched. Hence, it is much faster.
When conv_on_blank is non-zero, this function will also attempt convolution over
the blank pixels (and therefore give values to the blank pixels that are near non-blank
pixels).

12.3.27 Pooling functions (pool.h)

Pooling is the process of reducing the complexity of the input image (its size and variation of
pixel values). Its underlying concepts, and an analysis of its usefulness, is fully described in
Section 6.2.4.9 [Pooling operators], page 426. The following functions are available pooling
in Gnuastro. Just note that unlike the Arithmetic operators, the output of these functions
should contain a correct WCS in their output.

[Function]gal_data_t *
gal_pool_max (gal_data_t *input, size_t psize, size_t numthreads)

Return the max-pool of input, assuming a pool size of psize pixels. The number of
threads to use can be set with numthreads.

[Function]gal_data_t *
gal_pool_min (gal_data_t *input, size_t psize, size_t numthreads)

Return the min-pool of input, assuming a pool size of psize pixels. The number of
threads to use can be set with numthreads.

[Function]gal_data_t *
gal_pool_sum (gal_data_t *input, size_t psize, size_t numthreads)

Return the sum-pool of input, assuming a pool size of psize pixels. The number of
threads to use can be set with numthreads.

[Function]gal_data_t *
gal_pool_mean (gal_data_t *input, size_t psize, size_t numthreads)

Return the mean-pool of input, assuming a pool size of psize pixels. The number
of threads to use can be set with numthreads.

[Function]gal_data_t *
gal_pool_median (gal_data_t *input, size_t psize, size_t numthreads)

Return the median-pool of input, assuming a pool size of psize pixels. The number
of threads to use can be set with numthreads.

12.3.28 Interpolation (interpolate.h)

During data analysis, it happens that parts of the data cannot be given a value, but one
is necessary for the higher-level analysis. For example, a very bright star saturated part of
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your image and you need to fill in the saturated pixels with some values. Another common
usage case are masked sky-lines in 1D spectra that similarly need to be assigned a value
for higher-level analysis. In other situations, you might want a value in an arbitrary point:
between the elements/pixels where you have data. The functions described in this section
are for such operations.

The parametric interpolations discussed below are wrappers around the interpolation
functions of the GNU Scientific Library (or GSL, see Section 3.1.1.1 [GNU Scientific
Library], page 212). To identify the different GSL interpolation types, Gnuastro’s
gnuastro/interpolate.h header file contains macros that are discussed below. The GSL
wrappers provided here are not yet complete because we are too busy. If you need them,
please consider helping us in adding them to Gnuastro’s library. Your contributions would
be very welcome and appreciated.

[Macro]GAL_INTERPOLATE_NEIGHBORS_METRIC_RADIAL
[Macro]GAL_INTERPOLATE_NEIGHBORS_METRIC_MANHATTAN
[Macro]GAL_INTERPOLATE_NEIGHBORS_METRIC_INVALID

The metric used to find distance for nearest neighbor interpolation. A radial metric
uses the simple Euclidean function to find the distance between two pixels. A man-
hattan metric will always be an integer and is like steps (but is also much faster to
calculate than radial metric because it does not need a square root calculation).

[Macro]GAL_INTERPOLATE_NEIGHBORS_FUNC_MIN
[Macro]GAL_INTERPOLATE_NEIGHBORS_FUNC_MAX
[Macro]GAL_INTERPOLATE_NEIGHBORS_FUNC_MEAN
[Macro]GAL_INTERPOLATE_NEIGHBORS_FUNC_MEDIAN
[Macro]GAL_INTERPOLATE_NEIGHBORS_FUNC_INVALID

The various types of nearest-neighbor interpolation functions for gal_interpolate_
neighbors. The names are descriptive for the operation they do, so we will not go
into much more detail here. The median operator will be one of the most used, but
operators like the maximum are good to fill the center of saturated stars.

[Function]gal_data_t *
gal_interpolate_neighbors (gal_data_t *input, struct

gal_tile_two_layer_params *tl, uint8_t metric, size_t
numneighbors, size_t numthreads, int onlyblank, int
aslinkedlist, int function)

Interpolate the values in the input dataset using a calculated statistics from the distri-
bution of their numneighbors closest neighbors. The desired statistics is determined
from the func argument, which takes any of the GAL_INTERPOLATE_NEIGHBORS_FUNC_
macros (see above). This function is non-parametric and thus agnostic to the input’s
number of dimension or shape of the distribution.

Distance can be defined on different metrics that are identified through metric (taking
values determined by the GAL_INTERPOLATE_NEIGHBORS_METRIC_ macros described
above). If onlyblank is non-zero, then only blank elements will be interpolated and
pixels that already have a value will be left untouched. This function is multi-threaded
and will run on numthreads threads (see gal_threads_number in Section 12.3.2 [Mul-
tithreaded programming (threads.h)], page 739).
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tl is Gnuastro’s tessellation structure used to define tiles over an image and is fully de-
scribed in Section 12.3.15.2 [Tile grid], page 845. When tl!=NULL, then it is assumed
that the input->array contains one value per tile and interpolation will respect cer-
tain tessellation properties, for example, to not interpolate over channel borders.

If several datasets have the same set of blank values, you do not need to call this
function multiple times. When aslinkedlist is non-zero, then input will be seen as
a Section 12.3.8.9 [List of gal_data_t], page 784. In this case, the same neighbors
will be used for all the datasets in the list. Of course, the values for each dataset
will be different, so a different value will be written in each dataset, but the neighbor
checking that is the most CPU intensive part will only be done once.

This is a non-parametric and robust function for interpolation. The interpolated
values are also always within the range of the non-blank values and strong outliers
do not get created. However, this type of interpolation must be used with care when
there are gradients. This is because it is non-parametric and if there are not enough
neighbors, step-like features can be created.

[Macro]GAL_INTERPOLATE_1D_INVALID
This is just a place-holder to manage errors.

[Macro]GAL_INTERPOLATE_1D_LINEAR
[From GSL:] Linear interpolation. This interpolation method does not require any
additional memory.

[Macro]GAL_INTERPOLATE_1D_POLYNOMIAL
[From GSL:] Polynomial interpolation. This method should only be used for inter-
polating small numbers of points because polynomial interpolation introduces large
oscillations, even for well-behaved datasets. The number of terms in the interpolating
polynomial is equal to the number of points.

[Macro]GAL_INTERPOLATE_1D_CSPLINE
[From GSL:] Cubic spline with natural boundary conditions. The resulting curve is
piece-wise cubic on each interval, with matching first and second derivatives at the
supplied data-points. The second derivative is chosen to be zero at the first point and
last point.

[Macro]GAL_INTERPOLATE_1D_CSPLINE_PERIODIC
[From GSL:] Cubic spline with periodic boundary conditions. The resulting curve is
piece-wise cubic on each interval, with matching first and second derivatives at the
supplied data-points. The derivatives at the first and last points are also matched.
Note that the last point in the data must have the same y-value as the first point,
otherwise the resulting periodic interpolation will have a discontinuity at the bound-
ary.

[Macro]GAL_INTERPOLATE_1D_AKIMA
[From GSL:] Non-rounded Akima spline with natural boundary conditions. This
method uses the non-rounded corner algorithm of Wodicka.

[Macro]GAL_INTERPOLATE_1D_AKIMA_PERIODIC
[From GSL:] Non-rounded Akima spline with periodic boundary conditions. This
method uses the non-rounded corner algorithm of Wodicka.
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[Macro]GAL_INTERPOLATE_1D_STEFFEN
[From GSL:] Steffen’s method34 guarantees the monotonicity of the interpolating func-
tion between the given data points. Therefore, minima and maxima can only occur
exactly at the data points, and there can never be spurious oscillations between data
points. The interpolated function is piece-wise cubic in each interval. The result-
ing curve and its first derivative are guaranteed to be continuous, but the second
derivative may be discontinuous.

[Function]gsl_spline *
gal_interpolate_1d_make_gsl_spline (gal_data_t *X, gal_data_t *Y, int

type_1d)
Allocate and initialize a GNU Scientific Library (GSL) 1D gsl_spline structure
using the non-blank elements of Y. type_1d identifies the interpolation scheme and
must be one of the GAL_INTERPOLATE_1D_* macros defined above.

If X==NULL, the X-axis is assumed to be integers starting from zero (the index of each
element in Y). Otherwise, the values in X will be used to initialize the interpolation
structure. Note that when given, X must not contain any blank elements and it must
be sorted (in increasing order).

Each interpolation scheme needs a minimum number of elements to successfully op-
erate. If the number of non-blank values in Y is less than this number, this function
will return a NULL pointer.

To be as generic and modular as possible, GSL’s tools are low-level. Therefore before
doing the interpolation, many steps are necessary (like preparing your dataset, then
allocating and initializing gsl_spline). The metadata available in Gnuastro’s Sec-
tion 12.3.6.1 [Generic data container (gal_data_t)], page 755, make it easy to hide
all those preparations within this function.

Once gsl_spline has been initialized by this function, the interpolation can be evalu-
ated for any X value within the non-blank range of the input using gsl_spline_eval

or gsl_spline_eval_e.

For example, in the small program below (sample-interp.c), we read the first two
columns of the table in table.txt and feed them to this function to later estimate
the values in the second column for three selected points. You can use Section 12.2
[BuildProgram], page 732, to compile and run this function, see Section 12.4 [Library
demo programs], page 910, for more.

Contents of the table.txt file:

$ cat table.txt

0 0

1 2

3 6

4 8

6 12

8 16

9 18

34 http://adsabs.harvard.edu/abs/1990A%26A...239..443S

http://adsabs.harvard.edu/abs/1990A%26A...239..443S
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Contents of the sample-interp.c file:

#include <stdio.h>

#include <stdlib.h>

#include <gnuastro/table.h>

#include <gnuastro/interpolate.h>

int

main(void)

{

size_t i;

gal_data_t *X, *Y;

gsl_spline *spline;

gsl_interp_accel *acc;

gal_list_str_t *cols=NULL;

/* Change the values based on your input table. */

double points[]={1.8, 2.5, 7};

/* Read the first two columns from `tab.txt'.

IMPORTANT: the list is first-in-first-out, so the output

column order is the inverse of the input order. */

gal_list_str_add(&cols, "1", 0);

gal_list_str_add(&cols, "2", 0);

Y=gal_table_read("table.txt", NULL, NULL, cols,

GAL_TABLE_SEARCH_NAME, 0, 1, -1, 1, NULL);

X=Y->next;

/* Allocate the GSL interpolation accelerator and make the

`gsl_spline' structure. */

acc=gsl_interp_accel_alloc();

spline=gal_interpolate_1d_make_gsl_spline(X, Y,

GAL_INTERPOLATE_1D_STEFFEN);

/* Calculate the respective value for all the given points,

if `spline' could be allocated. */

if(spline)

for(i=0; i<(sizeof points)/(sizeof *points); ++i)

printf("%f: %f\n", points[i],

gsl_spline_eval(spline, points[i], acc));

/* Clean up and return. */

gal_data_free(X);

gal_data_free(Y);

gsl_spline_free(spline);

gsl_interp_accel_free(acc);

gal_list_str_free(cols, 0);
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return EXIT_SUCCESS;

}

Compile and run this program with Section 12.2 [BuildProgram], page 732, to see the
interpolation results for the three points within the program.

$ astbuildprog sample-interp.c --quiet

1.800000: 3.600000

2.500000: 5.000000

7.000000: 14.000000

[Function]void
gal_interpolate_1d_blank (gal_data_t *in, int type_1d)

Fill the blank elements of in using the rest of the elements and the given interpolation.
The interpolation scheme can be set through type_1d, which accepts any of the
GAL_INTERPOLATE_1D_* macros above. The interpolation is internally done in 64-bit
floating point type (double). However the evaluated/interpolated values (originally
blank) will be written (in in) with its original numeric datatype, using C’s standard
type conversion.

By definition, interpolation is only defined “between” valid points. Therefore, if any
number of elements on the start or end of the 1D array are blank, those elements
will not be interpolated and will remain blank. To see if any blank (non-interpolated)
elements remain, you can use gal_blank_present on in after this function is finished.

12.3.29 Warp library (warp.h)

Warping an image to a new pixel grid is commonly necessary as part of astronomical data
reduction, for an introduction, see Section 6.4 [Warp], page 492. For details of how we
resample the old pixel grid to the new pixel grid, see Section 6.4.3 [Resampling], page 495.
Gnuastro’s Warp program uses the following functions for its default mode (when no linear
warps are requested). Through the following functions, you can directly access those fea-
tures in your own custom programs. The linear warping operations of the Warp program
aren’t yet brought into the library. If you need them please get in touch with us at bug-
gnuastro@gnu.org. For usage examples of this library, please see Section 12.4.5 [Library
demo - Warp to another image], page 921, or Section 12.4.6 [Library demo - Warp to new
grid], page 924.

You are free to provide any valid WCS keywords to the functions defined in this library
using the gal_warp_wcsalign_t data type. This might be used to align the input image
to the standard WCS grid, potentially changing the pixel scale, removing any valid WCS
non-linear distortion available, and projecting to any valid WCS projection type. Further
details of the warp library functions and parameters are shown below:

[Macro]GAL_WARP_OUTPUT_NAME_WARPED
[Macro]GAL_WARP_OUTPUT_NAME_MAXFRAC

Names of the output datasets (in the name component of the output gal_data_ts).
By default the output is only a single dataset, but when the checkmaxfrac component
of the input is non-zero, it will contain two datasets.
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[Type (C struct)]gal_warp_wcsalign_t
The main data container for inputs, output and internal variables to simplify the
WCS-aligning functions. Due to the large number of input variables, this structure
makes it easy to call the main functions. Similar to gal_data_t, the gal_warp_

wcsalign_t is a structure typedef’d as a new type, see Section 12.3.6 [Data container
(data.h)], page 755. Please note that this structure has elements that are allocated
dynamically and must be freed after usage. gal_warp_wcsalign_free only frees the
internal variables, so you are responsible for freeing your own inputs (cdelt, input,
etc.) and the output. The internal variables are cached here to cut cpu-intensive
computations. To prevent from using uninitialized variables, we recommend using
the helper function gal_warp_wcsalign_template to get a clean structure before
setting your own variables. The structure and each of its elements are defined below:

typedef struct

{

/* Arguments given (and later freed) by the caller. If 'twcs' is

given, then the "WCS To build" elements will be ignored. */

gal_data_t *input;

size_t numthreads;

double coveredfrac;

size_t edgesampling;

gal_data_t *widthinpix;

uint8_t checkmaxfrac;

struct wcsprm *twcs; /* WCS Predefined. */

gal_data_t *ctype; /* WCS To build. */

gal_data_t *cdelt; /* WCS To build. */

gal_data_t *center; /* WCS To build. */

/* Output (must be freed by caller) */

gal_data_t *output;

/* Internal variables (allocated and freed internally) */

size_t v0;

size_t nhor;

size_t ncrn;

size_t gcrn;

int isccw;

gal_data_t *vertices;

} gal_warp_wcsalign_t;

gal_data_t *input

The input dataset. This dataset must contain both the image array of
type GAL_TYPE_FLOAT64, and input->wcs should not be NULL for the
WCS-aligning operations to work, see Section 12.4.6 [Library demo -
Warp to new grid], page 924.

size_t numthreads

Number of threads to use during the WCS aligning operations. If the
given value is 0, the library will calculate the number of available threads
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at run-time. The warp library functions are thread-safe so you can freely
enjoy the merits of parallel processing.

double coveredfrac

Acceptable fraction of output pixel that is covered by input pixels. The
value should be between 0 and 1 (inclusive). If the area of an output
pixel is covered by less than this fraction, its value will be NaN. For more,
see the description of --coveredfrac in Section 6.4.4 [Invoking Warp],
page 497.

size_t edgesampling

Set the number of extra vertices along each edge of the output pixel’s poly-
gon to account for potential curvature due to projection or distortion. A
value of 0 is usually enough for this (so the pixel is only defined by a four
vertice polygon. Greater values increase memory usage and program ex-
ecution time. For more, please see the description of --edgesampling in
Section 6.4.4.1 [Align pixels with WCS considering distortions], page 499.

gal_data_t *widthinpix

Output image size (width and height) in number of pixels. If a NULL

pointer is passed, the WCS-aligning operations will estimate the output
image size internally such that it contains the full input. This dataset
should have a type of GAL_TYPE_SIZE_T and contain exactly two odd val-
ues. This ensures that the center of the central pixel lies at the requested
central coordinate (note that an image with an even number of pixels
doesn’t have a “central” pixel!

struct wcsprm *twcs

The target grid WCS which must follow the standard WCSLIB structure.
You can read it from a file using gal_wcs_read or create an entirely
new one with gal_wcs_create and later free it with gal_wcs_free, see
Section 12.3.13 [World Coordinate System (wcs.h)], page 817. If this
element is given, the ctype, cdelt and center elements (which are used
to construct a WCS internally) are ignored.

Please note that the wcsprm structure doesn’t contain the image size. To
set the final image size, you should use widthinpix.

gal_data_t *ctype

The output’s projection type. The dataset has to have the type GAL_

TYPE_STRING, containing exactly two strings. Both strings will be directly
passed to WCSLIB and should conform to the FITS standard’s CTYPEi
keywords, see the description of --ctype in Section 6.4.4.1 [Align pixels
with WCS considering distortions], page 499. For example, "RA---TAN"
and "DEC--TAN", or "RA---HPX" and "DEC--HPX".

gal_data_t *cdelt

Output pixel scale (size of pixel in the WCS units: value to CUNITi

keywords in FITS, usually degrees). The dataset should have a type
of GAL_TYPE_FLOAT64 and contain exactly two values. Hint: to convert
arcsec to degrees, just divide by 3600.



Chapter 12: Library 896

gal_data_t *center

WCS coordinate of the center of the central pixel of the output. The
units depend on the WCS, for example, if the CUNITi keywords are deg,
it is in degrees. This dataset should have a type of GAL_TYPE_FLOAT64
and contain exactly two values.

uint8_t checkmaxfrac

When this is non-zero, the output will be a two-element Section 12.3.8.9
[List of gal_data_t], page 784. The second element shows the Moiré
pattern (https://en.wikipedia.org/wiki/Moir%C3%A9_pattern) of
the warp. For more, see Section 2.9 [Moiré pattern in stacking and its
correction], page 191.

[Function]gal_warp_wcsalign_t
gal_warp_wcsalign_template (void)

A high-level helper function that returns a clean gal_warp_wcsalign_t struct with
all values initialized This function returns a copy of a statically allocated structure.
So you don’t need to free the returned structure.

The Warp library decides on the program flow based on this struct. Uninitialized
pointers can point to random space in RAM which can create segmentation faults, or
even worse, produce unnoticed side-effects. It is therefore good practice to manually
set unused pointers to NULL and give blank values to numbers Since there are many
variables and pointers in gal_warp_wcsalign_t, it is easy to forget initializing them.
With that said, we recommend using this function to minimize human error.

[Function]void
gal_warp_wcsalign (gal_warp_wcsalign_t *wa)

A high-level function to align the input dataset’s pixels to its WCS coordinates and
write the result in wa->output. This function assumes that the input variables have
already been set in the wa structure. The input variables are clearly shown in the
definition of gal_warp_wcsalign_t. It will call the lower level functions below to do
the job and will free the internal variables afterwards.

The following low-level functions are called from the high-level gal_warp_wcsalign func-
tion. They are provided here in scenarios where fine grain control over the thread workflow
is necessary, see Section 12.3.2 [Multithreaded programming (threads.h)], page 739.

[Function]void
gal_warp_wcsalign_init (gal_warp_wcsalign_t *wa)

Low-level function to initialize all the elements inside the wa structure assuming that
the input variables have been set. The input variables are clearly shown in the defi-
nition of gal_warp_wcsalign_t. This includes sanity checking the input arguments,
as well as allocating the output image’s empty pixels (that can be filled with gal_

warp_wcsalign_onpix, possibly on threads).

[Function]void
gal_warp_wcsalign_onpix (gal_warp_wcsalign_t *nl, size_t ind)

Low-level function that fills pixel ind (counting from 0) in the already initialized
output image.

https://en.wikipedia.org/wiki/Moir%C3%A9_pattern
https://en.wikipedia.org/wiki/Moir%C3%A9_pattern
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[Function]void *
gal_warp_wcsalign_onthread (void *inparam)

Low-level worker function that can be passed to the high-level gal_threads_spin_
off or the lower-level pthread_create with some modifications, see Section 12.3.2
[Multithreaded programming (threads.h)], page 739.

[Function]void
gal_warp_wcsalign_free (gal_warp_wcsalign_t *wa)

Low-level function to free the internal variables inside wa only. The caller must free
the input pointers themselves, this function will not free them (they may be necessary
in other parts of the caller’s higher-level architecture).

[Function]void
gal_warp_pixelarea (gal_warp_wcsalign_t *wa)

Calculate each input pixel’s area based on its WCS and save it to a copy of the input
image with only one difference: the pixel values now show pixel area. For examples
on its usage, see Section 5.1.1.3 [Pixel information images], page 313.

12.3.30 Color functions (color.h)

The available pre-defined colors in Gnuastro are shown and discussed in Section 5.2.3.3
[Vector graphics colors], page 320. This part of Gnuastro is currently in charge of mapping
the color names to the color IDs and to return the red-green-blue fractions of each color.
On a terminal that supports 24-bit (true color), you can see the full list of color names and
a demo of each color with this command:

$ astconvertt --listcolors

For each color we have a separate macro that starts with GAL_COLOR_, and ends with the
color name in all-caps.

[Macro]GAL_COLOR_INVALID
[Macro]GAL_COLOR_MEDIUMVIOLETRED
[Macro]GAL_COLOR_DEEPPINK
[Macro]GAL_COLOR_*

The integer identifiers for each of the named colors in Gnuastro. Except for the
first one (GAL_COLOR_INVALID), we currently have 140 colors from the extended web
colors (https://en.wikipedia.org/wiki/Web_colors#Extended_colors). The full
list of colors and a demo can be visually inspected on the command-line with the
astconvertt --listcolors command and is also shown in Section 5.2.3.3 [Vector
graphics colors], page 320. The macros have the same names, just in full-caps.

The functions below can be used to interact with the pre-defined colors:

[Function]uint8_t
gal_color_name_to_id (char *name)

Given the name of a color, return the identifier. The name matching is not case-
sensitive.

[Function]char *
gal_color_id_to_name (uint8_t color)

Given the ID of a color, return its name.

https://en.wikipedia.org/wiki/Web_colors#Extended_colors
https://en.wikipedia.org/wiki/Web_colors#Extended_colors
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[Function]void
gal_color_in_rgb (uint8_t color, float *f)

Given the identifier of a color, write the color’s red-green-blue fractions in the space
that f points to. It is up to the caller to have the space for three 32-bit floating point
numbers to be already allocated before calling this function.

12.3.31 Git wrappers (git.h)

Git is one of the most common tools for version control and it can often be useful dur-
ing development, for example, see COMMIT keyword in Section 4.10 [Output FITS files],
page 291. At installation time, Gnuastro will also check for the existence of libgit2, and
store the value in the GAL_CONFIG_HAVE_LIBGIT2, see Section 12.3.1 [Configuration in-
formation (config.h)], page 737, and Section 3.1.2 [Optional dependencies], page 214.
gnuastro/git.h includes gnuastro/config.h internally, so you will not have to include
both for this macro.

[Function]char *
gal_git_describe ( )

When libgit2 is present and the program is called within a directory that is version
controlled, this function will return a string containing the commit description (similar
to Gnuastro’s unofficial version number, see Section 1.7 [Version numbering], page 11).
If there are uncommitted changes in the running directory, it will add a ‘-dirty’
prefix to the description. When there is no tagged point in the previous commit, this
function will return a uniquely abbreviated commit object as fallback. This function
is used for generating the value of the COMMIT keyword in Section 4.10 [Output FITS
files], page 291. The output string is similar to the output of the following command:

$ git describe --dirty --always

Space for the output string is allocated within this function, so after using the value
you have to free the output string. If libgit2 is not installed or the program calling
this function is not within a version controlled directory, then the output will be the
NULL pointer.

12.3.32 Python interface (python.h)

Python (https://en.wikipedia.org/wiki/Python_(programming_language)) is a high-
level interpreted programming language that is used by some for data analysis. Python
itself is written in C, which is the same language that Gnuastro is written in. Hence Gnuas-
tro’s library can be directly used in Python wrappers. The functions in this section provide
some low-level features to simplify the creation of Python modules that may want to use
Gnuastro’s advanced and powerful features directly. To see why Gnuastro was written in
C, please see Section 13.1 [Why C programming language?], page 928.

https://en.wikipedia.org/wiki/Python_(programming_language)
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� �
Python interface is not built by default: to have the features described in this section, Gnu-
astro’s library needs to be built with the --with-python configuration option. For more,
on this configuration option, see Section 3.3.1.1 [Gnuastro configure options], page 231. To
see if the Gnuastro library that you are linking with has these features, you can check the
value of GAL_CONFIG_HAVE_PYTHON macro, see Section 12.3.1 [Configuration information
(config.h)], page 737.
 	

The Gnuastro Python Package is built using CPython. This entails using Python wrap-
pers around currently existing Gnuastro library functions to build Python Extension Mod-
ules (https://docs.python.org/3/extending/extending.html#). It also makes use of
the NumPy C-API (https://numpy.org/doc/stable/reference/c-api/index.html) for
dealing with data arrays. Writing an interface between these and Gnuastro can be sim-
plified using the functions below. Since many of these functions depend on the Gnuastro
Library itself, it is more convenient to package them with the Library to facilitate the work
of Python package. These functions will be expanding as Gnuastro’s own Python module
(pyGnuastro) grows.

The Python interface of Gnuastro’s library is built and installed by default if a Python
3.0.0 or greater with NumPy is found in $PATH. Users may disable this interface with the
--without-python option to ./configure when they installed Gnuastro, see Section 3.3.1.1
[Gnuastro configure options], page 231. If you have problems in a Python virtual env, see
Section 3.1.2 [Optional dependencies], page 214.

Because Python is an optional dependency of Gnuastro, the following functions may
not be available on some systems. To check if the installed Gnuastro library was compiled
with the following functions, you can use the GAL_CONFIG_HAVE_PYTHON macro which is
defined in gnuastro/config.h, see Section 12.3.1 [Configuration information (config.h)],
page 737.

[Function]int
gal_python_type_to_numpy (uint8_t type)

Returns the NumPy datatype corresponding to a certain Gnuastro type, see Sec-
tion 12.3.3 [Library data types (type.h)], page 743.

[Function]uint8_t
gal_python_type_from_numpy (int type)

Returns Gnuastro’s numerical datatype that corresponds to the input NumPy
type. For Gnuastro’s recognized data types, see Section 12.3.3 [Library data types
(type.h)], page 743.

12.3.33 Unit conversion library (units.h)

Datasets can contain values in various formats or units. The functions in this section are
defined to facilitate the easy conversion between them and are declared in units.h. If there
are certain conversions that are useful for your work, please get in touch.

https://docs.python.org/3/extending/extending.html#
https://docs.python.org/3/extending/extending.html#
https://numpy.org/doc/stable/reference/c-api/index.html


Chapter 12: Library 900

[Function]int
gal_units_extract_decimal (char *convert, const char *delimiter,

double *args, size_t n)
Parse the input convert string with a certain delimiter (for example, 01:23:45, where
the delimiter is ":") as multiple numbers (for example, 1,23,45) and write them as
an array in the space that args is pointing to. The expected number of values in the
string is specified by the n argument (3 in the example above).

If the function succeeds, it will return 1, otherwise it will return 0 and the values may
not be fully written into args. If the number of values parsed in the string is different
from n, this function will fail.

[Function]double
gal_units_ra_to_degree (char *convert)

Convert the input Right Ascension (RA) string (in the format of hours, minutes and
seconds either as _h_m_s or _:_:_) to degrees (a single floating point number).

[Function]double
gal_units_dec_to_degree (char *convert)

Convert the input Declination (Dec) string (in the format of degrees, arc-minutes and
arc-seconds either as _d_m_s or _:_:_) to degrees (a single floating point number).

[Function]char *
gal_units_degree_to_ra (double decimal, int usecolon)

Convert the input Right Ascension (RA) degree (a single floating point number) to
old/standard notation (in the format of hours, minutes and seconds of _h_m_s). If
usecolon!=0, then the delimiters between the components will be colons: _:_:_.

[Function]char *
gal_units_degree_to_dec (double decimal, int usecolon)

Convert the input Declination (Dec) degree (a single floating point number) to
old/standard notation (in the format of degrees, arc-minutes and arc-seconds of
_d_m_s). If usecolon!=0, then the delimiters between the components will be
colons: _:_:_.

[Function]double
gal_units_counts_to_mag (double counts, double zeropoint)

Convert counts to magnitudes through the given zero point. For more on the equation,
see Section 7.4.2 [Brightness, Flux, Magnitude and Surface brightness], page 574.

[Function]double
gal_units_mag_to_counts (double mag, double zeropoint)

Convert magnitudes to counts through the given zero point. For more on the equation,
see Section 7.4.2 [Brightness, Flux, Magnitude and Surface brightness], page 574.

[Function]double
gal_units_mag_to_sb (double mag, double area_arcsec2)

Calculate the surface brightness of a given magnitude, over a certain area in units
of arcsec2. For more on the equation, see Section 7.4.2 [Brightness, Flux, Magnitude
and Surface brightness], page 574.
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[Function]double
gal_units_sb_to_mag (double sb, double area_arcsec2)

Calculate the magnitude of a given surface brightness, over a certain area in units
of arcsec2. For more on the equation, see Section 7.4.2 [Brightness, Flux, Magnitude
and Surface brightness], page 574.

[Function]double
gal_units_counts_to_sb (double counts, double zeropoint_ab, double

area_arcsec2)
Calculate the surface brightness of a given count level, over a certain area in units of
arcsec2, assuming a certain AB zero point. For more on the equation, see Section 7.4.2
[Brightness, Flux, Magnitude and Surface brightness], page 574.

[Function]double
gal_units_sb_to_counts (double sb, double zeropoint_ab, double

area_arcsec2)
Calculate the counts corresponding to a given surface brightness, over a certain area
in units of arcsec2. For more on the equation, see Section 7.4.2 [Brightness, Flux,
Magnitude and Surface brightness], page 574.

[Function]double
gal_units_counts_to_jy (double counts, double zeropoint_ab)

Convert counts to Janskys through an AB magnitude-based zero point. For more on
the equation, see Section 7.4.2 [Brightness, Flux, Magnitude and Surface brightness],
page 574.

[Function]double
gal_units_au_to_pc (double au)

Convert the input value (assumed to be in Astronomical Units) to Parsecs. For
the conversion equation, see the description of au-to-pc operator in Section 6.2.4
[Arithmetic operators], page 408.

[Function]double
gal_units_counts_to_nanomaggy (double counts, double zeropoint_ab)

Convert counts to Nanomaggy (with fixed zero point of 22.5) through an AB
magnitude-based zero point.

[Function]double
gal_units_nanomaggy_to_counts (double counts, double zeropoint_ab)

Convert Nanomaggy (with fixed zero point of 22.5) to counts through an AB
magnitude-based zero point.

[Function]double
gal_units_pc_to_au (double pc)

Convert the input value (assumed to be in Parsecs) to Astronomical Units (AUs).
For the conversion equation, see the description of au-to-pc operator in Section 6.2.4
[Arithmetic operators], page 408.
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[Function]double
gal_units_ly_to_pc (double ly)

Convert the input value (assumed to be in Light-years) to Parsecs. For the conver-
sion equation, see the description of ly-to-pc operator in Section 6.2.4 [Arithmetic
operators], page 408.

[Function]double
gal_units_pc_to_ly (double pc)

Convert the input value (assumed to be in Parsecs) to Light-years. For the conver-
sion equation, see the description of ly-to-pc operator in Section 6.2.4 [Arithmetic
operators], page 408.

[Function]double
gal_units_ly_to_au (double ly)

Convert the input value (assumed to be in Light-years) to Astronomical Units. For
the conversion equation, see the description of ly-to-pc operator in Section 6.2.4
[Arithmetic operators], page 408.

[Function]double
gal_units_au_to_ly (double au)

Convert the input value (assumed to be in Astronomical Units) to Light-years. For
the conversion equation, see the description of ly-to-pc operator in Section 6.2.4
[Arithmetic operators], page 408.

12.3.34 Spectral lines library (speclines.h)

Gnuastro’s library has the following macros and functions for dealing with spectral lines.
All these functions are declared in gnuastro/spectra.h.

[Macro]GAL_SPECLINES_INVALID
[Macro]GAL_SPECLINES_Ne_VIII_770
[Macro]GAL_SPECLINES_Ne_VIII_780
[Macro]GAL_SPECLINES_Ly_epsilon
[Macro]GAL_SPECLINES_Ly_delta
[Macro]GAL_SPECLINES_Ly_gamma
[Macro]GAL_SPECLINES_C_III_977
[Macro]GAL_SPECLINES_N_III_989
[Macro]GAL_SPECLINES_N_III_991_51
[Macro]GAL_SPECLINES_N_III_991_57
[Macro]GAL_SPECLINES_Ly_beta
[Macro]GAL_SPECLINES_O_VI_1031
[Macro]GAL_SPECLINES_O_VI_1037
[Macro]GAL_SPECLINES_Ar_I_1066
[Macro]GAL_SPECLINES_Ly_alpha
[Macro]GAL_SPECLINES_N_V_1238
[Macro]GAL_SPECLINES_N_V_1242
[Macro]GAL_SPECLINES_Si_II_1260
[Macro]GAL_SPECLINES_Si_II_1264
[Macro]GAL_SPECLINES_O_I_1302
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[Macro]GAL_SPECLINES_C_II_1334
[Macro]GAL_SPECLINES_C_II_1335
[Macro]GAL_SPECLINES_Si_IV_1393
[Macro]GAL_SPECLINES_O_IV_1397
[Macro]GAL_SPECLINES_O_IV_1399
[Macro]GAL_SPECLINES_Si_IV_1402
[Macro]GAL_SPECLINES_N_IV_1486
[Macro]GAL_SPECLINES_C_IV_1548
[Macro]GAL_SPECLINES_C_IV_1550
[Macro]GAL_SPECLINES_He_II_1640
[Macro]GAL_SPECLINES_O_III_1660
[Macro]GAL_SPECLINES_O_III_1666
[Macro]GAL_SPECLINES_N_III_1746
[Macro]GAL_SPECLINES_N_III_1748
[Macro]GAL_SPECLINES_Al_III_1854
[Macro]GAL_SPECLINES_Al_III_1862
[Macro]GAL_SPECLINES_Si_III
[Macro]GAL_SPECLINES_C_III_1908
[Macro]GAL_SPECLINES_N_II_2142
[Macro]GAL_SPECLINES_O_III_2320
[Macro]GAL_SPECLINES_C_II_2323
[Macro]GAL_SPECLINES_C_II_2324
[Macro]GAL_SPECLINES_Fe_XI_2648
[Macro]GAL_SPECLINES_He_II_2733
[Macro]GAL_SPECLINES_Mg_V_2782
[Macro]GAL_SPECLINES_Mg_II_2795
[Macro]GAL_SPECLINES_Mg_II_2802
[Macro]GAL_SPECLINES_Fe_IV_2829
[Macro]GAL_SPECLINES_Fe_IV_2835
[Macro]GAL_SPECLINES_Ar_IV_2853
[Macro]GAL_SPECLINES_Ar_IV_2868
[Macro]GAL_SPECLINES_Mg_V_2928
[Macro]GAL_SPECLINES_He_I_2945
[Macro]GAL_SPECLINES_O_III_3132
[Macro]GAL_SPECLINES_He_I_3187
[Macro]GAL_SPECLINES_He_II_3203
[Macro]GAL_SPECLINES_O_III_3312
[Macro]GAL_SPECLINES_Ne_V_3345
[Macro]GAL_SPECLINES_Ne_V_3425
[Macro]GAL_SPECLINES_O_III_3444
[Macro]GAL_SPECLINES_N_I_3466_4
[Macro]GAL_SPECLINES_N_I_3466_5
[Macro]GAL_SPECLINES_He_I_3487
[Macro]GAL_SPECLINES_Fe_VII_3586
[Macro]GAL_SPECLINES_Fe_VI_3662
[Macro]GAL_SPECLINES_H_19
[Macro]GAL_SPECLINES_H_18
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[Macro]GAL_SPECLINES_H_17
[Macro]GAL_SPECLINES_H_16
[Macro]GAL_SPECLINES_H_15
[Macro]GAL_SPECLINES_H_14
[Macro]GAL_SPECLINES_O_II_3726
[Macro]GAL_SPECLINES_O_II_3728
[Macro]GAL_SPECLINES_H_13
[Macro]GAL_SPECLINES_H_12
[Macro]GAL_SPECLINES_Fe_VII_3758
[Macro]GAL_SPECLINES_H_11
[Macro]GAL_SPECLINES_H_10
[Macro]GAL_SPECLINES_H_9
[Macro]GAL_SPECLINES_Fe_V_3839
[Macro]GAL_SPECLINES_Ne_III_3868
[Macro]GAL_SPECLINES_He_I_3888
[Macro]GAL_SPECLINES_H_8
[Macro]GAL_SPECLINES_Fe_V_3891
[Macro]GAL_SPECLINES_Fe_V_3911
[Macro]GAL_SPECLINES_Ne_III_3967
[Macro]GAL_SPECLINES_H_epsilon
[Macro]GAL_SPECLINES_He_I_4026
[Macro]GAL_SPECLINES_S_II_4068
[Macro]GAL_SPECLINES_Fe_V_4071
[Macro]GAL_SPECLINES_S_II_4076
[Macro]GAL_SPECLINES_H_delta
[Macro]GAL_SPECLINES_He_I_4143
[Macro]GAL_SPECLINES_Fe_II_4178
[Macro]GAL_SPECLINES_Fe_V_4180
[Macro]GAL_SPECLINES_Fe_II_4233
[Macro]GAL_SPECLINES_Fe_V_4227
[Macro]GAL_SPECLINES_Fe_II_4287
[Macro]GAL_SPECLINES_Fe_II_4304
[Macro]GAL_SPECLINES_O_II_4317
[Macro]GAL_SPECLINES_H_gamma
[Macro]GAL_SPECLINES_O_III_4363
[Macro]GAL_SPECLINES_Ar_XIV
[Macro]GAL_SPECLINES_O_II_4414
[Macro]GAL_SPECLINES_Fe_II_4416
[Macro]GAL_SPECLINES_Fe_II_4452
[Macro]GAL_SPECLINES_He_I_4471
[Macro]GAL_SPECLINES_Fe_II_4489
[Macro]GAL_SPECLINES_Fe_II_4491
[Macro]GAL_SPECLINES_N_III_4510
[Macro]GAL_SPECLINES_Fe_II_4522
[Macro]GAL_SPECLINES_Fe_II_4555
[Macro]GAL_SPECLINES_Fe_II_4582
[Macro]GAL_SPECLINES_Fe_II_4583
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[Macro]GAL_SPECLINES_Fe_II_4629
[Macro]GAL_SPECLINES_N_III_4634
[Macro]GAL_SPECLINES_N_III_4640
[Macro]GAL_SPECLINES_N_III_4641
[Macro]GAL_SPECLINES_C_III_4647
[Macro]GAL_SPECLINES_C_III_4650
[Macro]GAL_SPECLINES_C_III_5651
[Macro]GAL_SPECLINES_Fe_III_4658
[Macro]GAL_SPECLINES_He_II_4685
[Macro]GAL_SPECLINES_Ar_IV_4711
[Macro]GAL_SPECLINES_Ar_IV_4740
[Macro]GAL_SPECLINES_H_beta
[Macro]GAL_SPECLINES_Fe_VII_4893
[Macro]GAL_SPECLINES_Fe_IV_4903
[Macro]GAL_SPECLINES_Fe_II_4923
[Macro]GAL_SPECLINES_O_III_4958
[Macro]GAL_SPECLINES_O_III_5006
[Macro]GAL_SPECLINES_Fe_II_5018
[Macro]GAL_SPECLINES_Fe_III_5084
[Macro]GAL_SPECLINES_Fe_VI_5145
[Macro]GAL_SPECLINES_Fe_VII_5158
[Macro]GAL_SPECLINES_Fe_II_5169
[Macro]GAL_SPECLINES_Fe_VI_5176
[Macro]GAL_SPECLINES_Fe_II_5197
[Macro]GAL_SPECLINES_N_I_5200
[Macro]GAL_SPECLINES_Fe_II_5234
[Macro]GAL_SPECLINES_Fe_IV_5236
[Macro]GAL_SPECLINES_Fe_III_5270
[Macro]GAL_SPECLINES_Fe_II_5276
[Macro]GAL_SPECLINES_Fe_VII_5276
[Macro]GAL_SPECLINES_Fe_XIV
[Macro]GAL_SPECLINES_Ca_V
[Macro]GAL_SPECLINES_Fe_II_5316_6
[Macro]GAL_SPECLINES_Fe_II_5316_7
[Macro]GAL_SPECLINES_Fe_VI_5335
[Macro]GAL_SPECLINES_Fe_VI_5424
[Macro]GAL_SPECLINES_Cl_III_5517
[Macro]GAL_SPECLINES_Cl_III_5537
[Macro]GAL_SPECLINES_Fe_VI_5637
[Macro]GAL_SPECLINES_Fe_VI_5677
[Macro]GAL_SPECLINES_C_III_5697
[Macro]GAL_SPECLINES_Fe_VII_5720
[Macro]GAL_SPECLINES_N_II_5754
[Macro]GAL_SPECLINES_C_IV_5801
[Macro]GAL_SPECLINES_C_IV_5811
[Macro]GAL_SPECLINES_He_I_5875
[Macro]GAL_SPECLINES_O_I_6046
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[Macro]GAL_SPECLINES_Fe_VII_6087
[Macro]GAL_SPECLINES_O_I_6300
[Macro]GAL_SPECLINES_S_III_6312
[Macro]GAL_SPECLINES_Si_II_6347
[Macro]GAL_SPECLINES_O_I_6363
[Macro]GAL_SPECLINES_Fe_II_6369
[Macro]GAL_SPECLINES_Fe_X
[Macro]GAL_SPECLINES_Fe_II_6516
[Macro]GAL_SPECLINES_N_II_6548
[Macro]GAL_SPECLINES_H_alpha
[Macro]GAL_SPECLINES_N_II_6583
[Macro]GAL_SPECLINES_S_II_6716
[Macro]GAL_SPECLINES_S_II_6730
[Macro]GAL_SPECLINES_O_I_7002
[Macro]GAL_SPECLINES_Ar_V
[Macro]GAL_SPECLINES_He_I_7065
[Macro]GAL_SPECLINES_Ar_III_7135
[Macro]GAL_SPECLINES_Fe_II_7155
[Macro]GAL_SPECLINES_Ar_IV_7170
[Macro]GAL_SPECLINES_Fe_II_7172
[Macro]GAL_SPECLINES_C_II_7236
[Macro]GAL_SPECLINES_Ar_IV_7237
[Macro]GAL_SPECLINES_O_I_7254
[Macro]GAL_SPECLINES_Ar_IV_7262
[Macro]GAL_SPECLINES_He_I_7281
[Macro]GAL_SPECLINES_O_II_7319
[Macro]GAL_SPECLINES_O_II_7330
[Macro]GAL_SPECLINES_Ni_II_7377
[Macro]GAL_SPECLINES_Ni_II_7411
[Macro]GAL_SPECLINES_Fe_II_7452
[Macro]GAL_SPECLINES_N_I_7468
[Macro]GAL_SPECLINES_S_XII
[Macro]GAL_SPECLINES_Ar_III_7751
[Macro]GAL_SPECLINES_He_I_7816
[Macro]GAL_SPECLINES_Ar_I_7868
[Macro]GAL_SPECLINES_Ni_III
[Macro]GAL_SPECLINES_Fe_XI_7891
[Macro]GAL_SPECLINES_He_II_8236
[Macro]GAL_SPECLINES_Pa_20
[Macro]GAL_SPECLINES_Pa_19
[Macro]GAL_SPECLINES_Pa_18
[Macro]GAL_SPECLINES_O_I_8446
[Macro]GAL_SPECLINES_Pa_17
[Macro]GAL_SPECLINES_Ca_II_8498
[Macro]GAL_SPECLINES_Pa_16
[Macro]GAL_SPECLINES_Ca_II_8542
[Macro]GAL_SPECLINES_Pa_15
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[Macro]GAL_SPECLINES_Cl_II
[Macro]GAL_SPECLINES_Pa_14
[Macro]GAL_SPECLINES_Fe_II_8616
[Macro]GAL_SPECLINES_Ca_II_8662
[Macro]GAL_SPECLINES_Pa_13
[Macro]GAL_SPECLINES_N_I_8680
[Macro]GAL_SPECLINES_N_I_8703
[Macro]GAL_SPECLINES_N_I_8711
[Macro]GAL_SPECLINES_Pa_12
[Macro]GAL_SPECLINES_Pa_11
[Macro]GAL_SPECLINES_Fe_II_8891
[Macro]GAL_SPECLINES_Pa_10
[Macro]GAL_SPECLINES_S_III_9068
[Macro]GAL_SPECLINES_Pa_9
[Macro]GAL_SPECLINES_S_III_9531
[Macro]GAL_SPECLINES_Pa_epsilon
[Macro]GAL_SPECLINES_C_I_9824
[Macro]GAL_SPECLINES_C_I_9850
[Macro]GAL_SPECLINES_S_VIII
[Macro]GAL_SPECLINES_He_I_10027
[Macro]GAL_SPECLINES_He_I_10031
[Macro]GAL_SPECLINES_Pa_delta
[Macro]GAL_SPECLINES_S_II_10286
[Macro]GAL_SPECLINES_S_II_10320
[Macro]GAL_SPECLINES_S_II_10336
[Macro]GAL_SPECLINES_Fe_XIII
[Macro]GAL_SPECLINES_He_I_10830
[Macro]GAL_SPECLINES_Pa_gamma
[Macro]GAL_SPECLINES_NUMBER

Internal values/identifiers for recognized spectral lines as is clear from their names.
They are based on the UV an optical table of galaxy emission lines of Drew Cho-
jnowski35.

Note the first and last macros, they can be used when parsing the lines automatically:
both do not correspond to any line, but their integer values correspond to the two
integers just before and after the first and last line identifier: GAL_SPECLINES_INVALID
has a value of zero, and allows you to have a fixed integer which never corresponds
to a line. GAL_SPECLINES_INVALID_MAX is the total number of pre-defined lines, plus
one. So you can parse all the known lines with a for loop like this:

for(i=1;i<GAL_SPECLINES_INVALID_MAX;++i)

[Macro]GAL_SPECLINES_ANGSTROM_*
Wavelength (in Angstroms) of the named lines. The * can take any of the line names
of the GAL_SPECLINES_* Macros above.

35 http://astronomy.nmsu.edu/drewski/tableofemissionlines.html

http://astronomy.nmsu.edu/drewski/tableofemissionlines.html
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[Macro]GAL_SPECLINES_NAME_*
Names (as literal stings without any space) that can be used to refer to the lines in
your program and converted to and from line identifiers using the functions below.
The * can take any of the line names of the GAL_SPECLINES_* Macros above.

[Function]char *
gal_speclines_line_name (int linecode)

Return the literal string of the given spectral line identifier Macro (for example GAL_
SPECLINES_HALPHA or GAL_SPECLINES_LYLIMIT).

[Function]int
gal_speclines_line_code (char *name)

Return the spectral line identifier of the given standard name (for example GAL_

SPECLINES_NAME_HALPHA or GAL_SPECLINES_NAME_LYLIMIT).

[Function]double
gal_speclines_line_angstrom (int linecode)

Return the wavelength (in Angstroms) of the given line.

[Function]double
gal_speclines_line_redshift (double obsline, double restline)

Return the redshift where the observed wavelength (obsline) was emitted from (if
its restframe wavelength was restline).

[Function]double
gal_speclines_line_redshift_code (double obsline, int linecode)

Return the redshift where the observed wavelength (obsline) was emitted from a
pre-defined spectral line in the macros above. For example, you want the redshift
where the H-alpha line falls at a wavelength of 8000 Angstroms, you can call this
function like this:

gal_speclines_line_redshift_code(8000, GAL_SPECLINES_H_alpha);

12.3.35 Cosmology library (cosmology.h)

This library does the main cosmological calculations that are commonly necessary in extra-
galactic astronomical studies. The main variable in this context is the redshift (z). The
cosmological input parameters in the functions below are H0, o_lambda_0, o_matter_0, o_
radiation_0 which respectively represent the current (at redshift 0) expansion rate (Hubble
constant in units of km/sec/Mpc), cosmological constant (Λ), matter and radiation densi-
ties.

All these functions are declared in gnuastro/cosmology.h. For a more extended intro-
duction/discussion of the cosmological parameters, please see Section 9.1 [CosmicCalcula-
tor], page 654.

[Function]double
gal_cosmology_age (double z, double H0, double o_lambda_0, double

o_matter_0, double o_radiation_0)
Returns the age of the universe at redshift z in units of Giga years.
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[Function]double
gal_cosmology_proper_distance (double z, double H0, double

o_lambda_0, double o_matter_0, double o_radiation_0)
Returns the proper distance to an object at redshift z in units of Mega parsecs.

[Function]double
gal_cosmology_comoving_volume (double z, double H0, double

o_lambda_0, double o_matter_0, double o_radiation_0)
Returns the comoving volume over 4pi stradian to z in units of Mega parsecs cube.

[Function]double
gal_cosmology_critical_density (double z, double H0, double

o_lambda_0, double o_matter_0, double o_radiation_0)
Returns the critical density at redshift z in units of g/cm3.

[Function]double
gal_cosmology_angular_distance (double z, double H0, double

o_lambda_0, double o_matter_0, double o_radiation_0)
Return the angular diameter distance to an object at redshift z in units of Mega
parsecs.

[Function]double
gal_cosmology_luminosity_distance (double z, double H0, double

o_lambda_0, double o_matter_0, double o_radiation_0)
Return the luminosity diameter distance to an object at redshift z in units of Mega
parsecs.

[Function]double
gal_cosmology_distance_modulus (double z, double H0, double

o_lambda_0, double o_matter_0, double o_radiation_0)
Return the distance modulus at redshift z (with no units).

[Function]double
gal_cosmology_to_absolute_mag (double z, double H0, double

o_lambda_0, double o_matter_0, double o_radiation_0)
Return the conversion from apparent to absolute magnitude for an object at redshift z.
This value has to be added to the apparent magnitude to give the absolute magnitude
of an object at redshift z.

[Function]double
gal_cosmology_velocity_from_z (double z)

Return the velocity (in km/s) corresponding to the given redshift (z).

[Function]double
gal_cosmology_z_from_velocity (double v)

Return the redshift corresponding to the given velocity (v in km/s).
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12.3.36 SAO DS9 library (ds9.h)

This library operates on the output files of SAO DS936. SAO DS9 is one of the most
commonly used FITS image and cube viewers today with an easy to use graphic user
interface (GUI), see Section A.1 [SAO DS9], page 959. But besides merely opening FITS
data, it can also produce certain kinds of files that can be useful in common analysis. For
example, on DS9’s GUI, it is very easy to define a (possibly complex) polygon as a “region”.
You can then save that “region” into a file and using the functions below, feed the polygon
into Gnuastro’s programs (or your custom programs).

[Macro]GAL_DS9_COORD_MODE_IMG
[Macro]GAL_DS9_COORD_MODE_WCS
[Macro]GAL_DS9_COORD_MODE_INVALID

Macros to identify the coordinate mode of the DS9 file. Their names are sufficiently
descriptive. The last one (INVALID) is for sanity checks (for example, to know if the
mode is already selected).

[Function]gal_data_t *
gal_ds9_reg_read_polygon (char *filename)

Returns an allocated generic data container (gal_data_t, with an array of GAL_TYPE_
FLOAT64) containing the vertices of a polygon within the SAO DS9 region file given
by *filename. Since SAO DS9 region files are 2 dimensional, if there are N vertices
in the SAO DS9 region file, the returned dataset will have 2×N elements (first two
elements belonging to first vertice, etc.).

The mode to interpret the vertice coordinates is also read from the SAO DS9 region
file and written into the status attribute of the output gal_data_t. The coordinate
mode can be one of the GAL_DS9_COORD_MODE_* macros, mentioned above.

It is assumed that the file begins with # Region file format: DS9 and it has two
more lines (at least): a line containing the mode of the coordinates (the line should
only contain either fk5 or image), a line with the polygon vertices following this
format: polygon(V1X,V1Y,V2X,V2Y,...) where V1X and V1Y are the horizontal and
vertical coordinates of the first vertice, and so on.

For example, here is a minimal acceptable SAO DS9 region file:

# Region file format: DS9

fk5

polygon(53.187414,-27.779152,53.159507,-27.759633,...)

12.4 Library demo programs

In this final section of Chapter 12 [Library], page 724, we give some example Gnuastro
programs to demonstrate various features in the library. All these programs have been tested
and once Gnuastro is installed you can compile and run them with Gnuastro’s Section 12.2
[BuildProgram], page 732, program that will take care of linking issues. If you do not have
any FITS file to experiment on, you can use those that are generated by Gnuastro after
make check in the tests/ directory, see Section 1.1 [Quick start], page 1.

36 https://sites.google.com/cfa.harvard.edu/saoimageds9

https://sites.google.com/cfa.harvard.edu/saoimageds9
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12.4.1 Library demo - reading a FITS image

The following simple program demonstrates how to read a FITS image into memory and
use the void *array pointer in of Section 12.3.6.1 [Generic data container (gal_data_
t)], page 755. For easy linking/compilation of this program along with a first run see
Section 12.2 [BuildProgram], page 732, (in short: Compile, link and run ‘myprogram.c’ with
this command: ‘astbuildprog myprogram.c). Before running, also change the filename

and hdu variable values to specify an existing FITS file and/or extension/HDU.

This is just intended to demonstrate how to use the array pointer of gal_data_t. Hence
it does not do important sanity checks, for example in real datasets you may also have blank
pixels. In such cases, this program will return a NaN value (see Section 6.1.3 [Blank pixels],
page 388). So for general statistical information of a dataset, it is much better to use
Gnuastro’s Section 7.1 [Statistics], page 508, program which can deal with blank pixels and
many other issues in a generic dataset.

To encourage good coding practices, this script contains a copyright notice with a place
holder for your name and your email (as you customize it for your own purpose). Always
keep a one-line description and copyright notice like this in all your scripts, such “metadata”
is very important to accompany every source file you write. Of course, when you write the
source file from scratch and just learn how to use a single function from this manual, only
your name/year should appear. The existing name of the original author of this example
program is only for cases where you copy-paste this whole file.

/* Reading a FITS image into memory.

*

* The following simple program demonstrates how to read a FITS image

* into memory and use the 'void *array' pointer. This is just intended

* to demonstrate how to use the array pointer of 'gal_data_t'.

*

* Copyright (C) 2024 Your Name <your@email.address>

* Copyright (C) 2020-2024 Mohammad Akhlaghi <mohammad@akhlaghi.org>

*

* This program is free software: you can redistribute it and/or modify

* it under the terms of the GNU General Public License as published by

* the Free Software Foundation, either version 3 of the License, or

* (at your option) any later version.

*

* This program is distributed in the hope that it will be useful, but

* WITHOUT ANY WARRANTY; without even the implied warranty of

* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

* General Public License for more details.

*

* You should have received a copy of the GNU General Public License

* along with this program. If not, see <http://www.gnu.org/licenses/>.

*/

#include <stdio.h>

#include <stdlib.h>
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#include <gnuastro/fits.h> /* includes gnuastro's data.h and type.h */

#include <gnuastro/statistics.h>

int

main(void)

{

size_t i;

float *farray;

double sum=0.0f;

gal_data_t *image;

char *filename="img.fits", *hdu="1";

/* Read `img.fits' (HDU: 1) as a float32 array. */

image=gal_fits_img_read_to_type(filename, hdu, GAL_TYPE_FLOAT32,

-1, 1, NULL);

/* Use the allocated space as a single precision floating

* point array (recall that `image->array' has `void *'

* type, so it is not directly usable). */

farray=image->array;

/* Calculate the sum of all the values. */

for(i=0; i<image->size; ++i)

sum += farray[i];

/* Report the sum. */

printf("Sum of values in %s (hdu %s) is: %f\n",

filename, hdu, sum);

/* Clean up and return. */

gal_data_free(image);

return EXIT_SUCCESS;

}

12.4.2 Library demo - inspecting neighbors

The following simple program shows how you can inspect the neighbors of a pixel using the
GAL_DIMENSION_NEIGHBOR_OP function-like macro that was introduced in Section 12.3.7
[Dimensions (dimension.h)], page 764. For easy linking/compilation of this program along
with a first run see Section 12.2 [BuildProgram], page 732. Before running, also change
the file name and HDU (first and second arguments to gal_fits_img_read_to_type) to
specify an existing FITS file and/or extension/HDU.
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To encourage good coding practices, this script contains a copyright notice with a place
holder for your name and your email (as you customize it for your own purpose). Always
keep a one-line description and copyright notice like this in all your scripts, such “metadata”
is very important to accompany every source file you write. Of course, when you write the
source file from scratch and just learn how to use a single function from this manual, only
your name/year should appear. The existing name of the original author of this example
program is only for cases where you copy-paste this whole file.

/* Reading a FITS image into memory.

*

* The following simple program shows how you can inspect the neighbors

* of a pixel using the GAL_DIMENSION_NEIGHBOR_OP function-like macro.

*

* Copyright (C) 2024 Your Name <your@email.address>

* Copyright (C) 2020-2024 Mohammad Akhlaghi <mohammad@akhlaghi.org>

*

* This program is free software: you can redistribute it and/or modify

* it under the terms of the GNU General Public License as published by

* the Free Software Foundation, either version 3 of the License, or

* (at your option) any later version.

*

* This program is distributed in the hope that it will be useful, but

* WITHOUT ANY WARRANTY; without even the implied warranty of

* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

* General Public License for more details.

*

* You should have received a copy of the GNU General Public License

* along with this program. If not, see <http://www.gnu.org/licenses/>.

*/

#include <stdio.h>

#include <stdlib.h>

#include <gnuastro/fits.h>

#include <gnuastro/dimension.h>

int

main(void)

{

double sum;

float *array;

size_t i, num, *dinc;

gal_data_t *input=gal_fits_img_read_to_type("input.fits", "1",

GAL_TYPE_FLOAT32, -1, 1,

NULL);

/* To avoid the `void *' pointer and have `dinc'. */
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array=input->array;

dinc=gal_dimension_increment(input->ndim, input->dsize);

/* Go over all the pixels. */

for(i=0;i<input->size;++i)

{

num=0;

sum=0.0f;

GAL_DIMENSION_NEIGHBOR_OP( i, input->ndim, input->dsize,

input->ndim, dinc,

{++num; sum+=array[nind];} );

printf("%zu: num: %zu, sum: %f\n", i, num, sum);

}

/* Clean up and return. */

gal_data_free(input);

free(dinc);

return EXIT_SUCCESS;

}

12.4.3 Library demo - multi-threaded operation

The following simple program shows how to use Gnuastro to simplify spinning off threads
and distributing different jobs between the threads. The relevant thread-related functions
are defined in Section 12.3.2.2 [Gnuastro’s thread related functions], page 740. For easy
linking/compilation of this program, along with a first run, see Gnuastro’s Section 12.2
[BuildProgram], page 732. Before running, also change the filename and hdu variable
values to specify an existing FITS file and/or extension/HDU.

This is a very simple program to open a FITS image, distribute its pixels between
different threads and print the value of each pixel and the thread it was assigned to. The
actual operation is very simple (and would not usually be done with threads in a real-life
program). It is intentionally chosen to put more focus on the important steps in spinning
off threads and how the worker function (which is called by each thread) can identify the
job-IDs it should work on.

For example, instead of an array of pixels, you can define an array of tiles or any other
context-specific structures as separate targets. The important thing is that each action
should have its own unique ID (counting from zero, as is done in an array in C). You can
then follow the process below and use each thread to work on all the targets that are assigned
to it. Recall that spinning off threads is itself an expensive process and we do not want to
spin-off one thread for each target (see the description of gal_threads_dist_in_threads
in Section 12.3.2.2 [Gnuastro’s thread related functions], page 740.

There are many (more complicated, real-world) examples of using gal_threads_spin_

off in Gnuastro’s actual source code, you can see them by searching for the gal_threads_
spin_off function from the top source (after unpacking the tarball) directory (for example,
with this command):

$ grep -r gal_threads_spin_off ./
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To encourage good coding practices, this script contains a copyright notice with a place
holder for your name and your email (as you customize it for your own purpose). Always
keep a one-line description and copyright notice like this in all your scripts, such “metadata”
is very important to accompany every source file you write. Of course, when you write the
source file from scratch and just learn how to use a single function from this manual, only
your name/year should appear. The existing name of the original author of this example
program is only for cases where you copy-paste this whole file.

The code of this demonstration program is shown below. This program was
also built and run when you ran make check during the building of Gnuastro
(tests/lib/multithread.c), so it is already tested for your system and you can safely
use it as a guide.

/* Demo of Gnuastro's high-level multi-threaded interface.

*

* This is a very simple program to open a FITS image, distribute its

* pixels between different threads and print the value of each pixel

* and the thread it was assigned to.

*

* Copyright (C) 2024 Your Name <your@email.address>

* Copyright (C) 2020-2024 Mohammad Akhlaghi <mohammad@akhlaghi.org>

*

* This program is free software: you can redistribute it and/or modify

* it under the terms of the GNU General Public License as published by

* the Free Software Foundation, either version 3 of the License, or

* (at your option) any later version.

*

* This program is distributed in the hope that it will be useful, but

* WITHOUT ANY WARRANTY; without even the implied warranty of

* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

* General Public License for more details.

*

* You should have received a copy of the GNU General Public License

* along with this program. If not, see <http://www.gnu.org/licenses/>.

*/

#include <stdio.h>

#include <stdlib.h>

#include <gnuastro/fits.h>

#include <gnuastro/threads.h>

/* This structure can keep all information you want to pass onto the

* worker function on each thread. */

struct params

{
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gal_data_t *image; /* Dataset to print values of. */

};

/* This is the main worker function which will be called by the

* different threads. `gal_threads_params' is defined in

* `gnuastro/threads.h' and contains the pointer to the parameter we

* want. Note that the input argument and returned value of this

* function always must have `void *' type. */

void *

worker_on_thread(void *in_prm)

{

/* Low-level definitions to be done first. */

struct gal_threads_params *tprm=(struct gal_threads_params *)in_prm;

struct params *p=(struct params *)tprm->params;

/* Subsequent definitions. */

float *array=p->image->array;

size_t i, index, *dsize=p->image->dsize;

/* Go over all the actions (pixels in this case) that were assigned

* to this thread. */

for(i=0; tprm->indexs[i] != GAL_BLANK_SIZE_T; ++i)

{

/* For easy reading. */

index = tprm->indexs[i];

/* Print the information. */

printf("(%zu, %zu) on thread %zu: %g\n", index%dsize[1]+1,

index/dsize[1]+1, tprm->id, array[index]);

}

/* Wait for all the other threads to finish, then return. */

if(tprm->b) pthread_barrier_wait(tprm->b);

return NULL;

}

/* High-level function (called by the operating system). */

int
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main(void)

{

struct params p;

char *filename="input.fits", *hdu="1";

size_t numthreads=gal_threads_number();

/* We are using * `-1' for `minmapsize' to ensure that the image is

* read into * memory and `1' for `quietmmap' (which can also be

* zero), see the "Memory management" section in the book. */

int quietmmap=1;

size_t minmapsize=-1;

/* Read the image into memory as a float32 data type. */

p.image=gal_fits_img_read_to_type(filename, hdu, GAL_TYPE_FLOAT32,

minmapsize, quietmmap, NULL);

/* Print some basic information before the actual contents: */

printf("Pixel values of %s (HDU: %s) on %zu threads.\n", filename,

hdu, numthreads);

printf("Used to check the compiled library's capability in opening "

"a FITS file, and also spinning off threads.\n");

/* A small sanity check: this is only intended for 2D arrays (to

* print the coordinates of each pixel). */

if(p.image->ndim!=2)

{

fprintf(stderr, "only 2D images are supported.");

exit(EXIT_FAILURE);

}

/* Spin-off the threads and do the processing on each thread. */

gal_threads_spin_off(worker_on_thread, &p, p.image->size, numthreads,

minmapsize, quietmmap);

/* Clean up and return. */

gal_data_free(p.image);

return EXIT_SUCCESS;

}
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12.4.4 Library demo - reading and writing table columns

Tables are some of the most common inputs to, and outputs of programs. This section
contains a small program for reading and writing tables using the constructs described in
Section 12.3.10 [Table input output (table.h)], page 788. For easy linking/compilation of
this program, along with a first run, see Gnuastro’s Section 12.2 [BuildProgram], page 732.
Before running, also set the following file and column names in the first two lines of main.
The input and output names may be .txt and .fits tables, gal_table_read and gal_

table_write will be able to write to both formats. For plain text tables see Section 4.7.2
[Gnuastro text table format], page 285. If you do not have any table in text file format to
use as your input, you can use the table that is generated in Section 2.4 [Sufi simulates a
detection], page 124, section.

This example program reads three columns from a table. The first two columns are
selected by their name (NAME1 and NAME2) and the third is selected by its number: column
10 (counting from 1). Gnuastro’s column selection is discussed in Section 4.7.3 [Selecting
table columns], page 287. The first and second columns can be any type, but this program
will convert them to int32_t and float for its internal usage respectively. However, the
third column must be double for this program. So if it is not, the program will abort with
an error. Having the columns in memory, it will print them out along with their sum (just a
simple application, you can do what ever you want at this stage). Reading the table finishes
here.

The rest of the program is a demonstration of writing a table. While parsing the rows,
this program will change the first column (to be counters) and multiply the second by
10 (so the output will be different). Then it will define the order of the output columns
by setting the next element (to create a Section 12.3.8.9 [List of gal_data_t], page 784).
Before writing, this function will also set names for the columns (units and comments can
be defined in a similar manner). Writing the columns to a file is then done through a simple
call to gal_table_write.

The operations that are shown in this example program are not necessary all the time.
For example, in many cases, you know the numerical data type of the column before writing
your program (see Section 4.5 [Numeric data types], page 277), so type checking and copying
to a specific type will not be necessary.

To encourage good coding practices, this script contains a copyright notice with a place
holder for your name and your email (as you customize it for your own purpose). Always
keep a one-line description and copyright notice like this in all your scripts, such “metadata”
is very important to accompany every source file you write. Of course, when you write the
source file from scratch and just learn how to use a single function from this manual, only
your name/year should appear. The existing name of the original author of this example
program is only for cases where you copy-paste this whole file.

/* Reading and writing table columns.

*

* This example program reads three columns from a table. Having the

* columns in memory, it will print them out along with their sum. The

* rest of the program is a demonstration of writing a table.

*

* Copyright (C) 2024 Your Name <your@@email.address>
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* Copyright (C) 2020-2024 Mohammad Akhlaghi <mohammad@@akhlaghi.org>

*

* This program is free software: you can redistribute it and/or modify

* it under the terms of the GNU General Public License as published by

* the Free Software Foundation, either version 3 of the License, or

* (at your option) any later version.

*

* This program is distributed in the hope that it will be useful, but

* WITHOUT ANY WARRANTY; without even the implied warranty of

* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

* General Public License for more details.

*

* You should have received a copy of the GNU General Public License

* along with this program. If not, see <http://www.gnu.org/licenses/>.

*/

#include <stdio.h>

#include <stdlib.h>

#include <gnuastro/table.h>

int

main(void)

{

/* File names and column names (which may also be numbers). */

char *c1_name="NAME1", *c2_name="NAME2", *c3_name="10";

char *inname="input.fits", *hdu="1", *outname="out.fits";

/* Internal parameters. */

float *array2=NULL;

double *array3=NULL;

int32_t *array1=NULL;

size_t i, counter=0;

gal_data_t *c1=NULL;

gal_data_t *c2=NULL;

gal_data_t tmp, *col, *columns;

gal_list_str_t *column_ids=NULL;

/* Define the columns to read. */

gal_list_str_add(&column_ids, c1_name, 0);

gal_list_str_add(&column_ids, c2_name, 0);

gal_list_str_add(&column_ids, c3_name, 0);

/* The columns were added in reverse, so correct it. */

gal_list_str_reverse(&column_ids);

/* Read the desired columns. */
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columns = gal_table_read(inname, hdu, NULL, column_ids,

GAL_TABLE_SEARCH_NAME, 0, 1, -1, 1, NULL);

/* Go over the columns, we will assume that you do not know their type

* a-priori, so we will check */

counter=1;

for(col=columns; col!=NULL; col=col->next)

switch(counter++)

{

case 1: /* First column: we want it as int32_t. */

c1=gal_data_copy_to_new_type(col, GAL_TYPE_INT32);

array1 = c1->array;

break;

case 2: /* Second column: we want it as float. */

c2=gal_data_copy_to_new_type(col, GAL_TYPE_FLOAT32);

array2 = c2->array;

break;

case 3: /* Third column: it MUST be double. */

if(col->type!=GAL_TYPE_FLOAT64)

{

fprintf(stderr, "Column %s must be float64 type, it is "

"%s", c3_name, gal_type_name(col->type, 1));

exit(EXIT_FAILURE);

}

array3 = col->array;

break;

default:

exit(EXIT_FAILURE);

}

/* As an example application we will just print them out. In the

* meantime (just for a simple demonstration), change the first

* array value to the counter and multiply the second by 10. */

for(i=0;i<c1->size;++i)

{

printf("%zu: %d + %f + %f = %f\n", i+1, array1[i], array2[i],

array3[i], array1[i]+array2[i]+array3[i]);

array1[i] = i+1;

array2[i] *= 10;

}

/* Link the first two columns as a list. */

c1->next = c2;

c2->next = NULL;
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/* Set names for the columns and write them out. */

c1->name = "COUNTER";

c2->name = "VALUE";

gal_table_write(c1, NULL, NULL, GAL_TABLE_FORMAT_BFITS, outname,

"MY-COLUMNS", 0, 0);

/* The names were not allocated, so to avoid cleaning-up problems,

* we will set them to NULL. */

c1->name = c2->name = NULL;

/* Clean up and return. */

gal_data_free(c1);

gal_data_free(c2);

gal_list_data_free(columns);

gal_list_str_free(column_ids, 0); /* strings were not allocated. */

return EXIT_SUCCESS;

}

12.4.5 Library demo - Warp to another image

Gnuastro’s warp library (that you can access by including gnuastro/warp.h) allows you to
resample an image from a grid to another entirely using the WCSLIB (while accounting for
distortions if necessary; see Section 12.3.29 [Warp library (warp.h)], page 893). The Warp
library uses a pixel-mixing or area-based resampling approach which is fully described in
Section 6.4.3 [Resampling], page 495. The most generic uses cases for this library are
already available in the Section 6.4.4 [Invoking Warp], page 497, program. For a related
demo (where the output grid and WCS are constructed from scratch), see Section 12.4.6
[Library demo - Warp to new grid], page 924.

In the example below, we are warping the input.fits file to the same pixel grid and
WCS as reference.fits image (assuming it is in hdu 0). You can download the FITS
files in the Section 2.6.1 [Color channels in same pixel grid], page 152, section and use
them as input.fits and reference.fits files. Feel free to change these names to your
own test file names. This can be useful when you have a complex grid and WCS containing
various keywords such as non-linear distortion coefficients, etc. For example datasets, see the
description of the --gridfile option in Section 6.4.4.1 [Align pixels with WCS considering
distortions], page 499.

To compile the demonstration program below, copy and paste the contents in a plain-
text file (let’s assume you named it align-to-img.c) and use Section 12.2 [BuildProgram],
page 732, with this command: ‘astbuildprog align-to-img.c’. Please note that the
demo program does not perform many sanity checks to avoid making it too complex and
to highlight this particular feature in the library. For a robust method write programs with
all the necessary sanity checks, see Gnuastro’s Warp source code, see Section 13.4 [Program
source], page 935.

To encourage good coding practices, this script contains a copyright notice with a place
holder for your name and your email (as you customize it for your own purpose). Always
keep a one-line description and copyright notice like this in all your scripts, such “metadata”
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is very important to accompany every source file you write. Of course, when you write the
source file from scratch and just learn how to use a single function from this manual, only
your name/year should appear. The existing name of the original author of this example
program is only for cases where you copy-paste this whole file.

/* Warp to another image.

*

* In the example below, we are warping the input.fits file to the same

* pixel grid and WCS as reference.fits image.

*

* Copyright (C) 2024 Your Name <your@@email.address>

* Copyright (C) 2022-2024 Pedram Ashofteh-Ardakani <pedramardakani@pm.me>

*

* This program is free software: you can redistribute it and/or modify

* it under the terms of the GNU General Public License as published by

* the Free Software Foundation, either version 3 of the License, or

* (at your option) any later version.

*

* This program is distributed in the hope that it will be useful, but

* WITHOUT ANY WARRANTY; without even the implied warranty of

* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

* General Public License for more details.

*

* You should have received a copy of the GNU General Public License

* along with this program. If not, see <http://www.gnu.org/licenses/>.

*/

#include <stdio.h>

#include <stdlib.h>

#include <gnuastro/wcs.h> /* contains gnuastro's fits.h */

#include <gnuastro/warp.h> /* contains gnuastro's data.h */

#include <gnuastro/array.h> /* contains gnuastro's type.h */

int

main(void)

{

/* Input file's name and HDU. */

char *filename="input.fits", *hdu="1";

/* Reference file's name and HDU. */

char *gridfile="reference.fits", *gridhdu="0";

/* Output file name. */

char *outname="align-to-img.fits";

/* Low-level variables needed to read the reference file's size. */
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int nwcs;

size_t ndim, *dsize;

/* Initialize the 'wa' struct with empty values and NULL pointers. */

gal_warp_wcsalign_t wa=gal_warp_wcsalign_template();

/* Read the input image and its WCS. */

wa.input=gal_array_read_one_ch_to_type(filename, hdu, NULL,

GAL_TYPE_FLOAT64, -1, 0, NULL);

wa.input->wcs=gal_wcs_read(filename, hdu, 0, 0, 0, &wa.input->nwcs,

NULL);

/* Prepare the warp input structure, use all threads available. */

wa.coveredfrac=1; wa.edgesampling=0; wa.numthreads=0;

/* Set the target grid to be the same as wcsref.fits file on hdu 0. */

wa.twcs=gal_wcs_read(gridfile, gridhdu, 0, 0, 0, &nwcs, NULL);

if(wa.twcs==NULL)

{

fprintf(stderr, "%s (hdu %s): no WCS! Can't continue\n",

gridfile, gridhdu);

exit(EXIT_FAILURE);

}

/* Read the output image size (from the reference image). Note that

* 'dsize' will be freed while freeing 'widthinpix'). */

dsize=gal_fits_img_info_dim(gridfile, gridhdu, &ndim, NULL);

/* Convert the 'dsize' to a 'gal_data_t' so the library can use it. */

wa.widthinpix=gal_data_alloc(dsize, GAL_TYPE_SIZE_T, 1, &ndim,

NULL, 1, -1, 0, NULL, NULL, NULL);

/* Do the warp, then convert the output to a 32-bit float (the default

* float64 is too much for observational data and just wastes

* storage!). But if you are warping mock data before adding noise

* (where you do have float64 level precision), remove the type

* conversion line. */

gal_warp_wcsalign(&wa);

wa.output=gal_data_copy_to_new_type_free(wa.output, GAL_TYPE_FLOAT32);

/* WARNING: make sure there is no file with same name as 'out.fits'

* or the result will be appended to its final HDU. */

gal_fits_img_write(wa.output, outname, NULL, 0);

/* Clean up. */

gal_data_free(wa.input);

gal_data_free(wa.output);
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gal_data_free(wa.widthinpix);

/* Give control back to the operating system. */

return EXIT_SUCCESS;

}

12.4.6 Library demo - Warp to new grid

Gnuastro’s warp library (that you can access by including gnuastro/warp.h) allows you to
resample an image from a grid to another entirely using the WCSLIB (while accounting for
distortions if necessary; see Section 12.3.29 [Warp library (warp.h)], page 893). The Warp
library uses a pixel-mixing or area-based resampling approach which is fully described in
Section 6.4.3 [Resampling], page 495. The most generic uses cases for this library are
already available in the Section 6.4.4 [Invoking Warp], page 497, program. For a related
demo (where the output grid and WCS are imported from another file), see Section 12.4.5
[Library demo - Warp to another image], page 921.

In the example below, we’ll assume you have the SDSS image downloaded in Section 2.2.1
[Downloading and validating input data], page 82. After downloading the image as described
there, you will have r.fits in your current directory. We will therefore use r.fits as the
input to the rest program here. The image is not aligned to the celestial coordinates, so
we will align the pixel and WCS coordinates, but set the center of the pixel grid to be at
(RA,Dec) of (202.4173735,47.3374525). We also give it a TAN projection with a pixel scale
of 0.27 arcsecs, a defined center pixel. However, we’ll let the Warp library measure the
proper output image size that will contain the aligned image.

To compile the demonstration program below, copy and paste the contents in a plain-
text file (let’s assume you named it align-to-new.c) and use Section 12.2 [BuildProgram],
page 732, with this command: ‘astbuildprog align-to-new.c’. Please note that the
demo program does not perform many sanity checks to avoid making it too complex and
to highlight this particular feature in the library. For a robust method write programs with
all the necessary sanity checks, see Gnuastro’s Warp source code, see Section 13.4 [Program
source], page 935.

To encourage good coding practices, this script contains a copyright notice with a place
holder for your name and your email (as you customize it for your own purpose). Always
keep a one-line description and copyright notice like this in all your scripts, such “metadata”
is very important to accompany every source file you write. Of course, when you write the
source file from scratch and just learn how to use a single function from this manual, only
your name/year should appear. The existing name of the original author of this example
program is only for cases where you copy-paste this whole file.

/* Warp an image to a new grid.

*

* In the example below, We will use 'r.fits' as the input. The image is

* not aligned to the celestial coordinates, so we will align the pixel

* and WCS coordinates. We also give it a TAN projection. However, we’ll

* let the Warp library measure the proper output image size that will

* contain the aligned image.

*

* Copyright (C) 2024 Your Name <your@@email.address>
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* Copyright (C) 2022-2024 Pedram Ashofteh-Ardakani <pedramardakani@pm.me>

*

* This program is free software: you can redistribute it and/or modify

* it under the terms of the GNU General Public License as published by

* the Free Software Foundation, either version 3 of the License, or

* (at your option) any later version.

*

* This program is distributed in the hope that it will be useful, but

* WITHOUT ANY WARRANTY; without even the implied warranty of

* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

* General Public License for more details.

*

* You should have received a copy of the GNU General Public License

* along with this program. If not, see <http://www.gnu.org/licenses/>.

*/

#include <stdio.h>

#include <stdlib.h>

#include <gnuastro/wcs.h> /* Contains gnuastro's fits.h */

#include <gnuastro/warp.h> /* Contains gnuastro's data.h */

#include <gnuastro/array.h> /* Contains gnuastro's type.h */

int

main(void)

{

/* Input file's name and HDU. */

char *filename="r.fits", *hdu="0";

/* Output file name. */

char *outname="align-to-new.fits";

/* RA/Dec of the center of the central pixel of output. Please

* change the center based on your input. */

double center[]={202.4173735, 47.3374525};

/* Coordinate and Projection algorithms of output. */

char *ctype[2]={"RA---TAN", "DEC--TAN"};

/* Output pixel scale (in units of degrees/pixel). */

double cdelt[]={0.27/3600, 0.27/3600};

/* For intermediate steps. */

size_t two=2;

/* Initialize the 'wa' struct with empty values and NULL pointers. */

gal_warp_wcsalign_t wa=gal_warp_wcsalign_template();
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/* Set the width (and height!) of the output in pixels (as a 1D and

* 2 element 'gal_data_t'). When it is NULL, the library will

* calculate the appropriate width to fully fit the input image

* after alignment. */

wa.widthinpix=NULL;

/* Set the number of threads to use. If the value is '0', the

* library will estimate the maximum available threads at

* run-time on the host operating system. */

wa.numthreads=0;

/* Read the input image and its WCS. */

wa.input=gal_array_read_one_ch_to_type(filename, hdu, NULL,

GAL_TYPE_FLOAT64, -1, 0, NULL);

wa.input->wcs=gal_wcs_read(filename, hdu, 0, 0, 0, &wa.input->nwcs,

NULL);

/* Prepare the warp input structure. */

wa.coveredfrac=1; wa.edgesampling=0;

wa.ctype=gal_data_alloc(ctype, GAL_TYPE_STRING, 1, &two, NULL, 1,

-1, 0, NULL, NULL, NULL);

wa.cdelt=gal_data_alloc(cdelt, GAL_TYPE_FLOAT64, 1, &two, NULL, 1,

-1, 0, NULL, NULL, NULL);

wa.center=gal_data_alloc(center, GAL_TYPE_FLOAT64, 1, &two, NULL, 1,

-1, 0, NULL, NULL, NULL);

/* Do the warp, then convert it to a 32-bit float. */

gal_warp_wcsalign(&wa);

wa.output=gal_data_copy_to_new_type_free(wa.output, GAL_TYPE_FLOAT32);

/* WARNING: make sure there is no file with same name as 'out.fits'

* or the result will be appended to its final HDU. */

gal_fits_img_write(wa.output, outname, NULL, 0);

/* Remove the pointers to arrays that we didn't allocate (and thus,

* should not be freed by 'gal_data_free' below). */

wa.cdelt->array=wa.center->array=wa.ctype->array=NULL;

/* Clean up. */

gal_data_free(wa.cdelt); gal_data_free(wa.ctype);
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gal_data_free(wa.input); gal_data_free(wa.output);

gal_data_free(wa.center); gal_data_free(wa.widthinpix);

/* Give control back to the operating system. */

return EXIT_SUCCESS;

}
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13 Developing

The basic idea of GNU Astronomy Utilities is for an interested astronomer to be able to
easily understand the code of any of the programs or libraries, be able to modify the code if
s/he feels there is an improvement and finally, to be able to add new programs or libraries
for their own benefit, and the larger community if they are willing to share it. In short, we
hope that at least from the software point of view, the “obscurantist faith in the expert’s
special skill and in his personal knowledge and authority” can be broken, see Section 1.3
[Gnuastro manifesto: Science and its tools], page 6. With this aim in mind, Gnuastro was
designed to have a very basic, simple, and easy to understand architecture for any interested
inquirer.

This chapter starts with very general design choices, in particular Section 13.1 [Why C
programming language?], page 928, and Section 13.2 [Program design philosophy], page 930.
It will then get a little more technical about the Gnuastro code and file/directory structure
in Section 13.3 [Coding conventions], page 931, and Section 13.4 [Program source], page 935.
Section 13.4.2 [The TEMPLATE program], page 938, discusses a minimal (and working)
template to help in creating new programs or easier learning of a program’s internal struc-
ture. Some other general issues about documentation, building and debugging are then
discussed. This chapter concludes with how you can learn about the development and get
involved in Section 13.10 [Gnuastro project webpage], page 949, Section 13.11 [Developing
mailing lists], page 950, and Section 13.12 [Contributing to Gnuastro], page 951.

13.1 Why C programming language?

Currently the programming languages that are commonly used in scientific applications are
C++1, Java2; Python3, and Julia4 (which is a newcomer but swiftly gaining ground). One
of the main reasons behind choosing these is their high-level abstractions. However, GNU
Astronomy Utilities is fully written in the C programming language5. The reasons can be
summarized with simplicity, portability and efficiency/speed. All four are very important
in a scientific software and we will discuss them below.

Simplicity can best be demonstrated in a comparison of the main books of C++ and C.
The “C programming language”6 book, written by the authors of C, is only 286 pages and
covers a very good fraction of the language, it has also remained unchanged from 1988. C
is the main programming language of nearly all operating systems and there is no plan of
any significant update. On the other hand, the most recent “C++ programming language”7

book, also written by its author, has 1366 pages and its fourth edition came out in 2013!
As discussed in Section 1.3 [Gnuastro manifesto: Science and its tools], page 6, it is very
important for other scientists to be able to readily read the code of a program at their will
with minimum requirements.

1 https://isocpp.org/
2 https://en.wikipedia.org/wiki/Java_(programming_language)
3 https://www.python.org/
4 https://julialang.org/
5 https://en.wikipedia.org/wiki/C_(programming_language)
6 Brian Kernighan, Dennis Ritchie. The C programming language. Prentice Hall, Inc., Second edition,

1988. It is also commonly known as K&R and is based on the ANSI C and ISO C90 standards.
7 Bjarne Stroustrup. The C++ programming language. Addison-Wesley Professional; 4 edition, 2013.

https://isocpp.org/
https://en.wikipedia.org/wiki/Java_(programming_language)
https://www.python.org/
https://julialang.org/
https://en.wikipedia.org/wiki/C_(programming_language)
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In C++ or Java, inheritance in the object oriented programming paradigm and their
internal functions make the code very easy to write for a programmer who is deeply invested
in those objects and understands all their relations well. But it simultaneously makes
reading the program for a first time reader (a curious scientist who wants to know only how
a small step was done) extremely hard. Before understanding the methods, the scientist
has to invest a lot of time and energy in understanding those objects and their relations.
But in C, everything is done with basic language types for example ints or floats and
their pointers to define arrays. So when an outside reader is only interested in one part of
the program, that part is all they have to understand.

Recently it is also becoming common to write scientific software in Python, or a combi-
nation of it with C or C++. Python is a high level scripting language which does not need
compilation. It is very useful when you want to do something on the go and do not want to
be halted by the troubles of compiling, linking, memory checking, etc. When the datasets
are small and the job is temporary, this ability of Python is great and is highly encouraged.
A very good example might be plotting, in which Python is undoubtedly one of the best.

But as the data sets increase in size and the processing becomes more complicated, the
speed of Python scripts significantly decrease. So when the program does not change too
often and is widely used in a large community, mostly on large data sets (like astronomical
images), using Python will waste a lot of valuable research-hours. It is possible to wrap
C or C++ functions with Python to fix the speed issue. But this creates further complex-
ity, because the interested scientist has to master two programming languages and their
connection (which is not trivial).

Like C++, Python is object oriented, so as explained above, it needs a high level of
experience with that particular program to reasonably understand its inner workings. To
make things worse, since it is mainly for on-the-go programming8, it can undergo significant
changes. One recent example is how Python 2.x and Python 3.x are not compatible. Lots
of research teams that invested heavily in Python 2.x cannot benefit from Python 3.x or
future versions any more. Some converters are available, but since they are automatic, lots
of complications might arise in the conversion9. If a research project begins using Python
3.x today, there is no telling how compatible their investments will be when Python 4.x or
5.x will come out.

Java is also fully object-oriented, but uses a different paradigm: its compilation generates
a hardware-independent bytecode, and a Java Virtual Machine (JVM) is required for the
actual execution of this bytecode on a computer. Java also evolved with time, and tried
to remain backward compatible, but inevitably this evolution required discontinuities and
replacements of a few Java components which were first declared as becoming deprecated,
and removed from later versions.

This stems from the core principles of high-level languages like Python or Java: that
they evolve significantly on the scale of roughly 5 to 10 years. They are therefore useful
when you want to solve a short-term problem and you are ready to pay the high cost
of keeping your software up to date with all the changes in the language. This is fine for
private companies, but usually too expensive for scientific projects that have limited funding

8 Note that Python is good for fast programming, not fast programs.
9 For example see Jenness 2017 (https://arxiv.org/abs/1712.00461), which describes how LSST is

managing the transition.

https://arxiv.org/abs/1712.00461
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for a fixed period. As a result, the reproducibility of the result (ability to regenerate the
result in the future, which is a core principal of any scientific result) and reusability of
all the investments that went into the science software will be lost to future generations!
Rebuilding all the dependencies of a software in an obsolete language is not easy, or even not
possible. Future-proof code (as long as current operating systems will be used) is therefore
written in C.

The portability of C is best demonstrated by the fact that C++, Java and Python are
part of the C-family of programming languages which also include Julia, Perl, and many
other languages. C libraries can be immediately included in C++, and it is easy to write
wrappers for them in all C-family programming languages. This will allow other scientists
to benefit from C libraries using any C-family language that they prefer. As a result,
Gnuastro’s library is already usable in C and C++, and wrappers will be10 added for higher-
level languages like Python, Julia and Java.

The final reason was speed. This is another very important aspect of C which is not
independent of simplicity (first reason discussed above). The abstractions provided by the
higher-level languages (which also makes learning them harder for a newcomer) come at
the cost of speed. Since C is a low-level language11 (closer to the hardware), it has a direct
access to the CPU12, is generally considered as being faster in its execution, and is much
less complex for both the human reader and the computer. The benefits of simplicity for
a human were discussed above. Simplicity for the computer translates into more efficient
(faster) programs. This creates a much closer relation between the scientist/programmer
(or their program) and the actual data and processing. The GNU coding standards13 also
encourage the use of C over all other languages when generality of usage and “high speed”
is desired.

13.2 Program design philosophy

The core processing functions of each program (and all libraries) are written mostly with
the basic ISO C90 standard. We do make lots of use of the GNU additions to the C
language in the GNU C library14, but these functions are mainly used in the user interface
functions (reading your inputs and preparing them prior to or after the analysis). The
actual algorithms, which most scientists would be more interested in, are much more closer
to ISO C90. For this reason, program source files that deal with user interface issues and
those doing the actual processing are clearly separated, see Section 13.4 [Program source],
page 935. If anything particular to the GNU C library is used in the processing functions,
it is explained in the comments in between the code.

All the Gnuastro programs provide very low level and modular operations (modeled
on GNU Coreutils). Almost all the basic command-line programs like ls, cp or rm on

10 http://savannah.gnu.org/task/?13786
11 Low-level languages are those that directly operate the hardware like assembly languages. So C is actually

a high-level language, but it can be considered one of the lowest-level languages among all high-level
languages.

12 for instance the long double numbers with at least 64-bit mantissa are not accessible in Python or Java.
13 http://www.gnu.org/prep/standards/
14 Gnuastro uses many GNU additions to the C library. However, thanks to the GNU Portability library

(Gnulib) which is included in the Gnuastro tarball, users of non-GNU/Linux operating systems can also
benefit from all these features when using Gnuastro.

http://savannah.gnu.org/task/?13786
http://www.gnu.org/prep/standards/
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GNU/Linux operating systems are part of GNU Coreutils. This enables you to use shell
scripting languages (for example, GNU Bash) to operate on a large number of files or do
very complex things through the creative combinations of these tools that the authors had
never dreamed of. We have put a few simple examples in Chapter 2 [Tutorials], page 22.

For example, all the analysis output can be saved as ASCII tables which can be fed
into your favorite plotting program to inspect visually. Python’s Matplotlib is very useful
for fast plotting of the tables to immediately check your results. If you want to include
the plots in a document, you can use the PGFplots package within LATEX, no attempt is
made to include such operations in Gnuastro. In short, Bash can act as a glue to connect
the inputs and outputs of all these various Gnuastro programs (and other programs) in
any fashion. Of course, Gnuastro’s programs are just front-ends to the main workhorse
(Section 12.3 [Gnuastro library], page 736), allowing a user to create their own programs
(for example, with Section 12.2 [BuildProgram], page 732). So once the functions within
programs become mature enough, they will be moved within the libraries for even more
general applications.

The advantage of this architecture is that the programs become small and transparent:
the starting and finishing point of every program is clearly demarcated. For nearly all
operations on a modern computer (fast file input-output) with a modest level of complexity,
the read/write speed is insignificant compared to the actual processing a program does.
Therefore the complexity which arises from sharing memory in a large application is simply
not worth the speed gain. Gnuastro’s design is heavily influenced from Eric Raymond’s
“The Art of Unix Programming”15 which beautifully describes the design philosophy and
practice which lead to the success of Unix-based operating systems16.

13.3 Coding conventions

In Gnuastro, we try our best to follow the GNU coding standards. Added to those, Gnuastro
defines the following conventions. It is very important for readability that the whole package
follows the same convention.

• The code must be easy to read by eye. So when the order of several lines within
a function does not matter (for example, when defining variables at the start of a
function). You should put the lines in the order of increasing length and group the
variables with similar types such that this half-pyramid of declarations becomes most
visible. If the reader is interested, a simple search will show them the variable they are
interested in. However, this visual aid greatly helps in general inspections of the code
and help the reader get a grip of the function’s processing.

• A function that cannot be fully displayed (vertically) in your monitor is probably too
long and may be more useful if it is broken up into multiple functions. 40 lines is
usually a good reference. When the start and end of a function are clearly visible in
one glance, the function is much more easier to understand. This is most important
for low-level functions (which usually define a lot of variables). Low-level functions do
most of the processing, they will also be the most interesting part of a program for
an inquiring astronomer. This convention is less important for higher level functions

15 Eric S. Raymond, 2004, The Art of Unix Programming, Addison-Wesley Professional Computing Series.
16 KISS principle: Keep It Simple, Stupid!
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that do not define too many variables and whose only purpose is to run the lower-level
functions in a specific order and with checks.

In general you can be very liberal in breaking up the functions into smaller parts, the
GNU Compiler Collection (GCC) will automatically compile the functions as inline
functions when the optimizations are turned on. So you do not have to worry about
decreasing the speed. By default Gnuastro will compile with the -O3 optimization flag.

• All Gnuastro hand-written text files (C source code, Texinfo documentation source,
and version control commit messages) should normally be no more than 75 characters
per line. Monitors today are certainly much wider, but with this limit, reading the
functions becomes much more easier. Also for the developers, it allows multiple files
(or multiple views of one file) to be displayed beside each other on wide monitors.

Emacs’s buffers are excellent for this capability, setting a buffer width of 80 with ‘C-u
80 C-x 3’ will allow you to view and work on several files or different parts of one
file using the wide monitors common today. Emacs buffers can also be used as a shell
prompt and compile the program (with M-x compile), and 80 characters is the default
width in most terminal emulators. If you use Emacs, Gnuastro sets the 75 character
fill-column variable automatically for you, see cartouche below.

For long comments you can use press Alt-q in Emacs to separate them into separate
lines automatically. For long literal strings, you can use the fact that in C, two strings
immediately after each other are concatenated, for example, "The first part, " "and

the second part.". Note the space character in the end of the first part. Since they
are now separated, you can easily break a long literal string into several lines and adhere
to the maximum 75 character line length policy.

• The headers required by each source file (ending with .c) should be defined inside
of it. All the headers a complete program needs should not be stacked in another
header to include in all source files (for example main.h). Although most ‘professional’
programmers choose this single header method, Gnuastro is primarily written for pro-
fessional/inquisitive astronomers (who are generally amateur programmers). The list
of header files included provides valuable general information and helps the reader.
main.h may only include the header file(s) that define types that the main program
structure needs, see main.h in Section 13.4 [Program source], page 935. Those partic-
ular header files that are included in main.h can of course be ignored (not included)
in separate source files.

• The headers should be classified (by an empty line) into separate groups:

1. #include <config.h>: This must be the first code line (not commented or blank)
in each source file within Gnuastro. It sets macros that the GNU Portability
Library (Gnulib) will use for a unified environment (GNU C Library), even when
the user is building on a system that does not use the GNU C library.

2. The C library header files, for example, stdio.h, stdlib.h, or math.h.

3. Installed library header files, including Gnuastro’s installed headers (for example
cfitsio.h or gsl/gsl_rng.h, or gnuastro/fits.h).

4. Gnuastro’s internal headers (that are not installed), for example gnuastro-

internal/options.h.

5. For programs, the main.h file (which is needed by the next group of headers).
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6. That particular program’s header files, for example, mkprof.h, or noisechisel.h.

As much as order does not matter when you include the header of each group, sort
them by length, as described above.

• All function names, variables, etc., should be in lower case. Macros and constant global
enums should be in upper case.

• For the naming of exported header files, functions, variables, macros, and library
functions, we adopt similar conventions to those used by the GNU Scientific Library
(GSL)17. In particular, in order to avoid clashes with the names of functions and vari-
ables coming from other libraries the name-space ‘gal_’ is prefixed to them. GAL
stands for GNU Astronomy Library.

• All installed header files should be in the lib/gnuastro directory (under the
top Gnuastro source directory). After installation, they will be put in the
$prefix/include/gnuastro directory (see Section 3.3.1.2 [Installation directory],
page 233, for $prefix). Therefore with this convention Gnuastro’s headers can be
included in internal (to Gnuastro) and external (a library user) source files with the
same line

# include <gnuastro/headername.h>

Note that the GSL convention for header file names is gsl_specialname.h,
so your include directive for a GSL header must be something like #include

<gsl/gsl_specialname.h>. Gnuastro does not follow this GSL guideline because
of the repeated gsl in the include directive. It can be confusing and cause bugs for
beginners. All Gnuastro (and GSL) headers must be located within a unique directory
and will not be mixed with other headers. Therefore the ‘gsl_’ prefix to the header
file names is redundant18.

• All installed functions and variables should also include the base-name of the file
in which they are defined as prefix, using underscores to separate words19. The
same applies to exported macros, but in upper case. For example, in Gnuastro’s
top source directory, the prototype of function gal_box_border_from_center is
in lib/gnuastro/box.h, and the macro GAL_POLYGON_MAX_CORNERS is defined in
lib/gnuastro/polygon.h.

This is necessary to give any user (who is not familiar with the library structure) the
ability to follow the code. This convention does make the function names longer (a
little harder to write), but the extra documentation it provides plays an important role
in Gnuastro and is worth the cost.

• There should be no trailing white space in a line. To do this automatically every time
you save a file in Emacs, add the following line to your ~/.emacs file.

(add-hook 'before-save-hook 'delete-trailing-whitespace)

17 https://www.gnu.org/software/gsl/design/gsl-design.html#SEC15
18 For GSL, this prefix has an internal technical application: GSL’s architecture mixes installed and not-

installed headers in the same directory. This prefix is used to identify their installation status. Therefore
this filename prefix in GSL a technical internal issue (for developers, not users).

19 The convention to use underscores to separate words, called “snake case” (or “snake case”). This is also
recommended by the GNU coding standards.

https://www.gnu.org/software/gsl/design/gsl-design.html#SEC15
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• There should be no tabs in the indentation20.

• Individual, contextually similar, functions in a source file are separated by 5 blank
lines to be easily seen to be related in a group when parsing the source code by eye. In
Emacs you can use CTRL-u 5 CTRL-o.

• One group of contextually similar functions in a source file is separated from another
with 20 blank lines. In Emacs you can use CTRL-u 20 CTRL-o. Each group of functions
has short descriptive title of the functions in that group. This title is surrounded by
asterisks (*) to make it clearly distinguishable. Such contextual grouping and clear
title are very important for easily understanding the code.

• Always read the comments before the patch of code under it. Similarly, try to add
as many comments as you can regarding every patch of code. Effectively, we want
someone to get a good feeling of the steps, without having to read the C code and
only by reading the comments. This follows similar principles as Literate programming
(https://en.wikipedia.org/wiki/Literate_programming).

The last two conventions are not common and might benefit from a short discussion here.
With a good experience in advanced text editor operations, the last two are redundant for
a professional developer. However, recall that Gnuastro aspires to be friendly to unfamiliar,
and inexperienced (in programming) eyes. In other words, as discussed in Section 1.3
[Gnuastro manifesto: Science and its tools], page 6, we want the code to appear welcoming
to someone who is completely new to coding (and text editors) and only has a scientific
curiosity.

Newcomers to coding and development, who are curious enough to venture into the code,
will probably not be using (or have any knowledge of) advanced text editors. They will see
the raw code in the web page or on a simple text editor (like Gedit) as plain text. Trying to
learn and understand a file with dense functions that are all spaced with one or two blank
lines can be very taunting for a newcomer. But when they scroll through the file and see
clear titles and meaningful spaces for similar functions, we are helping them find and focus
on the part they are most interested in sooner and easier.

20 If you use Emacs, Gnuastro’s .dir-locals.el file will automatically never use tabs for indentation. To
make this a default in all your Emacs sessions, you can add the following line to your ~/.emacs file:
(setq-default indent-tabs-mode nil)

https://en.wikipedia.org/wiki/Literate_programming
https://en.wikipedia.org/wiki/Literate_programming
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� �
GNU Emacs, the recommended text editor: GNU Emacs is an extensible and easily cus-
tomizable text editor which many programmers rely on for developing due to its countless
features. Among them, it allows specification of certain settings that are applied to a
single file or to all files in a directory and its sub-directories. In order to harmonize code
coming from different contributors, Gnuastro comes with a .dir-locals.el file which
automatically configures Emacs to satisfy most of the coding conventions above when you
are using it within Gnuastro’s directories. Thus, Emacs users can readily start hacking into
Gnuastro. If you are new to developing, we strongly recommend this editor. Emacs was
the first project released by GNU and is still one of its flagship projects. Some resources
can be found at:

Official manual
At https://www.gnu.org/software/emacs/manual/emacs.html. This is a
great and very complete manual which is being improved for over 30 years
and is the best starting point to learn it. It just requires a little patience and
practice, but rest assured that you will be rewarded. If you install Emacs,
you also have access to this manual on the command-line with the following
command (see Section 4.3.4 [Info], page 273).

$ info emacs

A guided tour of emacs
At https://www.gnu.org/software/emacs/tour/. A short visual tour of
Emacs, officially maintained by the Emacs developers.

Unofficial mini-manual
At https://tuhdo.github.io/emacs-tutor.html. A shorter manual which
contains nice animated images of using Emacs.
 	

13.4 Program source

Besides the fact that all the programs share some functions that were explained in Chap-
ter 12 [Library], page 724, everything else about each program is completely independent.
Recall that Gnuastro is written for an active astronomer/scientist (not a passive one who
just uses a software). It must thus be easily navigable. Hence there are fixed source files
(that contain fixed operations) that must be present in all programs, these are discussed
fully in Section 13.4.1 [Mandatory source code files], page 935. To easily understand the ex-
planations in this section you can use Section 13.4.2 [The TEMPLATE program], page 938,
which contains the bare minimum code for one working program. This template can also
be used to easily add new utilities: just copy and paste the directory and change TEMPLATE
with your program’s name.

13.4.1 Mandatory source code files

Some programs might need lots of source files and if there is no fixed convention, navigating
them can become very hard for a new inquirer into the code. The following source files
exist in every program’s source directory (which is located in bin/progname). For small
programs, these files are enough. Larger programs will need more files and developers are

https://www.gnu.org/software/emacs/manual/emacs.html
https://www.gnu.org/software/emacs/tour/
https://tuhdo.github.io/emacs-tutor.html
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encouraged to define any number of new files. It is just important that the following list
of files exist and do what is described here. When creating other source files, please choose
filenames that are a complete single word: do not abbreviate (abbreviations are cryptic).
For a minimal program containing all these files, see Section 13.4.2 [The TEMPLATE
program], page 938.

main.c Each executable has a main function, which is located in main.c. Therefore this
file is the starting point when reading any program’s source code. No actual
processing functions must be defined in this file, the function(s) in this file are
only meant to connect the most high level steps of each program. Generally,
main will first call the top user interface function to read user input and make
all the preparations. Then it will pass control to the top processing function
for that program. The functions to do both these jobs must be defined in other
source files.

main.h All the major parameters which will be used in the program must be stored
in a structure which is defined in main.h. The name of this structure is usu-
ally prognameparams, for example, cropparams or noisechiselparams. So
#include "main.h" will be a staple in all the source codes of the program.
It is also regularly the first (and only) argument of many of the program’s
functions which greatly helps in readability.

Keeping all the major parameters of a program in this structure has the major
benefit that most functions will only need one argument: a pointer to this struc-
ture. This will significantly facilitate the job of the programmer, the inquirer
and the computer. All the programs in Gnuastro are designed to be low-level,
small and independent parts, so this structure should not get too large.

The main root structure of all programs contains at least one instance of the
gal_options_common_params structure. This structure will keep the values
to all common options in Gnuastro’s programs (see Section 4.1.2 [Common
options], page 251). This top root structure is conveniently called p (short
for parameters) by all the functions in the programs and the common options
parameters within it are called cp. With this convention any reader can im-
mediately understand where to look for the definition of one parameter. For
example, you know that p->cp->output is in the common parameters while
p->threshold is in the program’s parameters.

With this basic root structure, the source code of functions can potentially
become full of structure de-reference operators (->) which can make the code
very unreadable. In order to avoid this, whenever a structure element is used
more than a couple of times in a function, a variable of the same type and with
the same name (so it can be searched) as the desired structure element should
be defined with the value of the root structure inside of it in definition time.
Here is an example:

char *hdu=p->cp.hdu;

float threshold=p->threshold;

args.h The options particular to each program are defined in this file. Each option
is defined by a block of parameters in program_options. These blocks are all
you should modify in this file, leave the bottom group of definitions untouched.
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These are fed directly into the GNU C library’s Argp facilities and it is recom-
mended to have a look at that for better understand what is going on, although
this is not required here.

Each element of the block defining an option is described under argp_option
in bootstrapped/lib/argp.h (from Gnuastro’s top source file). Note that the
last few elements of this structure are Gnuastro additions (not documented in
the standard Argp manual). The values to these last elements are defined in
lib/gnuastro/type.h and lib/gnuastro-internal/options.h (from Gnu-
astro’s top source directory).

ui.h Besides declaring the exported functions of ui.c, this header also keeps the
“key”s to every program-specific option. The first class of keys for the options
that have a short-option version (single letter, see Section 4.1.1.2 [Options],
page 249). The character that is defined here is the option’s short option
name. The list of available alphabet characters can be seen in the comments.
Recall that some common options also take some characters, for those, see
lib/gnuastro-internal/options.h.

The second group of options are those that do not have a short option alterna-
tive. Only the first in this group needs a value (1000), the rest will be given a
value by C’s enum definition, so the actual value is irrelevant and must never
be used, always use the name.

ui.c Everything related to reading the user input arguments and options, checking
the configuration files and checking the consistency of the input parameters be-
fore the actual processing is run should be done in this file. Since most functions
are the same, with only the internal checks and structure parameters differing.
We recommend going through the ui.c of Section 13.4.2 [The TEMPLATE
program], page 938, or several other programs for a better understanding.

The most high-level function in ui.c is named ui_read_check_inputs_setup.
It accepts the raw command-line inputs and a pointer to the root structure
for that program (see the explanation for main.h). This is the function that
main calls. The basic idea of the functions in this file is that the processing
functions should need a minimum number of such checks. With this convention
an inquirer who only wants to understand only one part (mostly the processing
part and not user input details and sanity checks) of the code can easily do so
in the later files. It also makes all the errors related to input appear before the
processing begins which is more convenient for the user.

progname.c, progname.h

The high-level processing functions in each program are in a file named
progname.c, for example, crop.c or noisechisel.c. The function within
these files which main calls is also named after the program, for example:

void

crop(struct cropparams *p)

or

void

noisechisel(struct noisechiselparams *p)



Chapter 13: Developing 938

In this manner, if an inquirer is interested in the processing steps, they can
immediately come and check this file for the first processing step without having
to go through main.c and ui.c first. In most situations, any failure in any step
of the programs will result in an informative error message and an immediate
abort in the program. So there is usually no need for return values. Under
more complicated situations where a return value might be necessary, void will
be replaced with an int in the examples above. This value must be directly
returned by main, so it has to be an int.

authors-cite.h

This header file keeps the global variable for the program authors and its Bib-
TeX record for citation. They are used in the outputs of the common options
--version and --cite, see Section 4.1.2.3 [Operating mode options], page 257.

progname-complete.bash

This shell script is used for implementing auto-completion features when run-
ning Gnuastro’s programs within GNU Bash. For more on the concept of shell
auto-completion and how it is managed in Gnuastro, see Section 13.8 [Bash
programmable completion], page 943.

These files assume a set of common shell functions that have the
prefix _gnuastro_autocomplete_ in their name and are defined in
bin/complete.bash.in (of the source directory, and under version control)
and bin/complete.bash.built (built during the building of Gnuastro in the
build directory). During Gnuastro’s build, all these Bash completion files are
merged into one file that is installed and the user can source them into their
Bash startup file, for example, see Section 1.1 [Quick start], page 1.

13.4.2 The TEMPLATE program

The extra creativity offered by libraries comes at a cost: you have to actually write your
main function and get your hands dirty in managing user inputs: are all the necessary
parameters given a value? is the input in the correct format? do the options and the inputs
correspond? and many other similar checks. So when an operation has well-defined inputs
and outputs and is commonly needed, it is much more worthwhile to simply do use all the
great features that Gnuastro has already defined for such operations.

To make it easier to learn/apply the internal program infrastructure discussed in Sec-
tion 13.4.1 [Mandatory source code files], page 935, in the Section 3.2.2 [Version controlled
source], page 226, Gnuastro ships with a template program. This template program is
not available in the Gnuastro tarball so it does not confuse people using the tarball. The
bin/TEMPLATE directory in Gnuastro’s Git repository contains the bare minimum files nec-
essary to define a new program and all the basic/necessary files/functions are pre-defined
there.

Below you can see a list of initial steps to take for customizing this template. We just
assume that after cloning Gnuastro’s history, you have already bootstrapped Gnuastro, if
not, please see Section 3.2.2.1 [Bootstrapping], page 227.

1. Select a name for your new program (for example, myprog).

2. Copy the TEMPLATE directory to a directory with your program’s name:

$ cp -R bin/TEMPLATE bin/myprog
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3. As with all source files in Gnuastro, all the files in template also have a copyright
notice at their top. Open all the files and correct these notices: 1) The first line
contains a single-line description of the program. 2) In the second line only the name
or your program needs to be fixed and 3) Add your name and email as a “Contributing
author”. As your program grows, you will need to add new files, do not forget to add
this notice in those new files too, just put your name and email under “Original author”
and correct the copyright years.

4. Open configure.ac in the top Gnuastro source. This file manages the operations that
are done when a user runs ./configure. Going down the file, you will notice repetitive
parts for each program. You will notice that the program names follow an alphabetic
ordering in each part. There is also a commented line/patch for the TEMPLATE program
in each part. You can copy one line/patch (from the program above or below your
desired name for example) and paste it in the proper place for your new program.
Then correct the names of the copied program to your new program name. There are
multiple places where this has to be done, so be patient and go down to the bottom
of the file. Ultimately add bin/myprog/Makefile to AC_CONFIG_FILES, only here the
ordering depends on the length of the name (it is not alphabetical).

5. Open Makefile.am in the top Gnuastro source. Similar to the previous step, add your
new program similar to all the other programs. Here there are only two places: 1) at
the top where we define the conditionals (three lines per program), and 2) immediately
under it as part of the value for SUBDIRS.

6. Open doc/Makefile.am and similar to Makefile.am (above), add the proper entries
for the man page of your program to be created (here, the variable that keeps all the
man pages to be created is dist_man_MANS). Then scroll down and add a rule to build
the man page similar to the other existing rules (in alphabetical order). Do not forget
to add a short one-line description here, it will be displayed on top of the man page.

7. Change TEMPLATE.c and TEMPLATE.h to myprog.c and myprog.h in the file names:

$ cd bin/myprog

$ mv TEMPLATE.c myprog.c

$ mv TEMPLATE.h myprog.h

8. Correct all occurrences of TEMPLATE in the input files to myprog (in short or long
format). You can get a list of all occurrences with the following command. If you
use Emacs, it will be able to parse the Grep output and open the proper file and line
automatically. So this step can be very easy.

$ grep --color -nHi -e template *

9. Run the following commands to rebuild the configuration and build system, and then
to configure and build Gnuastro (which now includes your exciting new program).

$ autoreconf -f

$ ./configure

$ make

10. You are done! You can now start customizing your new program to do your special
processing. When it is complete, just do not forget to add checks also, so it can be
tested at least once on a user’s system with make check, see Section 13.7 [Test scripts],
page 942. Finally, if you would like to share it with all Gnuastro users, inform us so
we merge it into Gnuastro’s main history.
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13.5 Documentation

Documentation (this book) is an integral part of Gnuastro (see Section 1.3 [Gnuastro man-
ifesto: Science and its tools], page 6). Documentation is not considered a separate project
and must be written by its developers. Users can make edits/corrections, but the initial
writing must be by the developer. So, no change is considered valid for implementation un-
less the respective parts of the book have also been updated. The following procedure can
be a good suggestion to take when you have a new idea and are about to start implementing
it.

The steps below are not a requirement, the important thing is that when you send your
work to be included in Gnuastro, the book and the code have to both be fully up-to-date
and compatible, with the purpose of the update very clearly explained. You can follow any
strategy you like, the following strategy was what we have found to be most useful until
now.

1. Edit the book and fully explain your desired change, such that your idea is completely
embedded in the general context of the book with no sense of discontinuity for a first
time reader. This will allow you to plan the idea much more accurately and in the
general context of Gnuastro (a particular program or library). Later on, when you are
coding, this general context will significantly help you as a road-map.

A very important part of this process is the program/library introduction. These first
few paragraphs explain the purposes of the program or library and are fundamental to
Gnuastro. Before actually starting to code, explain your idea’s purpose thoroughly in
the start of the respective/new section you wish to work on. While actually writing
its purpose for a new reader, you will probably get some valuable and interesting ideas
that you had not thought of before. This has occurred several times during the creation
of Gnuastro.

If an introduction already exists, embed or blend your idea’s purpose with the existing
introduction. We emphasize that doing this is equally useful for you (as the program-
mer) as it is useful for the user (reader). Recall that the purpose of a program is very
important, see Section 13.2 [Program design philosophy], page 930.

As you have already noticed for every program/library, it is very important that the
basics of the science and technique be explained in separate subsections prior to the
‘Invoking Programname’ subsection. If you are writing a new program or your addi-
tion to an existing program involves a new concept, also include such subsections and
explain the concepts so a person completely unfamiliar with the concepts can get a
general initial understanding. You do not have to go deep into the details, just enough
to get an interested person (with absolutely no background) started with some good
pointers/links to where they can continue studying if they are more interested. If you
feel you cannot do that, then you have probably not understood the concept yourself.
If you feel you do not have the time, then think about yourself as the reader in one
year: you will forget almost all the details, so now that you have done all the theoretical
preparations, add a few more hours and document it. Therefore in one year, when you
find a bug or want to add a new feature, you do not have to prepare as much. Have
in mind that your only limitation in length is the fatigue of the reader after reading a
long text, nothing else. So as long as you keep it relevant/interesting for the reader,
there is no page number limit/cost.
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It might also help if you start discussing the usage of your idea in the ‘Invoking Pro-
gramName’ subsection (explaining the options and arguments you have in mind) at
this stage too. Actually starting to write it here will really help you later when you are
coding.

2. After you have finished adding your initial intended plan to the book, then start coding
your change or new program within the Gnuastro source files. While you are coding,
you will notice that somethings should be different from what you wrote in the book
(your initial plan). So correct them as you are actually coding, but do not worry too
much about missing a few things (see the next step).

3. After your work has been fully implemented, read the section documentation from the
start and check if you did not miss any change in the coding. Also, ensure that the
context is fairly continuous for a first-time reader (who has not seen the book or has
known Gnuastro before you made your change).

4. If the change is notable, also update the NEWS file.

13.6 Building and debugging

To build the various programs and libraries in Gnuastro, the GNU build system is used which
defines the steps in Section 1.1 [Quick start], page 1. It consists of GNU Autoconf, GNU
Automake and GNU Libtool which are collectively known as GNU Autotools. They provide
a very portable system to check the hosts environment and compile Gnuastro based on that.
They also make installing everything in their standard places very easy for the programmer.
Most of the small caps files that you see in the top source directory of the tarball are created
by these three tools (see Section 3.2.2 [Version controlled source], page 226). To facilitate
the building and testing of your work during development, Gnuastro comes with two useful
scripts:

developer-build

This is more fully described in Section 3.3.1.4 [Configure and build in RAM],
page 239. During development, you will usually run this command only once
(at the start of your work).

tests/during-dev.sh

This script is designed to be run each time you make a change and want to test
your work (with some possible input and output). The script itself is heavily
commented and thoroughly describes the best way to use it, so we will not
repeat it here. For a usage example, see Section 13.12.4 [Forking tutorial],
page 955.

As a short summary: you specify the build directory, an output directory (for
the built program to be run in, and also contains the inputs), the program’s
short name and the arguments and options that it should be run with. This
script will then build Gnuastro, go to the output directory and run the built
executable from there. One option for the output directory might be your
desktop, so you can easily see the output files and delete them when you are
finished. The main purpose of these scripts is to keep your source directory
clean and facilitate your development.
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By default all the programs are compiled with optimization flags for increased speed. A
side effect of optimization is that valuable debugging information is lost. All the libraries
are also linked as shared libraries by default. Shared libraries further complicate the debug-
ging process and significantly slow down the compilation (the make command). So during
development it is recommended to configure Gnuastro as follows:

$ ./configure --enable-debug

In developer-build you can ask for this behavior through the --debug option, see Sec-
tion 3.3.2 [Separate build and source directories], page 240.

In order to understand the building process, you can go through the Autoconf, Automake
and Libtool manuals, like all GNU manuals they provide both a great tutorial and technical
documentation. The “A small Hello World” section in Automake’s manual (in chapter 2)
can be a good starting guide after you have read the separate introductions.

13.7 Test scripts

As explained in Section 3.3.3 [Tests], page 243, for every program some simple tests are
written to check the various independent features of the program. All the tests are placed
in the tests/ directory. The tests/prepconf.sh script is the first ‘test’ that will be run.
It will copy all the configuration files from the various directories to a tests/.gnuastro

directory (which it will make) so the various tests can set the default values. This script
will also make sure the programs do not go searching for user and system wide configuration
files to avoid the mixing of values with different Gnuastro version on the system.

For each program, the tests are placed inside directories with the program name. Each
test is written as a shell script. The last line of this script is the test which runs the program
with certain parameters. The return value of this script determines the fate of the test, see
the “Support for test suites” chapter of the Automake manual for a very nice and complete
explanation. In every script, two variables are defined at first: prog and execname. The
first specifies the program name and the second the location of the executable.

The most important thing to have in mind about all the test scripts is that they are
run from inside the tests/ directory in the “build tree”. Which can be different from the
directory they are stored in (known as the “source tree”)21. This distinction is made by
GNU Autoconf and Automake (which configure, build and install Gnuastro) so that you
can install the program even if you do not have write access to the directory keeping the
source files. See the “Parallel build trees (a.k.a VPATH builds)” in the Automake manual
for a nice explanation.

Because of this, any necessary inputs that are distributed in the tarball22, for example,
the catalogs necessary for checks in MakeProfiles and Crop, must be identified with the
$topsrc prefix instead of ../ (for the top source directory that is unpacked). This $topsrc
variable points to the source tree where the script can find the source data (it is defined in
tests/Makefile.am). The executables and other test products were built in the build tree
(where they are being run), so they do not need to be prefixed with that variable. This is
also true for images or files that were produced by other tests.

21 The developer-build script also uses this feature to keep the source and build directories separate (see
Section 3.3.2 [Separate build and source directories], page 240).

22 In many cases, the inputs of a test are outputs of previous tests, this does not apply to this class of
inputs. Because all outputs of previous tests are in the “build tree”.
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13.8 Bash programmable completion� �
Under development: While work on TAB completion is ongoing, it is not yet fully ready,
please see the notice at the start of Section 4.1.3 [Shell TAB completion (highly cus-
tomized)], page 262.
 	

Gnuastro provides Programmable completion facilities in Bash. This greatly helps users
reach their desired result with minimal keystrokes, and helps them spend less time on
figuring out the option names and values their acceptable values. Gnuastro’s completion
script not only completes the half-written commands, but also prints suggestions based on
previous arguments.

Imagine a scenario where we need to download three columns containing the right as-
cension, declination, and parallax from the GAIA DR3 dataset. We have to make sure how
these columns are abbreviated or spelled. So we can call the command below, and store the
column names in a file such as gaia-dr3-columns.txt.

$ astquery gaia --information > gaia-dr3-columns.txt

Then we need to memorize or copy the column names of interest, and specify an output fits
file name such as gaia.fits:

$ astquery gaia --dataset=dr3 --output=gaia.fits \

--column=ra,dec,parallax

However, this is much easier using the auto-completion feature:

$ astquery gaia --dataset=dr3 --output=gaia.fits --column=[TAB]

After pressing [TAB], a full list of gaia dr3 dataset column names will be displayed. Typing
the first key of the desired column and pressing [TAB] again will limit the displayed list to
only the matching ones until the desired column is found.

13.8.1 Bash TAB completion tutorial

When a user presses the [TAB] key while typing commands, Bash will inspect the input
to find a relevant “completion specification”, or compspec. If available, the compspec will
generate a list of possible suggestions to complete the current word. A custom compsec can
be generated for any command using bash completion builtins23 and the bash variables that
start with the COMP keyword24.

First, let’s see a quick example of how you can make a completion script in just one line
of code. With the command below, we are asking Bash to give us three suggestions for
echo: foo, bar and bAr. Please run it in your terminal for the next steps.

$ complete -W "foo bar bAr" echo

The possible completion suggestions are fed into complete using the -W option followed
by a list of space delimited words. Let’s see it in action:

$ echo [TAB][TAB]

bar bAr foo

23 https://www.gnu.org/software/bash/manual/html_node/Programmable-Completion-Builtins.html
24 https://www.gnu.org/software/bash/manual/html_node/Bash-Variables.html

https://www.gnu.org/software/bash/manual/html_node/Programmable-Completion-Builtins.html
https://www.gnu.org/software/bash/manual/html_node/Bash-Variables.html
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Nicely done! Just note that the strings are sorted alphabetically, not in the original
order. Also, an arbitrary number of space characters are printed between them (based on
the number of suggestions and terminal size, etc.). Now, if you type ‘f’ and press [TAB],
bash will automatically figure out that you wanted foo and it be completed right away:

$ myprogram f[TAB]

$ myprogram foo

However, nothing will happen if you type ‘b’ and press [TAB] only once. This is because
of the ambiguity: there is not enough information to figure out which suggestion you want:
bar or bAr? So, if you press [TAB] twice, it will print out all the options that start with
‘b’:

$ echo b[TAB][TAB]

bar bAr

$ echo ba[TAB]

$ echo bar

Not bad for a simple program. But what if you need more control? By passing the
-F option to complete instead of -W, it will run a function for generating the suggestions,
instead of using a static string. For example, let’s assume that the expected value after
foo is the number of files in the current directory. Since the logic is getting more complex,
let’s write and save the commands below into a shell script with an arbitrary name such as
completion-tutorial.sh:

$ cat completion-tutorial.sh

_echo(){

if [ "$3" == "foo" ]; then

COMPREPLY=( $(ls | wc -l) )

else

COMPREPLY=( $(compgen -W "foo bar bAr" -- "$2") )

fi

}

complete -F _echo echo

We will look at it in detail soon. But for now, let’s source the file into your current terminal
and check if it works as expected:

$ source completion-tutorial.sh

$ echo [TAB][TAB]

foo bar bAr

$ echo foo [TAB]

$ touch empty.txt

$ echo foo [TAB]

Success! As you see, this allows for setting up highly customized completion scripts. Now
let’s have a closer look at the completion-tutorial.sh completion script from above.
First, the ‘-F’ option in front the complete command indicates that we want shell to
execute the _echo function whenever echo is called. As a convention, the function name
should be the same as the program name, but prefixed with an underscore (‘_’).

Within the _echo function, we’re checking if $3 is equal to foo. In Bash’s auto-complete,
$3 means the word before current cursor position. In fact, these are the arguments that
the _echo function is receiving:
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$1 The name of the command, here it is ‘echo’.

$2 The current word being completed (empty unless we are in the middle of typing
a word).

$3 The word before the word being completed.

To tell the completion script what to reply with, we use the COMPREPLY array. This array
holds all the suggestions that complete will show for the user in the end. In the example
above, we simply give it the string output of ‘ls | wc -l’.

Finally, we have the compgen command. According to bash programmable completion
builtins manual, the command compgen [OPTION] [WORD] generates possible completion
matches for [WORD] according to [OPTIONS]. Using the ‘-W’ option asks compgen to generate
a list of words from an input string. This is known as Word Splitting25. compgen will
automatically use the $IFS variable to split the string into a list of words. You can check
the default delimiters by calling:

$ printf %q "$IFS"

The default value of $IFS might be ‘ \t\n’. This means the SPACE, TAB, and New-line
characters. Finally, notice the ‘-- "$2"’ in this command:

COMPREPLY=( $(compgen -W "foo bar bAr" -- "$2") )

Here, the ‘--’ instructs compgen to only reply with a list of words that match $2, i.e. the
current word being completed. That is why when you type the letter ‘b’, complete will
reply only with its matches (‘bar’ and ‘bAr’), and will exclude ‘foo’.

Let’s get a little more realistic, and develop a very basic completion script for one of
Gnuastro’s programs. Since the --help option will list all the options available in Gnuastro’s
programs, we are going to use its output and create a very basic TAB completion for it.
Note that the actual TAB completion in Gnuastro is a little more complex than this and
fully described in Section 13.8.2 [Implementing TAB completion in Gnuastro], page 947.
But this is a good exercise to get started.

We will use asttable as the demo, and the goal is to suggest all options that this
program has to offer. You can print all of them (with a lot of extra information) with this
command:

$ asttable --help

Let’s write an awk script that prints all of the long options. When printing the option
names we can safely ignore the short options because if a user knows about the short options,
s/he already knows exactly what they want! Also, due to their single-character length, they
will be too cryptic without their descriptions.

One way to catch the long options is through awk as shown below. We only keep the
lines that 1) starting with an empty space, 2) their first no-white character is ‘-’ and that
have the format of ‘--’ followed by any number of numbers or characters. Within those
lines, if the first word ends in a comma (‘,’), the first word is the short option, so we want
the second word (which is the long option). Otherwise, the first word is the long option.
But for options that take a value, this will also include the format of the value (for example,

25 https://www.gnu.org/software/bash/manual/html_node/Word-Splitting.html

https://www.gnu.org/software/bash/manual/html_node/Word-Splitting.html
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--column=STR). So with a sed command, we remove everything that is after the equal sign,
but keep the equal sign itself (to highlight to the user that this option should have a value).

$ asttable --help \

| awk '/^ / && $1 ~ /^-/ && /--+[a-zA-Z0-9]*/ { \

if($1 ~ /,$/) name=$2; \

else name=$1; \

print name}' \

| sed -e's|=.*|=|'

If we wanted to show all the options to the user, we could simply feed the values of the
command above to compgen and COMPREPLY subsequently. But, we need smarter comple-
tions: we want to offer suggestions based on the previous options that have already been
typed in. Just Beware! Sometimes the program might not be acting as you expected. In
that case, using debug messages can clear things up. You can add a echo command be-
fore the completion function ends, and check all current variables. This can save a lot of
headaches, since things can get complex.

Take the option --wcsfile= for example. This option accepts a FITS file. Usually, the
user is trying to feed a FITS file from the current directory. So it would be nice if we could
help them and print only a list of FITS files sitting in the current directory – or whatever
directory they have typed-in so far.

But there’s a catch. When splitting the user’s input line, Bash will consider ‘=’ as a
separate word. To avoid getting caught in changing the IFS or WORDBREAKS values, we will
simply check for ‘=’ and act accordingly. That is, if the previous word is a ‘=’, we will ignore
it and take the word before that as the previous word. Also, if the current word is a ‘=’,
ignore it completely. Taking all of that into consideration, the code below might serve well:

_asttable(){

if [ "$2" = "=" ]; then word=""

else word="$2"

fi

if [ "$3" = "=" ]; then prev="${COMP_WORDS[COMP_CWORD-2]}"

else prev="${COMP_WORDS[COMP_CWORD-1]}"

fi

case "$prev" in

--wcsfile)

COMPREPLY=( $(compgen -f -X "!*.[fF][iI][tT][sS]" -- "$word") )

;;

esac

}

complete -o nospace -F _asttable asttable

To test the code above, write it into asttable-tutorial.sh, and load it into your running
terminal with this command:

$ source asttable-tutorial.sh
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If you then go to a directory that has at least one FITS file (with a .fits suffix, among
other files), you can checkout the function by typing the following command. You will see
that only files ending in .fits are shown, not any other file.

asttable --wcsfile=[TAB][TAB]

The code above first identifies the current and previous words. It then checks if the
previous word is equal to --wcsfile and if so, fills COMPREPLY array with the necessary
suggestions. We are using case here (instead of if) because in a real scenario, we need
to check many more values and case is far better suited for such cases (cleaner and more
efficient code).

The -f option in compgen indicates we’re looking for a file. The -X option filters out
the filenames that match the next regular expression pattern. Therefore we should start
the regular expression with ‘!’ if we want the files matching the regular expression. The
-- "$word" component collects only filenames that match the current word being typed.
And last but not least, the ‘-o nospace’ option in the complete command instructs the
completion script to not append a white space after each suggestion. That is important
because the long format of an option, its value is more clear when it sticks to the option
name with a ‘=’ sign.

You have now written a very basic and working TAB completion script that can easily
be generalized to include more options (and be good for a single/simple program). How-
ever, Gnuastro has many programs that share many similar things and the options are not
independent. Also, complex situations do often come up: for example, some people use a
.fit suffix for FITS files and others do not even use a suffix at all! So in practice, things
need to get a little more complicated, but the core concept is what you learnt in this sec-
tion. We just modularize the process (breaking logically independent steps into separate
functions to use in different situations). In Section 13.8.2 [Implementing TAB completion in
Gnuastro], page 947, we will review the generalities of Gnuastro’s implementation of Bash
TAB completion.

13.8.2 Implementing TAB completion in Gnuastro

The basics of Bash auto-completion was reviewed in Section 13.8.1 [Bash TAB completion
tutorial], page 943. Gnuastro is a very complex package of many programs, that have many
similar features, so implementing those principles in an easy to maintain manner requires a
modular solution. As a result, Bash’s TAB completion is implemented as multiple files in
Gnuastro:

bin/completion.bash.built (in build directory, automatically created)
This file contains the values of all Gnuastro options or arguments that take fixed
strings as values (not file names). For example, the names of Arithmetic’s oper-
ators (see Section 6.2.4 [Arithmetic operators], page 408), or spectral line names
(like --obsline in Section 9.1.3.1 [CosmicCalculator input options], page 660).

This file is created automatically during the building of Gnuastro. The recipe
to build it is available in Gnuastro’s top-level Makefile.am (under the target
bin/completion.bash). It parses the respective Gnuastro source file that con-
tains the necessary user-specified strings. All the acceptable values values are
then stored as shell variables (within a function).
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bin/completion.bash.in (in source directory, under version control)
All the low-level completion functions that are common to all programs are
stored here. It thus contains functions that will parse the command-line or
files, or suggest the completion replies.

PROGNAME-complete.bash (in source directory, under version control)
All Gnuastro programs contain a PROGNAME-complete.bash script within their
source (for more on the fixed files of each program, see Section 13.4 [Program
source], page 935). This file contains the very high-level (program-specific) Bash
programmable completion features that are almost always defined in Gnuastro-
generic Bash completion file (bin/completion.bash.in).

The top-level function that is called by Bash should be called _gnuastro_

autocomplete_PROGNAME and its last line should be the complete command
of Bash which calls this function. The contents of _gnuastro_autocomplete_
PROGNAME are almost identical for all the programs, it is just a very high-level
function that either calls _gnuastro_autocomplete_PROGNAME_arguments to
manage suggestions for the program’s arguments or _gnuastro_autocomplete_
PROGNAME_option_value to manage suggestions for the program’s option val-
ues.

The scripts above follow the following conventions. After reviewing the list, please also look
into the functions for examples of each point.

• No global shell variables in any completion script: the contents of the files above are
directly loaded into the user’s environment. So to keep the user’s environment clean
and avoid annoyance to the users, everything should be defined as shell functions, and
any variable within the functions should be set as local.

• All the function names should start with ‘_gnuastro_autocomplete_’, again to avoid
populating the user’s function name-space with possibly conflicting names.

• Outputs of functions should be written in the local variables of the higher-level func-
tions that called them.

13.9 Developer’s checklist

This is a checklist of things to do after applying your changes/additions in Gnuastro:

1. If the change is non-trivial, write test(s) in the tests/progname/ directory to
test the change(s)/addition(s) you have made. Then add their file names to
tests/Makefile.am.

2. If your change involves a change in command-line behavior of a Gnuastro program
or script (for example, adding a new option or argument), create or update the re-
spective bin/PROGNAME/completion.sh file described under the Section 13.8 [Bash
programmable completion], page 943, section.

3. Run $ make check to make sure everything is working correctly.

4. Make sure the documentation (this book) is completely up to date with your changes,
see Section 13.5 [Documentation], page 940.

5. Commit the change to your issue branch (see Section 13.12.3 [Production workflow],
page 954, and Section 13.12.4 [Forking tutorial], page 955). Afterwards, run Autoreconf
to generate the appropriate version number:
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$ autoreconf -f

6. Finally, to make sure everything will be built, installed and checked correctly run the
following command (after re-configuring, and rebuilding). To greatly speed up the
process, use multiple threads (8 in the example below, change it appropriately)

$ make distcheck -j8

This command will create a distribution file (ending with .tar.gz) and try to compile
it in the most general cases, then it will run the tests on what it has built in its
own mini-environment. If $ make distcheck finishes successfully, then you are safe to
send your changes to us to implement or for your own purposes. See Section 13.12.3
[Production workflow], page 954, and Section 13.12.4 [Forking tutorial], page 955.

13.10 Gnuastro project webpage

Gnuastro’s central management hub (https://savannah.gnu.org/projects/gnuastro/
)26 is located on GNU Savannah (https://savannah.gnu.org/)27. Savannah is the central
software development management system for many GNU projects. Through this central
hub, you can view the list of activities that the developers are engaged in, their activity on
the version controlled source, and other things. Each defined activity in the development
cycle is known as an ‘issue’ (or ‘item’). An issue can be a bug (see Section 1.9 [Report
a bug], page 15), or a suggested feature (see Section 1.10 [Suggest new feature], page 17)
or an enhancement or generally any one job that is to be done. In Savannah, issues are
classified into three categories or ‘tracker’s:

Support This tracker is a way that (possibly anonymous) users can get in touch with the
Gnuastro developers. It is a complement to the bug-gnuastro mailing list (see
Section 1.9 [Report a bug], page 15). Anyone can post an issue to this tracker.
The developers will not submit an issue to this list. They will only reassign the
issues in this list to the other two trackers if they are valid28. Ideally (when the
developers have time to put on Gnuastro, please do not forget that Gnuastro
is a volunteer effort), there should be no open items in this tracker.

Bugs This tracker contains all the known bugs in Gnuastro (problems with the ex-
isting tools).

Tasks The items in this tracker contain the future plans (or new features/capabilities)
that are to be added to Gnuastro.

All the trackers can be browsed by a (possibly anonymous) visitor, but to edit and comment
on the Bugs and Tasks trackers, you have to be a registered on Savannah. When posting an
issue to a tracker, it is very important to choose the ‘Category’ and ‘Item Group’ options
accurately. The first contains a list of all Gnuastro’s programs along with ‘Installation’,
‘New program’ and ‘Webpage’. The “Item Group” contains the nature of the issue, for
example, if it is a ‘Crash’ in the software (a bug), or a problem in the documentation (also
a bug) or a feature request or an enhancement.

26 https://savannah.gnu.org/projects/gnuastro/
27 https://savannah.gnu.org/
28 Some of the issues registered here might be due to a mistake on the user’s side, not an actual bug in the

program.

https://savannah.gnu.org/projects/gnuastro/
https://savannah.gnu.org/projects/gnuastro/
https://savannah.gnu.org/
https://savannah.gnu.org/projects/gnuastro/
https://savannah.gnu.org/
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The set of horizontal links on the top of the page (Starting with ‘Main’ and ‘Homepage’
and finishing with ‘News’) are the easiest way to access these trackers (and other major
aspects of the project) from any part of the project web page. Hovering your mouse over
them will open a drop down menu that will link you to the different things you can do on
each tracker (for example, ‘Submit new’ or ‘Browse’). When you browse each tracker, you
can use the “Display Criteria” link above the list to limit the displayed issues to what you
are interested in. The ‘Category’ and ‘Group Item’ (explained above) are a good starting
point.

Any new issue that is submitted to any of the trackers, or any comments that are
posted for an issue, is directly forwarded to the gnuastro-devel mailing list (https://lists.
gnu.org/mailman/listinfo/gnuastro-devel, see Section 13.11 [Developing mailing lists],
page 950, for more). This will allow anyone interested to be up to date on the over-all de-
velopment activity in Gnuastro and will also provide an alternative (to Savannah) archiving
for the development discussions. Therefore, it is not recommended to directly post an email
to this mailing list, but do all the activities (for example add new issues, or comment on
existing ones) on Savannah.� �
Do I need to be a member in Savannah to contribute to Gnuastro? No.

The full version controlled history of Gnuastro is available for anonymous download
or cloning. See Section 13.12.3 [Production workflow], page 954, for a description of
Gnuastro’s Integration-Manager Workflow. In short, you can either send in patches, or
make your own fork. If you choose the latter, you can push your changes to your own fork
and inform us. We will then pull your changes and merge them into the main project.
Please see Section 13.12.4 [Forking tutorial], page 955, for a tutorial.
 	
13.11 Developing mailing lists

To keep the developers and interested users up to date with the activity and discussions
within Gnuastro, there are two mailing lists which you can subscribe to:

gnuastro-devel@gnu.org

(at https://lists.gnu.org/mailman/listinfo/gnuastro-devel)
All the posts made in the support, bugs and tasks discussions of Section 13.10
[Gnuastro project webpage], page 949, are also sent to this mailing address and
archived. By subscribing to this list you can stay up to date with the discussions
that are going on between the developers before, during and (possibly) after
working on an issue. All discussions are either in the context of bugs or tasks
which are done on Savannah and circulated to all interested people through this
mailing list. Therefore it is not recommended to post anything directly to this
mailing list. Any mail that is sent to it from Savannah to this list has a link
under the title “Reply to this item at:”. That link will take you directly to the
issue discussion page, where you can read the discussion history or join it.

While you are posting comments on the Savannah issues, be sure to update
the meta-data. For example, if the task/bug is not assigned to anyone and you
would like to take it, change the “Assigned to” box, or if you want to report

https://lists.gnu.org/mailman/listinfo/gnuastro-devel
https://lists.gnu.org/mailman/listinfo/gnuastro-devel
https://lists.gnu.org/mailman/listinfo/gnuastro-devel
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that it has been applied, change the status and so on. All these changes will
also be circulated with the email very clearly.

gnuastro-commits@gnu.org

(at https://lists.gnu.org/mailman/listinfo/gnuastro-commits)
This mailing list is defined to circulate all commits that are done in Gnuastro’s
version controlled source, see Section 3.2.2 [Version controlled source], page 226.
If you have any ideas, or suggestions on the commits, please use the bug and
task trackers on Savannah to followup the discussion, do not post to this list.
All the commits that are made for an already defined issue or task will state
the respective ID so you can find it easily.

13.12 Contributing to Gnuastro

You have this great idea or have found a good fix to a problem which you would like to
implement in Gnuastro. You have also become familiar with the general design of Gnuastro
in the previous sections of this chapter (see Chapter 13 [Developing], page 928) and want to
start working on and sharing your new addition/change with the whole community as part
of the official release. This is great and your contribution is most welcome. This section
and the next (see Section 13.9 [Developer’s checklist], page 948) are written in the hope of
making it as easy as possible for you to share your great idea with the community.

In this section we discuss the final steps you have to take: legal and technical. From
the legal perspective, the copyright of any work you do on Gnuastro has to be assigned
to the Free Software Foundation (FSF) and the GNU operating system, or you have to
sign a disclaimer. We do this to ensure that Gnuastro can remain free in the future, see
Section 13.12.1 [Copyright assignment], page 951. From the technical point of view, in this
section we also discuss commit guidelines (Section 13.12.2 [Commit guidelines], page 952)
and the general version control workflow of Gnuastro in Section 13.12.3 [Production work-
flow], page 954, along with a tutorial in Section 13.12.4 [Forking tutorial], page 955.

Recall that before starting the work on your idea, be sure to checkout the bugs and tasks
trackers in Section 13.10 [Gnuastro project webpage], page 949, and announce your work
there so you do not end up spending time on something others have already worked on, and
also to attract similarly interested developers to help you.

13.12.1 Copyright assignment

Gnuastro’s copyright is owned by the Free Software Foundation (FSF) to ensure that Gnu-
astro always remains free. The FSF has also provided a Contributor FAQ (https://www.
fsf.org/licensing/contributor-faq) to further clarify the reasons, so we encourage you
to read it. Professor Eben Moglen, of the Columbia University Law School has given a nice
summary of the reasons for this at https://www.gnu.org/licenses/why-assign. Below
we are copying it verbatim for self consistency (in case you are offline or reading in print).

Under US copyright law, which is the law under which most free software pro-
grams have historically been first published, there are very substantial proce-
dural advantages to registration of copyright. And despite the broad right of
distribution conveyed by the GPL, enforcement of copyright is generally not
possible for distributors: only the copyright holder or someone having assign-
ment of the copyright can enforce the license. If there are multiple authors of

https://lists.gnu.org/mailman/listinfo/gnuastro-commits
https://www.fsf.org/licensing/contributor-faq
https://www.fsf.org/licensing/contributor-faq
https://www.gnu.org/licenses/why-assign
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a copyrighted work, successful enforcement depends on having the cooperation
of all authors.

In order to make sure that all of our copyrights can meet the record keeping and
other requirements of registration, and in order to be able to enforce the GPL
most effectively, FSF requires that each author of code incorporated in FSF
projects provide a copyright assignment, and, where appropriate, a disclaimer
of any work-for-hire ownership claims by the programmer’s employer. That way
we can be sure that all the code in FSF projects is free code, whose freedom
we can most effectively protect, and therefore on which other developers can
completely rely.

Please get in touch with the Gnuastro maintainer (currently Mohammad Akhlaghi, mo-
hammad -at- akhlaghi -dot- org) to follow the procedures. It is possible to do this for each
change (good for a single contribution), and also more generally for all the changes/additions
you do in the future within Gnuastro. So if you have already assigned the copyright of your
work on another GNU software to the FSF, it should be done again for Gnuastro. The FSF
has staff working on these legal issues and the maintainer will get you in touch with them
to do the paperwork. The maintainer will just be informed in the end so your contributions
can be merged within the Gnuastro source code.

Gnuastro will gratefully acknowledge (see Section 1.13 [Acknowledgments], page 19) all
the people who have assigned their copyright to the FSF and have thus helped to guarantee
the freedom and reliability of Gnuastro. The Free Software Foundation will also acknowl-
edge your copyright contributions in the Free Software Supporter: https://www.fsf.org/
free-software-supporter which will circulate to a very large community (225,910 people
in July 2021). See the archives for some examples and subscribe to receive interesting up-
dates. The very active code contributors (or developers) will also be recognized as project
members on the Gnuastro project web page (see Section 13.10 [Gnuastro project webpage],
page 949) and can be given a gnu.org email address. So your very valuable contribution
and copyright assignment will not be forgotten and is highly appreciated by a very large
community. If you are reluctant to sign an assignment, a disclaimer is also acceptable.� �
Do I need a disclaimer from my university or employer? It depends on the contract with
your university or employer. From the FSF’s /gd/gnuorg/conditions.text: “If you are
employed to do programming, or have made an agreement with your employer that says it
owns programs you write, we need a signed piece of paper from your employer disclaiming
rights to” Gnuastro. The FSF’s copyright clerk will kindly help you decide, please consult
the following email address: “assign -at- gnu -dot- org”.
 	
13.12.2 Commit guidelines

To be able to cleanly integrate your work with the other developers, never commit on
the master branch (see Section 13.12.3 [Production workflow], page 954, for a complete
discussion and Section 13.12.4 [Forking tutorial], page 955, for a cookbook example). In
short, leave master only for changes you fetch, or pull from the official repository (see
Section 3.2.2.2 [Synchronizing], page 229).

In the Gnuastro commit messages, we strive to follow these standards. Note that in
the early phases of Gnuastro’s development, we are experimenting and so if you notice

https://www.fsf.org/free-software-supporter
https://www.fsf.org/free-software-supporter
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earlier commits do not satisfy some of the guidelines below, it is because they predate that
guideline.

Commit title
The commits have to start with one short descriptive title. The title is separated
from the body with one blank line. Run git log to see some of the most recent
commit messages as an example. In general, the title should satisfy the following
conditions:

• It is best for the title to be short, about 60 (or even 50) characters. Most
emulated command-line terminals are about 80 characters wide. However,
we should also allow for the commit hashes which are printed in git log

--oneline, and also branch names or the graph structure outputs of git
log which are also commonly used.

• The title should not finish with any full-stops or periods (‘.’).

Commit body
The body of the commit message is separated from the title by one empty line.
Recall that anyone who has subscribed to gnuastro-commits mailing list will
get the commit in their email after it has been pushed to master. People will
also read them when they synchronize with the main Gnuastro repository (see
Section 3.2.2.2 [Synchronizing], page 229). Finally, the commit messages will
later be used to update the NEWS file on each release. Therefore the commit
message body plays a very important role in the development of Gnuastro, so
please adhere to the following guidelines.

• The body should be very descriptive. Start the commit message body
by explaining what changes your commit makes from a user’s perspec-
tive (added, changed, or removed options, or arguments to programs or
libraries, or modified algorithms, or new installation step, etc.).

• Try to explain the committed contents as best as you can. Recall that
the readers of your commit message do not necessarily have your current
background. After some time you will also forget the context, so this
request is not just for others29. Therefore be very descriptive and explain
as much as possible: what the bug/task was, justify the way you fixed
it and discuss other possible solutions that you might not have included.
For the last item, it is best to discuss them thoroughly as comments in
the appropriate section of the code, but only give a short summary in the
commit message. Note that all added and removed source code lines will
also be circulated in the gnuastro-commits mailing list.

• Like all other Gnuastro’s text files, the lines in the commit body should
not be longer than 75 characters, see Section 13.3 [Coding conventions],
page 931. This is to ensure that on standard terminal emulators (with
80 character width), the git log output can be cleanly displayed (note
that the commit message is indented in the output of git log). If you
use Emacs, Gnuastro’s .dir-locals.el file will ensure that your commits
satisfy this condition (using M-q).

29 http://catb.org/esr/writings/unix-koans/prodigy.html

http://catb.org/esr/writings/unix-koans/prodigy.html
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• When the commit is related to a task or a bug, please include the respective
ID (in the format of bug/task #ID, note the space) in the commit message
(from Section 13.10 [Gnuastro project webpage], page 949) for interested
people to be able to followup the discussion that took place there. If the
commit fixes a bug or finishes a task, the recommended way is to add a
line after the body with ‘This fixes bug #ID.’, or ‘This finishes task

#ID.’. Do not assume that the reader has internet access to check the
bug’s full description when reading the commit message, so give a short
introduction too.

Below you can see a good commit message example (do not forget to read it, it has tips
for you). After reading this, please run git log on the master branch and read some of
the recent commits for more realistic examples.

The first line should be the title of the commit

An empty line is necessary after the title so Git does not confuse

lines. This top paragraph of the body of the commit usually describes

the reason this commit was done. Therefore it usually starts with

"Until now ...". It is very useful to explain the reason behind the

change, things that are not immediately obvious when looking into the

code. You do not need to list the names of the files, or what lines

have been changed, do not forget that the code changes are fully stored

within Git :-).

In the second paragraph (or any later paragraph!) of the body, we

describe the solution and why (not "how"!) the particular solution was

implemented. So we usually start this part of the commit body with

"With this commit ...". Again, you do not need to go into the details

that can be seen from the 'git diff' command (like the file names that

have been changed or the code that has been implemented). The important

thing here is the things that are not immediately obvious from looking

into the code.

You can continue the explanation and it is encouraged to be very

explicit about the "human factor" of the change as much as possible, not

technical details.

13.12.3 Production workflow

Fortunately ‘Pro Git’ has done a wonderful job in explaining the different workflows in
Chapter 530 and in particular the “Integration-Manager Workflow” explained there. The
implementation of this workflow is nicely explained in Section 5.231 under “Forked-Public-
Project”. We have also prepared a short tutorial in Section 13.12.4 [Forking tutorial],
page 955. Anything on the master branch should always be tested and ready to be built
and used. As described in ‘Pro Git’, there are two methods for you to contribute to Gnuastro
in the Integration-Manager Workflow:

30 http://git-scm.com/book/en/v2/Distributed-Git-Distributed-Workflows
31 http://git-scm.com/book/en/v2/Distributed-Git-Contributing-to-a-Project

http://git-scm.com/book/en/v2/Distributed-Git-Distributed-Workflows
http://git-scm.com/book/en/v2/Distributed-Git-Contributing-to-a-Project
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1. You can send commit patches by email as fully explained in ‘Pro Git’. This is good
for your first few contributions. Just note that raw patches (containing only the diff)
do not have any meta-data (author name, date, etc.). Therefore they will not allow us
to fully acknowledge your contributions as an author in Gnuastro: in the AUTHORS file
and at the start of the PDF book. These author lists are created automatically from
the version controlled source.

To receive full acknowledgment when submitting a patch, is thus advised to use
Git’s format-patch tool. See Pro Git’s Public project over email (https://
git-scm.com/book/en/v2/Distributed-Git-Contributing-to-a-Project#

Public-Project-over-Email) section for a nice explanation. If you would like to get
more heavily involved in Gnuastro’s development, then you can try the next solution.

2. You can have your own forked copy of Gnuastro on any hosting site you like (Codeberg,
Gitlab, GitHub, BitBucket, etc.) and inform us when your changes are ready so we
merge them in Gnuastro. This is more suited for people who commonly contribute to
the code (see Section 13.12.4 [Forking tutorial], page 955).

In both cases, your commits (with your name and information) will be preserved and
your contributions will thus be fully recorded in the history of Gnuastro and in the AUTHORS
file and this book (second page in the PDF format) once they have been incorporated into
the official repository. Needless to say that in such cases, be sure to follow the bug or task
trackers (or subscribe to the gnuastro-develmailing list) and contact us before hand so you
do not do something that someone else is already working on. In that case, you can get in
touch with them and help the job go on faster, see Section 13.10 [Gnuastro project webpage],
page 949. This workflow is currently mostly borrowed from the general recommendations of
Git32 and GitHub. But since Gnuastro is currently under heavy development, these might
change and evolve to better suit our needs.

13.12.4 Forking tutorial

This is a tutorial on the second suggested method (commonly known as forking) that you
can submit your modifications in Gnuastro (see Section 13.12.3 [Production workflow],
page 954).

To start, please create an empty repository on your hosting service web page (we recom-
mend Codeberg since it is fully free software33). By empty, we mean that you don’t let the
web service fill your new repository with a README.md file (they usually have a check-box
for this). Also, since Gnuastro is a public repository, it is much easier if you define your
project as a public repository (not a private one).

If this is your first hosted repository on the web page, you also have to upload your
public SSH key34 for the git push command below to work. Here we will assume you use
the name janedoe to refer to yourself everywhere and that you choose gnuastro as the
name of your Gnuastro fork. Any online hosting service will give you an address (similar to

32 https://github.com/git/git/blob/master/Documentation/SubmittingPatches
33 See https://www.gnu.org/software/repo-criteria-evaluation.html for an evaluation of the major

existing repositories. Gnuastro uses GNU Savannah (which also has the highest ranking in the evalua-
tion), but for starters, Codeberg may be easier (it is fully free software).

34 for example, see this explanation provided by Codeberg: https://docs.codeberg.org/security/

ssh-key.

https://git-scm.com/book/en/v2/Distributed-Git-Contributing-to-a-Project#Public-Project-over-Email
https://git-scm.com/book/en/v2/Distributed-Git-Contributing-to-a-Project#Public-Project-over-Email
https://git-scm.com/book/en/v2/Distributed-Git-Contributing-to-a-Project#Public-Project-over-Email
https://github.com/git/git/blob/master/Documentation/SubmittingPatches
https://www.gnu.org/software/repo-criteria-evaluation.html
https://docs.codeberg.org/security/ssh-key
https://docs.codeberg.org/security/ssh-key
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the ‘git@codeberg.org:...’ below) of the empty repository you have created using their
web page, use that address in the third line below.

$ git clone git://git.sv.gnu.org/gnuastro.git

$ cd gnuastro

$ git remote add janedoe git@codeberg.org:janedoe/gnuastro.git

$ git push janedoe master

The full Gnuastro history is now pushed onto your hosting service and the janedoe

remote is now also following your master branch. If you run git remote show REMOTENAME

for the origin and janedoe remotes, you will see their difference: the first has pull access
and the second does not. This nicely summarizes the main idea behind this workflow: you
push to your remote repository, we pull from it and merge it into master, then you finalize
it by pulling from the main repository.

To test (compile) your changes during your work, you will need to bootstrap the version
controlled source, see Section 3.2.2.1 [Bootstrapping], page 227, for a full description. The
cloning process above is only necessary for your first time setup, you do not need to repeat
it. However, please repeat the steps below for each independent issue you intend to work
on.

Let’s assume you have found a bug in lib/statistics.c’s median calculating function.
Before actually doing anything, please announce it (see Section 1.9 [Report a bug], page 15)
so everyone knows you are working on it, or to confirm if others are not already working
on it. With the commands below, you make a branch, checkout to it, correct the bug and
check if it is indeed fixed. But before all of this, make sure that you are on the master

branch and that your master branch is up to date with the main Gnuastro repository with
the first two commands.

$ git checkout master

$ git pull

$ git checkout -b bug-median-stats # Choose a descriptive name

$ emacs lib/statistics.c

With the commands above, you have opened your favorite text editor (if it is not Emacs,
feel free to use any other!) and are starting to make changes. Making changes will usually
involve checking the compilation and outputs of the parts you have changed. Gnuastro
already has some facilities to help you in your checks during/after development.

developer-build

This script does a full build (from the configuration phase to producing the
final distribution tarball). During the process, if there is any error or crash, it
will abort. This allows you to find problems that you hadn’t predicted while
modifying the files. This script is described more completely in Section 3.3.2
[Separate build and source directories], page 240. Here is an example of running
this script from scratch (the junk is just a place-holder for a URL):

$ ./developer-build -p junk

If you just want a fast build to start your developing, the recommended way is
to run it in debugging mode like below:

$ ./developer-build -d

Without debugging mode, building Gnuastro can take several minutes due to
the highly optimizable code structure of Gnuastro (which significantly improves
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the run-time of the programs, but is slower in the compilation phase). During
development, you rarely need high speed at run-time. This is because once you
find the bug, you can decrease the size of the dataset to be very small and not
be affected by run-time optimizations. However, during development, you do
need a high speed at build-time to see the changes fast and also need debugging
flags (for example to run with Valgrind). Debugging flags are lost in the default
highly-optimized build.

tests/during-dev.sh

This script is most commonly used during the development of a new feature
within the library or programs (it is also mentioned in Section 13.6 [Building
and debugging], page 941). It assumes that you have built Gnuastro with the
./developer-build script (usually in debugging mode). In other words, it
assumes that all the built products are in the build directory.

It has internal variables to set the name of the program you are testing, the
name of its arguments and options, as well as the location that the built program
should be run in. It is heavily commented, so we recommend reading those
comments and will not go into more detail here.

make pdf When making changes in the book, you can run this in the build directory to
see your changes in the final PDF before committing. Furthermore, if you add
or update an example code block of the book, you should copy-paste it into a
text editor and check that it runs correctly (typos are very common and can
be very annoying for first-time readers). If there are no problems, you can add
your modification and commit it.

Once you have implemented your bug fix and made sure that it works, through the
checks above, you are ready to stage, commit and push your changes with the commands
below. Since Gnuastro is a large project, commit messages have to follow certain standards
that you should follow, they are described in Section 13.12.2 [Commit guidelines], page 952.
Please read that section carefully, and view previous commits (with git log) before writing
the commit message:

$ git add lib/statistics.c

$ git commit

$ git push janedoe bug-median-stats

Your new branch is now on your hosted repository. Through the respective tacker on
Savannah (see Section 13.10 [Gnuastro project webpage], page 949) you can then let the
other developers know that your bug-median-stats branch is ready. They will pull your
work, test it themselves and if it is ready to be merged into the main Gnuastro history, they
will merge it into the master branch. After that is done, you can simply checkout your
local master branch and pull all the changes from the main repository. After the pull you
can run ‘git log’ as shown below, to see how bug-median-stats is merged with master.
To finalize, you can push all the changes to your hosted repository and delete the branch:

$ git checkout master

$ git pull

$ git log --oneline --graph --decorate --all

$ git push janedoe master

$ git branch -d bug-median-stats # delete local branch
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$ git push janedoe --delete bug-median-stats # delete remote branch

Just as a reminder, always keep your work on each issue in a separate local and remote
branch so work can progress on them independently. After you make your announcement,
other people might contribute to the branch before merging it in to master, so this is very
important. As a final reminder: before starting each issue branch from master, be sure to
run git pull in master as shown above. This will enable you to start your branch (work)
from the most recent commit and thus simplify the final merging of your work.
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Appendix A Other useful software

In this appendix the installation of programs and libraries that are not direct Gnuastro
dependencies are discussed. However they can be useful for working with Gnuastro.

A.1 SAO DS9

SAO DS9 (http://ds9.si.edu) is not a requirement of Gnuastro, it is a FITS image viewer.
It is therefore a useful tool to visually inspect the images/cubes of your Gnuastro inputs
or outputs (for tables, see Section A.2 [TOPCAT], page 960). In Gnuastro we have an
installed script to run DS9 or TOPCAT on any number of FITS files (depending on it being
an image or table), see Section 10.4 [Viewing FITS file contents with DS9 or TOPCAT],
page 680, (which also includes a .desktop file for GUI integration). After installing DS9,
you can easily use that script to open any FITS file (table, image or cube).

Like the other packages, it might already be available in your distribution’s repositories;
but these may be outdated. DS9 is also already pre-compiled for many common operating
systems in the download section of its own web page:

1. Find your operating system in https://ds9.si.edu/download. Here are some tips
when trying to find the proper directory:

• Many GNU/Linux operating systems are compatible with Debian or Fedora, so if
you don’t find your operating system’s name, probably the latest Debian or Fedora
will also work for you.

• macOS uses the low-level “Darwin” kernel. Therefore, if you have a macOS, also
consider those directories that start with darwin.

• The CPU architectures (as suffixes) at the end of the directory names can be
classified like this:

x86 Intel CPUs.

arm64 Apple’s M1 CPUs.

2. With the operating system directories, you will find a compressed tarball that you need
to download (choose the latest one).

3. Unpack the tarball with a command like below:

$ tar -xf ds9.XXXXXXX.X.X.X.tar.gz

4. This should produce a simple ds9 file. Before installing, it is good to actually test it
like below:

$ ./ds9

5. If the command above opened DS9 with no error, you can safely install it with this
command:

$ rm ds9*.tar.gz

$ sudo mv ds9* /usr/local/bin

6. Go to your home directory and try running DS9 with the two commands below. If it
doesn’t find it, then you need to add /usr/local/bin to your PATH, see Section 3.3.1.2
[Installation directory], page 233.

$ cd

$ ds9

http://ds9.si.edu
https://ds9.si.edu/download
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� �
Install without root permissions: If you do not have root permissions, you can simply
replace /usr/local/bin in the command above with $HOME/.local/bin. If this directory
is not in your PATH, you can simply add it with the command below (in your startup file,
e.g., ~/.bashrc). For more on PATH and the startup files, see Section 3.3.1.2 [Installation
directory], page 233.

export PATH="$HOME/.local/bin:$PATH"
 	
Below you can see a list of known issues in some operating systems that we have found
so far. You should be able to identify any potential error when running DS9 from the
command-line like above.

• There might be a complaint about the Xss library, which you can find in your distri-
bution package management system.

• You might also get an XPA related error. In this case, you have to add the following
line to your ~/.bashrc and ~/.profile file (you will have to log out and back in again
for the latter):

export XPA_METHOD=local

• Your system may not have the SSL library in its standard library path, in this case,
put this command in your startup file (for example, ~/.bashrc):

export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/usr/local/ssl/lib"

A.2 TOPCAT

TOPCAT (http://www.star.bris.ac.uk/~mbt/topcat) is not a requirement of Gnuas-
tro, it is a table viewer and plotter (in many input formats, including FITS, VOTable, and
others). TOPCAT is therefore a useful tool to visually inspect the tables of your Gnuastro
inputs or outputs (for images, see Section A.1 [SAO DS9], page 959). In Gnuastro we have
an installed script to run DS9 or TOPCAT on any number of FITS files (depending on it
being an image or table), see Section 10.4 [Viewing FITS file contents with DS9 or TOP-
CAT], page 680, (which also includes a .desktop file for GUI integration). After installing
DS9, you can easily use that script to open any FITS file (table, image or cube).

TOPCAT is a very large package with many capabilities to visualize tables (as plots).
It also has an extensive documentation (http://www.star.bris.ac.uk/~mbt/topcat/#
docs) that you can read for optimally using it. TOPCAT is written in Java, so it just needs
a relatively recent (in the last decade) Java Virtual Machine (JVM) and Java Runtime En-
vironment (JRE). Your operating system already has a relatively recent Java installation
in its package manager, and there is a large chance that it is already installed. So before
trying to install Java, try running TOPCAT. If it complains about not finding a suitable
Java environment, then proceed to search your operating system’s package manager.

To install TOPCAT, you just need to run the following two commands. The first .jar
file is the main TOPCAT Java ARchive (JAR). JAR is a compressed package of Java files
and definitions that should be run with a special Java command. But to avoid bothering
users with details of how to call Java, TOPCAT also provides a simple shell script (the
second downloaded file below) that is easier to call and will do all the internal checks and
call Java properly.

http://www.star.bris.ac.uk/~mbt/topcat
http://www.star.bris.ac.uk/~mbt/topcat/#docs
http://www.star.bris.ac.uk/~mbt/topcat/#docs
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$ wget http://www.star.bris.ac.uk/~mbt/topcat/topcat-full.jar

$ wget http://www.star.bris.ac.uk/~mbt/topcat/topcat

$ chmod +x topcat

$ ./topcat # Just for a check to see if everything works!

$ sudo mv topcat-full.jar topcat /usr/local/bin/

Once the two TOPCAT files are copied in the system-wide directory, you can easily open
tables with a command like below from anywhere in your operating system.

$ topcat table.fits� �
Install without root permissions: If you do not have root permissions, you can simply
replace /usr/local/bin in the command above with $HOME/.local/bin. If this directory
is not in your PATH, you can simply add it with the command below (in your startup file,
e.g., ~/.bashrc). For more on PATH and the startup files, see Section 3.3.1.2 [Installation
directory], page 233.

export PATH="$HOME/.local/bin:$PATH"
 	
A.3 PGPLOT

PGPLOT is a package for making plots in C. It is not directly needed by Gnuastro, but can
be used byWCSLIB, see Section 3.1.1.3 [WCSLIB], page 213. As explained in Section 3.1.1.3
[WCSLIB], page 213, you can install WCSLIB without it too. It is very old (the most recent
version was released early 2001!), but remains one of the main packages for plotting directly
in C. WCSLIB uses this package to make plots if you want it to make plots. If you are
interested you can also use it for your own purposes.

If you want your plotting codes in between your C program, PGPLOT is currently one
of your best options. The recommended alternative to this method is to get the raw data
for the plots in text files and input them into any of the various more modern and capable
plotting tools separately, for example, the Matplotlib library in Python or PGFplots in
LATEX. This will also significantly help code readability. Let’s get back to PGPLOT for the
sake of WCSLIB. Installing it is a little tricky (mainly because it is so old!).

You can download the most recent version from the FTP link in its web page1. You
can unpack it with the tar -xf command. Let’s assume the directory you have unpacked
it to is PGPLOT, most probably it is: /home/username/Downloads/pgplot/. Open the
drivers.list file:

$ gedit drivers.list

Remove the ! for the following lines and save the file in the end:

PSDRIV 1 /PS

PSDRIV 2 /VPS

PSDRIV 3 /CPS

PSDRIV 4 /VCPS

XWDRIV 1 /XWINDOW

XWDRIV 2 /XSERVE

1 http://www.astro.caltech.edu/~tjp/pgplot/

http://www.astro.caltech.edu/~tjp/pgplot/
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Do not choose GIF or VGIF, there is a problem in their codes.

Open the PGPLOT/sys_linux/g77_gcc.conf file:

$ gedit PGPLOT/sys_linux/g77_gcc.conf

change the line saying: FCOMPL="g77" to FCOMPL="gfortran", and save it. This is a very
important step during the compilation of the code if you are in GNU/Linux. You now
have to create a folder in /usr/local, do not forget to replace PGPLOT with your unpacked
address:

$ su

# mkdir /usr/local/pgplot

# cd /usr/local/pgplot

# cp PGPLOT/drivers.list ./

To make the Makefile, type the following command:

# PGPLOT/makemake PGPLOT linux g77_gcc

It should finish by saying: Determining object file dependencies. You have done the
hard part! The rest is easy: run these three commands in order:

# make

# make clean

# make cpg

Finally you have to place the position of this directory you just made into the LD_

LIBRARY_PATH environment variable and define the environment variable PGPLOT_DIR. To
do that, you have to edit your .bashrc file:

$ cd ~

$ gedit .bashrc

Copy these lines into the text editor and save it:

PGPLOT_DIR="/usr/local/pgplot/"; export PGPLOT_DIR

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/pgplot/

export LD_LIBRARY_PATH

You need to log out and log back in again so these definitions take effect. After you logged
back in, you want to see the result of all this labor, right? Tim Pearson has done that for
you, create a temporary folder in your home directory and copy all the demonstration files
in it:

$ cd ~

$ mkdir temp

$ cd temp

$ cp /usr/local/pgplot/pgdemo* ./

$ ls

You will see a lot of pgdemoXX files, where XX is a number. In order to execute them
type the following command and drink your coffee while looking at all the beautiful plots!
You are now ready to create your own.

$ ./pgdemoXX
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Appendix B GNU Free Doc. License

Version 1.3, 3 November 2008

Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
https://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

https://fsf.org/
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under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or pro-
cessing tools are not generally available, and the machine-generated HTML, PostScript
or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document
to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING
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You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
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be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
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titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.
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7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, receipt of a copy of some or all of the
same material does not give you any rights to use it.
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10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See https://www.gnu.org/licenses/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities
for anybody to edit those works. A public wiki that anybody can edit is an example of
such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts
or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

https://www.gnu.org/licenses/
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ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ``GNU

Free Documentation License''.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.
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Version 3, 29 June 2007

Copyright c© 2007 Free Software Foundation, Inc. https://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of
works.

The licenses for most software and other practical works are designed to take away your
freedom to share and change the works. By contrast, the GNU General Public License is
intended to guarantee your freedom to share and change all versions of a program—to make
sure it remains free software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to any other work
released this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for them if you wish), that you receive source code or can get
it if you want it, that you can change the software or use pieces of it in new free programs,
and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking
you to surrender the rights. Therefore, you have certain responsibilities if you distribute
copies of the software, or if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must pass on to the recipients the same freedoms that you received. You must make sure
that they, too, receive or can get the source code. And you must show them these terms so
they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copy-
right on the software, and (2) offer you this License giving you legal permission to copy,
distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no
warranty for this free software. For both users’ and authors’ sake, the GPL requires that
modified versions be marked as changed, so that their problems will not be attributed
erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the
software inside them, although the manufacturer can do so. This is fundamentally incom-
patible with the aim of protecting users’ freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to use, which is pre-
cisely where it is most unacceptable. Therefore, we have designed this version of the GPL
to prohibit the practice for those products. If such problems arise substantially in other
domains, we stand ready to extend this provision to those domains in future versions of the
GPL, as needed to protect the freedom of users.

https://fsf.org/
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Finally, every program is threatened constantly by software patents. States should not
allow patents to restrict development and use of software on general-purpose computers, but
in those that do, we wish to avoid the special danger that patents applied to a free program
could make it effectively proprietary. To prevent this, the GPL assures that patents cannot
be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS

0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as
semiconductor masks.

“The Program” refers to any copyrightable work licensed under this License. Each
licensee is addressed as “you”. “Licensees” and “recipients” may be individuals or
organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion
requiring copyright permission, other than the making of an exact copy. The resulting
work is called a “modified version” of the earlier work or a work “based on” the earlier
work.

A “covered work” means either the unmodified Program or a work based on the Pro-
gram.

To “propagate” a work means to do anything with it that, without permission, would
make you directly or secondarily liable for infringement under applicable copyright law,
except executing it on a computer or modifying a private copy. Propagation includes
copying, distribution (with or without modification), making available to the public,
and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to make
or receive copies. Mere interaction with a user through a computer network, with no
transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it
includes a convenient and prominently visible feature that (1) displays an appropriate
copyright notice, and (2) tells the user that there is no warranty for the work (except
to the extent that warranties are provided), that licensees may convey the work under
this License, and how to view a copy of this License. If the interface presents a list
of user commands or options, such as a menu, a prominent item in the list meets this
criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for making modi-
fications to it. “Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined
by a recognized standards body, or, in the case of interfaces specified for a particular
programming language, one that is widely used among developers working in that
language.
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The “System Libraries” of an executable work include anything, other than the work as
a whole, that (a) is included in the normal form of packaging a Major Component, but
which is not part of that Major Component, and (b) serves only to enable use of the
work with that Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A “Major Component”,
in this context, means a major essential component (kernel, window system, and so
on) of the specific operating system (if any) on which the executable work runs, or a
compiler used to produce the work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code
needed to generate, install, and (for an executable work) run the object code and to
modify the work, including scripts to control those activities. However, it does not
include the work’s System Libraries, or general-purpose tools or generally available
free programs which are used unmodified in performing those activities but which are
not part of the work. For example, Corresponding Source includes interface definition
files associated with source files for the work, and the source code for shared libraries
and dynamically linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those subprograms
and other parts of the work.

The Corresponding Source need not include anything that users can regenerate auto-
matically from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the
Program, and are irrevocable provided the stated conditions are met. This License ex-
plicitly affirms your unlimited permission to run the unmodified Program. The output
from running a covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your rights of fair use
or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without
conditions so long as your license otherwise remains in force. You may convey covered
works to others for the sole purpose of having them make modifications exclusively
for you, or provide you with facilities for running those works, provided that you
comply with the terms of this License in conveying all material for which you do not
control copyright. Those thus making or running the covered works for you must do
so exclusively on your behalf, under your direction and control, on terms that prohibit
them from making any copies of your copyrighted material outside their relationship
with you.

Conveying under any other circumstances is permitted solely under the conditions
stated below. Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under
any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty
adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention
of such measures.
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When you convey a covered work, you waive any legal power to forbid circumvention of
technological measures to the extent such circumvention is effected by exercising rights
under this License with respect to the covered work, and you disclaim any intention
to limit operation or modification of the work as a means of enforcing, against the
work’s users, your or third parties’ legal rights to forbid circumvention of technological
measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an
appropriate copyright notice; keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code; keep intact all
notices of the absence of any warranty; and give all recipients a copy of this License
along with the Program.

You may charge any price or no price for each copy that you convey, and you may offer
support or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from
the Program, in the form of source code under the terms of section 4, provided that
you also meet all of these conditions:

a. The work must carry prominent notices stating that you modified it, and giving a
relevant date.

b. The work must carry prominent notices stating that it is released under this Li-
cense and any conditions added under section 7. This requirement modifies the
requirement in section 4 to “keep intact all notices”.

c. You must license the entire work, as a whole, under this License to anyone who
comes into possession of a copy. This License will therefore apply, along with any
applicable section 7 additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no permission to license
the work in any other way, but it does not invalidate such permission if you have
separately received it.

d. If the work has interactive user interfaces, each must display Appropriate Legal
Notices; however, if the Program has interactive interfaces that do not display
Appropriate Legal Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which
are not by their nature extensions of the covered work, and which are not combined
with it such as to form a larger program, in or on a volume of a storage or distribution
medium, is called an “aggregate” if the compilation and its resulting copyright are
not used to limit the access or legal rights of the compilation’s users beyond what the
individual works permit. Inclusion of a covered work in an aggregate does not cause
this License to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and
5, provided that you also convey the machine-readable Corresponding Source under
the terms of this License, in one of these ways:
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a. Convey the object code in, or embodied in, a physical product (including a phys-
ical distribution medium), accompanied by the Corresponding Source fixed on a
durable physical medium customarily used for software interchange.

b. Convey the object code in, or embodied in, a physical product (including a physi-
cal distribution medium), accompanied by a written offer, valid for at least three
years and valid for as long as you offer spare parts or customer support for that
product model, to give anyone who possesses the object code either (1) a copy of
the Corresponding Source for all the software in the product that is covered by this
License, on a durable physical medium customarily used for software interchange,
for a price no more than your reasonable cost of physically performing this con-
veying of source, or (2) access to copy the Corresponding Source from a network
server at no charge.

c. Convey individual copies of the object code with a copy of the written offer to
provide the Corresponding Source. This alternative is allowed only occasionally
and noncommercially, and only if you received the object code with such an offer,
in accord with subsection 6b.

d. Convey the object code by offering access from a designated place (gratis or for
a charge), and offer equivalent access to the Corresponding Source in the same
way through the same place at no further charge. You need not require recipients
to copy the Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source may be on
a different server (operated by you or a third party) that supports equivalent
copying facilities, provided you maintain clear directions next to the object code
saying where to find the Corresponding Source. Regardless of what server hosts
the Corresponding Source, you remain obligated to ensure that it is available for
as long as needed to satisfy these requirements.

e. Convey the object code using peer-to-peer transmission, provided you inform other
peers where the object code and Corresponding Source of the work are being offered
to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Cor-
responding Source as a System Library, need not be included in conveying the object
code work.

A “User Product” is either (1) a “consumer product”, which means any tangible per-
sonal property which is normally used for personal, family, or household purposes, or
(2) anything designed or sold for incorporation into a dwelling. In determining whether
a product is a consumer product, doubtful cases shall be resolved in favor of coverage.
For a particular product received by a particular user, “normally used” refers to a
typical or common use of that class of product, regardless of the status of the par-
ticular user or of the way in which the particular user actually uses, or expects or is
expected to use, the product. A product is a consumer product regardless of whether
the product has substantial commercial, industrial or non-consumer uses, unless such
uses represent the only significant mode of use of the product.

“Installation Information” for a User Product means any methods, procedures, autho-
rization keys, or other information required to install and execute modified versions of a
covered work in that User Product from a modified version of its Corresponding Source.
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The information must suffice to ensure that the continued functioning of the modified
object code is in no case prevented or interfered with solely because modification has
been made.

If you convey an object code work under this section in, or with, or specifically for
use in, a User Product, and the conveying occurs as part of a transaction in which
the right of possession and use of the User Product is transferred to the recipient in
perpetuity or for a fixed term (regardless of how the transaction is characterized),
the Corresponding Source conveyed under this section must be accompanied by the
Installation Information. But this requirement does not apply if neither you nor any
third party retains the ability to install modified object code on the User Product (for
example, the work has been installed in ROM).

The requirement to provide Installation Information does not include a requirement
to continue to provide support service, warranty, or updates for a work that has been
modified or installed by the recipient, or for the User Product in which it has been
modified or installed. Access to a network may be denied when the modification itself
materially and adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with
this section must be in a format that is publicly documented (and with an implementa-
tion available to the public in source code form), and must require no special password
or key for unpacking, reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by mak-
ing exceptions from one or more of its conditions. Additional permissions that are
applicable to the entire Program shall be treated as though they were included in this
License, to the extent that they are valid under applicable law. If additional permis-
sions apply only to part of the Program, that part may be used separately under those
permissions, but the entire Program remains governed by this License without regard
to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any
additional permissions from that copy, or from any part of it. (Additional permissions
may be written to require their own removal in certain cases when you modify the
work.) You may place additional permissions on material, added by you to a covered
work, for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered
work, you may (if authorized by the copyright holders of that material) supplement
the terms of this License with terms:

a. Disclaiming warranty or limiting liability differently from the terms of sections 15
and 16 of this License; or

b. Requiring preservation of specified reasonable legal notices or author attributions
in that material or in the Appropriate Legal Notices displayed by works containing
it; or

c. Prohibiting misrepresentation of the origin of that material, or requiring that mod-
ified versions of such material be marked in reasonable ways as different from the
original version; or
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d. Limiting the use for publicity purposes of names of licensors or authors of the
material; or

e. Declining to grant rights under trademark law for use of some trade names, trade-
marks, or service marks; or

f. Requiring indemnification of licensors and authors of that material by anyone who
conveys the material (or modified versions of it) with contractual assumptions
of liability to the recipient, for any liability that these contractual assumptions
directly impose on those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within
the meaning of section 10. If the Program as you received it, or any part of it, con-
tains a notice stating that it is governed by this License along with a term that is a
further restriction, you may remove that term. If a license document contains a further
restriction but permits relicensing or conveying under this License, you may add to a
covered work material governed by the terms of that license document, provided that
the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the
relevant source files, a statement of the additional terms that apply to those files, or a
notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a sep-
arately written license, or stated as exceptions; the above requirements apply either
way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided un-
der this License. Any attempt otherwise to propagate or modify it is void, and will
automatically terminate your rights under this License (including any patent licenses
granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, you do not qualify to receive new
licenses for the same material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the
Program. Ancillary propagation of a covered work occurring solely as a consequence of
using peer-to-peer transmission to receive a copy likewise does not require acceptance.
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However, nothing other than this License grants you permission to propagate or modify
any covered work. These actions infringe copyright if you do not accept this License.
Therefore, by modifying or propagating a covered work, you indicate your acceptance
of this License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license
from the original licensors, to run, modify and propagate that work, subject to this
License. You are not responsible for enforcing compliance by third parties with this
License.

An “entity transaction” is a transaction transferring control of an organization, or
substantially all assets of one, or subdividing an organization, or merging organizations.
If propagation of a covered work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever licenses to the work
the party’s predecessor in interest had or could give under the previous paragraph, plus
a right to possession of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or
affirmed under this License. For example, you may not impose a license fee, royalty, or
other charge for exercise of rights granted under this License, and you may not initiate
litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent
claim is infringed by making, using, selling, offering for sale, or importing the Program
or any portion of it.

11. Patents.

A “contributor” is a copyright holder who authorizes use under this License of the
Program or a work on which the Program is based. The work thus licensed is called
the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by
the contributor, whether already acquired or hereafter acquired, that would be infringed
by some manner, permitted by this License, of making, using, or selling its contributor
version, but do not include claims that would be infringed only as a consequence of
further modification of the contributor version. For purposes of this definition, “con-
trol” includes the right to grant patent sublicenses in a manner consistent with the
requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license
under the contributor’s essential patent claims, to make, use, sell, offer for sale, import
and otherwise run, modify and propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or com-
mitment, however denominated, not to enforce a patent (such as an express permission
to practice a patent or covenant not to sue for patent infringement). To “grant” such
a patent license to a party means to make such an agreement or commitment not to
enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corre-
sponding Source of the work is not available for anyone to copy, free of charge and under
the terms of this License, through a publicly available network server or other readily
accessible means, then you must either (1) cause the Corresponding Source to be so
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available, or (2) arrange to deprive yourself of the benefit of the patent license for this
particular work, or (3) arrange, in a manner consistent with the requirements of this
License, to extend the patent license to downstream recipients. “Knowingly relying”
means you have actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient’s use of the covered work in a country,
would infringe one or more identifiable patents in that country that you have reason
to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey,
or propagate by procuring conveyance of, a covered work, and grant a patent license
to some of the parties receiving the covered work authorizing them to use, propagate,
modify or convey a specific copy of the covered work, then the patent license you grant
is automatically extended to all recipients of the covered work and works based on it.

A patent license is “discriminatory” if it does not include within the scope of its cover-
age, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the
rights that are specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is in the business of
distributing software, under which you make payment to the third party based on the
extent of your activity of conveying the work, and under which the third party grants,
to any of the parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work conveyed by you (or
copies made from those copies), or (b) primarily for and in connection with specific
products or compilations that contain the covered work, unless you entered into that
arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or
other defenses to infringement that may otherwise be available to you under applicable
patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the conditions
of this License. If you cannot convey a covered work so as to satisfy simultaneously
your obligations under this License and any other pertinent obligations, then as a
consequence you may not convey it at all. For example, if you agree to terms that
obligate you to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this License would
be to refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or
combine any covered work with a work licensed under version 3 of the GNU Affero
General Public License into a single combined work, and to convey the resulting work.
The terms of this License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License, section 13,
concerning interaction through a network will apply to the combination as such.

14. Revised Versions of this License.
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The Free Software Foundation may publish revised and/or new versions of the GNU
General Public License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that
a certain numbered version of the GNU General Public License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
numbered version or of any later version published by the Free Software Foundation.
If the Program does not specify a version number of the GNU General Public License,
you may choose any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU
General Public License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no
additional obligations are imposed on any author or copyright holder as a result of your
choosing to follow a later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PER-
MITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN
WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE
THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EX-
PRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE
OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFEC-
TIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, IN-
CIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUS-
TAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR
OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given
local legal effect according to their terms, reviewing courts shall apply local law that
most closely approximates an absolute waiver of all civil liability in connection with
the Program, unless a warranty or assumption of liability accompanies a copy of the
Program in return for a fee.



Appendix C: GNU Gen. Pub. License v3 981

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively state the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program's name and a brief idea of what it does.

Copyright (C) year name of author

This program is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or (at

your option) any later version.

This program is distributed in the hope that it will be useful, but

WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program. If not, see https://www.gnu.org/licenses/.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this when it
starts in an interactive mode:

program Copyright (C) year name of author

This program comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.

This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of
the General Public License. Of course, your program’s commands might be different; for a
GUI interface, you would use an “about box”.

You should also get your employer (if you work as a programmer) or school, if any, to
sign a “copyright disclaimer” for the program, if necessary. For more information on this,
and how to apply and follow the GNU GPL, see https://www.gnu.org/licenses/.

The GNU General Public License does not permit incorporating your program into pro-
prietary programs. If your program is a subroutine library, you may consider it more useful
to permit linking proprietary applications with the library. If this is what you want to do,
use the GNU Lesser General Public License instead of this License. But first, please read
https://www.gnu.org/licenses/why-not-lgpl.html.

https://www.gnu.org/licenses/
https://www.gnu.org/licenses/
https://www.gnu.org/licenses/why-not-lgpl.html
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Index: Macros, structures and functions

All Gnuastro library’s exported macros start with GAL_, and its exported structures and
functions start with gal_. This abbreviation stands for GNU Astronomy Library. The
next element in the name is the name of the header which declares or defines them, so
to use the gal_array_fset_const function, you have to #include <gnuastro/array.h>.
See Section 12.3 [Gnuastro library], page 736, for more. The pthread_barrier constructs
are our implementation and are only available on systems that do not have them, see
Section 12.3.2.1 [Implementation of pthread_barrier], page 740.
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